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Abstract

This paper deals with the analysis of the propagation of uncertainties in computational linear dynamics for linear
viscoelastic composite structures in the presence of uncertainties. In the frequency domain, the generalised damping
matrix and the generalised stiffness matrix of the stochastic computational reduced-ordermodel are random frequency-
dependent matrices. Due to the causality of the dynamical system, these two frequency-dependent random matrices
are statistically dependent and their probabilistic modelinvolves a Hilbert transform. In this paper, a computational
analysis of the propagation of uncertainties is presented for a composite viscoelastic structure in the frequency range.

Keywords: Uncertainty quantification, Viscoelastic, Nonparametricprobabilistic approach, Structural dynamics,
Hilbert transform, Kramers-Kronig relations, Reduced-order model

1. Introduction

In structural engineering, uncertainties have to be accounted for the design and the analysis of a structure using
computational models. In the computational models, the sources of uncertainties are due to the model-parameters
uncertainties, as well as the model uncertainties induced by modelling errors. In the probabilistic framework, uncer-
tainty quantification has extensively be developed in the last two decades (see for instance [1–3]).

The objective of this paper is to present the numerical analysis of an extension (recently proposed in [4–6]) of the
nonparametric probabilistic approach of uncertainties [7] in computational linear structural dynamics for viscoelastic
composite structures in the frequency-domain. In the framework of linear viscoelasticity (see for instance [8, 9])
and in the frequency domain, the generalised damping matrix[D(ω)] and the generalised stiffness matrix [K(ω)] of
the reduced-order computational model depend on frequencyω. The nonparametric probabilistic approach of un-
certainties consists in modelling this two frequency-dependent generalised matrices by frequency-dependent random
matrices [D(ω)] and [K(ω)] respectively. However, as these two matrices come from a causal dynamical system,
the causality implies two compatibility equations, also known as the Kramers-Kronig relations [10, 11], involving
the Hilbert transform [12]. A summary of the construction ofthe deterministic reduced-order computational model
is presented in Section 2. Section 3 deals with the construction of the nonparametric probabilistic model using the
Hilbert transform. In Section 4 a numerical example is presented.
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2. Computational model in linear viscoelasticity

2.1. Linear viscoelastic constitutive equation

Let Ω = Ωe ∪ Ωve be an open, connected, and bounded domain ofR3, constituted of two partsΩe andΩve. The
first partΩe is occupied by a purely elastic medium while the second partΩve is occupied by a linear viscoelastic
medium. In a cartesian frame (e1, e2, e3), let x = (x1, x2, x3) be the position vector of any point inΩ. Let u(x, t) be
the displacement field defined onΩ. The linearised strain tensor is denoted by{εkh}hk and the Cauchy stress tensor
by {σi j }i j , with i, j, k, andh in {1, 2, 3}. The theory of linear viscoelasticity is used in order to obtain the constitutive
equation of the viscoelastic medium occupied by domainΩve. For t ≤ 0, the system is assumed to be at rest. In the
time domain, the constitutive equation is then written as

σ(u(x, t)) =
∫ t

0
G(x, τ) : ε(u̇(x, t − τ))dτ , (1)

in which u̇ is the partial derivative ofu with respect tot, wheret 7→ G(x, t) is the relaxation function defined on
[0 + ∞[ with values in the fourth-order tensor that satisfies the usual symmetry properties. Functiont 7→ G(x, t) is
differentiable with respect tot on ]0,+∞[ and its partial time derivativet 7→ {Ġi jkh(x, t)}i jkh is assumed to be integrable
on [0,+∞[. At time t = 0, the initial elasticity tensorG(x, 0) is positive definite. Consequently, Eq. (1) can be
rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) +
∫ +∞

−∞

g(x, τ) : ε(u(x, t − τ))dt , (2)

where fourth-order tensorg(x, t) is defined byg(x, t) = 0, if t < 0 andg(x, t) = Ġ(x, t) if t ≥ 0. Taking the Fourier
transform with respect tot of both sides of Eq. (2), and introducing the real partĝR(x, ω) = ℜe{̂g(x, ω)} and the
imaginary part̂gI (x, ω) = ℑm{̂g(x, ω)}, the constitutive equation in the frequency domain can be written as

σ(̂u(x, ω)) = (a0(x) + a(x, ω) + i ωb(x, ω)) : ε(̂u(x, ω)) , (3)

wherea0(x) = G(x, 0) and where the componentsai jkh(x, ω) andbi jkh(x, ω) of the fourth-order real tensorsa(x, ω) and
b(x, ω) are the viscoelastic coefficients that are such that

a(x, ω) = ĝR(x, ω) , ωb(x, ω) = ĝI (x, ω) . (4)

Sinceg is a causal function of time, the real partĝR and imaginary part̂gI of its Fourier transform̂g are related
through a set of compatibility equations also known as the Kramers-Kronig relations [10, 11]. These relations involve
the Hilbert transform [12] and are written as

ĝR(x, ω) =
1
π

p.v
∫ +∞

−∞

ĝI (x, ω′)
ω − ω′

dω′, ĝI (x, ω) = −
1
π

p.v
∫ +∞

−∞

ĝR(x, ω′)
ω − ω′

dω′, (5)

in which p.vdenotes the Cauchy principal value. From Eqs. (4) and (5), the following relation between the viscoelastic
tensorsa(x, ω) andb(x, ω) can then be deduced, for allω > 0,

a(x, ω) =
ω

π
p.v
∫ +∞

−∞

b(x, ω′)
ω − ω′

dω′ . (6)

2.2. Computational model

The standard finite element method (see for instance [13, 14]) yields the computational model

(−ω2[M] + iω[D(ω)] + [K0] + [K(ω)]) û(ω) = f̂(ω) , (7)

in which û(ω) is the complex vector of the degrees of freedom, and where frequency-dependent matrices [D(ω)],
[K(ω)] and matrix [K0] are respectively related tob(x, ω), a(x, ω) anda0(x). Using Eq. (6), it is deduced that symmetric
positive real matrix [K(ω)] is such that

[K(ω)] =
ω

π
p.v
∫ +∞

−∞

1
ω − ω′

[D(ω)] dω′ (8)
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2.3. Reduced-order computational model

As suggested in [5], the reduced-order computational modelis constructed by using the reduced basis represented
by the firstN modes associated with the firstN positive eigenvalues of the underlying undamped mechanical system
for which the mass matrix is [M] and the stiffness matrix is [K0]. The reduced-order computational model is then
written as

(−ω2[M] + iω [D(ω)] + [K0] + [K(ω)]) q̂(ω) = f̂(ω) , (9)

where the frequency-dependent full (N×N) real matrices [D(ω)] and [K(ω)] are symmetric positive and are such that

[K(ω)] =
ω

π
p.v
∫ +∞

−∞

1
ω − ω′

[D(ω)]dω′ , ω ≥ 0 . (10)

3. Stochastic reduced-order computational model

ForN fixed, the nonparametric probabilistic approach of uncertainties consists in substituting in Eqs. (9) and (10),
the deterministic matrices [M], [D(ω)], [K0], and [K(ω)], by the (N × N) real random matrices [M], [D(ω)], [K0],
and [K(ω)] respectively, in preserving the positive-definiteness property of [M], [D(ω)], [K0], and the positiveness
property of [K(ω)]. Consequentlŷq(ω) becomes the random vectorŝQ(ω) such that

(−ω2[M] + iω [D(ω)] + [K0] + [K(ω)]) Q̂(ω) = f̂(ω) , (11)

[K(ω)] =
2ω
π

p.v
∫ +∞

0

1
1− u2

[D(ωu)] du , ω ≥ 0 . (12)

Furthermore, Eq. (12) means that the probabilistic model ofrandom matrix [K(ω)] is completely defined by the prob-
abilistic model of random matrix [D(ω)] and consequently, the two random matrices are not statistically independent
such that the probabilistic model for random matrix [K(ω)] allows satisfying almost-surely the causality principle and
will be referred as the probabilistic model with almost-sure causality. Consequently, only the probabilistic models of
random matrices [M], [K0] and [D(ω)] have to be constructed.

In the framework of the nonparametric probabilistic approach of uncertainties, these random matrices are statistically
independent and they are constructed as explained in [4, 7].Their level of uncertainty is respectively controlled by
parametersδM, δK , δM < ( N+1

N+5)1/2. On an other hand, if the causality principle was not taken into account for the
construction of the stochastic model of random matrix [K(ω)], then the stochastic model that would be constructed
would be causal in average but would not be almost-surely causal. Such a model would be erroneous from the point
of view of the theory of physically realizable systems. In the following, such an erroneous stochastic construction will
be referred as the probabilistic model with a causality in mean. Such a model can be constructed by rewriting Eq. (11)
as

([M] + iω[D(ω)] + [K̃(ω)]) Q̂(ω) = f̂(ω) , (13)

where [̃K(ω)] = [K0] + [K(ω)]. The random matrices [M], [K(ω)] and [D(ω)] are statistically independent and
are constructed as explained in [4, 7]. Their level of uncertainty is respectively controlled by parametersδM, δK ,
δM < ( N+1

N+5)1/2.

4. Numerical example and results

4.1. Description of the numerical model

As an example, a composite structure is studied in the Low-Frequency range. It is a thin multilayered plate of
lengthL = 1 m, widthW = 0.3 m and thicknessH = 0.1 m, under a nodal load ofF = 1 N applied in direction the
vertical directione3 at the point located at (0.5067 m, 0.1565 m, 0.1 m) (see Fig. 1). Let ûk(ω) = {̂u(ω)}k be the k-th
component of the response calculated with computational model. The numbering of degrees of freedom is such that,
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Figure 1: Finite element mesh of the plate with force appliedF = 1 N and observation dofŝu1 andû3.

for k = 1, Ûk(ω) is related to the degree of freedom that is submitted to the external forceF.The three layers are made
up of a homogenous elastic medium occupying domainΩe that is sandwiched between two homogenous viscoelastic
media occupying the domainΩve = Ω1∪Ω2 in which the domainΩ1 is the upper layer and the domainΩ2 is the lower
layer. For the elastic medium, the material is assumed to be isotropic with Young’s modulusE = 210 GPa, Poisson’s
ratioν = 0.3, and a densityρ = 7, 850 kg/m3. Its thickness ish = 4H/5 in whichH is the total thickness of the plate.
For the viscoelastic homogenous medium occupying domainΩk, with k = 1, 2, the material is assumed to be isotropic
with a Poisson ratioν(k) and a time-dependent viscoelastic coefficientE(k)(t). Let Ê(k)(ω) be the Fourier transform of
E(k)(t). In the case of a single-branch generalised Maxwell model,we have

Êk(ω) = E(k)
∞ +

E(k)
1 (τ(k)

1 ω)2

1+ (τ(k)
1 ω)2

+ iω
E(k)

1 τ
(k)
1

1+ (τ(k)
1 ω)2

. (14)

The viscoelastic coefficients used in the simulations areν(1) = 0.27, ν(2) = 0.47, E(1)
∞ = 240 GPa,E(2)

∞ = 220 GPa,
E(1)

1 = 126.5 GPa,E(2)
1 = 50 GPa,τ(1)

1 = 7.351× 10−2s andτ(1)
1 = 1.103× 10−1s.

4.2. Analysis of the stochastic model

Hereinafter, the two random models with almost-sure causality (see Eqs. (11) and (12)) and with the causality in
mean (see Eq. (13)) are compared. It is assumed that [M] remains deterministic (δM = 0), and thatδK = 0.15 and
δD = 0.7. The numbering of degrees of freedom is such that, fork = 3, Ûk(ω) is related to the degree of freedom in
directione1 of the node located, respectively, at (0.5067 m, 0.1630 m, 0.1 m) (see Fig. 1).

Let u 7→ p
|Û(N)

3 |
(u;ω) be the probability density function of|Û (N)

3 (ω)|. Figs. 2, 3, and 4 display the graphs ofu 7→
p|Û3|

(u; 2πν) at frequenciesν = 2 Hz,ν = 200 Hz, andν = 400 Hz, for the two probabilistic models with almost-sure
causality (red line) and with causality in mean (blue line).Figs. 2 to 4 show that the probabilistic model with causality
in mean does not give a good prediction (except for the low frequency 2 Hz that corresponds to a quasistatic response
because the fundamental eigenfrequency is about 3 Hz).

5. Conclusions

In the framework of the nonparametric probabilistic approach of uncertainties, a new stochastic modelling has been
proposed for taking into account uncertainties in the computational models of linear viscoelastic dynamical structures.
This method is based on the construction of a compatibility equation that allows for satisfying the causality principle
for the stochastic dynamical system in order to obtain compatible probabilistic model of the random stiffness matrix
and the random damping matrix at each frequency point of analysis. A numerical example has been presented for
analysing the propagation of uncertainties in a computational model of a composite viscoelastic structure. The results
obtained show that it is very important to construct a probabilistic model which satisfies the causality principle.
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Figure 2: Graph ofu 7→ p
|Û3|

(u; 2πν) at frequencyν = 2 Hz. Probabilistic model with almost-sure causality (red line) and probabilistic model with
causality in mean (blue line).
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Figure 3: Graph ofu 7→ p
|Û3|

(u; 2πν) at frequencyν = 200 Hz. Probabilistic model with almost-sure causality (red line) and probabilistic model
with causality in mean (blue line).
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Figure 4: Graph ofu 7→ p
|Û3|

(u; 2πν) at frequencyν = 400 Hz. Probabilistic model with almost-sure causality (red line) and probabilistic model
with causality in mean (blue line).
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