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Computational modeling of a coupled fluid-structure system with sloshing and capillarity

Introduction

This paper deals with the computational analysis of a coupled fluid-structure system under sloshing and capillarity effects for which the response of the system is assumed to remain in a linear domain. The damped elastic structure under consideration contains a linear dissipative acoustic liquid for which sloshing and capillarity effects due to gravity and surface tensions are taken into account. Many researches have been performed concerning the formulation and the analysis of coupled fluid-structure systems. For instance, the sloshing phenomenon has been studied by considering an elastic structure coupled with an incompressible fluid neglecting the capillarity effects (see for instance [START_REF] Moiseev | The calculation of free oscillations of a liquid in a motionless container[END_REF][START_REF] Henri | Fluid Structure Interaction[END_REF][START_REF] Dodge | The "New Dynamic Behavior of Liquids in Moving Containers[END_REF][START_REF] Ohayon | Reduced models for fluid-structure interaction problems[END_REF][START_REF] Raouf | Liquid Sloshing Dynamics: Theory and Applications[END_REF]4,[START_REF] Schotté | Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface[END_REF]), by considering a rigid structure coupled with an incompressible fluid with capillarity effects [START_REF] Henri | Fluid Structure Interaction[END_REF][START_REF] El-Kamali | Three-dimensional modal analysis of slosh[END_REF]. Other works have been done considering a rigid structure coupled with a compressible liquid under surface tension and sloshing effects such as [START_REF] Concus | On the behavior of a capillary surface in a wedge[END_REF][START_REF] Finn | On the equations of capillarity[END_REF][START_REF] Finn | The contact angle in capillarity[END_REF][START_REF] Finn | On the capillary problem for compressible fluids[END_REF]. More recently, a new theoretical formulation of a linear reduced-order computational model for analyzing the linear vibrations of a linear viscoelastic structure coupled with a linear dissipative acoustic liquid with sloshing and capillarity effects has been proposed [START_REF] Ohayon | Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF] for which the main novelty concerns the implementation of a new boundary condition for the contact angle and the computation of a reduced-order model that is constructed using a projection basis constituted of the elastic modes of the structure with a fluid added mass effect, the acoustic modes of the fluid, and the sloshing-capillarity modes of the free-surface of the fluid. We refer the reader to [START_REF] Ohayon | Advanced computational vibroacoustics: reduced-order models and uncertainty quantification[END_REF][START_REF] Ohayon | Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF] for the methodology related to the construction of the vector basis. In this work, we present the computational implementation of this theoretical formulation for which the structure is simply dissipative (not viscoelastic). In Section 2, the boundary value problem that describes the coupled fluid-structure system is presented. The finite element discretization and the methodology for constructing the reduced-order model is given in Section 3. Section 4 deals with the numerical application, for which the vibroacoustic analysis is presented in details using such new computational reduced-order model.

Boundary value problem

We consider the linear coupled fluid-structure system in its reference configuration defined in Figure 1. The dissipative structure Ω S is linear elastic and contains a linear dissipative acoustic fluid, Ω L . Gravitational and surface tension effects are taken into account. The boundaries ∂Ω S and ∂Ω L are such as

∂Ω S = Γ E ∪ Γ L ∪ γ ∪ Γ G and ∂Ω L = Γ L ∪ γ ∪ Γ,
where Γ E , Γ L , Γ G , Γ and γ are, respectively, the external surface of the structure, the fluid-structure interface, the internal surface of the structure without contact with the liquid, the free surface of the liquid, and the contact line between Γ and Γ L (see Figure 1). The structure is submitted to a given body force field b in Ω S and to a given surface force field f on Γ E . The external unitary normals to ∂Ω S and ∂Ω L are written n S and n. Let ν and ν L be the external unit normals to γ belonging respectively to the tangent plane to Γ and to the tangent plane to Γ L . We are then interested in analyzing the vibrations of the coupled fluid-structure system around its reference configuration.

Let x = (x, y, z) be the generic point in a Cartesian reference system (O, e x , e y , e z ). The gravity vector is g = -g e z with g = g . For a quantity w depending on time t, ẇ and ẅ mean the first and the second partial derivative of w with respect to t. The boundary value problem is expressed in terms of the structural displacement field u(x, t), the internal pressure field p(x, t), and the normal displacement field of the free surface η(x, t),

1 ρ 0 c 2 0 p - τ ρ 0 ∇ 2 ṗ - 1 ρ 0 ∇ 2 p = 0 in Ω L , (2.1) 
(1 + τ ∂ ∂t ) ∂p ∂n = -ρ 0 ü • n on Γ L , (2.2) 
(1 + τ ∂ ∂t ) ∂p ∂n = -ρ 0 η on Γ , (2.3) 
Ω Ω Figure 1 -Reference configuration of the coupled fluid-structure system

p = ρ 0 η g (e z • n) -σ Γ {( 1 R 1 + 1 R 2 )η + ∇ 2 Γ η} on Γ , (2.4 
)

∂η ∂ν = c η η + J u on γ , (2.5) 
ρ s ü -div σ = b in Ω S , (2.6 
)

σ • n S = f on Γ E , (2.7 
)

σ • n S dΓ L = p n S dΓ L -σ Γ (J ′ η) dµ γ on Γ L , (2.8) 
in which ρ 0 is the constant mass density of the homogeneous liquid, c 0 is the constant speed of sound, τ is the constant coefficient that characterizes the dissipation in the internal liquid, ρ S is the constant mass density of the structure, σ = a : ε(u)+ b : ε( u) is the stress tensor in which ε the linearized strain tensor, g is the gravitational intensity, σ Γ is the surface tension coefficient, R 1 and R 2 are the main curvature radii of the free-surface and c η is the contact angle coefficient. Equations (2.5) and (2.8) correspond to a new boundary condition for the contact angle introduced in [START_REF] Ohayon | Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF] in which a particular case for the operator J is given by [START_REF] Henri | Fluid Structure Interaction[END_REF],

J u = E u • n S - ∂(u • n S ) ∂ν L , (2.9) 
with E a real coefficient. In Eq. (2.8), dµ γ is a real measure on Γ L such that Γ L f (x) dµ γ (x) = γ f (x) dγ(x) (this means that the support of measure dµ γ is γ), and the term (J ′ η) dµ γ is defined on Γ L by algebraic duality of the term J u defined on γ.

Computational model

Let P(t), H(t), and U(t) be the (n F ×1), (n H ×1), and (n S ×1) vectors (column matrices) corresponding to the finite element discretization of the fields p(x, t), η(x, t), and u(x, t). The computational model associated with boundary value problem is written as, is the coupling matrix between the fluid and the free surface, and where [K c ] and [K g ] are the stiffness matrices of the free surface induced by the gravitational and the capillarity effects [START_REF] Ohayon | Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF].

[M ] P(t) + [D] Ṗ(t) + [K] P(t) -[C pη ] T Ḧ(t) -[C pu ] T Ü(t) = 0 , (3.1) 
[C pη ] P(t) + ([K g ] + [K c ])H(t) + [C ηu ] U(t) = 0 , (3.2) 
[C pu ] P(t) + [C ηu ] T H(t) + [M S ] Ü(t) + [D S ] U(t) + [K S ] U(t) = F S (t) , (3.3 
4 Reduced-order model

Construction of the projection vector basis

The construction of the reduced-order model requires the computation of a vector basis made up of acoustic modes of the fluid, sloshing modes of the free surface, and elastic modes of the structure with the fluid added mass effect, as follows,

• The structural modes are calculated by solving the following generalized eigenvalue problem,

[K S ] φ S α = λ S α ([M S ] + [M A ]) φ S α , (4.1) 
in which the positive-definite symmetric matrix [M A ] is the fluid added mass matrix that describes the effects of the liquid (assumed to be incompressible) on the structure [START_REF] Henri | Fluid Structure Interaction[END_REF][START_REF] Ohayon | Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model[END_REF]. Let [ Φ S ] = [φ S 1 , . . . , φ S N S ] be the rectangular real matrix whose columns are the N S eigenvectors associated with the N S first smallest real positive eigenvalues 0 < λ S 1 ≤ . . . ≤ λ S N S .

• The acoustic modes of the fluid are computed by solving the generalized eigenvalue problem,

[K] φ F β = λ F β [M ] φ F β , (4.2) 
with the constraint φ F β = 0 for the DOF related to

Γ ∪ γ. Let [ Φ F ] = [φ F 1 , . . . , φ F N F ]
be the rectangular real matrix whose columns are the N F eigenvectors associated with the N F first smallest real positive eignevalues

0 < λ F 1 ≤ . . . ≤ λ F N F .
• The sloshing-capillarity modes are computed by solving the generalized eigenvalue problem, 

[K] φ F H γ + λ H γ [C pη ] T φ H γ = 0 , (4.3) [C pη ] φ F H γ + ([K g ] + [K c ]) φ H γ = 0 . (4.4) Let [ Φ H ] = [φ H 1 , . . . , φ H N H ] and [ Φ F H ] = [φ F H 1 , . . . , φ F H N H ]

Reduced-order model

The reduced-order model of the coupled fluid-structure system of order (N F , N H , N S ) is written as,

X(t) =    P(t) H(t) U(t)    = [ Φ ] Q , [ Φ ] =    [Φ F ] [Φ F H ] 0 0 [Φ H ] 0 0 0 [Φ S ]    , Q =    q P (t) q H (t) q U (t)    , (4.5) 
in which Q is the (N F + N H + N S ) × 1 vector (column matrix) of the generalized coordinates, which verifies the dynamical equation

[M F SI ] Q + [D F SI ] Q + [K F SI ] Q = F , (4.6) 
in which

[M F SI ], [D F SI ],
and [K F SI ] are the mass, the damping, and the stiffness matrices of order (N F , N H , N S ) of the coupled fluid-structure system such that

[M F SI ] = [ Φ ] T    [M ] -[C pη ] T -[C pu ] T 0 0 0 0 0 [M S ]    [ Φ ] , (4.7 
)

[D F SI ] = [ Φ ] T    [D] 0 0 0 0 0 0 0 [D S ]    [ Φ ] , (4.8) 
[K F SI ] = [ Φ ] T    [K] 0 0 [C pη ] [K g ] + [K c ] [C ηu ] [C pu ] [C ηu ] T [K S ]    [ Φ ] , (4.9) 
and where F is the (N F + N H + N S ) × 1 vector (column matrix) of the generalized forces defined by The spherical tank is clamped on a ring shaped support such that z ∈ [-0.375 , -0.475] m. The finite element model of the coupled fluid structure system is constructed using 3D solid finite elements with 8 nodes for the structure and the acoustic fluid, 2D finite elements with 4 nodes for the free-surface and 1D finite elements with 2 nodes for the triple line γ. Table 1 gives the values of the parameters that correspond to the finite element model displayed in Figure 2. 

F = [ Φ ] T    0 0 F S (t)    . ( 4 

Parameters

Modal characterization of the fluid-structure system

To better understand the physical mechanisms that control the vibrational behavior of the coupled fluidstructure system, we are interested in representing some modal contributions issued from the projection basis used for constructing the reduced-order model. Figure 3 displays the shape of 3 structural elastic modes φ S 1 , φ S 3 , and φ S 8 associated with the eigenfrequencies ν S 1 = 655 Hz, ν S 3 = 1,717 Hz, and ν S 8 = 3,042 Hz. Figure 4 displays the pressure field of 3 acoustic modes φ F 1 , φ F 4 , and φ F 8 associated with the eigenfrequencies ν F 1 = 985 Hz, ν F 3 = 2,160 Hz, and ν F 8 = 2,708 Hz. The modal shape of these pure structural and acoustic modes are suitable for observing elasto-acoustic coupling when analyzing the coupled fluid-structure system. For instance, since ν S 1 and ν F 1 are close eigenfrequencies whose modal shapes φ S 1 and φ F 1 do not cancel each other out, they are likely to be coupled. It can be seen that there are global and local sloshing modes. Nevertheless, a careful attention has to be made regarding the selection of these modes because of the precision of the finite element mesh allowing the modal shapes of these modes to be correctly represented. Figure 5 displays the shape of 6 sloshing-capillarity 

X Y Z ν S 1 = 655 Hz X Y Z ν S 3 = 1,717 Hz X Y Z ν S 8 = 3,042 Hz

Forced responses

Definition of the time dependent external force

We are interested in analyzing the forced response of the coupled fluid-structure system formulated both in the time domain and in the frequency domain. The structure is submitted to an external force defined in the time domain such that its energy is concentrated in the frequency band B e = [ν min , ν max ]. In this numerical analysis, we have chosen ν min = 600 Hz and ν max = 6,000 Hz. The external load vector

F S (t) is written as F S (t) = f 0 g(t) F ,
in which f 0 is a real coefficient controlling the intensity of the force, F is the (n S × 1) normalized vector that describes the spatial discretization of the force, and where g(t) is the function describing the time evolution of the force such that g(t) = 2 ∆ν sin(πt ∆ν) πt ∆ν cos(2πs ∆ν t) ,

with ∆ν = ν maxν min , s = 1 2

ν max + ν min ∆ν . (5.2)
The external force is a normal force that is applied to the spherical cap located from z = 0.437 m to the top, with a force intensity f 0 = 1,200 N . Figure 6 displays the graph of the function t → g(t) and its Fourier transform ν → g(2πν). It can be viewed that this choice of g(t) effectively yields an uniform excitation over frequency band B e . Let B = B e be the frequency band of analysis of the fluid- structure system. This linear dynamical analysis is performed in the time domain using the Newmark time-integration scheme. The Fourier transform of the times responses are computed in order to analyze the response in the frequency domain.

Convergence of the reduced-order model

The optimal number of modes (N F , N H , N S ) to be kept in the reduced-order model can be obtained by a convergence analysis of the dynamical responses. Let X ref (ν) be the dynamical response in the frequency domain of the computational model of the fluid-structure system, which is considered as the reference system. Let X(ν) be the corresponding dynamical response calculated with the reduced-order model. We then define the function

(N F , N H , N S ) = Conv(N F , N H , N S ) by Conv(N F , N H , N S ) = 1 || X ref (ν)|| 2 B || X(ν, N F , N H , N S ) || 2 dν . (5.3)
For the values {40, 60, 80, 100, 120} of N F , Figure 7 displays the graph of N S → Conv(N F , 500, N S ), which shows that an optimal number of the elastic modes is N S = 70 and an optimal number of the acoustic modes is N F = 100. For such optimal values, the dynamical responses obtained with the reduced-order model are close to those given by the computational model that is the reference. Figure 7 (right graph) displays the graph of N H → Conv(100, N H , 70) and shows that the dynamical behavior of the coupled fluid-structure system is correctly represented by the reduced-order model of order (N F , N H , N S ) = (100, 150, 70). 8 displays the observation points for the structure, the fluid, and the free-surface, for which the dynamical response in terms of displacement, pressure, and elevation is shown hereinafter. Point A is an observation point common to the fluid, the structure, and the free surface located in γ. Point B is an observation point common to the fluid and the free surface located in Γ. Point C is an observation point for the fluid located in Γ L , and points D and E are observation points for the structure located in Γ E . The coordinates of the observation points are summarized in Table 2. We then denote the observation points of the structure as n S obs = (1, 2, 3), the observation points for the pressure in the fluid as n F obs = (1, 2, 3), and the observation points for the elevation of the free surface n H obs = (1, 2, 3). 

Observation points

Point

Dynamic analysis of the coupled fluid-structure system

For the observation points described in the previous section, Figures 9, 10, and 11 display the graphs of the time dynamical responses in terms of displacement of the structure, the pressure in the fluid, and the elevation of the free surface. Figures 12,13, and 14 display the similar graphs of the frequency dynamical responses. In Figure 9, it can be seen that the displacement related to observation point 1 of the structure is mainly along e z since the external force is normal to the spherical tank. It can also be seen that the displacement at observation point 3 of the structure is more damped than the displacement at observation point 2 of the structure. This can be explained by the coupling of the inertial contribution of the sloshing-capillarity modes on the structure, because observation point 2 is located in the contact line γ, where coupling effects are logically the most important. Moreover, in Figure 11, it can be seen that the elevation of the free surface is more damped in the contact line (observation point 1 on the free surface) than at the center (observation points 2 and 3 on the free surface), for which the capillarity effects are negligible. As expected when analyzing the modal shapes of the structure and the modal shapes of the fluid, elasto-acoustic resonances resulting from the coupling of these modes can be put in evidence in Figure 12, 13 and 14. The first resonance of the coupled fluid-structure system appears at ν 1 = 820 Hz and results from the coupling between the first elastic mode φ S 1 and the first acoustic mode φ F 1 . The second resonance of the coupled fluid-structure system appears at ν 2 = 1,441 Hz and is also a coupling between the third elastic mode φ S 3 and the third acoustic mode φ F 3 . Note that the fourth resonance that occurs at ν 4 = 2,648 Hz is a pure acoustic mode and the seventh resonance frequency ν 7 = 3,592 Hz is a pure elastic mode. Furthermore, since the sloshing modes do not belong to the frequency band of analysis and occur at very low frequencies, only the inertial contributions are expected.

Conclusion

In this paper, the methodology is presented for the implementation of a computational reduced-order model that allows for analyzing the dynamic analysis of a coupled fluid-structure system under sloshing and capillarity effects in taking into account the operator related to the triple line. A numerical application is presented. The inherent mechanisms regarding the couplings between the dissipative acoustic liquid and the linear dissipative elastic structure are shown in order to better understand the vibrational behavior of the fluid-structure system under sloshing and surface tension effects. It is shown that sloshing-capillarity effects are playing a role on the coupled fluid-structure system through its inertial part since the liquid sloshes at very low frequencies outside the frequency band of analysis. This research is a first step to a more complex dynamical analysis that is in progress for which the nonlinear geometrical effects of the structure induced by large displacements and large deformations are taken into account. 
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 1 Finite element model of the coupled fluid-structure systemThe coupled fluid-structure system is composed of a spherical tank with external radius R e = 0.5 m and thickness e = 2.3 × 10 -2 m, partially filled with an acoustic fluid. The origin O of the Cartesian coordinates system (O, e x , e y , e z ) is located at the center of the spherical tank. The structure is made up of a linear elastic isotropic material with mass density ρ S = 1650 Kg × m -3 , Poisson coefficient ν = 0.3, and Young's modulus E = 230 GP a. The considered liquid is water in standard temperature and pressure conditions, with mass density ρ f = 1000 Kg × m -3 , speed of sound c f = 1480 m × s -1 , surface tension coefficient σ Γ = 0.0728, and contact angle α = 30˚. The main curvature radii R 1 and R 2 of the free surface and the coefficients c η and E, which characterizes the triple line γ, are computationally obtained in each node of the mesh according to[START_REF] Henri | Fluid Structure Interaction[END_REF]. The damping matrices of the acoustic fluid and the structure are defined as [D] = τ F [K] and [D S ] = τ S [K S ] in which τ F = 10 -6 and τ S = 10 -6 .
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 2 Figure 2 -Finite element mesh of the coupled fluid-structure system

Figure 3 -Figure 4 -

 34 Figure 3 -Example of elastic modes of the structure.
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 5 Figure 5 -Example of sloshing modes of the free surface.
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 6 Figure 6 -Representation of the external force in the time domain and in the frequency domain: graph of t → g(t) (left figure) and graph of ν → g(2πν) (right figure) for frequency band B e = [600 Hz , 6 000 Hz]

Figure 7 -

 7 Figure 7 -Convergence analysis of the reduced-order model: graph of N S → Conv(N F , 500, N S ) (left graph) and N H → Conv(100, N H , 70) (right graph).
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 8 Figure 8 -Observation points of the fluid-structure system

Figure

  Figure8displays the observation points for the structure, the fluid, and the free-surface, for which the dynamical response in terms of displacement, pressure, and elevation is shown hereinafter. Point A is an observation point common to the fluid, the structure, and the free surface located in γ. Point B is an observation point common to the fluid and the free surface located in Γ. Point C is an observation point for the fluid located in Γ L , and points D and E are observation points for the structure located in Γ E . The coordinates of the observation points are summarized in Table2. We then denote the observation points

Figure 9 - 3 Figure 10 -

 9310 Figure 9 -Displacements t → U n S obs (t) of the observation points n S obs = (1, 2, 3) in the structure (up,middle,bottom) along (e x , e y , e z ), (left,middle,right)

3 Figure 11 -

 311 Figure 11 -Elevation t → H n H obs (t) at the observation points on the free surface n H obs = (1, 2, 3) (left, middle, right).
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Figure 12 -Frequency 3 Figure 13 -

 12313 Figure 12 -Displacements ν → U n S obs (2πν) of the observation points n S obs = (1, 2, 3) in the structure (up,middle,bottom) along (e x , e y , e z ), (left,middle,right) in the frequency domain
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3 Figure 14 -

 314 Figure 14 -Elevation ν → H n H obs (2πν) of the observation points n H obs = (1, 2, 3) on the free surface (left, middle, right).

Nodes DOF Finite elements Type of element

  

	Structure	5,812 17,436	2,904	3D
	Fluid	27,482 27,482	25,828	3D
	Free surface 1,673	1,673	1,628	2D
	Triple line	88	88	44	1D

Table 1 -

 1 Values of the parameters of the the finite element model

Table 2 -

 2 Coordinates of the observation points for the fluid, the structure and the free surface

		Coordinates Fluid Free surface Structure
		x 1	0	0	0
	Point 1	y 1	0.476	0.476	0
		z 1	0.025	0.025	0.5
		x 2	0	0	0
	Point 2	z 2	0	0	0.476
		x 2	0.013	0.013	0.025
		x 3	0	0.33	-0.337
	Point 3	y 3	0	-0.33	-0.337
		z 3	-0.477	0.018	0.15