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Abstract

This paper deals with the analysis of the propagation of maicgies in computational linear dynamics for linear
viscoelastic composite structures in the presence of tainées. In the frequency domain, the generalised damping
matrix and the generalisedf$tiess matrix of the stochastic computational reduced-ondelel are random frequency-
dependent matrices. Due to the causality of the dynamicaésy, these two frequency-dependent random matrices
are statistically dependent and their probabilistic madalves a Hilbert transform. In this paper, a computatlona
analysis of the propagation of uncertainties is preserged Eomposite viscoelastic structure in the frequencyeang

Keywords: Uncertainty quantification, Viscoelastic, Nonparamegprichabilistic approach, Structural dynamics,
Hilbert transform, Kramers-Kronig relations, Reducedermodel

1. Introduction

In structural engineering, uncertainties have to be adsalfor the design and the analysis of a structure using
computational models. In the computational models, thecssuof uncertainties are due to the model-parameters
uncertainties, as well as the model uncertainties indugeddxelling errors. In the probabilistic framework, uncer-
tainty quantification has extensively be developed in thetl@o decades (see for instance [1-3]).

The objective of this paper is to present the numerical aglyf an extension (recently proposed in [4-6]) of the
nonparametric probabilistic approach of uncertainti@&{¢omputational linear structural dynamics for viscatia
composite structures in the frequency-domain. In the fraonk of linear viscoelasticity (see for instance [8, 9])
and in the frequency domain, the generalised damping miai»)] and the generalised fiiness matrix f(w)] of

the reduced-order computational model depend on frequencyhe nonparametric probabilistic approach of un-
certainties consists in modelling this two frequency-aelmnt generalised matrices by frequency-dependent random
matrices P(w)] and [K(w)] respectively. However, as these two matrices come frorausa dynamical system,
the causality implies two compatibility equations, als@mn as the Kramers-Kronig relations [10, 11], involving
the Hilbert transform [12]. A summary of the constructiontleé deterministic reduced-order computational model
is presented in Section 2. Section 3 deals with the con#&ruof the nonparametric probabilistic model using the
Hilbert transform. In Section 4 a numerical example is pnése.
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2. Computational model in linear viscoelasticity
2.1. Linear viscoelastic constitutive equation

Let Q = Q¢ U Qe be an open, connected, and bounded domak®ptonstituted of two part®. andQe. The
first partQe is occupied by a purely elastic medium while the second Qatis occupied by a linear viscoelastic
medium. In a cartesian frame;(e;, €3), let x = (Xg, X2, X3) be the position vector of any point @. Letu(x,t) be
the displacement field defined 6éh The linearised strain tensor is denoted{by}nx and the Cauchy stress tensor
by {o}ij, with i, j, k, andhin {1, 2, 3}. The theory of linear viscoelasticity is used in order toadtvthe constitutive
equation of the viscoelastic medium occupied by doniajin Fort < 0, the system is assumed to be at rest. In the
time domain, the constitutive equation is then written as

t
o(u(x,t) = f(; G(x, 1) : e(u(x,t—1))dr, (1)

in which u is the partial derivative ofi with respect ta, wheret — G(x,1) is the relaxation function defined on
[0 + oo with values in the fourth-order tensor that satisfies thealisymmetry properties. Functien— G(x,t) is
differentiable with respect toon ]0, +co[ and its partial time derivative— {Gijn (X, t)}ijkn iS assumed to be integrable
on [0, +oo[. Attimet = 0, the initial elasticity tensog(x, 0) is positive definite. Consequently, Eqg. (1) can be
rewritten as

o(u(x, 1)) = G(x,0) : e(u(x,t)) + IM a(x,7) : e(u(x,t—7))dt, (2)

where fourth-order tensay(x, t) is defined byg(x,t) = 0, if t < 0 andg(x,t) = Q(x, t) if t > 0. Taking the Fourier
transform with respect to of both sides of Eq. (2), and introducing the real [@itx, w) = Re{g(x, w)} and the
imaginary parg' (x, w) = Im{G(x, w)}, the constitutive equation in the frequency domain can betamras

o(U(X, w)) = (a(X) + a(X, w) + i wb(x, )) : eU(X, w)), (3)
whereag(x) = G(x, 0) and where the componemign (X, w) andbjn(X, w) of the fourth-order real tensoagx, w) and
b(x, w) are the viscoelastic céiecients that are such that

ax w) =g xw) , wbXw) =GXxw). (4)

Sinceg is a causal function of time, the real p@ft and imaginary par@ of its Fourier transforng are related
through a set of compatibility equations also known as theniars-Kronig relations [10, 11]. These relations involve
the Hilbert transform [12] and are written as

+oo =5 ’ +0o AR 4

Fxw) =+ p.vf M do'. G xw) =1 p.vf de’, 5)
T o W— W s f W — W

in which p.vdenotes the Cauchy principal value. From Egs. (4) and (&¥alfowing relation between the viscoelastic

tensorsa(x, w) andb(X, w) can then be deduced, for all> 0,

a(x, w) = % oV f blx, ‘;’),) do . 6)

w —

2.2. Computational model

The standard finite element method (see for instance [13yielfls the computational model
(—w?[M] + iw[D()] + [Ko] + [K(w)]) Uw) = f(w), (7

in whichu(w) is the complex vector of the degrees of freedom, and wheguéncy-dependent matrice3({)],
[K(w)] and matrix [Ko] are respectively related tifx, w), a(X, w) andag(x). Using Eg. (6), it is deduced that symmetric
positive real matrixK(w)] is such that

w teo 1
Kl =2pv [
2

[D(w)] do’ (8)



2.3. Reduced-order computational model

As suggested in [5], the reduced-order computational misaslnstructed by using the reduced basis represented
by the firstN modes associated with the fifsdtpositive eigenvalues of the underlying undamped mechbsystem
for which the mass matrix is1] and the stifness matrix is{p]. The reduced-order computational model is then
written as

(M) +iw [D(w)] + [Ko] + [K(@)]) Glw) = (). 9)
where the frequency-dependent fll x N) real matricesP(w)] and [K(w)] are symmetric positive and are such that
[K ()] = < pv f i [Dw)]dw , ©>0. (10)
T fee W— W

3. Stochastic reduced-order computational model

For N fixed, the nonparametric probabilistic approach of unéetitss consists in substituting in Egs. (9) and (10),
the deterministic matricesMl], [ D(w)], [%o], and fK(w)], by the (N x N) real random matricedM], [D(w)], [Kq],
and [K(w)] respectively, in preserving the positive-definitenesspprty of M], [ D(w)], [Ko], and the positiveness
property of K (w)]. Consequentlg(w) becomes the random vectdéw) such that

(~0?M] +iw[D()] + [Ko] + [K(w)]) Q) = f(w), (11)

K ()] = 27‘“ p.vfO 1_—1u2[D(cuu)]du , w>0. (12)

Furthermore, Eq. (12) means that the probabilistic modetodlom matrix K (w)] is completely defined by the prob-
abilistic model of random matrix(w)] and consequently, the two random matrices are not statilstindependent
such that the probabilistic model for random matiX{)] allows satisfying almost-surely the causality prineipihd
will be referred as the probabilistic model with almostesaausality. Consequently, only the probabilistic modéls o
random matricesNl], [Ko] and [D(w)] have to be constructed.

In the framework of the nonparametric probabilistic appioaf uncertainties, these random matrices are statistical
independent and they are constructed as explained in [4[hgir level of uncertainty is respectively controlled by
parametersy, ok, om < (%)”2. On an other hand, if the causality principle was not takéa &ccount for the
construction of the stochastic model of random matkiX«)], then the stochastic model that would be constructed
would be causal in average but would not be almost-surelgatasuch a model would be erroneous from the point
of view of the theory of physically realizable systems. la thllowing, such an erroneous stochastic constructioh wil
be referred as the probabilistic model with a causality iameSuch a model can be constructed by rewriting Eq. (11)
as

(IM] + iw[D(w)] + [K(w)]) Q(w) = f(w), (13)

where K(w)] = [Ko] + [K(w)]. The random matricesM], [K ()] and [D(w)] are statistically independent and
are constructed as explained in [4, 7]. Their level of uraiaty is respectively controlled by parametégs, ok,

om < (m—ié)l/z.

4. Numerical example and results
4.1. Description of the numerical model

As an example, a composite structure is studied in the Lavgi@ncy range. It is a thin multilayered plate of
lengthL = 1 m, widthw = 0.3 m and thicknesbl = 0.1 m, under a nodal load @¢f = 1 N applied in direction the
vertical directione; at the point located at (0.5067 m, 0.1565 m, 0.1 m) (see Fid-€t)ux(w) = {u(w)}k be the k-th
component of the response calculated with computationdetnd@he numbering of degrees of freedom is such that,
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Figure 1: Finite element mesh of the plate with force applkied 1 N and observation doig andus.

fork=1, Uk(a)) is related to the degree of freedom that is submitted toxtereal forceF.The three layers are made
up of a homogenous elastic medium occupying dorgithat is sandwiched between two homogenous viscoelastic
media occupying the domaid,e = Q; UQ, in which the domaif, is the upper layer and the domd is the lower
layer. For the elastic medium, the material is assumed tedieoipic with Young’s modulug = 210 GPa, Poisson’s
ratiov = 0.3, and a density = 7,850 kgm?. Its thickness i$1 = 4H/5 in whichH is the total thickness of the plate.
For the viscoelastic homogenous medium occupying do®giwith k = 1, 2, the material is assumed to be isotropic
with a Poisson ratie® and a time-dependent viscoelastic gméentE®(t). Let E¥(w) be the Fourier transform of
E®(t). In the case of a single-branch generalised Maxwell magehave

K) r_(K k) __(K
EOWo2  EWW

Ek(cu) =gY + w .
1+ (‘1'(lk)a))2 1+ (‘1'(lk)a))2

(14)

The viscoelastic cdicients used in the simulations ar® = 0.27,v@ = 0.47,EQ = 240 GPaE® = 220 GPa,
EM = 1265 GPaE® = 50 GPas{! = 7.351x 10%s andr\” = 1.103x 10''s.

4.2. Analysis of the stochastic model

Hereinafter, the two random models with almost-sure céyqake Egs. (11) and (12)) and with the causality in
mean (see Eg. (13)) are compared. It is assumed khhtdmains deterministicsyy = 0), and thatlk = 0.15 and
o6p = 0.7. The numbering of degrees of freedom is such thatk fer3, Uk(w) is related to the degree of freedom in
directione; of the node located, respectively, at (0.5067 m, 0.1630 inpf).(see Fig. 1).

Letu — pgm (u;w) be the probability density function W0 (w)l. Figs. 2, 3, and 4 display the graphsiwof-
P, (U; 2rv) at frequencies = 2 Hz,v = 200 Hz, and’ = 400 Hz, for the two probabilistic models with almost-sure
causality (red line) and with causality in mean (blue lifféyys. 2 to 4 show that the probabilistic model with causality
in mean does not give a good prediction (except for the logufemcy 2 Hz that corresponds to a quasistatic response
because the fundamental eigenfrequency is about 3 Hz).

5. Conclusions

In the framework of the nonparametric probabilistic apptoaf uncertainties, a new stochastic modelling has been
proposed for taking into account uncertainties in the caladenal models of linear viscoelastic dynamical struesur
This method is based on the construction of a compatibitjityation that allows for satisfying the causality principle
for the stochastic dynamical system in order to obtain cdilegprobabilistic model of the random Stiess matrix
and the random damping matrix at each frequency point ofyaisal A numerical example has been presented for
analysing the propagation of uncertainties in a computatimodel of a composite viscoelastic structure. The result
obtained show that it is very important to construct a prdlstic model which satisfies the causality principle.
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Figure 2: Graph ofi — p‘Us‘(u; 2nv) at frequency = 2 Hz. Probabilistic model with almost-sure causality (rieé) and probabilistic model with
causality in mean (blue line).
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Figure 3: Graph ofi — p\ng(U; 2nv) at frequency = 200 Hz. Probabilistic model with almost-sure causality (liee) and probabilistic model
with causality in mean (blue line).
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Figure 4: Graph ofi — p‘03‘(u; 2nv) at frequency = 400 Hz. Probabilistic model with almost-sure causality (liee) and probabilistic model
with causality in mean (blue line).
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