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In this paper, we analyze control affine optimal control problems with a cost functional involving the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with zero control arcs, that is, arcs where the control is identically zero. Here, we consider Pontryagin extremals given by a bang-zero control-bang concatenation. We establish sufficient optimality conditions for such extremals, in terms of some regularity conditions and of the coerciveness of a suitable finite-dimensional second variation.

Introduction

In recent years, optimal control problems aiming at minimizing the integral of the absolute value of the control have received an increasing attention: for instance, they model problems coming from neurobiology [START_REF] Berret | The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements[END_REF], mechanics [START_REF] Chen | L 1 minimization for mechanical systems[END_REF][START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF], and fuel-consumption [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF][START_REF] Craig | Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control[END_REF][START_REF] Ross | Space trajectory optimization and L 1 -optimal control problems[END_REF]. As noticed in these papers, a peculiarity of optimal control problems containing the absolute value of the control in the running cost is the fact that the optimal control vanishes along nontrivial time intervals; this property is referred to as sparsity, and the piece of optimal trajectories corresponding to the zero control are known as zero control arcs, cost arcs or inactivated arcs.

The occurrence of sparse controls in this kind of minimization problems is well known also in the framework of infinite-dimensional optimal control, see for instance [START_REF] Clason | A duality-based approach to elliptic control problems in nonreflexive Banach spaces[END_REF][START_REF] Kalise | Infinite horizon sparse optimal control[END_REF][START_REF] Stadler | Elliptic optimal control problems with L 1 -control cost and applications for the placement of control devices[END_REF], where usually the absolute value of the control is added to the integral cost, in order to induce sparse solutions.

In this paper, we consider optimal control problems with single-input control-affine dynamics, a compact control set and a running cost depending linearly on the absolute value of the control. For such optimal control problems, a well known necessary condition is the Pontryagin Maximum Principle, possibly in its non-smooth version; see [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF]. Our aim is to provide sufficient conditions for the strong local optimality of an admissible trajectory-control pair satisfying the Pontryagin Maximum Principle. A first announcement of these results, given without proofs, can be found in [START_REF] Chittaro | Optimality conditions for extremals containing bang and inactivated arcs[END_REF].

Our approach relies on Hamiltonian methods, described in Section 3; see also [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF][START_REF] Stefani | Variational Methods in Imaging and Geometric Control, chap. A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I[END_REF][START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF]. In order to apply these methods, two main ingredients are needed. Namely, we require some regularity conditions along the reference extremal, and the coerciveness of the so-called second variation at the switching points.

We point out that these conditions are quite easy to check on a given extremal: indeed, the regularity assumptions are just sign conditions along the extremal, while the second variation reduces to a quadratic function of one real variable. The assumptions on the zeros of the cost along the reference trajectory (Assumptions 1-2) are generic.

The cited papers [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF] deal respectively with the Mayer problem and the minimum time problem, in a completely smooth framework. Therefore, the conditions found in there cannot be directly applied to this context; in particular, the second variation is rather different in the three cases.

The Hamiltonian approach is used also in [START_REF] Chen | L 1 minimization for mechanical systems[END_REF], where a similar problem is studied, and sufficient conditions for optimality are provided. In particular, the same regularity assumptions are required in the two results (we stress indeed the fact that the regularity conditions are very close to the necessary ones, in the sense that they sum up to requiring strict inequalities where the Pontryagin Maximum Principle yields mild ones). The condition that ensures the invertibility of the flow (in our context, the coerciveness of the second variations), in [START_REF] Chen | L 1 minimization for mechanical systems[END_REF] has the form of a non-degeneration condition on the Jacobian of the exponential mapping.

The two results thus present a set of alternative sufficient conditions, that can adapt to different cases.

We finally mention the paper [START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF], where the authors investigate necessary and sufficient optimality conditions for a similar problem, with different techinques. The given optimal control problem is extended in such a way that the candidate optimal trajectory happens to be a bang-bang extremal of the extended problem, so that sufficient conditions are stated in terms of optimality conditions of finite-dimensional optimization problems. This paper is organized as follows: in Section 2 we state the problem and discuss the main Assumptions; in Section 3 we describe the Hamiltonian meth-ods; the main result is given in Section 4. Finally, in Section 5 we provide an example.

Statement of the Problem and Assumptions

Notations

Let M be a smooth n-dimensional manifold. Given a vector field f on M , the Lie derivative at a point q ∈ M of a smooth function ϕ : M → R with respect to f is denoted with L f ϕ(q) = dϕ(q), f (q) . We denote the iterated Lie derivative L f L f ϕ (q) as L 2 f ϕ(q). The Lie bracket of two vector fields f, g is denoted as commonly with [f, g]. Let T * M be the cotangent bundle of M and π : T * M → M its projection on M . For every vector field f on M , denote by the corresponding capital letter the associated Hamiltonian function, that is F (ℓ) = ℓ, f (πℓ) , ℓ ∈ T * M .

Let σ be the canonical symplectic form on T * M . With each Hamiltonian function F we associate the Hamiltonian vector field -→ F on T * M defined by

dF (ℓ), • = σ(•, -→ F (ℓ)).
The Poisson bracket of two Hamiltonians F, G is denoted {F, G}. We recall that {F, G} = σ( -→ F , -→ G ). The Hamiltonian flow associated with the Hamiltonian vector field -→ F , and starting at time t = 0, is denoted with the cursive F t .

Statement of the Problem

We consider the following minimization problem on M : minimize

T 0 |u(t)ψ(ξ(t))| dt subject to ξ(t) = f 0 (ξ(t)) + u(t)f 1 (ξ(t)), (1a) 
ξ(0) = x 0 , ξ(t) = x f , (1b) |u(t)| ≤ 1 a.e. t ∈ [0, T ], (1c) 
where f 0 and f 1 are smooth vector fields on M , ψ is a smooth real-valued function on M and T > 0 is fixed. This problem is indeed a generalization of the L 1 minimization problem considered, for instance, in [START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF]. The Pontryagin Maximum Principle (PMP) constitues a necessary condition for optimality. In particular, it states that for every optimal trajectory ξ(•) of ( 1) there exist a constant ν ≤ 0 and a suitable curve

λ(t) ∈ T * ξ(t) M such that u(t)F 1 (λ(t)) + ν|u(t)ψ(ξ(t))| = max v∈[-1,1] {vF 1 (λ(t)) + ν|vψ(ξ(t))|} , a.e. t. (2)
In particular, in the normal case (ν = -1), equation [START_REF] Chen | L 1 minimization for mechanical systems[END_REF] implies that the optimal control may have three possible behaviors:

-If there exists an interval

I ⊂ [0, T ] such that |F 1 (λ(t))| > |ψ(ξ(t))| ∀t ∈ I, then u(t) = sgn(F 1 (λ(t)).
In this case we say that the interval I is a regular bang arc, and we call u a bang control.

-If |F 1 (λ(t)))| < |ψ(ξ(t))| ∀t ∈ I,
then the Hamiltonian (2) attains its maximum only if u ≡ 0 in I. To denote such arcs we use the descriptive name of zero control arcs. We recall, see [START_REF] Berret | The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements[END_REF], that in the literature these arcs are also known as inactivated arcs.

-If |F 1 (λ(t))| = |ψ(ξ(t))| ∀t ∈ I, then the maximizing control is not uniquely determined by (2). Indeed, if F 1 (λ(t)) = |ψ(ξ(t))|, then the maximum in (2) is attained by every v ∈ [0, 1]. Analogously, if F 1 (λ(t)) = -|ψ(ξ(t))|,
then the maximum is attained by every v ∈ [-1, 0]. We say that I is a singular arc.

In this paper we state sufficient optimality conditions for solutions of (1a)-( 1b)-(1c) given by a concatenation of bang and zero control arcs. More precisely, we assume that we are given an admissible trajectory ξ :

[0, T ] → M satisfying ˙ ξ(t) =      f 0 ( ξ(t)) + u 1 f 1 ( ξ(t)) t ∈ [0, τ 1 ) f 0 ( ξ(t)) t ∈ ( τ 1 , τ 2 ) f 0 ( ξ(t)) + u 3 f 1 ( ξ(t)) t ∈ ( τ 2 , T ] ξ(0) = x 0 , ξ(T ) = x f , for some τ 1 , τ 2 ∈ (0, T ), τ 1 < τ 2 and some u 1 , u 3 ∈ {-1, 1}. The pair ( ξ, u), where u(t) =    u 1 , t ∈ [0, τ 1 [, 0, t ∈] τ 1 , τ 2 [, u 3 , t ∈] τ 2 , T ], (3) 
is called the reference pair ; ξ and u are the reference trajectory and the reference control, respectively.

In analogy to the classical bang-bang case, we say that τ 1 and τ 2 are the switching times of the reference control u and we call ξ( τ 1 ), ξ( τ 2 ) the switching points of ξ. For the sake of future notation we set τ 0 := 0, τ 3 := T and I j := ( τ j-1 , τ j ), j = 1, 2, 3. Moreover, we call h j the vector field that defines the reference trajectory in the interval I j , that is,

h 1 := f 0 + u 1 f 1 , h 2 := f 0 , h 3 := f 0 + u 3 f 1 ,
and the reference time-dependent vector field h t = f 0 + u(t)f 1 , so that h t ≡ h j for t ∈ I j . Denote by S t (x) the solution at time t of the Cauchy problem

ξ(t) = h t (ξ(t)), ξ(0) = x.
In this paper, we provide some first and second order sufficient conditions that guarantee the strong-local optimality of ξ(•), accordingly to the following definition:

Definition 2.1 A curve ξ : [0, T ] → M , solution of (1a)-(1b) with associate control u(•), is a strong-local minimizer of (1) if there exists a neighborhood U in [0, T ]×M of the graph of ξ such that T 0 | u(t)ψ( ξ(t))|dt ≤ T 0 |u(t)ψ(ξ(t))| dt for every admissible trajectory ξ : [0, T ] → M of (1a)-(1b)-(1c), with associated control u(•) and whose graph is in U. If T 0 | u(t)ψ( ξ(t))|dt < T 0 |u(t)ψ(ξ(t))
| dt for any admissible trajectory other than ξ and whose graph is in U, we say that ξ is a strict strong-local minimizer.

Assumptions

Our first assumption ensures that the cost function is smooth along the reference trajectory but for a finite number of points. It also guarantees that the Hamiltonian vector field associated with the maximized Hamiltonian (defined in (5) below) is well defined and C 1 but in a codimension 1 subset, as explained in Remark 2.1 below. It is also crucial in defining the second variation of an appropriate subproblem of (1).

Assumption 1 For every t ∈ [0, T ], the vector field h t is never tangent to the set {ψ = 0} along ξ(t), that is L ht ψ( ξ(t)) = 0.

Thanks to this assumption, ψ • ξ vanishes at most a finite number of times. In particular, we assume that ψ( ξ(t)) vanishes n 1 times in the interval I 1 and n 3 times in the interval I 3 (where we admit the cases n 1 = 0 and n 3 = 0). We denote as 0 < s 11 < s 12 < . . . < s 1n1-1 < s 1n1 < τ 1 , the zeros of ψ • ξ occurring in I 1 and τ 2 < s 31 < s 32 < . . . < s 3n3-1 < s 3n3 < T , the zeros of ψ • ξ occurring in I 3 . Set a 0 = lim t→0 + sgn(ψ( ξ(t))) and a 2 = sgn(ψ( ξ( τ 2 ))). In particular, sgn ψ • ξ| ( s1 i-1 , s1i) = a 0 (-1) i-1 , i ∈ {1, . . . , n 1 + 1}, sgn ψ • ξ| ( s3 i-1 , s3i) = a 2 (-1) i-1 , i ∈ {1, . . . , n 3 + 1}, (here we set s 10 = 0, s 1 n1+1 = τ 1 , s 30 = τ 2 , s 3 n3+1 = T ).

Assumption 2

The cost ψ does not vanish at the switching points of the reference trajectory, that is ψ( ξ( τ i )) = 0, i = 1, 2.

Remark 2.1 By continuity and Assumption 1, there exist two neighborhoods

V 1 , V 3 in M of the arcs ξ I1 , ξ
I3 respectively, such that the zero level sets of ψ| V1 and ψ| V3 are codimension-1 submanifolds of M , transverse to h 1 and h 3 , respectively. Moreover the zero level set of ψ| Vj , j = 1, 3, has n j connected components.

Our next assumption is that the reference pair satisfies the Pontryagin Maximum Principle (PMP from now on) in its normal form; in principle, nonsmooth versions of PMP (see e.g. [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF]Theorem 22.26]) are required. Indeed our problem can be seen as a hybrid control problem, as defined in [10, Section 22.5], with the switching surface S given by {(t, x, y) : ψ(x) = 0, y = x}.

Nevertheless, thanks to Assumption 1, in the case under study [10, Theorem 22.26] reduces to the standard smooth version of PMP (as stated, for instance, in [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]).

In order to apply PMP, consider

Ψ : ℓ ∈ T * M → ψ • π(ℓ)) ∈ R.
As we shall extensively use it, we recall that -→ Ψ (ℓ) = (-Dψ(πℓ), 0). Define the (normal) control-dependent Hamiltonian,

h(u, ℓ) := F 0 (ℓ) + uF 1 (ℓ) -|uΨ (ℓ)|, (u, ℓ) ∈ [-1, 1] × T * M
and, for ℓ ∈ T * M , the reference Hamiltonian and the maximized Hamiltonian respectively as

H t (ℓ) := F 0 + u(t)F 1 (ℓ) -| u(t)Ψ (ℓ)|, (4) 
H max (ℓ) := max u∈[-1,1] h(u, ℓ) =      F 0 (ℓ) + F 1 (ℓ) -|Ψ (ℓ)| , if F 1 (ℓ) > |Ψ (ℓ)| , F 0 (ℓ), if |F 1 (ℓ)| ≤ |Ψ (ℓ)| , F 0 (ℓ) -F 1 (ℓ) -|Ψ (ℓ)| , if F 1 (ℓ) < -|Ψ (ℓ)| , (5) 
and we assume the following.

Assumption 3 (PMP) There exists a Lipschitzian curve

λ : [0, T ] → T * M such that ˙ λ(t) = -→ H t ( λ(t)) a.e. t ∈ [0, T ], π λ(t) = ξ(t), ∀t ∈ [0, T ]. H t ( λ(t)) = H max ( λ(t)), a.e. t ∈ [0, T ]. (6) 
The curve λ(•) is called the reference extremal. In the following, we set

ℓ 0 = λ(0), ℓ 1 = λ( τ 1 ), ℓ 2 = λ( τ 2 ), ℓ T = λ(T ).
Let ξ(•) be an admissible trajectory of (1a) that satisfies the Pontryagin Maximum Principle with associated extremal λ(•). If the costate λ(t) does not belong to the set {ℓ ∈ T * M :

|F 1 (ℓ)| = |Ψ (ℓ)|} , (7) 
then the control associated with ξ can be recovered uniquely by equation [START_REF] Ross | Space trajectory optimization and L 1 -optimal control problems[END_REF]. Analogously to the smooth case, we call such a set the switching surface of problem (1).

Remark 2.2 Assumption 2 ensures that in a neighborhood of the range of λ(•) the switching surface is composed by two non-intersecting connected components, {F 1 = |Ψ |} and {F 1 = -|Ψ |}. Together with Assumption 1, it guarantees that the Hamiltonian vector field associated with H t is well defined along the reference trajectory, except at the times t = s 1i , i = 1, . . . , n 1 , s 3i , i = 1, . . . , n 3 , τ 1 , τ 2 , where it has possibly different left-sided and right-sided limits. Assumption 1 can actually be weakened: the non-tangency condition is required only along the two bang arcs.

It is easy to see that the reference Hamiltonian (4), as a function on the cotangent bundle, is piecewise time-independent, and it takes the values

H t (ℓ) :=              H σ0i 1 := F 0 + u 1 F 1 + σ 0i ψ • π, t ∈ [ s 1 i-1 , s 1i ], i = 1, . . . , n 1 + 1, H 2 := F 0 , t ∈ [ τ 1 , τ 2 ], H σ2i 3 := F 0 + u 3 F 1 + σ 2i ψ • π, t ∈ [ s 3 i-1 , s 3i ], i = 1, . . . , n 3 + 1, (8) 
where we used the following symbols:

σ 0i = a 0 (-1) i , i = 1, . . . , n 1 , σ 2i = a 2 (-1) i , i = 1, . . . , n 3 .
Because of the maximality condition of PMP (equation ( 6)), the following inequalities hold along the reference extremal:

u 1 F 1 ( λ(t)) ≥ ψ( ξ(t)) , t ∈ I 1 , F 1 ( λ(t)) ≤ ψ( ξ(t)) , t ∈ I 2 , (9) 
u 3 F 1 ( λ(t)) ≥ ψ( ξ(t)) , t ∈ I 3 . (10) 
In addition, the following relations must hold:

d dt H 2 -H σ0n 1 1 ( λ(t))| t= τ1 ≥ 0, d dt H σ20 3 -H 2 ( λ(t))| t= τ2 ≥ 0. ( 11 
)
Even though the derivative λ(t) is discontinuous at t = τ i , i = 1, 2, the two derivatives in [START_REF] Chittaro | Optimality conditions for extremals containing bang and inactivated arcs[END_REF] exist and are well defined. In particular, they can be expressed as follows:

d dt H 2 -H σ0n 1 1 ( λ(t)) t= τ1 = H σ0n 1 1 , H 2 ( ℓ 1 ) = σ -→ H 1 σ0n 1 , -→ H 2 ( ℓ 1 ), (12) 
d dt H σ20 3 -H 2 ( λ(t)) t= τ2 = H 2 , H σ20 3 ( ℓ 2 ) = σ -→ H 2 , -→ H 3 σ20 ( ℓ 2 ). ( 13 
)
Remark 2.3 Due to the nonlinearity introduced by the absolute value of the control in the integral cost, two consecutive bang arcs can exist only if ψ vanishes at the switching point between such arcs (this is a straightforward application of the PMP and of previous remarks). In particular, we relate this fact to [START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF]Theorem 3.1], that states the impossibility of the existence of bangbang junctions: indeed, the results of [START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF] hold for the case ψ ≡ 1 (plus some other control-independent terms in the cost).

As anticipated in the Introduction, in order to apply the Hamiltonian methods, we need the maximized Hamiltonian H max to be well defined and sufficiently regular in a neighborhood of the range of the reference extremal. More precisely, we need to ensure that the analytical expression of the maximized Hamiltonian is the same on a sufficiently small neighborhood of λ(t), for any t = τ 1 , τ 2 . This is guaranteed by the strengthened version of the necessary conditions ( 9)-( 10) and [START_REF] Chittaro | Optimality conditions for extremals containing bang and inactivated arcs[END_REF].

Assumption 4 Along each arc the reference control is the only one that maximizes over u ∈ [-1, 1] the control-dependent Hamiltonian evaluated along λ, h(u, λ(t)). Equivalently, in equations ( 9)-( 10) the strict inequalities hold true for any t = τ 1 , τ 2 .

The following assumption is the strict form of the necessary conditions ( 12)- [START_REF] Stefani | Variational Methods in Imaging and Geometric Control, chap. A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I[END_REF]. It basically states that the change of value in the control u can be detected by the first order approximation of H 2 -H σ0n 1 1

• λ at τ 1 and (H σ20 3 -H 2 ) • λ at τ 2 , respectively. It ensures the transversality of the intersection between the reference extremal λ and the switching surface [START_REF] Clason | A duality-based approach to elliptic control problems in nonreflexive Banach spaces[END_REF], thus avoiding bang-singular junctions.

Assumption 5

d dt H 2 -H σ0n 1 1 ( λ(t))| t= τ1 > 0, d dt H σ20 3 -H 2 ( λ(t))| t= τ2 > 0.

The Second Variation

This section is devoted to the construction of the second variation associated with problem (1), in the spirit of [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF][START_REF] Agrachev | An invariant second variation in optimal control[END_REF][START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF].

In order to compute the second variation of the cost functional, one should take into account all the admissible variations of the reference trajectory ξ. Actually, as it will be proved, it suffices to consider only the trajectories corresponding to controls having the same bang-zero-bang structure of the reference one, that is, to allow only variations of the switching times τ 1 and τ 2 . We stress that Assumption 4 is crucial to justify this reduction. We thus obtain the following two dimensional sub-problem of (1):

min 0<τ1<τ2<T I1∪I3 |ψ(ξ(t))| dt (14) subject to    ξ = h i • ξ(t) t ∈ I i , i = 1, 2, 3, ξ(0) = x 0 , ξ(T ) = x f , I 1 = (0, τ 1 ), I 2 = (τ 1 , τ 2 ), I 3 = (τ 2 , T ), (15) 
It is well known that, on a smooth manifold, the second derivatives are highly coordinate-dependent, unless they are computed with respect to variations contained in the kernel of the differential of the function to be derived. To overcome this problem and obtain an intrinsic expression of the second variation of the cost ( 14), we introduce two smooth functions α, β :

M → R satisfying dα( x 0 ) = ℓ 0 , dβ( x f ) = -ℓ T ,
and remove the constraint on the initial point of the trajectories, thus obtaining the extended sub-problem:

min τ1,τ2 α(ξ(0)) + β(ξ(T )) + I1∪I3 |ψ(ξ(t))| dt (16) subject to    ξ = h i • ξ(t) t ∈ I i , i = 1, 2, 3, ξ(0) ∈ M, ξ(T ) = x f I 1 = (0, τ 1 ), I 2 = (τ 1 , τ 2 ), I 3 = (τ 2 , T ). (17) 
It is easy to see, by PMP, that the differential of the cost ( 16) is zero at x 0 . The necessity of summing variations belonging to tangents spaces based at different points of the reference trajectory is a typical issue in geometric control. We get around this problem by pulling-back the solutions of ( 17) to the initial point x 0 , by means of the flow of the reference vector field; in this way, the variations of the trajectory will evolve on the tangent space T x 0 M .

To simplify the expressions of the pull-backs, we first reparametrize time in such a way that each interval I j is mapped into the corresponding reference interval I j ; to do that, we consider the variations of the lengths of the intervals

θ i := (τ i -τ i-1 ) -( τ i -τ i-1 ) ,
we set θ := θ 1 , θ 2 , θ 3 , and define the piecewise-affine reparametrization ϕ θ : [0, T ] → [0, T ] by means of the Cauchy problem

ϕ θ (0) = 0, φθ (t) = τ i -τ i-1 τ i -τ i-1 ∀t ∈ [ τ i-1 , τ i ), i = 1, 2, 3.
Denoting the pull-back fields as

g i := S -1 t * h i • S t , t ∈ [ τ i-1 , τ i ], i = 1, 2, 3,
the pullback system of ( 17) has the form

ζt (x, θ) = θi τi-τi-1 g i (ζ t (x, θ)) t ∈ [ τ i-1 , τ i ), i = 1, 2, 3, ζ 0 (x, θ) = x,
where we notice that φθ (t) = 1 + θi τi-τi-1 for every t ∈ I i . Finally, setting

β := β • S T , ψ t := ψ • S t ,
the cost can be written as

J(x, θ) = α(x) + β(ζ T (x, θ)) + I1∪ I3 φθ (t) ψ t (ζ t (x, θ)) dt.
Since we need to compute the first and second variations of J, it is necessary to get rid of the absolute value inside the integral, that is, to locate the zeros of the function ψ t (ζ t (x, θ)) for t ∈ I 1 ∪ I 3 . They turn out to be smooth functions of the initial state x and of the switching time variations θ, as the following Lemma states.

Lemma 2.1 Locally around ( x 0 , 0), there exist n 1 smooth functions s 1i of (x, θ) such that s 1i ( x 0 , 0) = s 1i and

ψ s1i(x,θ) • exp s 1i (x, θ) θ 1 τ 1 g 1 (x) = 0, i = 1, . . . , n 1 . (18) 
Analogously, for any i = 1, . . . , n 3 , there exists a smooth function s 3i of (x, θ) such that s 3i ( x 0 , 0) = s 3i and,

ψ s3i(x,θ) • exp (s 3i (x, θ)-τ 2 ) θ 3 T -τ 2 g 3 • exp θ 2 g 2 • exp θ 1 g 1 (x) = 0. (19)
Moreover, the following relations hold at the point ( x 0 , 0):

∂s 1i ∂x = - L δx ψ s1i ( x 0 ) L g1 ψ s1i ( x 0 ) , ∂s 1i ∂θ 1 = - s 1i τ 1 , ∂s 1i ∂θ 2 = ∂s 1i ∂θ 3 = 0, ∂s 3i ∂x = - L δx ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) , ∂s 3i ∂θ 1 = - L g1 ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) , ∂s 3i ∂θ 2 = - L g2 ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) , ∂s 3i ∂θ 3 = - s 3i -τ 2 T -τ 2 .
The Lemma is proved by applying the implicit function theorem to the functions defined in ( 18) and ( 19); this can be done thanks to Assumption 1. As usual, we set s 10 = 0,

s 1 n1+1 = τ 1 , s 30 = τ 2 , s 3 n3+1 = T .
Taking advantage of the functions s 1i , s 3i , we can write the cost J(x, θ) as

J(x, θ) = α(x) + β(ζ T (x, θ)) + a 0 1 + θ 1 τ 1 n1+1 i=1 (-1) i-1 s1i(x,θ) s1 i-1(x,θ) ψ t • exp tθ 1 τ 1 g 1 (x) dt + a 2 1 + θ 3 T -τ 2 × × n3+1 i=1 (-1) i-1 s3i(x,θ) s3 i-1(x,θ) ψ t • exp (t -τ 2 )θ 3 T -τ 2 g 3 • exp θ 2 g 2 • exp θ 1 g 1 (x)dt,
and compute its second variation at the point ( x 0 , 0) along all variations (δx, ε) ∈ T x 0 M × R 3 compatible with the constraints [START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF], that is, along the variations in the space

V = {(δx, ε) : δx + 3 i=1 ε i g i = 0, 3 i=1 ε i = 0}.
After some easy but tedious manipulations, we end up with the following expression:

J ′′ [δx, ε] 2 = 1 2 D 2 γ( x 0 )[δx] 2 + L δx L 3 i=1 εigi β( x 0 ) + L 2 3 i=1 εigi β ( x 0 ) + a 2 n3 i=1 (-1) i L δx ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) 2L δx+ε1g1+ε2g2 ψ s3i ( x 0 ) -L δx ψ s3i ( x 0 ) + a 0 n1 i=1 (-1) i L δx ψ s1i ( x 0 ) 2 L g1 ψ s1i ( x 0 ) + I3 L δx L ε1g1+ε2g2 ψ t ( x 0 ) dt + a 0 ε 1 2 (-1) n1 L δx ψ τ1 ( x 0 ) + L δx+ε1g1 ψ τ1 ( x 0 ) + a 2 (-1) n3 ε 3 L δx+ 3 i=1 εigi ψ T ( x 0 ) - ε 2 3 2 L g3 ψ T ( x 0 ) + a 2 n3 i=1 (-1) i L ε1g1+ε2g2 ψ s3i ( x 0 ) 2 L g3 ψ s3i ( x 0 ) + 1 2 I3 L 2 ε1g1+ε2g2 ψ t ( x 0 ) dt + ε 1 ε 2 2 I3 L [g1,g2] ψ t ( x 0 ) dt + 1 2 1≤i<j≤3 ε i ε j L [gi,gj ] β( x 0 ), (20) 
where γ(x)

:= α(x) + β(x) + I1∪ I3 | ψ s (x)|ds.
Remark 2. [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF] The terms containing the Lie derivative of | ψ t | are defined everywhere, except for a finite number of values of t, therefore the integrals are well defined.

We recall that the space of admissible variations for the original subproblem ( 14)-( 15) is

V 0 = {(δx, ε) : δx + 3 i=1 ε i g i = 0, 3 i=1 ε i = 0, δx = 0}.
Indeed, only the restriction to V 0 of (20) is independent of the choice of α and β, while its value on the whole V depends on the choice of these two functions. Moreover we notice that the second variation J ′′ can be written as a sum:

J ′′ = 1 2 D 2 γ( x 0 )[δx] 2 + J ′′ 0 , where J ′′ 0 does not depend on α. Since D 2 γ( x 0 )[δx] 2 | V0 is null, then, if J ′′ | V0
is coercive, we can always choose α in such a way that J ′′ is coercive on the whole V . In Section 4 we will prove that the coerciveness of J ′′ on V implies the existence of a suitable Lagrangian submanifold such that the projection of the maximized Hamiltonian flow is an invertible map between this manifold and its image on M which is one of the key points for applying Hamiltonian methods. In view of this, our last assumption is the following:

Assumption 6 J ′′ [0, ε] 2 is coercive on V 0 .
Remark 2.5 We stress that, in order to apply the Hamiltonian methods, we need to know the expression of the second variation, equation (20), of the extended sub-problem. Nevertheless, the invertibility is guaranteed under Assumption 6, i.e. it suffices to check the coerciveness of the quadratic form

J ′′ [0, ε] 2 = a 0 ε 1 2 (-1) n1 L ε1g1 ψ τ1 ( x 0 ) - ε 2 3 2 L g3 ψ T ( x 0 ) + a 2 ε 2 3 n3 i=1 (-1) i L g3 ψ s3i ( x 0 ) + 1 2 I3 L 2 ε1g1+ε2g2 ψ t ( x 0 ) dt + ε 1 ε 2 2 I3 L [g1,g2] ψ t ( x 0 ) dt + 1 2 1≤i<j≤3 ε i ε j L [gi,gj ] β( x 0 ).
on the triples ε ∈ R 3 satisfying

ε 1 + ε 2 + ε 3 = 0 ε 1 g 1 ( x 0 ) + ε 2 g 2 ( x 0 ) + ε 3 g 3 ( x 0 ) = 0.
Thus, if the two vectors (g 3g 2 )( x 0 ) and (g 2g 1 )( x 0 ) are linearly independent, then the space V 0 is trivial, so that the second variation is coercive by definition. Otherwise, V 0 is a one-dimensional linear space.

3 Hamiltonian Formulation

Construction of the Maximized Hamiltonian Flow

The maximized Hamiltonian ( 5) is well defined, continuous and piecewise smooth in T * M . By contrast, its associated Hamiltonian vector field is not well defined on the switching surfaces and on the zero level set of Ψ . The scope of this section is to prove that, nevertheless, the flow associated with the maximized Hamiltonian is well defined, at least in a tubular neighborhood of the graph of the reference extremal. This property relies on the fact that the reference extremal crosses transversally the hypersurfaces of discontinuity of the Hamiltonian vector field. Fix ǫ > 0; then on a suitable neighborhood of the range of λ| [0, τ1-ǫ] the maximized Hamiltonian vector field is ill-defined on the zero level set of Ψ , else it coincides with

-→ F 0 +u 1 -→ F 1 -sgn(ψ) -→ Ψ .
By Assumption 1, in this neighborhood the set {Ψ = 0} has n 1 connected components, transversal to λ(•). By means of the implicit function theorem, we can express the hitting times of the integral curves of

-→ F 0 + u 1 -→ F 1 -sgn(ψ) -→
Ψ with each connected component as a smooth function of their starting point. Proposition 3.1 There exists a neighborhood U of ℓ 0 in T * M such that for any ℓ ∈ U there exists a unique s 11 = s 11 (ℓ) such that s 11 ( ℓ 0 ) = s 11 and

Ψ • exp(s 11 (ℓ) -→ H 1 σ01 )(ℓ) = 0 ∀ℓ ∈ U. x 0 ξ {ψ = 0} {ψ = 0} exp(s i1 (•)h 1 )(•) exp(s i2 (•)h 1 )(•)
Fig. 1 The times

s 1i , i = 1, 2 Proof Since Ψ • exp(t -→ H 1 σ01 )(ℓ) = ψ • exp(th 1 )(πℓ), it suffices to notice that ∂ ∂t ψ • exp(th 1 )(πℓ) ( s11, ℓ0) = L h1 ψ ξ( s 11 ) .
Thus, Assumption 1 yields the result.

The curves exp(t -→ H 1 σ01 )(ℓ) cross transversally the zero level set of Ψ (thanks to the fact that they project on the integral curves of f 0 + u 1 f 1 and to Assumption 1), so that for t in a sufficiently small right neighborhood of s 11 (ℓ) the maximized Hamiltonian on the points exp(t

-→ H 1 σ01 )(ℓ) is H σ02 1 , that is, -→ H 1
σ01 is no more the vector field associated with the maximized Hamiltonian. On the other hand, H σ02 1 is the maximized Hamiltonian also at the points exp((ts 11 (ℓ))

-→

H 1 σ02 ) • exp(s 11 (ℓ) -→ H 1 σ01 )(ℓ), ℓ ∈ U. (21) 
Then, for t in a right neighborhood of s 11 (ℓ), the maximized Hamiltonian flow is (21). Iterating the same argument as above, we can prove the following Proposition 3.2 For every i = 1, . . . , n 1 and possibly shrinking the neighborhood U, there exists a unique smooth function s 1i : U → R such that

Ψ • exp(s 1i (ℓ) -s 1 i-1 (ℓ)) -→ H 1 σ0 i • • • • • exp(s 11 (ℓ) -→ H 1 σ01 )(ℓ) = 0 ∀ℓ ∈ U and s 1i ( ℓ 0 ) = s 1i .
Moreover, the differential of s 1i at ℓ 0 is given by

ds 1i ( ℓ 0 ), δℓ = - L π * δℓ ψ s1i ( x 0 ) L g1 ψ s1i ( x 0 ) .
Taking advantage of the functions s 1i defined here above, we can write the maximized Hamiltonian flow on the set {(t, ℓ) ∈ R × U : 0 ≤ t ≤ s 1n1 (ℓ)} as the following concatenation:

H t (ℓ) = exp (t -s 1 i-1 (ℓ)) -→ H 1 σ0i • H s1 i-1 (ℓ) (ℓ) t ∈ [s 1 i-1 (ℓ), s 1i (ℓ)], i = 1, . . . , n 1 ,
where we defined s 10 (ℓ) ≡ s 10 = 0.

Remark 3.1 Actually, the functions s 1i depend only on the projection πℓ. We write them as functions of ℓ for symmetry with other functions s 3i that will be defined below.

Reasoning as above, we see that, for t in a right neighborhood of s 1n1 (ℓ), the maximized Hamiltonian at the points exp(ts 1n1 (ℓ))

-→ H 1 σ0 n 1 +1 • H s1n 1 (ℓ) (ℓ) is H σ0 n 1 +1 1 ; in particular, H σ0 n 1 +1 1
is the maximized Hamiltonian along its integral curves until such curves intersect the hypersurface {H 2 -H

σ0 n 1 +1 1 = 0}.
As above, thanks to the regularity assumptions (in this case Assumption 5), we can characterize the intersection time as a smooth function of the initial point ℓ.

Proposition 3.3 Possibly shrinking U, for any ℓ ∈ U there exists a unique

τ 1 = τ 1 (ℓ) such that τ 1 ( ℓ 0 ) = τ 1 and H 2 -H σ0 n 1 +1 1 • exp (τ 1 (ℓ) -s 1n1 (ℓ)) -→ H 1 σ0 n 1 +1 • H s1n 1 (ℓ) (ℓ) = 0
Moreover, τ 1 (ℓ) is smooth and its differential at ℓ 0 is

dτ 1 ( ℓ 0 ) , δℓ = 1 σ -→ H 1 σ0 n 1 +1 , -→ H 2 ( ℓ 1 ) × -σ H τ1 * δℓ, ( -→ H 2 - -→ H 1 σ0 n 1 +1 )( ℓ 1 ) + 2 n1 i=1 σ 0i L π * δℓ ψ s1i ( x 0 ) L g2-g1 ψ s1i ( x 0 ) L g1 ψ s1i ( x 0 )
Proof The proof is analogous to that of Proposition 3.1. It suffices to notice that

∂ ∂t H 2 -H σ0 n 1 +1 1 • exp (t -s 1n1 (ℓ)) -→ H 1 σ0 n 1 +1 • H s1n 1 (ℓ) (ℓ) ( τ1, ℓ0) = σ -→ H 1 σ0 n 1 +1 , -→ H 2 ( ℓ 1 ),
which is positive by Assumption 5.

We extend the maximized Hamiltonian flow H t to the whole first bang interval [0, τ 1 (ℓ)] setting

H t (ℓ) = exp (t -s 1n1 (ℓ)) -→ H 1 σ0 n 1 +1 • H s1n 1 (ℓ) (ℓ), t ∈ [s 1n1 (ℓ), τ 1 (ℓ)].
The construction of the maximized Hamiltonian flow on the whole interval [0, T ] follows the same lines: we characterize the discontinuities of the vector field as smooth functions of the initial state, and then we concatenate the corresponding Hamiltonian flows (we are providing more details in Appendix A). The regularity assumptions are, as usual, crucial for this. In particular, for initial conditions belonging to a suitable small neighborhood U of ℓ 0 , the maximized flow H t (ℓ) is defined by

         exp (t -τ 1 (ℓ)) -→ H 2 • H τ1(ℓ) (ℓ), t ∈ [τ 1 (ℓ), τ 2 (ℓ)] exp (t -τ 2 (ℓ)) -→ H 3 σ20 • H τ2(ℓ) (ℓ), t ∈ [τ 2 (ℓ), s 31 (ℓ)] exp (t -s 3 i-1 (ℓ)) -→ H 3 σ2i • H s3 i-1(ℓ) (ℓ) t ∈ [s 3 i-1 (ℓ), s 3i (ℓ)] i = 1, . . . , n 3 + 1,
where we put s 30 (ℓ) := τ 2 (ℓ) and s 3 n3+1 (ℓ) ≡ T .

Hamiltonian Form of the Second Variation

In this section, we propose an alternative representation of the second variation, more compact and easier to deal with. To do that, we establish an isomorphism between T * x0 M × T x 0 M and T ℓ0 (T * M ), and we map the Hamiltonians defined in [START_REF] Kalise | Infinite horizon sparse optimal control[END_REF] to some Hamiltonian functions G ′′ i defined on T * x0 M × T x0 M ; we then express the second variation J ′′ in terms of these Hamiltonians. The new expression of the second variation highlights its links with the Hamiltonian vector fields and with the maximized Hamiltonian flow.

First, we define the following anti-symplectic isomorphism 1 between the space T * x0 M × T x0 M and the tangent bundle T ℓ0 (T * M ):

ι(δp, δx) = (-δp + A[δx, •], δx),
where A is the symmetric bilinear form on T x0 M defined by

A[δx, δy] := D 2 -β - I1∪ I3 ψ s ds ( x 0 )[δx, δy] -2a 0 n1 i=1 (-1) i L δx ψ s1i ( x 0 )L δy ψ s1i ( x 0 ) L g1 ψ s1i ( x 0 ) -2a 2 n3 i=1 (-1) i L δx ψ s3i ( x 0 )L δy ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) .
We then set

-→ G ′′ 1 := ι -1 -→ H 1 σ01 ( ℓ 0 ), -→ G ′′ 2 := ι -1 H -1 τ1 * -→ H 2 ( ℓ 1 ), -→ G ′′ 3 := ι -1 H -1 τ2 * -→ H 3 σ21 ( ℓ 2 ). ( 22 
)
By computation (see Appendix B), one can see that each -→ G ′′ i is the constant Hamiltonian vector field associated with the following linear Hamiltonian func-1 in particular, if ς is the standard symplectic form on the product T *

x 0 M × T x 0 M , then ς = -σ • (ι, ι). tions on T * x0 M × T x0 M : G ′′ 1 (δp,δx) = δp , g 1 ( x 0 ) + L δx L g1 β + I3 ψ s ds ( x 0 ) + a 0 (-1) n1 L δx ψ τ1 ( x 0 ) + 2a 2 n3 i=1 (-1) i L g1 ψ s3i ( x 0 )L δx ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) , (23) 
G ′′ 2 (δp,δx) = δp , g 2 ( x 0 ) + L δx L g2 β + I3 ψ s ds ( x 0 ) + 2a 2 n3 i=1 (-1) i L g2 ψ s3i ( x 0 )L δx ψ s3i ( x 0 ) L g3 ψ s3i ( x 0 ) , G ′′ 3 (δp,δx) = δp , g 3 ( x 0 ) + L δx L g3 β( x 0 ) + a 2 (-1) n3 L δx ψ T ( x 0 ).
Finally, define a one-form ω 0 (δx, •) ∈ T * x0 M by ι -1 dα * δx = (ω 0 (δx, •), δx). Then the second variation J ′′ can be written as

J ′′ [δe] 2 = 1 2 ε 1 G ′′ 1 (ω 0 (δx), δx) + ε 2 G ′′ 2 (ω 0 (δx), δx) + ε 1 -→ G ′′ 1 (24) + ε 3 G ′′ 3 (ω 0 (δx), δx) + ε 1 -→ G ′′ 1 + ε 2 -→ G ′′ 2 
for every δe = (δx, ε) ∈ V . The proof is just a straightforward application of the definitions (see Appendix B for more details).

Taking advantage of this formulation of the second variation, we are able to write two conditions that are equivalent to the coerciveness of J ′′ on V . We recall that, given any linear subspace W ⊂ V , then J ′′ is coercive on V if and only if it is coercive both on W and on the orthogonal complement to W with respect to the bilinear symmetric form J associated with J ′′ . Let for instance choose W as the linear space

W = {δe = (δx, ε) ∈ V : ε 3 = 0}.
(this choice will be useful for future computations). It is easy to prove that

W ⊥ J = {(δx, ε) ∈ V : ε 1 = dτ 1 ( ℓ 0 ), dα * δx }, J ′′ [δe] 2 = ε 3 2 G ′′ 3 -G ′′ 2 (ω 0 (δx), x) + ε 1 -→ G ′′ 1 + ε 2 -→ G ′′ 2 ∀δe = (δx, ε) ∈ W ⊥ J ,
see Appendix B for details.

Main Result

In this section, we state and prove the main result of the paper.

Theorem 4.1 Let ξ : [0, T ] → M be an admissible trajectory for the control system (1a)-( 1b)-(1c) that satisfies Assumptions 1-6. Then, the trajectory ξ is a strict strong-local minimizer for the OCP (1).

Theorem 4.1 relies on the following result.

Theorem 4.2 Assume that the assumptions of Theorem 4.1 are satisfied.

Then there exist a neighborhood U of x 0 such that the set

Λ 0 := {dα(x) : x ∈ U } (25)
is a smooth simply-connected Lagrangian submanifold that contains ℓ 0 and, for every t ∈ [0, T ], the map

πH t | Λ0
is invertible onto a neighborhood of ξ(t) with piecewise-C 1 inverse.

Proof (of Theorem 4.1) First of all, we define the following subsets of

R×T * M O 1i = {(t, ℓ) : ℓ ∈ U, s 1 i-1 (ℓ) ≤ t ≤ s 1i (ℓ)} i = 1, . . . , n 1 + 1, O 2 = {(t, ℓ) : ℓ ∈ U, τ 1 (ℓ) ≤ t ≤ τ 2 (ℓ)}, O 3i = {(t, ℓ) : ℓ ∈ U, s 3 i-1 (ℓ) ≤ t ≤ s 3i (ℓ)} i = 1, . . . , n 3 + 1,
and the flow

H : [0, T ] × U → R × T * M H(t, ℓ) = (t, H t (ℓ)).
We also define the sets

Ω ij = O ij ∩ (R × Λ 0 ), i = 1, 3,
and 

Ω 2 = O 2 ∩ (R × Λ 0 ),
πH t (ℓ) =          exp(th 1 )(ℓ) t ∈ [0, τ 1 (ℓ)], exp((t -τ 1 (ℓ))h 2 ) • exp(τ 1 (ℓ)h 1 )(ℓ) t ∈ [τ 1 (ℓ), τ 2 (ℓ)], exp((t -τ 2 (ℓ))h 3 ) • exp((τ 2 (ℓ) -τ 1 (ℓ))h 2 ) • exp(τ 1 (ℓ)h 1 )(ℓ) t ∈ [τ 2 (ℓ), T ],
so that, at the first switching time τ 1 , the piecewise linearization π * H τ1 * is given by

S τ1 * (π * δℓ) for dτ 1 ( ℓ 0 ), δℓ ≥ 0, S τ1 * (π * δℓ + dτ 1 ( ℓ 0 ), δℓ (g 1 -g 2 )( x 0 )) for dτ 1 ( ℓ 0 ), δℓ ≤ 0, (26) 
while at the second switching time τ 2 , the piecewise linearization π * H τ2 * is given by

     S τ2 * (π * δℓ + dτ 1 ( ℓ 0 ), δℓ (g 1 -g 2 )( x 0 )) for dτ 2 ( ℓ 0 ), δℓ ≥ 0, S τ2 * (π * δℓ + dτ 1 ( ℓ 0 ), δℓ (g 1 -g 2 )( x 0 ) + dτ 2 ( ℓ 0 ), δℓ (g 2 -g 3 )( x 0 )) for dτ 2 ( ℓ 0 ), δℓ ≤ 0. ( 27 
)
Let ω (t,ℓ) = s ℓ -max |u|≤1 h(u, ℓ)dt be the Poincaré-Cartan one-form (in the following we omit the dependence on the basepoint (t, ℓ)). Lemma 3.3 in [START_REF] Stefani | Variational Methods in Imaging and Geometric Control, chap. A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I[END_REF] guarantees that the one-form H * ω is exact on each of the Ω ij , Ω 2 , and therefore on the whole Ω.

Let now ξ : [0, T ] → M be any admissible trajectory of the control system (1a)-(1b) whose graph is contained in πH(Ω), and let v(t) be the associated control function. Define moreover the curves λ 0 (t), λ(t) by the equalities (t, λ 0 (t)) := (πH) -1 (t, ξ(t)) and λ(t) := H(t, λ 0 (t)); in particular, πλ(t) = ξ(t).

Consider the two paths in

Ω γ = {(t, λ 0 (t)) : t ∈ [0, T ]} γ = {(t, ℓ 0 ) : t ∈ [0, T ]}. The concatenation of γ(•) with γ(T -•) is a closed path in [0, T ] × Λ 0 , so that γ H * ω = γ H * ω. In particular, γ H * ω = T 0 | u(t)ψ( ξ(t))| dt, while γ H * ω = T 0 s λ(t) -max |u|≤1 h(u, λ(t)) dt ≤ T 0 |v(t)ψ(ξ(t))| dt, (28) 
and this implies that ξ is a strong-local minimizer.

Let us now assume that

T 0 | u(t)ψ( ξ(t))| dt = T 0 |v(t)ψ(ξ(t))
| dt, that is, the equality holds in equation ( 28). This implies that for a.e. t ∈ [0, T ]

v(t)F 1 (λ(t)) -|v(t)ψ(ξ(t))| = max w∈[-1,1] wF 1 (λ(t)) -|wψ(ξ(t))| . ( 29 
)
By continuity, for t small enough, (t, λ 0 (t)) belongs to Ω 11 , hence the quantity wF 1 (λ(t)) -|wψ(ξ(t))| attains its maximum only for w = u 1 ; equation (29) yields that v(t) = u 1 a.e., so that ξ(t) = ξ(t) as long as (t, λ 0 (t)) ∈ Ω 11 , that is, for t ∈ [0, s 11 [. For t in a sufficiently small right neighborhood of s 11 , (t, ξ(t)) belongs to Ω 11 or Ω 12 ; in both cases, (29) implies that v(t) = u 1 . We can proceed iteratively and obtain that v(t) = u 1 a.e. and ξ(t) = ξ(t) for t ∈ [0, τ 1 [. For t in a sufficiently small right neighborhood of τ 1 , three cases are possible: (t, λ 0 (t)) may belong to

Ω 2 \ Ω 1 n1+1 , to Ω 1 n1+1 \ Ω 2 , or to the intersection Ω 1 n1+1 ∩ Ω 2 .
In the first case, the maximized Hamiltonian is attained for w = 0 only, so that, reasoning as above, we obtain that v(t) = 0 and then ξ(t) = ξ(t) for t ≤ τ 2 . If (t, λ 0 (t)) ∈ Ω 1 n1+1 \ Ω 2 , the maximized Hamiltonian is attained for w = u 1 only and then (29) yields that v(t) = u 1 . This is impossible, since, by Assumption 5 and by continuity, in a neighborhood of ℓ 1 the function F 1 (ℓ) -|ψ(πℓ)| is strictly decreasing along the integral lines of -→ H 1 σ0 n 1 +1 . In the last case, for t in a sufficiently small right neighborhood of τ 1 it holds t = τ 1 (λ 0 (t)) which implies that 1 = dτ 1 (λ 0 (t)) , λ0 (t) for a.e. t.

Moreover, (29) implies that v(t) has the same sign of u 1 , so that f 0 + v(t)f 1 is a convex combination of h 1 and h 2 , and there exists some

µ(t) ∈ [0, 1] such that ξ(t) = µ(t)h 1 (ξ(t)) + (1 -µ(t))h 2 (ξ(t)).
By computations ξ(t) = h 1 (ξ(t)) + (πH t ) * λ0 (t) for a.e. t, so that

π * λ0 (t) = (1 -µ(t))π * (πH t ) -1 * (h 2 -h 1 )(ξ(t)) a.e. t. (31) 
By compactness, there exists a sequence t n → τ + 1 such that µ(t n ) → µ ∈ [0, 1]. Passing to the limit in (30)-(31) we obtain that

π * λ0 (t n ) → (1 -µ)(g 2 -g 1 )( x 0 ) and 1 = (1 -µ) dτ 1 ( ℓ 0 ) , dα * (g 2 -g 1 )( x 0 ) .
In particular, µ ∈ [0, 1) and the variation δe = ((g 2g 1 )( x 0 ), 1, -1, 0) belongs to W . Thus, by ( 24) and ( 42) we obtain that

J ′′ [δe] 2 = 1 2 G ′′ 2 ( -→ G ′′ 1 ) µ 1 -µ ,
which cannot be positive, due to ( 12) and (40). This contradicts Assumption 6; thus this case is not possible. Therefore, we must conclude that v(t) = u(t) for a.e. t ∈ [0, τ 2 ]. Analogous computations show that v(t) coincides with the reference control almost everywhere in the interval [0, T ], that is, ξ = ξ.

Proof (of Theorem 4.2) By construction, the manifold Λ 0 defined in (25) is a horizontal Lagrangian submanifold of T * M containing ℓ 0 .

The map πH t is the concatenation of smooth invertible mappings (flows). To check its invertibility at ℓ 0 , it is sufficient to consider it at the switching times only: indeed, the map is invertible at ℓ 0 for every t < τ 1 , since it is the flow of the field h 1 , while at t = τ 1 folding phenomena could appear; if they don't, then we can conclude that πH t is invertible on the whole [0, τ 2 [. Using the same argument, we can see that if the map is invertible for every t ≤ τ 2 , then it is invertible for every t ∈ [0, T ].

To verify the invertibility at the switching times, we use Clarke's inverse function theorem (see [START_REF] Clarke | On the inverse function theorem[END_REF]), that is, we prove that all convex combination of the "left" and "right" linearizations (26)-( 27) have full rank.

More precisely, for the first switching time, we show by contradiction that there is no a ∈ [0, 1] and no δℓ ∈ T ℓ0 Λ 0 , δℓ = 0, such that

(1 -a) S τ1 * (π * δℓ) + a S τ1 * (π * δℓ + (g 1 -g 2 )( x 0 ) dτ 1 ( ℓ 0 ), δℓ ) = 0. (32) 
Indeed, assume that (32) holds true for some a and some δℓ = 0. Then dτ 1 ( ℓ 0 ), δℓ = 0, and, since S τ1 * is an isomorphism, then

π * δℓ + a dτ 1 ( ℓ 0 ) , δℓ (g 1 -g 2 )( x 0 ) = 0
i.e. δe = π * δℓ, a dτ 1 ( ℓ 0 ) , δℓ , -a dτ 1 ( ℓ 0 ) , δℓ , 0 ∈ W . As before, thanks to (40)-(42) and Assumption 5, it is possible to prove that

J ′′ [δe] 2 = - a 2 dτ 1 ( ℓ 0 ) , δℓ (G ′′ 2 -G ′′ 1 ) (ω 0 (δx), δx) + ε 1 -→ G ′′ 1 = a 2 (1 -a) dτ 1 ( ℓ 0 ) , δℓ 2 G ′′ 2 ( -→ G ′′ 1 ) ≤ 0,
which contradicts the coerciveness of the second variation on W . Analogously, the linearization of the maximized flow at time τ 2 is invertible if for every δℓ ∈ T ℓ0 Λ 0 and for every a ∈ [0, 1] satisfying

π * δℓ + dτ 1 ( ℓ 0 ), δℓ (g 1 -g 2 )( x 0 ) + a dτ 2 ( ℓ 0 ), δℓ (g 2 -g 3 )( x 0 ) = 0 (33) 
it must be δℓ = 0. Indeed, if (33) holds, then the variation

δe = δx, dτ 1 ( ℓ 0 ), dα * δx , d(aτ 2 -τ 1 )( ℓ 0 ), dα * δx , -a dτ 2 ( ℓ 0 ), dα * δx
is admissible and it is contained in W ⊥ J . Again, using (41), we observe that

J ′′ [δe] 2 = a 2 (1 -a) dτ 2 ( ℓ 0 ) , dα * δx 2 , G ′′ 3 ( -→ G ′′ 2 )
which cannot be positive due to Assumption 5. This contradicts the coerciveness of the second variation on V . The Theorem is proved.

An Example

In this section, we apply our result to the following OCP min

|u(•)|≤1 T 0 |u(t)x 2 (t)| dt subject to the control system          ẋ1 = x 2 ẋ2 = u -αx 2 α > 0 x 1 (0) = 0, x 2 (0) = 0 x 1 (T ) = X > 0, x 2 (T ) = 0. (34)
It models the problem of minimizing the consumption of an academic electric vehicle moving with friction along a flat road; it has been studied in details in [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF]. The minimum time needed to reach the target point (X, 0) from (0, 0) is

T min = 1 α log 1+ √ 1-e -α 2 X 1- √ 1-e -α 2 
X ; so, if T < T min , there is no admissible trajectory of (34), and for T = T min the only admissible one is the minimum time trajectory, which is bang-bang; therefore, in the following we consider the case T > T min . In [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF] it is proved that, for every fixed α > 0, the structure of the optimal control depends on the final time T and the final point X; in particular, given

T lim = 1 α log (1 + √ 2)e α 2 X -1 + (1 + √ 2)e α 2 X -1) 2 -1 ,
the following facts hold:

if T min < T ≤ T lim the optimal control has the form (3), with u 1 = 1, u 3 = -1, and switching times

τ 1 = 1 α log 1 2
1 + e αT -1 + 2e αT + e 2αT -4e α 2 X+αT (35)

τ 2 = 1 α log 1 -e α τ1 + e αT . ( 36 
)
if T > T lim , then the optimal control has a bang-singular-zero-bang structure.

We restrict our analysis to the case T min < T ≤ T lim . By integrating the system (34), and taking into account the expression of the switching times, it is easy to see that the cost function ψ(x 1 , x 2 ) = x 2 is non-negative on the whole interval [0, T ], and vanishes only at the endpoints; thus, in this case we have a 0 = a 2 = 1 and n 1 = n 3 = 0, and, in particular, Assumption 2 is satisfied.

Assumption 1 can be easily checked by computations, while the validity of Assumption 3 (the candidate trajectories satisfy the PMP in the normal form) is proved in [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF]. In particular, the adjoint variable p 1 is constant in time, and

p 1 =
e -α τ2 (e α τ1 -1)(1 + e 2α( τ2-τ1) ) e α( τ2-τ1) -1

p 2 (0) = 1 α 1 -e -α τ1 p 1 -1 + e -α τ1 .
Let us now verify that the other assumptions are met as well.

Assumption 4. Since ψ is always non-negative along the candidate trajectory, we can get rid of the absolute values in ( 9)- [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF]. In particular, we have to check the following

p 2 (t) -x 2 (t) > 0 t ∈]0, τ 1 [ p 2 (t) + x 2 (t) < 0 t ∈] τ 2 , T [.
The weak inequalities hold by PMP. In particular, p 2 (0) > x 2 (0) = 0. Assume that there exists some t ∈ [0, τ 1 [ such that p 2 (t) = x 2 (t); then t is a minimum time for the function

∆ : t ∈ [0, τ 1 ] → p 2 (t) -x 2 (t) ∈ R.
We thus have

∆(t) = 0, ∆(t) = 0, ∆(t) ≥ 0. Since ∆(t) = α (2 -p 1 + α∆(t)) ≥ ∆(t) for any t ∈ [0, τ 1 ]
, and ∆( τ 1 ) = 0, we must have ∆(t) ≡ 0. This implies p 1 = 2 and x 2 (t) ≡ 1 α , a contradiction. This proves that Assumption 4 holds in the first bang arc.

The same reasoning applies in the second bang arc. By PMP, for every t ∈ [ τ 2 , T ] we have p 2 (t) + x 2 (t) ≤ 0 . Assume that there exists t ∈] τ 2 , T ] such that p 2 (t) + x 2 (t) = 0. Then t is a maximum point for the function

∆ 2 : t ∈ [ τ 2 , T ] → p 2 (t) + x 2 (t) ∈ R. Thus ∆ 2 (t) = 0, ∆2 (t) = 0, ∆2 (t) ≤ 0.
Since ∆2 (t) = α (2p 1 + α∆ 2 (t)) ≤ ∆2 (t) for any t ∈ [ τ 2 , T ], and ∆ 2 ( τ 2 ) = 0, we must have ∆ 2 (t) ≡ 0. This implies p 1 = 2 and x 2 (t) ≡ -1 α , a contradiction. Assumption 5. First of all, we compute the expressions of the maximized Hamiltonians

H 1 (p, x) = p 1 x 2 + p 2 (1 -αx 2 ) -x 2 H 2 (p, x) = p 1 x 2 -αp 2 x 2 H 3 (p, x) = p 1 x 2 -p 2 (1 + αx 2 ) -x 2
In particular, we obtain

H 1 , H 2 = p 1 -α(x 2 + p 2 ) H 2 , H 3 = p 1 + α(x 2 -p 2 ).
Integrating the control system, we obtain that x 2 ( τ 1 ) = 1 α 1e -α τ1 , so that, using the fact that p 2 ( τ 1 ) = x 2 ( τ 1 ), we obtain

p 1 ( τ 1 ) -α(x 2 ( τ 1 ) + p 2 ( τ 1 )) = αx 2 ( τ 1 )
e -α τ2 (e -α( τ2-τ1)e α( τ2-τ1) + 2) e α( τ2-τ1) -1 .

In particular, since τ 2 > τ 1 and x 2 ( τ 1 ) > 0, we just have to check the positivity of e -α( τ2-τ1)e α( τ2-τ1) + 2, which is guaranteed whenever e α( τ2-τ1) < 1 + √ 2. Using the expression for the switching times (35)-(36), we can prove that this conditions holds for T < T lim . Analogously, since x 2 ( τ 2 ) = 1 α e -α τ2 (e α τ1 -1) and p 2 ( τ 2 ) = -x 2 ( τ 2 ) we obtain that

p 1 ( τ 2 ) + α(x 2 ( τ 2 ) -p 2 ( τ 2 )) = αx 2 ( τ 2 )
1 + e 2α( τ2-τ1) e α( τ2-τ1) -1 + 2 , which is always positive.

Assumption 6. First of all, we compute the pull-back vector fields. Obviously,

g 1 = h 1 = f 0 + f 1 .
To compute g 2 and g 3 , we consider the functions

ϕ 2 (x, t) = exp(-th 1 ) * h 2 exp(th 1 )(x) ϕ 3 (x, t, s) = exp(-th 1 ) * exp(-sh 2 ) * h 3 • exp(sh 2 ) • exp(th 1 )(x),
and notice that g 2 (x) = ϕ 2 (x, τ 1 ) and g 3 (x) = ϕ 3 (x, τ 1 , τ 2τ 1 ). The pull-back vector fields can be then computed developing ϕ 2 , ϕ 3 in powers of t and (t, s), respectively; we obtain

g 2 = f 0 + η( τ 1 ) α f 01 g 3 = f 0 -f 1 + η( τ 1 ) + η( τ 2 ) α f 01 ,
where η(t) = 1e αt and f 01 = [f 0 , f 1 ].

Let (δx, ε) be an admissible variation contained in V 0 ; from δx = (0, 0) and the linear independence of f 1 and f 01 , we obtain that (ε 1 , ε 2 , ε 3 ) must satisfy the system     

ε 1 + ε 2 + ε 3 = 0 ε 1 -ε 3 = 0 ε 2 η( τ 1 ) + ε 3 (η( τ 1 ) + η( τ 2 )) = 0,
so that, if τ 1 = τ 2 (which is always verified for T > T min ), then V 0 is the trivial linear space, and the second variation is coercive by definition.

Remark 5.1 For T = T lim , Assumption 5 is not satisfied, so we cannot apply our methods to prove optimality. We believe that this is due to the fact that, whenever T > T lim , the optimal control has the form bang-singular-zero-bang and, for bang-singular junctions, a necessary optimality condition is that the time-derivative of the difference of the maximized Hamiltonians along the two arcs is zero. By continuity, this conditions holds also at the limit case T = T lim .

Conclusions

The paper contains a first attempt to extend the Hamiltonian methods to problems where the cost has an L 1 growth with respect to the control and presents some non-smoothness issues as a function of the state.

The family of costs under study is inspired by some examples from the literature, see [START_REF] Vossen | On L 1 -minimization in optimal control and applications to robotics[END_REF][START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF], and we considered the case of a concatenation of arcs of the kind bang-zero-bang. The result can be easily extended to the case, where more than three arcs are present, but in order to avoid a heavy notation and still present all the difficulties due to the presence of a vanishing weight ψ, we considered the case of two bang arcs only, while considering an arbitrary number of zeros for ψ.

The authors are currently considering the situation, where the extremal contains a singular arc, as the examples in [START_REF] Boizot | Consumption minimisation for an academic vehicle[END_REF] show that such a situation may occur.

Appendices

Here we give some hints for the computations appearing in Section 3.

First of all let us recall that for every Hamiltonian vector field -→ F and every Hamiltonian flow Kt, the following identity holds for every fixed t:

Kt * -→ F = ------→ F • Kt -1 . (37) 
A The Maximized Hamiltonian Flow: details on its construction

In Section 3.1, we saw that, for t in a small left neighborhood of τ 1 (ℓ) and for any ℓ ∈ U ,

F 0 + F 1 + σ 0 n 1 +1 ψ(π(ℓ)) • Ht(ℓ) is the maximized Hamiltonian. Assumption 5 implies F 1 (ℓ) -|ψ(πℓ)| • exp (t -s 1n 1 (ℓ)) -→ H 1 σ 0 n 1 +1 • H s 1n 1 (ℓ) (ℓ)
is strictly decreasing with respect to t, for t belonging to a neighborhood of τ 1 (ℓ), so that

H σ 0 n 1 +1 1 
cannot be the maximized Hamiltonian on exp (t-s 1n

1 (ℓ)) -→ H 1 σ 0 n 1 +1 •H s 1n 1 (ℓ) (ℓ) if t > τ 1 (ℓ).
Indeed, for such t the maximized Hamiltonian flow is

exp (t -τ 1 (ℓ)) -→ H 2 • H τ 1 (ℓ) (ℓ).
Along these curves, for t > τ 1 (ℓ), H 2 is the maximized Hamiltonian until the hypersurface {H 2 -H σ 21 3 = 0} is reached. The time τ 2 (ℓ) for this to happen is, as τ 1 (ℓ), a smooth function of ℓ, thanks to Assumption 5. The proof is completely analogous to that of Proposition 3.3.

Proposition A.1 Possibly shrinking U , for every ℓ ∈ U there exists a unique τ 2 = τ 2 (ℓ) such that τ 2 ( ℓ 0 ) = τ 2 and

H σ 21 3 -H 2 • exp(τ 2 (ℓ) -τ 1 (ℓ)) -→ H 2 • H τ 1 (ℓ) (ℓ) = 0.
Moreover, the differential of τ 2 (ℓ) at ℓ 0 is given by

dτ 2 ( ℓ 0 ) , δℓ = 1 σ -→ H 2 , -→ H 3 σ 21 ( ℓ 2 ) -σ H τ 2 * δℓ, ( -→ H 3 σ 21 - -→ H 2 )( ℓ 2 ) + dτ 1 ( ℓ 0 ) , δℓ σ H τ 2 * H -1 τ 1 * -→ H 2 - -→ H 1 σ 0 n 1 +1 ( ℓ 1 ), -→ H 3 σ 21 - -→ H 2 ( ℓ 2 ) + 2 n 1 i=1 σ 0i L π * δℓ ψ s 1i ( x 0 ) L g 3 -g 2 ψ s 1i ( x 0 ) Lg 1 ψ s 1i ( x 0 ) .
We thus extend the maximized Hamiltonian flow to the interval [0, τ 2 (ℓ)] setting

Ht(ℓ) = exp (t -τ 1 (ℓ)) -→ H 2 • H τ 1 (ℓ) (ℓ), t ∈ [τ 1 (ℓ), τ 2 (ℓ)].
The remaining points of non-smoothness of the maximized Hamiltonian flow can be characterized in an analogous way, as the following proposition shows. Moreover, the differential of s 3i at ℓ 0 is given by ds 3i ( ℓ 0 ), δℓ = -1 Lg 3 ψ s 3i ( x 0 ) L π * δℓ ψ s 3i ( x 0 )dτ 1 ( ℓ 0 ), δℓ L g 2 -g 1 ψs 3i ( x 0 )

dτ 2 ( ℓ 0 ), δℓ L g 3 -g 2 ψs 3i ( x 0 ) , i = 1, . . . , n 3 .

B Details on the Hamiltonian Form of the Second Variation

Consider the Hamiltonian function G ′′ 1 defined in (23), and compute its associated Hamiltonian vector field

   -L•Lg 1 β + I 3 ψs ds ( x 0 ) -σ 0n 1 L• ψ τ 1 ( x 0 ) -2 n 3 i=1 σ 2i L• ψ s 3i ( x 0 ) Lg 1 ψ s 3i ( x 0 ) Lg 3 ψ s 3i ( x 0 ) g 1 ( x 0 )    .
Applying the antisymplectic isomorphism ι to the vector here above we obtain L•Lg 1 β + Let us choose a coordinate system (p, q) in T * M and let (p 0 , q 0 ) be some point. Since 

τ 1 * S τ 1 (q 0 )   , (39) 
applying (37) to -→ H 2 • H τ 1 we get the proof of (22) for i = 2. The proof for i = 3 follows the same lines.

We now want to compute the terms of the kind G ′′ i ( -→ G ′′ j ), for i, j = 1, 2, 3, as they are needed to prove equation (24). It is sufficient to compute only three of these terms, since, as we will see, they are antisymmetric in i, j.

By straightforward computations it is easy to see that

G ′′ 2 ( -→ G ′′ 1 ) = L [g 1 ,g 2 ] β + I 3
ψs ds ( x 0 )a 0 (-1)

n 1 Lg 2 ψ τ 1 ( x 0 ) Moreover σ -→ H 1 σ 0 n 1 +1 , -→ H 2 ( ℓ 1 ) = -u 1 ℓ 1 , [f 0 , f 1 ] -σ 0n 1 Lg 2 ψ τ 1 ( x 0 ).
Applying (39) and using the fact that d α + 

G ′′ 2 ( -→ G ′′ 1 ) = -σ -→ H 1 σ 0 n 1 +1 , -→ H 2 ( ℓ 1 ) (40) 
Analogous computations prove the following identities: 

G ′′ 3 ( -→ G ′′ 2 ) = L [
G ′′ 3 ( -→ G ′′ 1 ) = L [g 1 ,g 3 ] β + I 3
ψs ds ( x 0 )a 0 (-1) n 1 Lg 3 ψ τ 1 ( x 0 ) + a 2 Lg 1 ψ τ 2 ( x 0 )

= -σ H τ 2 * H -1

τ 1 * -→ H 1 σ 1 n 1 +1 , -→ H 3 σ 21 ( ℓ 2 )
We end this section adding some useful formulas, that can be recovered by tedious but simple computations. The one-form ω 0 (δx, •) such that ι -1 dα * δx = (ω 0 (δx, •), δx) is equal to

ω 0 (δx, •) = -D 2 α + β + I 1 ∪ I 3 ψs ds ( x 0 )[δx, •] -2a 0 n 1 i=1 (-1) i L δx ψ s 1i ( x 0 )L• ψ s 1i ( x 0 ) Lg 1 ψ s 1i ( x 0 ) -2a 2 n 3 i=1
(-1) i L δx ψ s 3i ( x 0 )L• ψ s 3i ( x 0 ) Lg 3 ψ s 3i ( x 0 ) .

Thanks to this, we can prove that dτ 1 ( ℓ 0 ) , dα * δx = -1

G ′′ 2 ( -→ G ′′ 1 ) G ′′ 2 -G ′′ 1 (ω 0 (δx), δx) (42) 
dτ 2 ( ℓ 0 ) , dα * δx = -1

G ′′ 3 ( -→ G ′′ 2 ) G ′′ 3 -G ′′ 2 (ω 0 (δx), dx) -dτ 1 ( ℓ 0 ) , dα * δx ( -→ G ′′ 2 - -→ G ′′ 1 )
and we can compute the expression of the bilinear symmetric form associated with

J[δe, δf ] = 1 2 γ ′′ [δx, δy] + ω 0 (δx) , δy + η 1 G ′′ 1 (ω 0 (δx), δx) + η 2 G ′′ 2 (ω 0 (δx), δx) + ε 1 -→ G ′′ 1 + η 3 G ′′ 3 (ω 0 (δx), δx) + ε 1 -→ G ′′ 1 + ε 2 -→ G ′′ 2 ,
where γ ′′ [δx, δy] := -ω 0 (δx) , δy

(see [START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF] for more details).

Proposition A. 2

 2 Possibly shrinking U , for every i = 1, . . . , n 3 there exist a unique smooth function s 3i : U → R such that s 3i ( ℓ 0 ) = s 3i andΨ • exp(s 3i (ℓ)s 3i (ℓ)) -→ H 3 σ 2i • • • • • exp((s 31 (ℓ)τ 2 (ℓ)) -→ H 3 σ 21 ) • H τ 2 (ℓ) (ℓ) = 0 ∀ℓ ∈ U .

I 3 ψs 1 i=1σ 0 M

 310 ds ( x 0 ) + σ 0n 1 L• ψ τ 1 ( x 0 ) + D 2 β + I 1 ∪ I 3 ψs ds ( x 0 )[g 1 , •] -2 n 0i L• ψ s 1i ( x 0 ) (38)for the component in T *x , and g 1 ( x 0 ) for the component in T x 0 M . Adding and subtracting D 2 α( x 0 )[g 1 , •] and noticing that d we obtain thatD 2 α + β + I 1 ∪ I 3 ψs ds ( x 0 )[g 1 , •] = L•Lg 1 α + β + I 1 ∪ I 3 ψs ds ( x 0 )so that (38) reduces to L•Lg 1 -α -

I 1 ψs 1 i=1σ 2 I 1 ψs ds( x 0 ) - n 1

 11211 ds ( x 0 ) + σ 0n 1 L• ψ τ 1 ( x 0 ) -2 n 0i L• ψ s 1i ( x 0 ) = = -dα( x 0 )Dg 1 ( x 0 )(•)σ 01 L• ψ 0 ( x 0 ) = -dα( x 0 )Dh 1 ( x 0 )(•)σ 01 L•ψ( x 0 ).This proves that the Hamiltonian vector field associated withG ′′ 1 is ι -1 -→ H 1 σ 01 , i.e.-→ G ′′ 1 . Analogous computations show that applying the antisymplectic isomorphism ι to the vector field associated withG ′′ 2 we obtain    -dα( x 0 )Dg 2 ( x 0 ) -L•Lg i=1 σ 0i L• ψs 1i ( x 0 )Lg 2 ψs 1i ( x 0 )Lg 1 ψs 1i ( x 0 ) g 2 ( x 0 )

1 d

 1 |ψs| ds S -1

I 1 ψs

 1 ds ( x 0 ) = -d β + I 3 ψs ds ( x 0 ), (again by PMP) we get the following equality:

  g 2 ,g 3 ] β + I 3 ψs ds ( x 0 ) + a 2 Lg 2 ψ τ 2 ( x 0 )

	= -σ	-→ H 2 ,	-→ H 3	σ 21 ( ℓ 2 )	(41)
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