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Characteristic and Universal Tensor Product Kernels

Zoltán Szabó∗ Bharath K. Sriperumbudur†

Abstract

Kernel mean embeddings provide a versatile and powerful nonparametric representa-
tion of probability distributions with several fundamental applications in machine learning.
Key to the success of the technique is whether the embedding is injective. This charac-
teristic property of the underlying kernel ensures that probability distributions can be
discriminated via their representations. In this paper, we consider kernels of tensor prod-
uct type and various notions of characteristic property (including the one that captures
joint independence of random variables) and provide a complete characterization for the
corresponding embedding to be injective. This has applications, for example in indepen-
dence measures such as Hilbert-Schmidt independence criterion (HSIC) to characterize
the joint independence of multiple random variables.

Keywords: tensor product kernel, kernel mean embedding, characteristic kernel, I-characteristic
kernel, universality, maximum mean discrepancy, Hilbert-Schmidt independence criterion

1 Introduction

Kernel methods [Schölkopf and Smola, 2002] are among the most flexible and influential tools
in machine learning, with superior performance demonstrated in a large number of areas and
applications. The key idea in these methods is to map the data samples into a possibly infinite-
dimensional feature space—precisely, a reproducing kernel Hilbert space (RKHS) [Aronszajn,
1950]—and apply linear methods in the feature space, without the explicit need to compute
the map. A generalization of this idea to probability measures, i.e., mapping probability
measures into an RKHS (Berlinet and Thomas-Agnan, 2004, Chapter 4; Smola et al., 2007)
has found novel applications in nonparametric statistics and machine learning. Formally,
given a probability measure P defined on a measurable space X and an RKHS Hk with k as
the reproducing kernel (which is symmetric and positive definite), P is embedded into Hk as

P 7→
∫
X

k(·, x) dP(x) =: µk(P), (1)

where µk(P) is called the mean element or kernel mean embedding of P. The mean embed-
ding of P has lead to a new generation of solutions in two-sample testing [Gretton et al.,
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2012], domain adaptation [Zhang et al., 2013], kernel belief propagation [Song et al., 2011],
kernel Bayes’ rule [Fukumizu et al., 2013], model criticism [Lloyd et al., 2014], approximate
Bayesian computation [Park et al., 2016], probabilistic programming [Schölkopf et al., 2015],
distribution classification [Muandet et al., 2011], distribution regression [Szabó et al., 2016]
and topological data analysis [Kusano et al., 2016]. For a recent survey on the topic, the
reader is referred to [Muandet et al., 2017].

Crucial to the success of the mean embedding based representation is whether it encodes
all the information about the distribution, in other words whether the map in (1) is injective
in which case the kernel is referred to as characteristic [Fukumizu et al., 2008, Sriperumbudur
et al., 2010]. Various characterizations for the characteristic property of k is known in the lit-
erature (e.g., see Fukumizu et al., 2008, 2009, Gretton et al., 2012, Sriperumbudur et al., 2010)
using which the popular kernels on Rd such as Gaussian, Laplacian, B-spline, inverse multi-
quadrics, and the Matérn class are shown to be characteristic. The characteristic property is
closely related to the notion of universality (Steinwart, 2001; Micchelli et al., 2006; Carmeli
et al., 2010; Sriperumbudur et al., 2011)—k is said to be universal if the corresponding RKHS
Hk is dense in a certain target function class, for example, the class of continuous functions
on compact domains—and the relation between these notions has recently been explored in
[Sriperumbudur et al., 2011, Simon-Gabriel and Schölkopf, 2016].

Based on the mean embedding in (1), Smola et al. [2007] and Gretton et al. [2012] defined
a semi-metric, called the maximum mean discrepancy (MMD) on the space of probability
measures:

MMDk(P,Q) := ‖µk(P)− µk(Q)‖Hk
,

which is a metric if k is characteristic. A fundamental application of MMD is non-parametric
hypothesis testing that includes two-sample [Gretton et al., 2012] and independence tests
[Gretton et al., 2008]. Particularly in independence testing, as a measure of independence,
MMD measures the distance between the joint distribution PXY and the product of marginals
PX ⊗ PY of two random variables X and Y which are respectively defined on measur-
able spaces X and Y, with the kernel k being defined on X × Y. As aforementioned, if
k is characteristic, then MMDk(PXY ,PX ⊗ PY ) = 0 implies PXY = PX ⊗ PY , i.e., X
and Y are independent. A simple way to define a kernel on X × Y is through the ten-
sor product of kernels kX and kY defined on X and Y respectively: k = kX ⊗ kY , i.e.,
k ((x, y) , (x′, y′)) = kX(x, x′)kY (y, y′), x, x′ ∈ X, y, y′ ∈ Y, with the corresponding RKHS
Hk = HkX ⊗HkY being the tensor product space generated by HkX and HkY . This means,
when k = kX ⊗ kY ,

MMDk(PXY ,PX ⊗ PY ) = ‖µkX⊗kY (PXY )− µkX⊗kY (PX ⊗ PY )‖HkX
⊗HkY

. (2)

In addition to the simplicity of defining a joint kernel k on X× Y, the tensor product kernel
offers a principled way of combining inner products (kX and kY ) on domains that correspond
to different modalities (say images, texts, audio). By exploiting the isomorphism between
tensor product Hilbert spaces and the space of Hilbert-Schmidt operators, it follows from (2)
that

MMDk(PXY ,PX ⊗ PY ) = ‖CXY ‖HS =: HSICk(PXY ),

which is the Hilbert-Schmidt norm of the cross-covariance operator CXY := µkX⊗kY (PXY )−
µkX (PX)⊗µkY (PY ) and is known as the Hilbert-Schmidt independence criterion (HSIC) [Gret-
ton et al., 2005]. HSIC has enjoyed tremendous success in a variety of applications such as
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blind source separation [Gretton et al., 2005], feature selection [Song et al., 2012], indepen-
dence testing [Gretton et al., 2008], post selection inference [Yamada et al., 2016] and causal
detection [Mooij et al., 2016, Pfister et al., 2017]. Recently, Pfister et al. [2017] generalized
HSIC to test for the joint independence of M random variables as:

HSICk (P) =
∥∥∥µ⊗M

m=1km
(P)−⊗M

m=1µkm (Pm)
∥∥∥
⊗M

m=1Hkm

,

where P is a joint measure on the product space X := ×M
m=1Xm and (Pm)Mm=1 are the marginal

measures of P defined on (Xm)Mm=1 respectively. The key requirement in these applications
of HSIC is that k = ⊗M

m=1km captures the joint independence of M random variables (with
joint distribution P)—we call this property as I-characteristic—, which is guaranteed if k
is characteristic. Since k is defined in terms of (km)Mm=1, it is of fundamental importance to
understand the characteristic and I-characteristic properties of k in terms of the characteristic
property of (km)Mm=1, which is the goal of this work.

For M = 2, the characterization of independence, i.e., the I-characteristic property of
k, is studied by Waegeman et al. [2012] and Gretton [2015] where it has been shown that
if k1 and k2 are universal, then k is universal1 and therefore HSIC captures independence.
A stronger version of this result can be obtained by combining [Lyons, 2013, Theorem 3.11]
and [Sejdinovic et al., 2013, Proposition 29]: if k1 and k2 are characteristic, then the HSIC
associated with k = k1 ⊗ k2 characterizes independence. Apart from these results, not much
is known about the characteristic/I-characteristic/universality properties of k in terms of the
individual kernels. In Section 3, we conduct a comprehensive analysis about these properties
of k and (km)Mm=1 for any positive integer M . To this end, we define various notions of
characteristic property on the product space X (see Definition 1 and Figure 2(a) in Section 3)
and explore the relation between them. In order to keep our presentation in this section to
be non-technical, we relegate the problem formulation to Section 3, with the main results of
the paper being presented in Section 4. A summary of the results is captured in Figure 1
while the proofs are provided in Section 5. Various definitions and notation that are used
throughout the paper are collected in Section 2.

2 Definitions & Notation

N := {1, 2, . . .} and R denotes the set of natural numbers and real numbers respectively. For
M ∈ N, [M ] := {1, . . . ,M}. 1d := (1, 1, . . . , 1) ∈ Rd and 0 denotes the matrix of zeros. For
a := (a1, . . . , ad) ∈ Rd and b := (b1, . . . , bd) ∈ Rd, 〈a, b〉 =

∑d
i=1 aibi is the Euclidean inner

product. For sets A and B, A\B = {a ∈ A : a /∈ B} is their difference, |A| is the cardinality
of A and ×M

m=1Am = {(a1, . . . , aM ) : am ∈ Amm ∈ [M ]} is the Descartes product of sets
(Am)Mm=1. P(X) denotes the power set of a set X, i.e., all subsets of X (including the empty
set and X). The Kronecker delta is defined as δa,b = 1 if a = b, and zero otherwise. χA is the
indicator function of set A: χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. Rd1×...×dM is the
set of d1 × . . .× dM -sized tensors.

For a topological space (X, τX), B(X) := B(τX) is the Borel sigma-algebra on X induced
by the topology τX. Probability and finite signed measures in the paper are meant w.r.t. the

1Waegeman et al. [2012] deals with c-universal kernels while Gretton [2015] deals with c0-universal kernels.
A brief description of these notions are provided in Section 3. We refer the reader to [Carmeli et al., 2010,
Sriperumbudur et al., 2010] for more details on these notions of universality.
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Figure 1: Summary of results: “char” denotes characteristic. In addition to the usual char-
acteristic property, three new notions ⊗0-characteristic, ⊗-characteristic and I-characteristic
are introduced in Definition 1 which along with c0-universal (in the top right corner) corre-
spond to the property of the tensor product kernel ⊗M

m=1km, while the bottom part of the
picture corresponds to the individual kernels (km)Mm=1 being characteristic or c0-universal. If
(km)Mm=1-s are continuous, bounded and translation invariant kernels on Rdm , m ∈ [M ], all
the notions are equivalent (see Theorem 4).

measurable space (X,B(X)). Given {(Xi, τi)}i∈I topological spaces, their product ×i∈IXi is
enriched with the product topology; it is the coarsest topology for which the canonical projec-
tions πi : ×i∈IXi → (Xi, τi) are continuous for all i ∈ I. C(X) denotes the space of continuous
functions on X. C0(X) denotes the class of real-valued functions vanishing at infinity on a
locally compact Hausdorff (LCH) space2 X, i.e., for any ε > 0, the set {x ∈ X : |f(x)| ≥ ε}
is compact. C0(X) is endowed with the uniform norm ‖f‖∞ = supx∈X |f(x)|. Mb(X) and
M+

1 (X) are the space of finite signed measures and probability measures on X, respectively.
For Pm ∈ M+

1 (Xm), ⊗M
m=1Pm denotes the product probability measure on the product space

×M
m=1Xm, i.e., ⊗M

m=1Pm ∈M+
1 (×M

m=1Xm). δx denotes the Dirac measure supported on x ∈ X.

Hkm is the reproducing kernel Hilbert space (RKHS) associated with the reproducing
kernel km : Xm × Xm → R, which in this paper is assumed to be measurable and bounded.
The tensor product of (km)Mm=1 is a kernel, defined as

⊗M
m=1km

(
(x1, . . . , xM ) ,

(
x′1, . . . , x

′
M

))
=

M∏
m=1

km
(
xm, x

′
m

)
, xm, x

′
m ∈ Xm, (3)

whose associated RKHS is denoted as H⊗M
m=1km

= ⊗M
m=1Hkm [Berlinet and Thomas-Agnan,

2004, Theorem 13], where the r.h.s. is the tensor product of RKHSs (Hkm)Mm=1. For hm ∈ Hm,

2LCH spaces include Rd, discrete spaces, and topological manifolds. Open or closed subsets, finite products
of LCH spaces are LCH. Infinite-dimensional Hilbert spaces are not LCH.

4



m ∈ [M ], the multi-linear operator ⊗M
m=1hm ∈ ⊗M

m=1Hm is defined as

(
⊗M

m=1hm
)

(v1, . . . , vM ) =
M∏

m=1

〈hm, vm〉Hm
, vm ∈ Hm.

For an LCH space X, k : X × X → R is called a c0-kernel if k(·, x) ∈ C0(X) for all x ∈ X.
k : Rd×Rd → R is said to be translation invariant if k(x, y) = ψ(x−y), x, y ∈ Rd for a positive
definite function ψ : Rd → R. µk(F) denotes the kernel mean embedding of F ∈Mb(X) to Hk

which is defined as µk(F) =
∫
X
k(·, x) dF(x), where the integral is meant in the Bochner sense.

3 Problem Formulation

In this section, we formally introduce the goal of the paper. To this end, we start with a
definition. For simplicity, throughout the paper, we assume that all kernels are bounded. The
definition is based on the observation [Sriperumbudur et al., 2010, Lemma 8] that a bounded
kernel k on a topological space (X, τX) is characteristic if and only if∫

X

∫
X

k(x, x′) dF(x) dF(x′) > 0, ∀F ∈Mb(X)\{0} such that F(X) = 0.

In other words, characteristic kernels are integrally strictly positive definite (ispd) (see Sripe-
rumbudur et al., 2010, p. 1523) w.r.t. the class of finite signed measures that assign zero
measure to X. The following definition extends this observation to tensor product kernels on
product spaces.

Definition 1 (F-ispd tensor product kernel) Suppose km : Xm × Xm → R is a bounded
kernel on a topological space (Xm, τXm) , m ∈ [M ]. Let F ⊆ Mb (X) be such that 0 ∈ F where
X := ×M

m=1Xm. k := ⊗M
m=1km is said to be F-ispd if

µk(F) = 0⇒ F = 0 (F ∈ F), or equivalently

‖µk(F)‖2Hk
=

∫
×M

m=1Xm

∫
×M

m=1Xm

(
⊗M

m=1km
) (
x, x′

)
dF(x) dF(x′) > 0, ∀F ∈ F\{0}. (4)

Specifically,

• if km-s are c0-kernels on locally compact Polish3 spaces Xm-s and F = Mb(X), then k is
called c0-universal.

• if

F = [Mb(X)]0 := {F ∈Mb(X) : F(X) = 0} ,

F =
[
⊗M

m=1Mb(Xm)
]0

:=
{
F ∈ ⊗M

m=1Mb (Xm) ,F(X) = 0
}
,

F = I :=
{
P−⊗M

m=1Pm : P ∈M+
1

(
×M

m=1Xm

)}
,

F = ⊗M
m=1M

0
b(Xm) :=

{
F = ⊗M

m=1Fm ∈ ⊗M
m=1Mb (Xm) ,Fm(Xm) = 0, ∀m ∈ [M ]

}
,

then k is called characteristic, ⊗-characteristic, I-characteristic and ⊗0-characteristic,
respectively.

3A topological space is called Polish if it is complete, separable and metrizable. For example, Rd and
countable discrete spaces are Polish. Open and closed subsets, products and disjoint unions of countably many
Polish spaces are Polish. Every second-countable (i.e., its topology has countable basis) LCH space is Polish.
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In Definition 1, k being characteristic matches the usual notion of characteristic kernels on a
product space, i.e., there are no two distinct probability measures on X = ×M

m=1Xm such that
the MMD between them is zero. The other notions such as ⊗-characteristic, I-characteristic
and ⊗0-characteristic are typically weaker than the usual characteristic property as

⊗M
m=1M

0
b(Xm) ⊆

[
⊗M

m=1Mb(Xm)
]0
⊆
[
Mb

(
×M

m=1Xm

)]0
⊆ Mb

(
×M

m=1Xm

)
I

⊆

. (5)

Remark. (i) The family I is useful to describe the joint independence of M random
variables—hence the name I-characteristic—defined on kernel-endowed domains (Xm)Mm=1: If
P denotes the joint distribution of random variables (Xm)Mm=1, then by definition k = ⊗M

m=1km
is I-characteristic iff

HSICk(P) = 0⇔ P = ⊗M
m=1Pm.

In other words, HSIC captures joint independence exactly with I-characteristic kernels.

(ii) For the notions of ⊗-characteristic and ⊗0-characteristic, the class F is chosen to be the
product of finite signed measures on X with a slight difference that in the latter case, each
marginal measure Fm is assumed to assign zero measure to the corresponding space Xm while
in the former, the entire joint measure F is restricted to assign measure zero to X.

(iii) When F = Mb(X) with km being c0-kernels on LCH space Xm for all m ∈ [M ], then k
is also a c0-kernel on LCH space X implying that if k satisfies (4), then k is c0-universal (see
Sriperumbudur et al., 2010, Proposition 2). It is well known that c0-universality reduces to
c-universality (i.e., the notion of universality proposed by Steinwart, 2001) if X is compact (see
Sriperumbudur et al., 2010 for details) which is guaranteed if and only if each Xm, m ∈ [M ]
is compact.

Given the relations in (5), it immediately follows that k = ⊗M
m=1km satisfies

⊗0-characteristic ⊗-characteristic⇐ characteristic⇐

⇐

c0-universal⇐

I-characteristic

(6)

when Xm for all m ∈ [M ] are LCH. A visual illustration of (5) and (6) is provided in Figure 2.
The goal of this paper is to investigate whether the characteristic or c0-universal property of
km-s (m ∈ [M ]) imply different F-ispd properties of ⊗M

m=1km, and vice versa.

4 Main Results

In this section, we present our main results related to the F-ispd property of tensor product
kernels, which are summarized in Figure 1. First, in the following result, we show that
the characteristic property of individual kernels (km)Mm=1 need not be equivalent to that of
⊗M

m=1km, but is equivalent to ⊗0-characteristic property of ⊗M
m=1km.

Theorem 2 Let km : Xm × Xm → R be bounded kernels on topological spaces Xm for all
m ∈ [M ] . Then the following holds.
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characteristic

I-char.⊗-char.

⊗0-char.

(a)

Mb(X)

[Mb(X)]0

I⊗mM0
b(Xm)

[⊗mMb(Xm)]0
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Figure 2: (a) F-ispd ⊗M
m=1km kernels (see (6)); (b) F ⊆Mb(X), X = ×M

m=1Xm.

(i) If ⊗M
m=1km is characteristic, then it is ⊗-characteristic.

(ii) If ⊗M
m=1km is ⊗-characteristic, then it is ⊗0-characteristic.

(iii) ⊗M
m=1km is ⊗0-characteristic iff k1, . . . , kM are characteristic.

In the above result, the converse to assertion (ii) is in general not true as demonstrated
by the following example, which therefore demonstrates that the tensor product kernel need
not be characteristic even if all km-s are characteristic.

Example 1 Let X1 = X2 = {1, 2}, τX1 = τX2 = P({1, 2}), k1(x, x′) = k2(x, x
′) = 2δx,x′ − 1.

It is easy to verify that k1 and k2 are characteristic. However, it can be proved that k1 ⊗ k2
is not ⊗-characteristic4 and therefore not characteristic. On the hand, interestingly, k1 ⊗ k2
is I-characteristic. We refer the reader to Section 5.2 for details.

In the above example, we showed that the tensor product of k1 and k2 (which are char-
acteristic kernels) is I-characteristic. The following result generalizes this behavior for any
bounded characteristic kernels. In addition, under a mild extra assumption, it shows the
converse to be true for any M .

Theorem 3 Let km : Xm × Xm → R be bounded kernels on topological spaces Xm for all
m ∈ [M ] . Then the following holds.

(i) If k1 and k2 are characteristic, then k1 ⊗ k2 is I-characteristic.

(ii) Suppose Xm is Hausdorff and |Xm| ≥ 2 for all m ∈ [M ]. If ⊗M
m=1km is I-characteristic,

then k1, . . . , kM are characteristic.

Lyons [2013] has showed an analogous result to Theorem 3(i) for distance covariances
(M = 2) on metric spaces of negative type (see Theorem 3.11 in Lyons, 2013), which via

4An interesting and different example is constructed by Sejdinovic et al. [2013, Remark 31], illustrating that
the tensor product of characteristic kernels need not be (using our terminology) ⊗-characteristic. However,
unlike Example 1, the construction in [Sejdinovic et al., 2013] does not hint the I-characteristic property of
the tensor product kernel.
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Sejdinovic et al. [2013, Proposition 29] holds for HSIC yielding the I-characteristic property
of k1⊗k2. Recently, Gretton [2015] presented a direct proof showing that HSIC corresponding
to k1 ⊗ k2 captures independence if k1 and k2 are translation invariant characteristic kernels
on Rd (which is equivalent to c0-universality). In contrast, Theorem 3(i) establishes the result
for bounded kernels on general topological spaces. In fact, the result of [Gretton, 2015] is a
special case of Theorems 4 and 5 below. Theorem 3(i) raises a pertinent question: whether
⊗M

m=1km is I-characteristic if km-s are characteristic for all m ∈ [M ] where M > 2? The
following example provides a negative answer to this question. On a positive side, however,
we will see in Theorem 5 that the I-characteristic property of ⊗M

m=1km can be guaranteed for
any M ≥ 2 if a stronger condition is imposed on km-s (and Xm-s). Theorem 3(ii) generalizes
Proposition 3.15 of [Lyons, 2013] for any M > 2.

Example 2 Let M = 3 and Xm := {1, 2}, τXm = P(Xm), km (x, x′) = 2δx,x′−1 (m = 1, 2, 3).
As mentioned in Example 1, (km)3m=1 are characteristic. However, it can be shown that
⊗3

m=1km is not I-characteristic. See Section 5.3 for details.

In Theorem 2 and Example 1, we showed that in general, only the ⊗0-characteristic
property of ⊗M

m=1km is equivalent to the characteristic property of km-s. Our next result
shows that all the various notions of characteristic property of ⊗M

m=1km coincide if km-s are
translation-invariant, continuous bounded kernels on Rd.

Theorem 4 Suppose km : Rdm×Rdm → R are continuous, bounded and translation-invariant
kernels for all m ∈ [M ]. Then the following statements are equivalent:

(i) km-s are characteristic for all m ∈ [M ];

(ii) ⊗M
m=1km is ⊗0-characteristic;

(iii) ⊗M
m=1km is ⊗-characteristic;

(iv) ⊗M
m=1km is I-characteristic;

(v) ⊗M
m=1km is characteristic.

Our final result shows that on LCP spaces, the tensor product of M ≥ 2 c0-universal
kernels is also c0-universal, and vice versa.

Theorem 5 Suppose km : Xm×Xm → R are c0-kernels on LCP spaces Xm (m ∈ [M ]). Then
⊗M

m=1km is c0-universal iff km-s are c0-universal for all m ∈ [M ].

A special case of Theorem 5 for M = 2 is proved by Lyons [2013, Lemma 3.8] in the context
of distance covariance which reduces to Theorem 5 through the equivalence established by
Sejdinovic et al. [2013]. Another special case of Theorem 5 is proved5 by Waegeman et al.
[2012, Theorem VII.2] for c-universality with M = 2 using the Stone-Weierstrass theorem: if
k1 and k2 are c-universal then k1 ⊗ k2 is c-universal. Since the notions of c0-universality and
characteristic property are equivalent for translation-invariant c0-kernels on Rd (see Carmeli
et al., 2010, Proposition 5.16 and Sriperumbudur et al., 2010, Theorem 9), Theorem 4 can be

5In fact there is a small technical error in [Waegeman et al., 2012]: C(X) × C(X) = {(x1, x2) 7→
f1(x1)f2(x2), fm ∈ C(X),m = 1, 2} is claimed to be an algebra. This is not true since C(X) × C(X) is
not closed w.r.t. addition; in other words f, g ∈ C(X)×C(X) 6⇒ f + g ∈ C(X)×C(X). However, the issue can
be resolved by taking the linear span of C(X)× C(X).
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considered as a special case of Theorem 5. Since the c0-universality of ⊗M
m=1km implies its

I-characteristic property (see (6)), Theorem 5 also provides a generalization of Theorem 3(i)
to M ≥ 2 under additional assumptions on km-s, while constraining Xm-s to LCP-s instead
of general topological spaces.

5 Proofs

In this section, we provide the proofs of our results presented in Section 4.

5.1 Proof of Theorem 2

By (6), it is sufficient to prove (iii). Note that for any F = ⊗M
m=1Fm ∈ ⊗M

m=1Mb (Xm),
Fm(Xm) = 0 (∀m ∈ [M ]),

‖µk(F)‖2H⊗M
m=1km

=

∫
×M

m=1Xm

∫
×M

m=1Xm

(
⊗M

m=1km
) (
x, x′

)
dF(x) dF(x′)

=

∫
×M

m=1Xm

∫
×M

m=1Xm

(
⊗M

m=1km
) (
x, x′

)
d
[
⊗M

m=1Fm

]
(x) d

[
⊗M

m=1Fm

] (
x′
)

=
M∏

m=1

∫
Xm×Xm

km(xm, x
′
m) dFm(xm) dFm(x′m)

=

M∏
m=1

‖µkm(Fm)‖2Hkm
. (7)

(⇒) If km-s are characteristic, then ‖µkm(Fm)‖Hkm
> 0, ∀Fm ∈ Mb(Xm)\{0}, Fm(Xm) = 0

and all m ∈ [M ]. It therefore follows from (7) that ‖µk(F)‖H⊗M
m=1km

> 0, ∀F = ⊗M
m=1Fm ∈

⊗M
m=1Mb (Xm), Fm(Xm) = 0 (∀m ∈ [M ]), implying that ⊗M

m=1km is ⊗0-characteristic.

(⇐) If ⊗M
m=1km is ⊗0-characteristic, then ‖µk(F)‖H⊗M

m=1km

> 0 for all F = ⊗M
m=1Fm ∈

⊗M
m=1Mb (Xm), Fm(Xm) = 0 (∀m ∈ [M ]). Therefore (7) implies ‖µkm(Fm)‖Hkm

> 0, ∀Fm ∈
Mb(Xm)\{0}, Fm(Xm) = 0 and all m ∈ [M ], i.e., km-s are characteristic.

5.2 Proof of Example 1

The proof is structured as follows.

1. First we show that k := k1 = k2 is a kernel and it is characteristic.

2. Next it is proved that k1⊗ k2 is not ⊗-characteristic and therefore is not characteristic.

3. Finally, the I-characteristic property of k1 ⊗ k2 is established.

The individual steps are as follows:

k is a kernel. Assume w.l.o.g. that x1 = . . . = xN = 1, xN+1 = . . . = xn = 2. Then it is

easy to verify that the Gram matrix G = [k(xi, xj)]
n
i,j=1 = aa> where a :=

(
1>N ,−1>n−N

)>
and a> is the transpose of a. Clearly G is positive semidefinite and so k is a kernel.

9



k is characteristic. We will show that k satisfies (4). On X = {1, 2} a finite signed measure
F takes the form F = a1δ1 + a2δ2 for some a1, a2 ∈ R. Thus,

F ∈Mb(X)\{0} ⇔ (a1, a2) 6= 0 and F(X) = 0⇔ a1 + a2 = 0. (8)

Consider ∫
X

∫
X

k(x, x′) dF(x) dF(x′) = a21k(1, 1) + a22k(2, 2) + 2a1a2k(1, 2)

= a21 + a22 − 2a1a2 = (a1 − a2)2 = 4a21 > 0, (9)

where we used (8) and the facts that k(1, 1) = k(2, 2) = 1, k(1, 2) = −1.

k1 ⊗ k2 is not ⊗-characteristic. Our goal is to construct a witness F = F1 ⊗ F2 ∈
⊗2

m=1Mb(Xm)\{0} such that

F(X1 × X2) = F1(X1)F2(X2) = 0, (10)

and

0 =

∫
X1×X2

∫
X1×X2

(k1 ⊗ k2)((i1, i2), (i′1, i′2))︸ ︷︷ ︸
k1(i1,i′1)k2(i2,i

′
2)

dF(i1, i2) dF(i′1, i
′
2)

=

2∏
m=1

∫
Xm

∫
Xm

km(im, i
′
m) dFm(im) dFm(i′m). (11)

Finite signed measures on {1, 2} take the form F1 = F1(a) = a1δ1 + a2δ2, F2 = F2(b) =
b1δ1 + b2δ2 form, where a = (a1, a2) ∈ R2,b = (b1, b2) ∈ R2. With these notations, (10) and
(11) can be rewritten as

0 = (a1 + a2)(b1 + b2),

0 =

 2∑
i,i′=1

k1(i, i
′)aiai′

 2∑
j,j′=1

k2(j, j
′)bjbj′

 = (a1 − a2)2(b1 − b2)2.

Keeping the solutions where neither a nor b is the zero vector, there are 2 (symmetric)
possibilities: (i) a1 + a2 = 0, b1 = b2 and (ii) a1 = a2, b1 + b2 = 0. In other words, for any
a, b 6= 0, the possibilities are (i) a = (a,−a), b = (b, b) and (ii) a = (a, a), b = (b,−b). This
establishes the non-⊗-characteristic property of k1 ⊗ k2.

k1⊗ k2 is I-characteristic. Our goal is to show that k1⊗ k2 is I-characteristic, i.e., for any
P ∈M+

1 (X1 ×X2), µk1⊗k2(F) = 0 implies F = 0, where F = P− P1 ⊗ P2. We divide the proof
into two parts:

1. First we derive the equations of

F(X1 × X2) = 0 and

∫ ∫
(X1×X2)2

(k1 ⊗ k2) ((i, j), (r, s)) dF(i, j) dF(r, s) = 0 (12)

for general finite signed measures F =
∑2

i,j=1 aijδ(i,j) on X1 × X2.

10



2. Then, we apply the F = P−P1⊗P2 parameterization and solve for P that satisfies (12)
to conclude that P = P1 ⊗ P2, i.e., F = 0. Note that in the chosen parametrization for
F, F(X1 × X2) = 0 holds automatically.

The details are as follows.

Step 1.

0 = F(X1 × X2)⇔ 0 = a11 + a12 + a21 + a22, (13)

0 =

∫
X1×X2

∫
X1×X2

(k1 ⊗ k2) ((i, j), (r, s))︸ ︷︷ ︸
k1(i,r)k2(j,s)

dF(i, j) dF (r, s)

=
2∑

i,j=1

2∑
r,s=1

k1(i, r)k2(j, s)aijars =
2∑

i,r=1

k1(i, r)
2∑

j,s=1

k2(j, s)aijars

= k1(1, 1) [k2(1, 1)a11a11 + k2(1, 2)a11a12 + k2(2, 1)a12a11 + k2(2, 2)a12a12]

+ k1(1, 2) [k2(1, 1)a11a21 + k2(1, 2)a11a22 + k2(2, 1)a12a21 + k2(2, 2)a12a22]

+ k1(2, 1) [k2(1, 1)a21a11 + k2(1, 2)a21a12 + k2(2, 1)a22a11 + k2(2, 2)a22a12]

+ k1(2, 2) [k2(1, 1)a21a21 + k2(1, 2)a21a22 + k2(2, 1)a22a21 + k2(2, 2)a22a22]

=
(
a211 − 2a11a12 + a212

)︸ ︷︷ ︸
(a11−a12)2

+
(
a221 − 2a21a22 + a222

)︸ ︷︷ ︸
(a21−a22)2

−2 (a11a21 − a11a22 − a12a21 + a12a22)︸ ︷︷ ︸
(a11−a12)(a21−a22)

= (a11 − a12 − a21 + a22)
2. (14)

Solving (13) and (14) yields

a11 + a22 = 0 and a12 + a21 = 0. (15)

Step 2. Any P ∈M+
1 (X1 × X2) can be parametrized as

P =
2∑

i,j=1

pijδ(i,j), pij ≥ 0, ∀(i, j) and
2∑

i,j=1

pij = 1. (16)

Let F = P− P1 ⊗ P2 =
∑2

i,j=1 aijδ(i,j); for illustration see Table 1. It follows from step 1 that
F satisfying (15) is equivalent to satisfying (12). Therefore, for the choice of F := P−P1⊗P2,
we obtain

p11 − (p11 + p12)(p11 + p21) + p22 − (p21 + p22)(p12 + p22) = 0, (17)

p12 − (p11 + p12)(p12 + p22) + p21 − (p21 + p22)(p11 + p21) = 0, (18)

where (pij)i,j∈[2] satisfy (16). Solving (16)–(18), we obtain

p11 =
a[1− (a+ b)]

a+ b
, p12 =

b[1− (a+ b)]

a+ b
, p21 = a and p22 = b,

with 0 ≤ a, b ≤ 1, a+b ≤ 1 and (a, b) 6= 0. The resulting distribution family with its marginals
is summarized in Table 2. It can be seen that each member of this family (any a, b in the
constraint set) factorizes: P = P1 ⊗ P2. In other words, F = P− P1 ⊗ P2 = 0; hence k1 ⊗ k2 is

11



P: y\x 1 2 P2

1 p11 p21 q1 = p11 + p21
2 p12 p22 q2 = p12 + p22

P1 p1 = p11 + p12 p2 = p21 + p22

⇒

F := P− P1 ⊗ P2 1 2

1 a11 = p11 − (p11 + p12)(p11 + p21) a21 = p21 − (p21 + p22)(p11 + p21)
2 a12 = p12 − (p11 + p12)(p12 + p22) a22 = p22 − (p21 + p22)(p12 + p22)

Table 1: Joint (P), joint minus product of the marginals (P− P1 ⊗ P2).

P: y\x 1 2 P2

1 p11 = a[1−(a+b)]
a+b p21 = a q1 = a

a+b

2 p12 = b[1−(a+b)]
a+b p22 = b q2 = b

a+b

P1 p1 = 1− (a+ b) p2 = a+ b

Table 2: Family of probability distributions solving (16)–(18).

I-characteristic.

Remark. We would like to mention that while k1 and k2 are characteristic, they are not
universal. Since X is finite, the usual notion of universality (also called c-universality) matches
with c0-universality. Therefore, from (9), we have

∫
X

∫
X
k(x, x′) dF(x) dF(x) = (a1−a2)2 where

F = a1δ1 + a2δ2 for some a1, a2 ∈ R\{0}. Clearly, the choice of a1 = a2 establishes that there
exists F ∈Mb(X)\{0} such that

∫
X

∫
X
k(x, x′) dF(x) dF(x) = 0. Hence k is not universal. Note

that the constraint in (8), which is need to verify the characteristic property of k is not need
to verify its universality.

5.3 Proof of Example 2

Let M = 3, ×M
m=1Xm = {(i1, i2, i3) : im = 1, 2, m ∈ [3]}, km(x, x′) = 2δx,x′ − 1. Our goal is to

show that ⊗3
m=1km is not I-characteristic. The structure of the proof is as follows:

1. First we describe the equations of the non-characteristic property of ⊗3
m=1km with a

general finite signed measure F =
∑2

i1,i2,i3=1 ai1,i2,i3δ(i1,i2,i3) on ×3
m=1Xm where ai1,i2,i3 ∈

R (∀i1, i2, i3).
2. Next, we apply the F = P − ⊗3

m=1Pm parameterization and show that there exists P
that satisfies the equations of step 1 to conclude that ⊗3

m=1km is not I-characteristic.

The details are as follows.

Step 1. The equations of non-characteristic property in terms of A = [ai1,i2,i3 ](im)3m=1∈[2]3
∈

R2×2×2 are

F ∈Mb

(
×3

m=1Xm

)
\{0} ⇔ A 6= 0,

12



0 = F(×3
m=1Xm)⇔ 0 =

2∑
i1,i2,i3=1

ai1,i2,i3 , (19)

0 =

∫
×3

m=1Xm

∫
×3

m=1Xm

(⊗3
m=1km)

(
(i1, i2, i3), (i

′
1, i
′
2, i
′
3)
)︸ ︷︷ ︸∏3

m=1 km(im,i′m)

dF(i1, i2, i3) dF(i′1, i
′
2, i
′
3)

=

2∑
i1,i2,i3=1

2∑
i′1,i
′
2,i
′
3=1

3∏
m=1

km(im, i
′
m)ai1,i2,i3ai′1,i′2,i′3 . (20)

Solving (19) and (20) yields

a1,1,1 + a1,2,2 + a2,1,2 + a2,2,1 = 0 and a1,1,2 + a1,2,1 + a2,1,1 + a2,2,2 = 0.

Step 2. The equations of non I-characteristic property can be obtained from step 1 by
choosing F = P−⊗M

m=1Pm, where

P =
2∑

i1,i2,i3=1

pi1,i2,i3δ(i1,i2,i3) and P = [pi1,i2,i3 ](im)3m=1∈[2]3
∈ R2×2×2.

In other words, it is sufficient to obtain a P that solves the following system of equations for
which A = A(P) 6= 0:

2∑
i1,i2,i3=1

pi1,i2,i3 = 1, (21)

pi1,i2,i3 ≥ 0, ∀ (i1, i2, i3) ∈ [2]3, (22)

a1,1,1 + a1,2,2 + a2,1,2 + a2,2,1 = 0, (23)

a1,1,2 + a1,2,1 + a2,1,1 + a2,2,2 = 0, (24)

where

ai1,i2,i3 = pi1,i2,i3 − p1,i1p2,i2p3,i3 , (25)

and

p1,i1 =

2∑
i2,i3=1

pi1,i2,i3 , p2,i2 =

2∑
i1,i3=1

pi1,i2,i3 , p3,i3 =

2∑
i1,i2=1

pi1,i2,i3 . (26)

One can get an analytical description for the solution of (21)–(26), where the solution P(z)
is parameterized by z = (z0, . . . , z5) ∈ R6. For explicit expressions, we refer the reader to
Appendix A. In the following, we present two examples of P that satisfy (21)–(26) such that
A 6= 0, thereby establishing the non I-characteristic property of ⊗3

m=1km.

1. P:

p1,1,1 =
1

5
, p1,1,2 =

1

10
, p1,2,1 =

1

10
, p1,2,2 =

1

10
,

p2,1,1 =
1

5
, p2,1,2 =

1

10
, p2,2,1 =

1

10
, p2,2,2 =

1

10
,
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and A:

a1,1,1 =
1

50
, a1,1,2 = − 1

50
, a1,2,1 = − 1

50
, a1,2,2 =

1

50
,

a2,1,1 =
1

50
, a2,1,2 = − 1

50
, a2,2,1 = − 1

50
, a2,2,2 =

1

50
.

2. P:

p1,1,1 = 0, p1,1,2 =
1

10
, p1,2,1 =

1

10
, p1,2,2 =

1

10
,

p2,1,1 =
1

10
, p2,1,2 =

1

10
, p2,2,1 =

3

10
, p2,2,2 =

1

5
,

and A:

a1,1,1 = − 9

200
, a1,1,2 =

11

200
, a1,2,1 = − 1

200
, a1,2,2 = − 1

200
,

a2,1,1 = − 1

200
, a2,1,2 = − 1

200
, a2,2,1 =

11

200
, a2,2,2 = − 9

200
.

In fact these examples are obtained with the choices z = ( 1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10) and z =

( 3
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,

2
10) respectively. See Appendix A for details.

5.4 Proof of Theorem 3

Define Hm := Hkm .

(i) Suppose k1 and k2 are characteristic and that for some F = P− P1 ⊗ P2 ∈ I,

H1 ⊗H2 3
∫
X1×X2

(k1 ⊗ k2) (·, x) dF(x) =

∫
X1×X2

k1(·, x1)⊗ k2(·, x2) dF(x) = 0, (27)

where x = (x1, x2). We want to show that F = 0, for which it is sufficient to prove that
F (B1 ×B2) = 0, ∀Bm ∈ B(Xm), m = 1, 2. To this end, it follows from (27) that for all
h2 ∈ H2,

H1 3
∫
X1×X2

k1(·, x1)h2(x2) dF(x) =

∫
X1

k1(·, x1) dν(x1) = 0, (28)

where

ν(B1) := νh2(B1) =

∫
X1×X2

χB1(x1)h2(x2) dF(x), B1 ∈ B(X1).

Since k1 is characteristic, (28) implies ν = 0, provided that |ν|(X1) < ∞ and ν(X1) = 0.
These two requirements hold:

ν(X1) =

∫
X1×X2

h2(x2) dF(x) =

∫
X2

h2(x2) d[P2 − P2](x2) = 0;

|ν|(X1) ≤
∫
X1×X2

|h2(x2)|︸ ︷︷ ︸∣∣〈h2,k2(·,x2)〉H2

∣∣d[P + P1 ⊗ P2](x1, x2)
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≤ ‖h2‖H2

∫
X1×X2

√
k2(x2, x2) d[P + P1 ⊗ P2](x1, x2)

≤ 2 ‖h2‖H2

∫
X2

√
k2(x2, x2) dP2(x2) <∞, (29)

where the last inequality follows from the boundedness of k2. The established ν = 0 implies
that for ∀B1 ∈ B(X1) and ∀h2 ∈ H2,

0 = ν(B1) =

〈
h2,

∫
X1×X2

χB1(x1)k2(·, x2) dF(x)

〉
H2

,

and hence

0 =

∫
X1×X2

χB1(x1)k2(·, x2) dF(x) =

∫
X2

k2(·, x2) dθB1(x2), (30)

where

θB1(B2) =

∫
X1×X2

χB1(x1)χB2(x2) dF(x), B2 ∈ B(X2).

Using the characteristic property of k2, it follows from (30) that θB1 = 0 for ∀B1 ∈ B(X1),
i.e.,

0 = θB1(B2) = F(B1 ×B2), ∀B1 ∈ B(X1), ∀B2 ∈ B(X2)

provided that θB1(X2) = 0 and |θB1 |(X2) <∞. Both these conditions hold:

θB1(X2) =

∫
X1×X2

χB1(x1) dF(x) =

∫
X1

χB1(x1) d[P1 − P1](x1) = 0;

|θB1 |(X2) ≤
∫
X1×X2

d[P + P1 ⊗ P2](x) = 2.

(ii) Assume w.l.o.g. that k1 is not characteristic. This means there exists P1 6= P′1 ∈M+
1 (X1)

such that µk1(P1) = µk1 (P′1). Our goal is to construct an F ∈M+
1

(
×M

m=1Xm

)
such that

µ⊗M
m=1km

(
F−⊗M

m=1Fm

)
=

∫
×M

m=1

⊗M
m=1km(·, xm)d

[
F−⊗M

m=1Fm

]
= 0, but F 6= ⊗M

m=1Fm.

Define I := F − ⊗M
m=1Fm ∈ I. In other words we want to get a witness I ∈ I proving that

⊗M
m=1km is not I-characteristic. Let us take z 6= z′ ∈ X2, which is possible since |X2| ≥ 2.

Let us define F as6

F =
P1 ⊗ δz ⊗ (⊗M

m=3Qm) + P′1 ⊗ δz′ ⊗ (⊗M
m=3Qm)

2
∈M+

1

(
×M

m=1Xm

)
.

It is easy to verify that

F1 =
P1 + P′1

2
, F2 =

δz + δz′

2
and Fm = Qm (m = 3, . . . ,M),

where Q3, . . . ,QM are arbitrary probability measures on X3, . . . ,XM , respectively. First we
check that I 6= 0. Indeed it is the case since

6The F construction specializes to that of Lyons [2013, Proposition 3.15] in the M = 2 case; Lyons used it
for distance covariances, which is known to be equivalent to HSIC [Sejdinovic et al., 2013].
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• z 6= z′ and X2 is a Hausdorff space, there exists B2 ∈ B(X2) such that z ∈ B2, z
′ 6∈ B2.

• P1 6= P′1, P1(B1) 6= P′1(B1) for some B1 ∈ B(X1).

Let S = B1 ×B2 ×
(
×M

m=3Xm

)
, and compare its measure under F and ⊗M

m=1Fm:

F(S) =
P1(B1)

=1 (z∈B2)︷ ︸︸ ︷
δz(B2)

∏M
m=3

=1︷ ︸︸ ︷
Qm(Xm) +P′1(B1)

=0 (z′ 6∈B2)︷ ︸︸ ︷
δz′(B2)

∏M
m=3

=1︷ ︸︸ ︷
Qm(Xm)

2

=
P1(B1)

2
,

(
⊗M

m=1Fm

)
(S) =

M∏
m=1

Fm(Bm) =
P1(B1) + P′1(B1)

2

=1︷ ︸︸ ︷
δz(B2) +

=0︷ ︸︸ ︷
δz′(B2)

2

M∏
m=3

=1︷ ︸︸ ︷
Qm(Xm)

=
P1(B1) + P′1(B1)

4
6= P1(B1)

2
,

where the last equality holds since P1(B1) 6= P′1(B1). This shows that I = F − ⊗M
m=1Fm 6= 0

since I(S) 6= 0.
Next we prove that µ⊗M

m=1km

(
F−⊗M

m=1Fm

)
= 0. Indeed,

µ⊗M
m=1km

(I) =

∫
×M

m=1Xm

⊗M
m=1km(·, xm) d

[
F−⊗M

m=1Fm

]
(x1, . . . , xM )

=

∫
×M

m=1Xm

⊗M
m=1km(·, xm) d

([
P1 ⊗ δz + P′1 ⊗ δz′

2
− P1 + P′1

2
⊗ δz + δz′

2

]
⊗
(
⊗M

m=3Qm

))
(x1, . . . , xM )

=

∫
×M

m=1Xm

⊗M
m=1km(·, xm) d

([
P1(x1)⊗ δz(x2) + P′1(x1)⊗ δz′(x2)

2

−P1(x1)⊗ δz(x2) + P1(x1)⊗ δz′(x2)
4

−P′1(x1)⊗ δz(x2) + P′1(x1)⊗ δz′(x2)
4

]
⊗ (⊗M

m=3Qm(xm))

)
(∗)
=

[
µk1(P1)⊗ k2(·, z) + µk1(P′1)⊗ k2(·, z′)

2

−µk1(P1)⊗ k2(·, z) + µk1(P1)⊗ k2(·, z′)
4

−µk1(P′1)⊗ k2(·, z) + µk1(P′1)⊗ k2(·, z′)
4

]
⊗
[
⊗M

m=3µkm (Qm)
]

= 0︸︷︷︸
∈Hk1⊗k2

⊗
[
⊗M

m=3µkm (Qm)
]

= 0,

where we used µk1(P1) = µk1 (P′1) in (∗).

5.5 Proof of Theorem 4

It follows from (6) and Theorem 2 that (v) ⇒ (iii) ⇒ (ii) ⇔ (i). It also follows from (6)
and Theorem 3(ii) that (v) ⇒ (iv) ⇒ (i). We now show that (i) ⇒ (v) which establishes
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the equivalence of (i)–(v). Suppose (i) holds. Then by Bochner’s theorem [Wendland, 2005,
Theorem 6.6], we have that for all m ∈ [M ],

km(xm, ym) =

∫
Rdm

e−
√
−1〈ωm,xm−ym〉 dΛm(ωm), xm, ym ∈ Rdm ,

where (Λm)Mm=1 are finite non-negative Borel measures on (Rdm)Mm=1 respectively. This implies

⊗M
m=1km(xm, ym) = ⊗M

m=1

∫
Rdm

e−
√
−1〈ωm,xm−ym〉 dΛm(ωm) =

∫
Rd

e−
√
−1〈ω,x−y〉 dΛ(ω),

where x = (x1, . . . , xM ) ∈ Rd, y = (y1, . . . , yM ) ∈ Rd, ω = (ω1, . . . , ωM ) ∈ Rd, d =
∑M

m=1 dm
and Λ := ⊗M

m=1Λm. Sriperumbudur et al. [2010, Theorem 9] showed that km is charac-
teristic iff supp (Λm) = Rdm , where supp(·) denotes the support of its argument. Since
supp(Λ) = supp

(
⊗M

m=1Λm

)
= ×M

m=1supp (Λm) = ×M
m=1Rdm = Rd, it follows that ⊗M

m=1km is
characteristic.

5.6 Proof of Theorem 5

The c0-kernel property of km-s (m = 1, . . . ,M) implies that of ⊗M
m=1km. Moreover, Xm-s are

LCP spaces, hence ×M
m=1Xm is also LCP.

(⇐) Assume that ⊗M
m=1km is c0-universal. Since ⊗M

m=1Mb (Xm) ⊆ Mb

(
×M

m=1Xm

)
, we have

that for all F = ⊗M
m=1Fm ∈ ⊗M

m=1Mb(Xm)\{0},

0 <

∫
×M

m=1Xm

∫
×M

m=1Xm

(
⊗M

m=1km
)

(x, x′)︸ ︷︷ ︸∏M
m=1 km(xm,x′m)

dF(x) dF(x′)

=
M∏

m=1

∫
Xm×Xm

km(xm, x
′
m) dFm(xm) dFm

(
x′m
)
,

where x = (x1, . . . , xM ) and x′ = (x′1, . . . , x
′
M ). The above inequality implies∫

Xm×Xm

km(xm, x
′
m) dFm(xm) dFm

(
x′m
)
> 0, ∀m ∈ [M ].

Since F ∈ ⊗M
m=1Mb (Xm) \{0} iff Fm ∈Mb(Xm)\{0} for all m ∈ [M ], the result follows.

(⇒) Assume that km-s are c0-universal. By the note above ⊗M
m=1km is c0-kernel; its c0-

universality is equivalent to the injectivity of µ = µ⊗M
m=1km

on Mb

(
×M

m=1Xm

)
. In other

words, we want to prove that µ(F) = 0 implies F = 0, where F ∈Mb

(
×M

m=1Xm

)
. We will use

the shorthand Hm = Hkm below.
Suppose there exists F ∈Mb

(
×M

m=1Xm

)
such that

µF =

∫
×M

m=1Xm

(
⊗M

m=1km
)

(·, x)︸ ︷︷ ︸
⊗M

m=1km(·,xm)

dF(x) = 0 (∈ ⊗M
m=1Hm). (31)

In order to get F = 0, it is sufficient to prove that

F
(
×M

m=1Bm

)
= 0, ∀Bm ∈ B(Xm),m ∈ [M ].
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We will prove by induction that for m = 0, . . . ,M

(
⊗M

j=m+1Hj 3
)

0 =

∫
×M

j=1Xj

m∏
j=1

χBj (xj)⊗M
j=m+1 kj(·, xj) dF(x)

=: o(B1, . . . , Bm, km+1, . . . , kM ), ∀Bj ∈ B(Xj), j ∈ [m], (32)

which

(∗) reduces to (31) when m = 0 by definining
∏0

j=1 χBj (xj) := 1;

(†) for m = M , ⊗M
m=M+1Hm is defined to be equal to R and ⊗M

m=M+1km(·, xm) := 1, in

which case o(B1, . . . , BM ) = F
(
×M

j=1Bj

)
= 0⇒ F = 0, the result we want to prove.

From the above, it is clear that (32) holds for m = 0. Assuming (32) holds for some m, we now
prove that it holds for m+1. To this end, it follows from (32) that ∀hm+2 ∈ Hm+2, . . . ,∀hM ∈
HM ,

(Hm+1 3) 0 = o(B1, . . . , Bm, km+1, . . . , kM ) (hm+2, . . . , hM )

=

∫
×M

j=1Xj

 m∏
j=1

χBj (xj)

⊗M
j=m+1 kj(·, xj) dF(x)

 (hm+2, . . . , hM )

=

∫
×M

j=1Xj

km+1(·, xm+1)
m∏
j=1

χBj (xj)
M∏

j=m+2

hj(xj) dF(x)

=

∫
Xm+1

km+1(·, xm+1) dν(xm+1),

where

ν(B) := νB1,...,Bm,hm+2,...,hM
(B)

=

∫
×M

j=1Xj

 m∏
j=1

χBj (xj)

χB(xm+1)

 M∏
j=m+2

hj(xj)

dF(x), B ∈ B(Xm+1).

By the c0-universality of km+1,

ν = 0 for ∀hm+2 ∈ Hm+2, . . . ,∀hM ∈ HM (33)

provided that ν ∈Mb(Xm+1), in other words if |ν|(Xm+1) <∞. This condition is met:

|ν|(Xm+1) ≤
∫
×M

j=1Xj

M∏
j=m+2

∣∣∣〈hj , kj(·, xj)〉Hj

∣∣∣︸ ︷︷ ︸
≤‖hj‖Hj

√
kj(xj ,xj)

d|F|(x)

≤ |F|
(
×M

m=1Xm

) M∏
j=m+2

‖hj‖Hj
sup

x∈Xj ,x′∈Xj

√
kj(x, x′) <∞, (34)
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where we used the boundedness of km-s in the last inequality. (33) implies that for ∀B1 ∈
B(X1), . . . ,∀Bm+1 ∈ B(Xm+1) and ∀hm+2 ∈ Hm+2, . . . ,∀hM ∈ HM

0 = ν(Bm+1) =

∫
×M

j=1Xj

m+1∏
j=1

χBj (xj)

 M∏
j=m+2

hj(xj)

 dF(x)

=

〈
⊗M

j=m+2hj ,

∫
×M

j=1Xj

m+1∏
j=1

χBj (xj)

⊗M
j=m+2 kj(·, xj) dF(x)

〉
⊗M

j=m+2Hj

,

and therefore

o(B1, . . . , Bm+1, km+2, . . . , kM ) =

∫
×M

j=1Xj

m+1∏
j=1

χBj (xj)

⊗M
j=m+2 k(·, xj) dF(x)

= 0
(
∈ ⊗M

j=m+2Hj

)
for ∀B1 ∈ B(X1), . . . ,∀Bm+1 ∈ B(Xm+1), i.e., (32) holds for m+ 1. Therefore, by induction,
(32) holds for m = M and the result follows from (†). To justify the convention in (†), consider
the case of m = M − 1 in which case (32) can be written as∫

XM

kM (·, xM ) dν(xM ) = 0,

where

ν(B) =

∫
×M

j=1Xj

M−1∏
j=1

χBj (xj)

χB(xM ) dF(x), B ∈ B(XM ).

Then by the c0-universal property of kM , since

|ν|(XM ) ≤
∫
×M

j=1Xj

1 d|F|(x) = |F|
(
×M

j=1Xj

)
<∞

we obtain

∫
×M

j=1Xj

M∏
j=1

χBj (xj) dF(x) = F
(
×M

j=1Bj

)
= 0,∀B1 ∈ B(X1), . . . ,∀BM ∈ B(XM ).
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A Analytical Solution to (21)–(26) in Example 2

The solution of (21)–(26) takes the form

p1,1,1 = −

z2 + z1 + z4 + z5 − 3z2z1 − 4z2z4 − 4z1z4 − z2z3 − 2z2z0 − 2z1z3 − 3z2z5

− 2z4z3 − z1z0 − 3z1z5 − 2z4z0 − 4z4z5 − z3z0 − z3z5 − z0z5 + 2z2z
2
1 + 2z22z1

+ 4z2z
2
4 + 2z22z4 + 4z1z

2
4 + 2z21z4 + 2z22z0 + 2z21z3 + 2z2z

2
5 + 2z22z5 + 2z24z3

+ 2z1z
2
5 + 2z21z5 + 2z24z0 + 2z4z

2
5 + 4z24z5 − z22 − z21 − 3z24 + 2z34 − z25

+ 6z2z1z4 + 2z2z1z3 + 2z2z4z3 + 2z2z1z0 + 4z2z1z5 + 4z2z4z0 + 4z1z4z3

+ 6z2z4z5 + 2z1z4z0 + 6z1z4z5 + 2z2z3z0 + 2z2z3z5 + 2z1z3z0 + 2z2z0z5

+ 2z1z3z5 + 2z4z3z0 + 2z4z3z5 + 2z1z0z5 + 2z4z0z5

2z2z1 − z1 − 2z4 − z3 − z0 − 2z5 − z2 + 2z2z4 + 2z1z4 + 2z2z0 + 2z1z3 + 2z2z5

+ 2z4z3 + 2z1z5 + 2z4z0 + 4z4z5 + 2z3z0 + 2z3z5 + 2z0z5 + 2z24 + 2z25

,

p1,1,2 = z2,

p1,2,1 = z1,

p1,2,2 = z4,

p2,1,1 = −

z4 + z3 + z0 + z5 − z2z1 − z2z4 − z1z4 − z2z3 − 2z2z0 − 2z1z3 − 2z2z5

− 3z4z3 − z1z0 − 2z1z5 − 3z4z0 − 4z4z5 − 3z3z0 − 4z3z5 − 4z0z5 + 2z2z
2
0

+ 2z1z
2
3 + 2z2z

2
5 + 2z4z

2
3 + 2z24z3 + 2z1z

2
5 + 2z4z

2
0 + 2z24z0 + 4z4z

2
5 + 2z24z5

+ 2z3z
2
0 + 2z23z0 + 4z3z

2
5 + 2z23z5 + 4z0z

2
5 + 2z20z5 − z24 − z23 − z20 − 3z25

+ 2z35 + 2z2z1z3 + 2z2z4z3 + 2z2z1z0 + 2z2z1z5 + 2z2z4z0 + 2z1z4z3

+ 2z2z4z5 + 2z1z4z0 + 2z1z4z5 + 2z2z3z0 + 2z2z3z5 + 2z1z3z0 + 4z2z0z5

+ 4z1z3z5 + 4z4z3z0 + 6z4z3z5 + 2z1z0z5 + 6z4z0z5 + 6z3z0z5

2z2z1 − z1 − 2z4 − z3 − z0 − 2z5 − z2 + 2z2z4 + 2z1z4 + 2z2z0 + 2z1z3 + 2z2z5

+ 2z4z3 + 2z1z5 + 2z4z0 + 4z4z5 + 2z3z0 + 2z3z5 + 2z0z5 + 2z24 + 2z25

,

p2,1,2 = z3,

p2,2,1 = z0,

p2,2,2 = z5,

form, where z = (z0, z1, . . . , z5) ∈ R6 satisfies

0 ≤ (2z0z2 − z1 − z2 − z3 − 2z4 − 2z5 − z0 + 2z0z3 + 2z1z2 + 2z0z4 + 2z1z3 + 2z0z5

+2z1z4 + 2z1z5 + 2z2z4 + 2z2z5 + 2z3z4 + 2z3z5 + 4z4z5 + 2z24 + 2z25
)
×

(z0z3 − z3 − z4 − z5 − z0z1 − z0 − z1z2 + z0z5 − 2z1z4 − z2z3 − z1z5 − 2z2z4 − z2z5
+z3z5 + 2z0z

2
2 + 2z1z

2
2 + 2z21z2 + 2z0z

2
4 + 2z21z3 + 4z1z

2
4 + 2z21z4 + 2z1z

2
5 + 4z2z

2
4

+2z21z5 + 2z22z4 + 2z2z
2
5 + 2z3z

2
4 + 2z22z5 + 2z4z

2
5 + 4z24z5 − z21 − z22 − z24 + 2z34 + z25

+2z0z1z2 + 2z0z1z3 + 2z0z1z4 + 2z0z2z3 + 2z0z1z5 + 4z0z2z4 + 2z1z2z3 + 2z0z2z5

+2z0z3z4 + 6z1z2z4 + 4z1z2z5 + 4z1z3z4 + 2z0z4z5 + 2z1z3z5 + 2z2z3z4 + 6z1z4z5

+2z2z3z5 + 6z2z4z5 + 2z3z4z5) ,
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0 ≤ (2z0z2 − z1 − z2 − z3 − 2z4 − 2z5 − z0 + 2z0z3 + 2z1z2 + 2z0z4 + 2z1z3 + 2z0z5

+2z1z4 + 2z1z5 + 2z2z4 + 2z2z5 + 2z3z4 + 2z3z5 + 4z4z5 + 2z24 + 2z25
)
×

(z1z2 − z2 − z4 − z5 − z0z1 − z0z3 − z1 − z0z4 − 2z0z5 + z1z4 − z2z3 + z2z4

−z3z4 − 2z3z5 + 2z20z2 + 2z0z
2
3 + 2z20z3 + 2z0z

2
4 + 2z1z

2
3 + 2z20z4 + 4z0z

2
5 + 2z20z5

+2z1z
2
5 + 2z2z

2
5 + 2z3z

2
4 + 2z23z4 + 4z3z

2
5 + 2z23z5 + 4z4z

2
5 + 2z24z5 − z20 − z23 + z24

−z25 + 2z35 + 2z0z1z2 + 2z0z1z3 + 2z0z1z4 + 2z0z2z3 + 2z0z1z5 + 2z0z2z4 + 2z1z2z3

+4z0z2z5 + 4z0z3z4 + 6z0z3z5 + 2z1z2z5 + 2z1z3z4 + 6z0z4z5 + 4z1z3z5 + 2z2z3z4

+2z1z4z5 + 2z2z3z5 + 2z2z4z5 + 6z3z4z5) ,

2z0z2 + 2z0z3 + 2z1z2 + 2z0z4 + 2z1z3 + 2z0z5 + 2z1z4 + 2z1z5 + 2z2z4 + 2z2z5

+ 2z3z4 + 2z3z5 + 4z4z5 + 2z24 + 2z25 6= z0 + z1 + z2 + z3 + 2z4 + 2z5,

(2z0z2 − z1 − z2 − z3 − 2z4 − 2z5 − z0 + 2z0z3 + 2z1z2 + 2z0z4 + 2z1z3 + 2z0z5

+2z1z4 + 2z1z5 + 2z2z4 + 2z2z5 + 2z3z4 + 2z3z5 + 4z4z5 + 2z24 + 2z25
)
×

(z1 + z2 + z4 + z5 − z0z1 − 2z0z2 − z0z3 − 3z1z2 − 2z0z4 − 2z1z3 − z0z5 − 4z1z4

−z2z3 − 3z1z5 − 4z2z4 − 3z2z5 − 2z3z4 − z3z5 − 4z4z5 + 2z0z
2
2 + 2z1z

2
2 + 2z21z2

+2z0z
2
4 + 2z21z3 + 4z1z

2
4 + 2z21z4 + 2z1z

2
5 + 4z2z

2
4 + 2z21z5 + 2z22z4 + 2z2z

2
5

+2z3z
2
4 + 2z22z5 + 2z4z

2
5 + 4z24z5 − z21 − z22 − 3z24 + 2z34 − z25 + 2z0z1z2

+2z0z1z3 + 2z0z1z4 + 2z0z2z3 + 2z0z1z5 + 4z0z2z4 + 2z1z2z3 + 2z0z2z5

+2z0z3z4 + 6z1z2z4 + 4z1z2z5 + 4z1z3z4 + 2z0z4z5 + 2z1z3z5 + 2z2z3z4 + 6z1z4z5

+ 2z2z3z5 + 6z2z4z5 + 2z3z4z5) ≤ 0,

(2z0z2 − z1 − z2 − z3 − 2z4 − 2z5 − z0 + 2z0z3 + 2z1z2 + 2z0z4 + 2z1z3 + 2z0z5

+2z1z4 + 2z1z5 + 2z2z4 + 2z2z5 + 2z3z4 + 2z3z5 + 4z4z5 + 2z24 + 2z25
)
×

(z0 + z3 + z4 + z5 − z0z1 − 2z0z2 − 3z0z3 − z1z2 − 3z0z4 − 2z1z3 − 4z0z5

−z1z4 − z2z3 − 2z1z5 − z2z4 − 2z2z5 − 3z3z4 − 4z3z5 − 4z4z5 + 2z20z2

+2z0z
2
3 + 2z20z3 + 2z0z

2
4 + 2z1z

2
3 + 2z20z4 + 4z0z

2
5 + 2z20z5 + 2z1z

2
5 + 2z2z

2
5

+2z3z
2
4 + 2z23z4 + 4z3z

2
5 + 2z23z5 + 4z4z

2
5 + 2z24z5 − z20 − z23 − z24 − 3z25 + 2z35

+2z0z1z2 + 2z0z1z3 + 2z0z1z4 + 2z0z2z3 + 2z0z1z5 + 2z0z2z4 + 2z1z2z3

+4z0z2z5 + 4z0z3z4 + 6z0z3z5 + 2z1z2z5 + 2z1z3z4 + 6z0z4z5 + 4z1z3z5

+2z2z3z4 + 2z1z4z5 + 2z2z3z5 + 2z2z4z5 + 6z3z4z5) ≤ 0,

and 0 ≤ z0, z1, z2, z3, z4, z5 ≤ 1.

The above analytic solution to (21)–(26) is obtained by symbolic math programming in MAT-
LAB.
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theory for distribution regression. Journal of Machine Learning Research, 17(152):1–40,
2016.

Willem Waegeman, Tapio Pahikkala, Antti Airola, Tapio Salakoski, Michiel Stock, and
Bernard De Baets. A kernel-based framework for learning graded relations from data.
IEEE Transactions on Fuzzy Systems, 20:1090–1101, 2012.

Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 2005.

Makoto Yamada, Yuta Umezu, Kenji Fukumizu, and Ichiro Takeuchi. Post selection inference
with kernels. Technical report, 2016. (https://arxiv.org/abs/1610.03725).

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation
under target and conditional shift. Journal of Machine Learning Research, 28(3):819–827,
2013.

24


