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Résumé :

Ce papier propose une approche numérique pour l’étude en vibro-acoustique interne d’une structure

élastique dissipative linéaire couplée à un fluide acoustique linéaire en présence des effets de ballotte-

ment et de capillarité. Ce travail est basé sur une nouvelle formulation pour la condition aux limites

d’angle de contact sur la ligne triple. Un modèle réduit est construit en utilisant une base de projec-

tion constitué de modes élastiques, de modes acoustiques et de modes de ballottement en présence de

capillarité. Une application numérique est présentée.

Abstract :

This paper is devoted to a numerical approach in vibroacoustics of a linear elastic structure coupled with

a compressible liquid with sloshing and capillarity effects. This work is based on a new formulation for

the boundary condition on the contact angle. A reduced-order model is constructed using a projection

basis made up of elastic modes, acoustic modes, and sloshing-capillarity modes. Then a numerical

study of a coupled fluid-structure system discretized with finite element modeling is presented.

Key words : Fluid-structure interactions, sloshing, capillarity, contact angle,
reduced-order model.

1 Introduction

This paper deals with the computational analysis of a coupled fluid-structure system under sloshing and

capillarity effects for which the response of the system is assumed to remain in a linear domain. The

damped elastic structure under consideration contains a linear dissipative acoustic liquid for which slosh-

ing and capillarity effects due to gravity and surface tensions are taken into account. Many researches

have been performed concerning the formulation and the analysis of coupled fluid-structure systems. For
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instance, the sloshing phenomenon has been studied by considering an elastic structure coupled with an

incompressible fluid neglecting the capillarity effects (see for instance [9, 10, 2, 11, 8, 4, 14]), by con-

sidering a rigid structure coupled with an incompressible fluid with capillarity effects [10, 3]. Other

works have been done considering a rigid structure coupled with a compressible liquid under surface

tension and sloshing effects such as [1, 5, 6, 7]. More recently, a new theoretical formulation of a linear

reduced-order computational model for analyzing the linear vibrations of a linear viscoelastic structure

coupled with a linear dissipative acoustic liquid with sloshing and capillarity effects has been proposed

[13] for which the main novelty concerns the implementation of a new boundary condition for the con-

tact angle and the computation of a reduced-order model that is constructed using a projection basis

constituted of the elastic modes of the structure with a fluid added mass effect, the acoustic modes of the

fluid, and the sloshing-capillarity modes of the free-surface of the fluid. We refer the reader to [12, 13]

for the methodology related to the construction of the vector basis. In this work, we present the compu-

tational implementation of this theoretical formulation for which the structure is simply dissipative (not

viscoelastic). In Section 2, the boundary value problem that describes the coupled fluid-structure system

is presented. The finite element discretization and the methodology for constructing the reduced-order

model is given in Section 3. Section 4 deals with the numerical application, for which the vibroacoustic

analysis is presented in details using such new computational reduced-order model.

2 Boundary value problem

We consider the linear coupled fluid-structure system in its reference configuration defined in Figure 1.

The dissipative structure ΩS is linear elastic and contains a linear dissipative acoustic fluid, ΩL. Grav-

itational and surface tension effects are taken into account. The boundaries ∂ΩS and ∂ΩL are such as

∂ΩS = ΓE ∪ ΓL ∪ γ ∪ ΓG and ∂ΩL = ΓL ∪ γ ∪ Γ, where ΓE , ΓL, ΓG, Γ and γ are, respectively, the

external surface of the structure, the fluid-structure interface, the internal surface of the structure without

contact with the liquid, the free surface of the liquid, and the contact line between Γ and ΓL (see Figure

1). The structure is submitted to a given body force field b in ΩS and to a given surface force field f on

ΓE . The external unitary normals to ∂ΩS and ∂ΩL are written nS and n. Let ν and νL be the external

unit normals to γ belonging respectively to the tangent plane to Γ and to the tangent plane to ΓL. We

are then interested in analyzing the vibrations of the coupled fluid-structure system around its reference

configuration.

Let x = (x, y, z) be the generic point in a Cartesian reference system (O, ex, ey, ez). The gravity vector

is g = −g ez with g = ‖g‖. For a quantity w depending on time t, ẇ and ẅ mean the first and the

second partial derivative of w with respect to t. The boundary value problem is expressed in terms of

the structural displacement field u(x, t), the internal pressure field p(x, t), and the normal displacement

field of the free surface η(x, t),

1

ρ0c
2
0

p̈−
τ

ρ0
∇2ṗ−

1

ρ0
∇2p = 0 in ΩL , (2.1)

(1 + τ
∂

∂t
)
∂p

∂n
= −ρ0ü · n on ΓL , (2.2)

(1 + τ
∂

∂t
)
∂p

∂n
= −ρ0η̈ on Γ , (2.3)
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Figure 1 – Reference configuration of the coupled fluid-structure system

p = ρ0 η g (ez · n)− σΓ{(
1

R1

+
1

R2

)η +∇2

Γη} on Γ , (2.4)

∂η

∂ν
= cηη + J u on γ , (2.5)

ρs ü − div σ = b in ΩS , (2.6)

σ · n
S = f on ΓE , (2.7)

σ · nS dΓL = p nS dΓL − σΓ (J
′η) dµγ on ΓL , (2.8)

in which ρ0 is the constant mass density of the homogeneous liquid, c0 is the constant speed of sound, τ

is the constant coefficient that characterizes the dissipation in the internal liquid, ρS is the constant mass

density of the structure, σ = a : ε(u)+b : ε(u̇) is the stress tensor in which ε the linearized strain tensor,

g is the gravitational intensity, σΓ is the surface tension coefficient, R1 and R2 are the main curvature

radii of the free-surface and cη is the contact angle coefficient. Equations (2.5) and (2.8) correspond

to a new boundary condition for the contact angle introduced in [13] in which a particular case for the

operator J is given by [10],

J u = E u · n
S −

∂(u · nS)

∂νL
, (2.9)

with E a real coefficient. In Eq. (2.8), dµγ is a real measure on ΓL such that
∫
ΓL

f(x) dµγ(x) =∫
γ
f(x) dγ(x) (this means that the support of measure dµγ is γ), and the term (J ′η) dµγ is defined on

ΓL by algebraic duality of the term J u defined on γ.

3 Computational model

Let P(t), H(t), and U(t) be the (nF×1), (nH×1), and (nS×1) vectors (column matrices) corresponding

to the finite element discretization of the fields p(x, t), η(x, t), and u(x, t). The computational model
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associated with boundary value problem is written as,

[M ] P̈(t) + [D] Ṗ(t) + [K]P(t)− [Cpη]
T Ḧ(t)− [Cpu]

T Ü(t) = 0 , (3.1)

[Cpη]P(t) + ([Kg] + [Kc])H(t) + [Cηu]U(t) = 0 , (3.2)

[Cpu]P(t) + [Cηu]
T H(t) + [MS ] Ü(t) + [DS ] U̇(t) + [KS ]U(t) = FS(t) , (3.3)

in which [M ], [D], [K] and [MS ], [DS ], [KS ] are the mass, dissipation and stiffness matrices for the

acoustic fluid and for the structure, where [Cpu] is the coupling matrix between the fluid and the structure,

where [Cηu] is the coupling matrix between the free surface of the liquid and the structure, where [Cpη]

is the coupling matrix between the fluid and the free surface, and where [Kc] and [Kg] are the stiffness

matrices of the free surface induced by the gravitational and the capillarity effects [13].

4 Reduced-order model

4.1 Construction of the projection vector basis

The construction of the reduced-order model requires the computation of a vector basis made up of

acoustic modes of the fluid, sloshing modes of the free surface, and elastic modes of the structure with

the fluid added mass effect, as follows,

• The structural modes are calculated by solving the following generalized eigenvalue problem,

[KS ] φ
S
α = λS

α ([MS ] + [MA]) φS
α , (4.1)

in which the positive-definite symmetric matrix [MA] is the fluid added mass matrix that describes

the effects of the liquid (assumed to be incompressible) on the structure [10, 13]. Let [ ΦS ] =

[φS
1 , . . . ,φ

S
NS

] be the rectangular real matrix whose columns are the NS eigenvectors associated

with the NS first smallest real positive eigenvalues 0 < λS
1
≤ . . . ≤ λS

NS
.

• The acoustic modes of the fluid are computed by solving the generalized eigenvalue problem,

[K] φF
β = λF

β [M ] φF
β , (4.2)

with the constraint φF
β = 0 for the DOF related to Γ ∪ γ. Let [ ΦF ] = [φF

1 , . . . ,φ
F
NF

] be

the rectangular real matrix whose columns are the NF eigenvectors associated with the NF first

smallest real positive eignevalues 0 < λF
1
≤ . . . ≤ λF

NF
.

• The sloshing-capillarity modes are computed by solving the generalized eigenvalue problem,

[K]φFH
γ + λH

γ [Cpη]
T φH

γ = 0 , (4.3)

[Cpη]φ
FH
γ + ([Kg] + [Kc])φ

H
γ = 0 . (4.4)

Let [ ΦH ] = [φH
1 , . . . ,φH

NH
] and [ ΦFH ] = [φFH

1 , . . . ,φFH
NH

] be the rectangular real matrices

whose columns are the NH eigenvectors φH
γ and the NH eigenvectors φFH

γ associated with the

NH first smallest real positive eigenvalues 0 < λH
1

≤ . . . ≤ λH
NH

.
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4.2 Reduced-order model

The reduced-order model of the coupled fluid-structure system of order (NF , NH , NS) is written as,

X(t) =




P(t)

H(t)

U(t)


 = [Φ ]Q , [Φ ] =



[ΦF ] [ΦFH ] 0

0 [ΦH ] 0

0 0 [ΦS ]


 , Q =




qP (t)

qH(t)

qU (t)


 , (4.5)

in which Q is the (NF +NH +NS)× 1 vector (column matrix) of the generalized coordinates, which

verifies the dynamical equation

[MFSI ] Q̈ + [DFSI ] Q̇ + [KFSI ]Q = F , (4.6)

in which [MFSI ], [DFSI ], and [KFSI ] are the mass, the damping, and the stiffness matrices of order

(NF , NH , NS) of the coupled fluid-structure system such that

[MFSI ] = [Φ ]T



[M ] −[Cpη]

T −[Cpu]
T

0 0 0

0 0 [MS ]


 [Φ ] , (4.7)

[DFSI ] = [Φ ]T



[D] 0 0

0 0 0

0 0 [DS ]


 [Φ ] , (4.8)

[KFSI ] = [Φ ]T




[K] 0 0

[Cpη] [Kg] + [Kc] [Cηu]

[Cpu] [Cηu]
T [KS ]


 [Φ ] , (4.9)

and where F is the (NF +NH +NS)× 1 vector (column matrix) of the generalized forces defined by

F = [Φ ]T




0

0

FS(t)


 . (4.10)

5 Numerical application

5.1 Finite element model of the coupled fluid-structure system

The coupled fluid-structure system is composed of a spherical tank with external radius Re = 0.5m

and thickness e = 2.3 × 10−2 m, partially filled with an acoustic fluid. The origin O of the Cartesian

coordinates system (O, ex, ey, ez) is located at the center of the spherical tank. The structure is made

up of a linear elastic isotropic material with mass density ρS = 1650Kg × m−3, Poisson coefficient

ν = 0.3, and Young’s modulus E = 230GPa. The considered liquid is water in standard temperature

and pressure conditions, with mass density ρf = 1000Kg×m−3, speed of sound cf = 1480m× s−1,

surface tension coefficient σΓ = 0.0728, and contact angle α = 30˚. The main curvature radiiR1 andR2

of the free surface and the coefficients cη andE, which characterizes the triple line γ, are computationally

obtained in each node of the mesh according to [10]. The damping matrices of the acoustic fluid and

the structure are defined as [D] = τF [K] and [DS ] = τS [KS ] in which τF = 10−6 and τS = 10−6.
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The spherical tank is clamped on a ring shaped support such that z ∈ [−0.375 ,−0.475]m. The finite

element model of the coupled fluid structure system is constructed using 3D solid finite elements with

8 nodes for the structure and the acoustic fluid, 2D finite elements with 4 nodes for the free-surface and

1D finite elements with 2 nodes for the triple line γ. Table 1 gives the values of the parameters that

correspond to the finite element model displayed in Figure 2.

Parameters Nodes DOF Finite elements Type of element

Structure 5,812 17,436 2,904 3D

Fluid 27,482 27,482 25,828 3D

Free surface 1,673 1,673 1,628 2D

Triple line 88 88 44 1D

Table 1 – Values of the parameters of the the finite element model

Y

X

Z

Figure 2 – Finite element mesh of the coupled fluid-structure system

5.2 Modal characterization of the fluid-structure system

To better understand the physical mechanisms that control the vibrational behavior of the coupled fluid-

structure system, we are interested in representing some modal contributions issued from the projection

basis used for constructing the reduced-order model. Figure 3 displays the shape of 3 structural elastic

modes φS
1 , φS

3 , and φS
8 associated with the eigenfrequencies νS

1
= 655Hz, νS

3
= 1,717Hz, and

νS
8
= 3,042Hz. Figure 4 displays the pressure field of 3 acoustic modes φF

1 ,φ
F
4 , and φF

8 associated

with the eigenfrequencies νF
1

= 985Hz, νF
3

= 2,160Hz, and νF
8

= 2,708Hz. The modal shape

of these pure structural and acoustic modes are suitable for observing elasto-acoustic coupling when

analyzing the coupled fluid-structure system. For instance, since νS
1

and νF
1

are close eigenfrequencies

whose modal shapesφS
1 andφF

1 do not cancel each other out, they are likely to be coupled. It can be seen

that there are global and local sloshing modes. Nevertheless, a careful attention has to be made regarding

the selection of these modes because of the precision of the finite element mesh allowing the modal

shapes of these modes to be correctly represented. Figure 5 displays the shape of 6 sloshing-capillarity
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X Y

Z

νS1 = 655Hz

X
Y

Z

νS3 = 1,717Hz

X Y

Z

νS8 = 3,042Hz

Figure 3 – Example of elastic modes of the structure.
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Figure 4 – Example of acoustic modes of the fluid.

νH
1

= 0.874Hz νH
2

= 0.875Hz νH
20

= 1.145Hz

νH
21

= 1.148Hz νH
83

= 1.328Hz νH
87

= 1.330Hz

Figure 5 – Example of sloshing modes of the free surface.

modes φH
1 , φH

2 , φH
20, φ

H
21, φ

H
83, and φH

87 associated with the eigenfrequencies νH
1

= 0.874Hz, νH
2

=

0.875Hz, νH
20

= 1.145Hz , νH
21

= 1.148Hz, νH
83

= 1.328Hz, and νH
87

= 1.330Hz.

5.3 Forced responses

5.3.1 Definition of the time dependent external force

We are interested in analyzing the forced response of the coupled fluid-structure system formulated both

in the time domain and in the frequency domain. The structure is submitted to an external force defined

in the time domain such that its energy is concentrated in the frequency band Be = [νmin, νmax]. In this

numerical analysis, we have chosen νmin = 600Hz and νmax = 6,000Hz. The external load vector
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FS(t) is written as

FS(t) = f0 g(t)F ,

in which f0 is a real coefficient controlling the intensity of the force, F is the (nS×1) normalized vector

that describes the spatial discretization of the force, and where g(t) is the function describing the time

evolution of the force such that

g(t) = 2∆ν
sin(πt∆ν)

πt∆ν
cos(2πs∆ν t) , (5.1)

with

∆ν = νmax − νmin , s =
1

2

νmax + νmin

∆ν
. (5.2)

The external force is a normal force that is applied to the spherical cap located from z = 0.437m to

the top, with a force intensity f0 = 1,200N . Figure 6 displays the graph of the function t 7→ g(t)

and its Fourier transform ν 7→ ĝ(2πν). It can be viewed that this choice of g(t) effectively yields an

uniform excitation over frequency band Be. Let B = Be be the frequency band of analysis of the fluid-

time(s) ×10 -3
-2 0 2 4 6 8 10

g
(t
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)
0 2000 4000 6000 8000 10000 12000

ĝ
(ν
)

0

0.5

1

1.5

2

2.5

Figure 6 – Representation of the external force in the time domain and in the frequency domain:

graph of t → g(t) (left figure) and graph of ν → ĝ(2πν) (right figure) for frequency band Be =
[600Hz , 6 000Hz]

structure system. This linear dynamical analysis is performed in the time domain using the Newmark

time-integration scheme. The Fourier transform of the times responses are computed in order to analyze

the response in the frequency domain.

5.3.2 Convergence of the reduced-order model

The optimal number of modes (NF , NH , NS) to be kept in the reduced-order model can be obtained

by a convergence analysis of the dynamical responses. Let X̂ref (ν) be the dynamical response in the

frequency domain of the computational model of the fluid-structure system, which is considered as the

reference system. Let X̂(ν) be the corresponding dynamical response calculated with the reduced-order

model. We then define the function (NF , NH , NS) = Conv(NF , NH , NS) by

Conv(NF , NH , NS) =
1

||X̂ref(ν)||2

∫

B

|| X̂(ν,NF , NH , NS) ||
2 dν . (5.3)

For the values {40, 60, 80, 100, 120} of NF , Figure 7 displays the graph of NS 7→ Conv(NF , 500, NS),

which shows that an optimal number of the elastic modes is NS = 70 and an optimal number of the
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Figure 7 – Convergence analysis of the reduced-order model: graph of NS 7→ Conv(NF , 500, NS) (left

graph) and NH 7→ Conv(100, NH , 70) (right graph).

acoustic modes is NF = 100. For such optimal values, the dynamical responses obtained with the

reduced-order model are close to those given by the computational model that is the reference. Figure

7 (right graph) displays the graph of NH 7→ Conv(100, NH , 70) and shows that the dynamical behav-

ior of the coupled fluid-structure system is correctly represented by the reduced-order model of order

(NF , NH , NS) = (100, 150, 70).

5.3.3 Observation points

YX

Z

A
B

D

C

E

Figure 8 – Observation points of the fluid-structure system

Figure 8 displays the observation points for the structure, the fluid, and the free-surface, for which the

dynamical response in terms of displacement, pressure, and elevation is shown hereinafter. Point A is

an observation point common to the fluid, the structure, and the free surface located in γ. Point B is an

observation point common to the fluid and the free surface located in Γ. Point C is an observation point

for the fluid located in ΓL, and points D and E are observation points for the structure located in ΓE . The

coordinates of the observation points are summarized in Table 2. We then denote the observation points
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of the structure as nS
obs = (1, 2, 3), the observation points for the pressure in the fluid as nF

obs = (1, 2, 3),

and the observation points for the elevation of the free surface nH
obs = (1, 2, 3).

Point Coordinates Fluid Free surface Structure

x1 0 0 0

Point 1 y1 0.476 0.476 0

z1 0.025 0.025 0.5

x2 0 0 0

Point 2 z2 0 0 0.476

x2 0.013 0.013 0.025

x3 0 0.33 -0.337

Point 3 y3 0 -0.33 -0.337

z3 -0.477 0.018 0.15

Table 2 – Coordinates of the observation points for the fluid, the structure and the free surface

5.4 Dynamic analysis of the coupled fluid-structure system

For the observation points described in the previous section, Figures 9, 10, and 11 display the graphs

of the time dynamical responses in terms of displacement of the structure, the pressure in the fluid, and

the elevation of the free surface. Figures 12, 13, and 14 display the similar graphs of the frequency

dynamical responses. In Figure 9, it can be seen that the displacement related to observation point 1 of

the structure is mainly along ez since the external force is normal to the spherical tank. It can also be seen

that the displacement at observation point 3 of the structure is more damped than the displacement at

observation point 2 of the structure. This can be explained by the coupling of the inertial contribution of

the sloshing-capillarity modes on the structure, because observation point 2 is located in the contact line

γ, where coupling effects are logically the most important. Moreover, in Figure 11, it can be seen that the

elevation of the free surface is more damped in the contact line (observation point 1 on the free surface)

than at the center (observation points 2 and 3 on the free surface), for which the capillarity effects are

negligible. As expected when analyzing the modal shapes of the structure and the modal shapes of the

fluid, elasto-acoustic resonances resulting from the coupling of these modes can be put in evidence in

Figure 12, 13 and 14. The first resonance of the coupled fluid-structure system appears at ν1 = 820Hz

and results from the coupling between the first elastic mode φS
1 and the first acoustic mode φF

1 . The

second resonance of the coupled fluid-structure system appears at ν2 = 1,441Hz and is also a coupling

between the third elastic mode φS
3 and the third acoustic mode φF

3 . Note that the fourth resonance that

occurs at ν4 = 2,648Hz is a pure acoustic mode and the seventh resonance frequency ν7 = 3,592Hz

is a pure elastic mode. Furthermore, since the sloshing modes do not belong to the frequency band of

analysis and occur at very low frequencies, only the inertial contributions are expected.

6 Conclusion

In this paper, the methodology is presented for the implementation of a computational reduced-order

model that allows for analyzing the dynamic analysis of a coupled fluid-structure system under slosh-

ing and capillarity effects in taking into account the operator related to the triple line. A numerical

application is presented. The inherent mechanisms regarding the couplings between the dissipative

acoustic liquid and the linear dissipative elastic structure are shown in order to better understand the

vibrational behavior of the fluid-structure system under sloshing and surface tension effects. It is shown
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that sloshing-capillarity effects are playing a role on the coupled fluid-structure system through its in-

ertial part since the liquid sloshes at very low frequencies outside the frequency band of analysis. This

research is a first step to a more complex dynamical analysis that is in progress for which the nonlinear

geometrical effects of the structure induced by large displacements and large deformations are taken into

account.
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Figure 9 – Displacements t 7→ UnS

obs(t) of the observation points nS
obs = (1, 2, 3) in the structure

(up,middle,bottom) along (ex, ey, ez), (left,middle,right)
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Figure 10 – Pressure t 7→ PnF

obs(t) at the observation points nF
obs = (1, 2, 3) in the fluid (left, middle,

right).



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

time (s)
-0.05 0 0.05 0.1 0.15 0.2

E
le
va
ti
o
n
(m

)

×10 -5

-3

-2

-1

0

1

2

3

Point 1

time (s)
-0.05 0 0.05 0.1 0.15 0.2

E
le
va
ti
o
n
(m

)

×10 -5

-3

-2

-1

0

1

2

3

Point 2

time (s)
-0.05 0 0.05 0.1 0.15 0.2

E
le
va
ti
o
n
(m

)

×10 -5

-3

-2

-1

0

1

2

3

Point 3

Figure 11 – Elevation t 7→ HnH

obs(t) at the observation points on the free surface nH
obs = (1, 2, 3) (left,

middle, right).
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Figure 12 – Displacements ν 7→ UnS

obs(2πν) of the observation points nS
obs = (1, 2, 3) in the structure

(up,middle,bottom) along (ex, ey, ez), (left,middle,right) in the frequency domain
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