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Model uncertainties in computational viscoelastic linear structural dynamics

Introduction

In structural engineering, uncertainties have to be accounted for the design and the analysis of a structure using computational models. In the computational models, the sources of uncertainties are due to the model-parameters uncertainties, as well as the model uncertainties induced by modelling errors. In the probabilistic framework, uncertainty quantification has extensively be developed in the last two decades (see for instance [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF][START_REF] Mace | Uncertainty in structural dynamics[END_REF][START_REF] Schueller | Computational methods in stochastic mechanics and reliability analysis[END_REF]).

The objective of this paper is to present the numerical analysis of an extension (recently proposed in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF][START_REF] Capillon | Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures[END_REF]) of the nonparametric probabilistic approach of uncertainties [START_REF] Soize | Uncertainty Quantification[END_REF] in computational linear structural dynamics for viscoelastic composite structures in the frequency-domain. In the framework of linear viscoelasticity (see for instance [START_REF] Truesdell | Encyclopedia of Physics[END_REF][START_REF] Christensen | Theory of Viscoelasticity[END_REF]) and in the frequency domain, the generalised damping matrix [D(ω)] and the generalised stiffness matrix [K(ω)] of the reduced-order computational model depend on frequency ω. The nonparametric probabilistic approach of uncertainties consists in modelling this two frequency-dependent generalised matrices by frequency-dependent random matrices [D(ω)] and [K(ω)] respectively. However, as these two matrices come from a causal dynamical system, the causality implies two compatibility equations, also known as the Kramers-Kronig relations [START_REF] Kramers | La diffusion de la lumiere par les atomes[END_REF][START_REF] Kronig | On the theory of dispersion of X-rays[END_REF], involving the Hilbert transform [START_REF] Papoulis | Signal Analysis[END_REF]. A summary of the construction of the deterministic reduced-order computational model is presented in Section 2. Section 3 deals with the construction of the nonparametric probabilistic model using the Hilbert transform. In Section 4 a numerical example is presented.

Computational model in linear viscoelasticity

Linear viscoelastic constitutive equation

Let Ω = Ω e ∪ Ω ve be an open, connected, and bounded domain of R 3 , constituted of two parts Ω e and Ω ve . The first part Ω e is occupied by a purely elastic medium while the second part Ω ve is occupied by a linear viscoelastic medium. In a cartesian frame (e 1 , e 2 , e 3 ), let x = (x 1 , x 2 , x 3 ) be the position vector of any point in Ω. Let u(x, t) be the displacement field defined on Ω. The linearised strain tensor is denoted by {ε kh } hk and the Cauchy stress tensor by {σ i j } i j , with i, j, k, and h in {1, 2, 3}. The theory of linear viscoelasticity is used in order to obtain the constitutive equation of the viscoelastic medium occupied by domain Ω ve . For t ≤ 0, the system is assumed to be at rest. In the time domain, the constitutive equation is then written as

σ(u(x, t)) = t 0 G(x, τ) : ε( u(x, t -τ))dτ , (1) 
in which u is the partial derivative of u with respect to t, where t → G(x, t) is the relaxation function defined on [0 + ∞[ with values in the fourth-order tensor that satisfies the usual symmetry properties. Function t → G(x, t) is differentiable with respect to t on ]0, +∞[ and its partial time derivative t → { Ġi jkh (x, t)} i jkh is assumed to be integrable on [0 , +∞[. At time t = 0, the initial elasticity tensor G(x, 0) is positive definite. Consequently, Eq. ( 1) can be rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) + +∞ -∞ g(x, τ) : ε(u(x, t -τ))dt , (2) 
where fourth-order tensor g(x, t) is defined by g(x, t) = 0, if t < 0 and g(x, t) = Ġ(x, t) if t ≥ 0. Taking the Fourier transform with respect to t of both sides of Eq. ( 2), and introducing the real part g R (x, ω) = ℜe{ g(x, ω)} and the imaginary part g I (x, ω) = ℑm{ g(x, ω)}, the constitutive equation in the frequency domain can be written as

σ( u(x, ω)) = (a 0 (x) + a(x, ω) + i ω b(x, ω)) : ε( u(x, ω)) , (3) 
where a 0 (x) = G(x, 0) and where the components a i jkh (x, ω) and b i jkh (x, ω) of the fourth-order real tensors a(x, ω) and b(x, ω) are the viscoelastic coefficients that are such that

a(x, ω) = g R (x, ω) , ω b(x, ω) = g I (x, ω) . ( 4 
)
Since g is a causal function of time, the real part g R and imaginary part g I of its Fourier transform g are related through a set of compatibility equations also known as the Kramers-Kronig relations [START_REF] Kramers | La diffusion de la lumiere par les atomes[END_REF][START_REF] Kronig | On the theory of dispersion of X-rays[END_REF]. These relations involve the Hilbert transform [START_REF] Papoulis | Signal Analysis[END_REF] and are written as

g R (x, ω) = 1 π p.v +∞ -∞ g I (x, ω ′ ) ω -ω ′ dω ′ , g I (x, ω) = - 1 π p.v +∞ -∞ g R (x, ω ′ ) ω -ω ′ dω ′ , (5) 
in which p.v denotes the Cauchy principal value. From Eqs. ( 4) and ( 5), the following relation between the viscoelastic tensors a(x, ω) and b(x, ω) can then be deduced, for all ω > 0,

a(x, ω) = ω π p.v +∞ -∞ b(x, ω ′ ) ω -ω ′ dω ′ . (6)

Computational model

The standard finite element method (see for instance [START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Zienkiewicz | The Finite Element Method Set (Sixth Edition)[END_REF]) yields the computational model

(-ω 2 [M] + iω[D(ω)] + [K 0 ] + [K(ω)]) u(ω) = f(ω) , (7) 
in which u(ω) is the complex vector of the degrees of freedom, and where frequency-dependent matrices [D(ω)], [K(ω)] and matrix [K 0 ] are respectively related to b(x, ω), a(x, ω) and a 0 (x). Using Eq. ( 6), it is deduced that symmetric positive real matrix [K(ω)] is such that

[K(ω)] = ω π p.v +∞ -∞ 1 ω -ω ′ [D(ω)] dω ′ (8) 
As suggested in [START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF], the reduced-order computational model is constructed by using the reduced basis represented by the first N modes associated with the first N positive eigenvalues of the underlying undamped mechanical system for which the mass matrix is [M] and the stiffness matrix is [K 0 ]. The reduced-order computational model is then written as

(-ω 2 [M] + iω [D(ω)] + [K 0 ] + [K(ω)]) q(ω) = f(ω) , (9) 
where the frequency-dependent full (N × N) real matrices [D(ω)] and [K(ω)] are symmetric positive and are such that

[K(ω)] = ω π p.v +∞ -∞ 1 ω -ω ′ [D(ω)]dω ′ , ω ≥ 0 . ( 10 
)

Stochastic reduced-order computational model

For N fixed, the nonparametric probabilistic approach of uncertainties consists in substituting in Eqs. ( 9) and ( 10 

(-ω 2 [M] + iω [D(ω)] + [K 0 ] + [K(ω)]) Q(ω) = f(ω) , (11) 
[K(ω)] = 2 ω π p.v +∞ 0 1 1 -u 2 [D(ωu)] du , ω ≥ 0 . (12) 
Furthermore, Eq. ( 12) means that the probabilistic model of random matrix [K(ω)] is completely defined by the probabilistic model of random matrix [D(ω)] and consequently, the two random matrices are not statistically independent such that the probabilistic model for random matrix [K(ω)] allows satisfying almost-surely the causality principle and will be referred as the probabilistic model with almost-sure causality. Consequently, only the probabilistic models of random matrices [M], [K 0 ] and [D(ω)] have to be constructed.

In the framework of the nonparametric probabilistic approach of uncertainties, these random matrices are statistically independent and they are constructed as explained in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF]. Their level of uncertainty is respectively controlled by parameters δ M , δ K , δ M < ( N+1 N+5 ) 1/2 . On an other hand, if the causality principle was not taken into account for the construction of the stochastic model of random matrix [K(ω)], then the stochastic model that would be constructed would be causal in average but would not be almost-surely causal. Such a model would be erroneous from the point of view of the theory of physically realizable systems. In the following, such an erroneous stochastic construction will be referred as the probabilistic model with a causality in mean. Such a model can be constructed by rewriting Eq. [START_REF] Kronig | On the theory of dispersion of X-rays[END_REF] as

([M] + iω[D(ω)] + [ K(ω)]) Q(ω) = f(ω) , (13) 
where

[ K(ω)] = [K 0 ] + [K(ω)]. The random matrices [M], [K(ω)
] and [D(ω)] are statistically independent and are constructed as explained in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF]. Their level of uncertainty is respectively controlled by parameters δ M , δ K , δ M < ( N+1 N+5 ) 1/2 .

Numerical example and results

Description of the numerical model

As an example, a composite structure is studied in the Low-Frequency range. It is a thin multilayered plate of length L = 1 m, width W = 0.3 m and thickness H = 0.1 m, under a nodal load of F = 1 N applied in direction the vertical direction e 3 at the point located at (0.5067 m, 0.1565 m, 0.1 m) (see Fig. 1). Let u k (ω) = { u(ω)} k be the k-th component of the response calculated with computational model. The numbering of degrees of freedom is such that, for k = 1, U k (ω) is related to the degree of freedom that is submitted to the external force F.The three layers are made up of a homogenous elastic medium occupying domain Ω e that is sandwiched between two homogenous viscoelastic media occupying the domain Ω ve = Ω 1 ∪ Ω 2 in which the domain Ω 1 is the upper layer and the domain Ω 2 is the lower layer. For the elastic medium, the material is assumed to be isotropic with Young's modulus E = 210 GPa, Poisson's ratio ν = 0.3, and a density ρ = 7, 850 kg/m 3 . Its thickness is h = 4H/5 in which H is the total thickness of the plate. For the viscoelastic homogenous medium occupying domain Ω k , with k = 1, 2, the material is assumed to be isotropic with a Poisson ratio ν (k) and a time-dependent viscoelastic coefficient E (k) (t). Let E (k) (ω) be the Fourier transform of E (k) (t). In the case of a single-branch generalised Maxwell model, we have

E k (ω) = E (k) ∞ + E (k) 1 (τ (k) 1 ω) 2 1 + (τ (k) 1 ω) 2 + iω E (k) 1 τ (k) 1 1 + (τ (k) 1 ω) 2 . ( 14 
)
The viscoelastic coefficients used in the simulations are ν (1) = 0.27, ν (2) = 0.47, E (1) ∞ = 240 GPa, E (2) ∞ = 220 GPa, E (1) 1 = 126.5 GPa, E (2) 1 = 50 GPa, τ (1) 1 = 7.351 × 10 -2 s and τ (1) 1 = 1.103 × 10 -1 s.

Analysis of the stochastic model

Hereinafter, the two random models with almost-sure causality (see Eqs. [START_REF] Kronig | On the theory of dispersion of X-rays[END_REF] and ( 12)) and with the causality in mean (see Eq. ( 13)) are compared. It is assumed that [M] remains deterministic (δ M = 0), and that δ K = 0.15 and δ D = 0.7. The numbering of degrees of freedom is such that, for k = 3, U k (ω) is related to the degree of freedom in direction e 1 of the node located, respectively, at (0.5067 m, 0.1630 m, 0.1 m) (see Fig. 1).

Let u → p | U (N) 3 | (u; ω) be the probability density function of | U (N) 3 (ω)|. Figs. 2,3, and 4 display the graphs of u → p | U 3 | (u; 2πν) at frequencies ν = 2 Hz, ν = 200 Hz, and ν = 400 Hz, for the two probabilistic models with almost-sure causality (red line) and with causality in mean (blue line). Figs. 2 to 4 show that the probabilistic model with causality in mean does not give a good prediction (except for the low frequency 2 Hz that corresponds to a quasistatic response because the fundamental eigenfrequency is about 3 Hz).

Conclusions

In the framework of the nonparametric probabilistic approach of uncertainties, a new stochastic modelling has been proposed for taking into account uncertainties in the computational models of linear viscoelastic dynamical structures. This method is based on the construction of a compatibility equation that allows for satisfying the causality principle for the stochastic dynamical system in order to obtain compatible probabilistic model of the random stiffness matrix and the random damping matrix at each frequency point of analysis. A numerical example has been presented for analysing the propagation of uncertainties in a computational model of a composite viscoelastic structure. The results obtained show that it is very important to construct a probabilistic model which satisfies the causality principle. 
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 1 Figure 1: Finite element mesh of the plate with force applied F = 1 N and observation dofs u 1 and u 3 .
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 234 Figure 2: Graph of u → p | U 3 | (u; 2πν) at frequency ν = 2 Hz. Probabilistic model with almost-sure causality (red line) and probabilistic model with causality in mean (blue line).