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Abstract

In this paper, we analyse control affine optimal control problems with a cost functional
involving the absolute value of the control. The Pontryagin extremals associated with such
systems are given by (possible) concatenations of bang arcs with singular arcs and with
inactivated arcs, that is, arcs where the control is identically zero. Here we consider Pontryagin
extremals given by a bang-inactive-bang concatenation. We establish sufficient optimality
conditions for such extremals, in terms of some regularity conditions and of the coercivity of
a suitable finite-dimensional second variation.

1 Introduction

In recent years, optimal control problems aiming at minimising the L1-norm of the control have
received an increasing attention: for instance, they model problems coming from neurobiology
[1], mechanics [2, 3], and fuel-consumption [4, 5, 6]. As noticed in these papers, a peculiarity
of optimal control problems involving the L1-norm is the fact that the optimal control vanishes
along nontrivial time intervals; this property is referred to as sparsity, and the piece of optimal
trajectories corresponding to the zero control are known as inactivated arcs, cost arcs or zero arcs.

The arising of sparse controls for L1 minimisation problems is well known also in the frame of
infinite-dimensional optimal control, see for instance [7, 8, 9], where usually the L1-norm of the
control is added to the integral cost in order to induce sparse solutions.

In this paper we are concerned with a generalisation of the L1 minimisation problem of the
following form:

minimise

∫ T

0

|u(t)ψ(ξ(t))| dt subject to (1a)

ξ̇(t) = f0(ξ(t)) + u(t)f1(ξ(t)), (1b)

ξ(0) = x̂0, ξ(t) = x̂f , (1c)

|u(t)| ≤ 1 a.e. t ∈ [0, T ], (1d)

where the state ξ belongs to a smooth n-dimensional manifold M , f0 and f1 are smooth vector
fields on M , ψ is a smooth real-valued function on M and T > 0 is fixed. For such optimal
control problems, a well known necessary condition is the Pontryagin Maximum Principle (PMP),
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possibly in its non-smooth version, see [10]. More precisely, PMP implies that for every optimal
trajectory ξ(·) of (1) there exist a constant ν ≤ 0 and a suitable curve λ(t) ∈ T ∗

ξ(t)M such that

u(t)F1(λ(t)) + ν|u(t)ψ(ξ(t))| = max
v∈[−1,1]

{vF1(λ(t)) + ν|vψ(ξ(t))|} , a.e. t, (2)

where F1(λ(t)) = 〈λ(t) , f1(ξ(t))〉. In particular, in the normal case (ν = −1), equation (2) implies
that the optimal control may have three possible behaviours:

• If there exists an interval I ⊂ [0, T ] such that |F1(λ(t))| > |ψ(ξ(t))| ∀t ∈ I, then u(t) =
sgn(F1(λ(t)). In this case we say that the interval I is a regular bang arc, and we call u a
bang control.

• If |F1(λ(t)))| < |ψ(ξ(t))| ∀t ∈ I, then the Hamiltonian (2) attains its maximum only if
u ≡ 0 in I. In this case, following the terminology of [1], we say that I is an inactivated arc.

• If |F1(λ(t))| = |ψ(ξ(t))| ∀t ∈ I, then the maximising control is not uniquely determined
by (2). Indeed, if F1(λ(t)) = |ψ(ξ(t))|, then the maximum in (2) is attained for every
u ∈ [0, 1], and, analogously, if F1(λ(t)) = − |ψ(ξ(t))|, then the maximum is attained for
every u ∈ [−1, 0]. We say that I is a singular arc.

In this paper we state sufficient optimality conditions for solutions of (1b)-(1c)-(1d) given by
a concatenation of bang and inactivated arcs. More precisely, we assume that we are given an
admissible trajectory ξ̂ : [0, T ] →M satisfying

˙̂
ξ(t) =





f0(ξ̂(t)) + u1f1(ξ̂(t)) t ∈ [0, τ̂1),

f0(ξ̂(t)) t ∈ (τ̂1, τ̂2),

f0(ξ̂(t)) + u3f1(ξ̂(t)) t ∈ (τ̂2, T ]

, ξ̂(0) = x̂0, ξ̂(T ) = x̂f ,

for some τ̂1, τ̂2 ∈ (0, T ), τ̂1 < τ̂2 and some u1, u3 ∈ {−1, 1}. We provide some first and second

order sufficient conditions that guarantee the strong-local optimality of ξ̂(·), accordingly to the
following definition:

Definition 1 A curve ξ̂ : [0, T ] →M , solution of (1b)-(1c) with associate control û(·), is a strong-

local minimiser of (1) if there exists a neighbourhood U in [0, T ]×M of the graph of ξ̂ such that∫ T

0
|û(t)ψ(ξ̂(t))|dt ≤

∫ T

0
|u(t)ψ(ξ(t))| dt for every admissible trajectory ξ : [0, T ] →M of (1b)-(1c)-

(1d), with associated control u(·) and whose graph is in U .

If
∫ T

0
|û(t)ψ(ξ̂(t))|dt <

∫ T

0
|u(t)ψ(ξ(t))| dt for any admissible trajectory other than ξ̂ and whose

graph is in U , we say that ξ̂ is a strict strong-local minimiser.

In [3], the authors investigate necessary and sufficient optimality conditions for control prob-
lems with cost functional affine in the L1-norm of the control: the original optimal control problem
is extended in such a way that the candidate optimal trajectory happens to be a bang-bang ex-
tremal of the extended problem, so that sufficient conditions are stated in terms of optimality
conditions of finite-dimension optimisation problems.

Our approach relies on Pontryagin Maximum Principle and on Hamiltonian methods ([11, 12]).
This technique consists in covering a neighbourhood of the graph of the reference trajectory
so that the admissible trajectories can be lifted to the cotangent bundle, where the costs can
be compared. Notice that it is possible to lift all the trajectories whose graph is close to the
one of ξ̂(·), independently on the associated controls: this permits us to obtain an optimality
result in the strong norm. The main point in this procedure is to be able to define a suitable
Lagrangian manifold Λ of the cotangent bundle and a suitable diffeomorphism from [0, T ] × Λ0

onto a neighbourhood of the graph of the reference trajectory. In the standard theory (that is,
for smooth costs and open sets of control, see [11]), this diffeomorphism is the composition of
the canonical projection with the flow of the maximised Hamiltonian, restricted to some suitable
Lagrangian submanifold; in particular, the reference extremal is locally optimal as long as the
projection of the Hamiltonian flow, restricted to Λ0, is invertible with smooth inverse. In order to
apply similar methods to the problem under consideration, two main ingredients are needed:
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• the regularity conditions, that guarantee that the maximised Hamiltonian of PMP is well
defined, continuous and piecewise smooth in a neighbourhood of the range of the reference
extremal λ̂ : [0, T ] → T ∗M associated with ξ̂ in PMP;

• the coercivity of the second variation: indeed, following the approach initiated in [13, 14],
we show that if the second variation associated to a finite dimensional sub-problem of (1)
is coercive, then the projection of the flow of the maximised Hamiltonian emanating from is
invertible and we can lift the admissible trajectories to the cotangent bundle.

We would like to stress the fact that the regularity conditions are very close to the necessary ones,
in the sense that they sum up to requiring strict inequalities where PMP yields mild ones, plus a
non tangency condition which is generically satisfied.

Finally, we remark that the conditions that we require are quite easy to check on a given
extremal: indeed, the regularity assumptions are just sign conditions along the extremal, while
the second variation reduces to a quadratic function of one real variable.

2 Preliminaries

2.1 Notations

Given a vector field f on M , the Lie derivative at a point q ∈M of a smooth function ϕ : M → R

with respect to f is denoted with Lfϕ(q) = 〈dϕ(q), f(q)〉, and L2
fϕ(q) = Lf

(
Lfϕ

)
(q).

The Lie bracket of two vector fields f, g is denoted as commonly with [f, g].
Let T ∗M be the cotangent bundle and π : T ∗M → M its projection on M . For every vector

field on M , we denote with the corresponding capital letter the associated Hamiltonian function,
that is F (ℓ) = 〈ℓ, f(πℓ)〉, ℓ ∈ T ∗M .

Denote with σ the canonical symplectic form on T ∗M . With each Hamiltonian function F we

associate the Hamiltonian vector field
−→
F on T ∗M defined by

〈dF (ℓ), ·〉 = σℓ(·,
−→
F (ℓ)).

The Hamiltonian flow associated with the Hamiltonian vector field
−→
F , and starting at time t = 0,

is denoted with the cursive Ft.
Finally, we define the function Ψ: T ∗M → R as Ψ := ψ ◦ π. As we shall extensively use it, we

recall that
−→
Ψ(ℓ) = (−Dψ(πℓ), 0).

2.2 Assumptions

Assume that we are given an admissible trajectory ξ̂ for our control system, that is, a solution
of (1b), corresponding to some measurable control û(·) with values in [−1, 1], that satisfies the
boundary conditions (1c). We assume moreover that the control is of the form bang-inactivated-
bang, i.e. there exist τ̂1 < τ̂2 ∈ (0, T ), and u1, u3 ∈ {−1, 1} such that

û(t) =





u1 t ∈ [0, τ̂1),

0 t ∈ (τ̂1, τ̂2),

u3 t ∈ (τ̂2, T ].

(3)

The trajectory ξ̂ and its associated control û are respectively called reference trajectory and ref-
erence control.

In analogy to the classical bang-bang case, we say that τ̂1 and τ̂2 are the switching times of
the reference control û and we call ξ̂(τ̂1), ξ̂(τ̂2) the switching points of ξ̂. For the sake of future

notation we set τ̂0 := 0, τ̂3 := T and Îj := (τ̂j−1, τ̂j), j = 1, 2, 3. Moreover, we call hj the vector

field that defines the reference trajectory in the interval Îj , that is, h1 = f0 + u1f1, h2 = f0 and

3



h3 = f0 +u3f1, and the reference time-dependent vector field ĥt = f0 + û(t)f1, so that ĥt ≡ hj for

t ∈ Îj . We denote with Ŝt(x) the solution at time t of the Cauchy problem

ξ̇(t) = ĥt(ξ(t)), ξ(0) = x. (4)

Our first assumption ensures that the cost function is smooth along the reference trajectory but
for a finite number of points. It also guarantees that the Hamiltonian vector field associated with
the maximised Hamiltonian (defined in (7) here below) is well defined and C1 but in a codimension
1 subset, as explained in Remark 1 below. It is also crucial in defining the second variation of an
appropriate subproblem of (1).

Assumption 1 The cost ψ does not annihilate at the switching points of the reference trajectory,
that is ψ(ξ̂(τ̂i)) 6= 0, i = 1, 2. Moreover, for every t ∈ [0, T ], the vector field ĥt is never tangent

to the set {ψ = 0} along ξ̂(t), that is L
ĥt
ψ(ξ̂(t)) 6= 0.

Thanks to Assumption 1, ψ ◦ ξ̂ annihilates at most a finite number of times. In particular, we
assume that ψ(ξ̂(t)) annihilates n1 times in the interval Î1 and n3 times in the interval Î3 (where

we admit the cases n1 = 0 and n3 = 0). We denote as ŝ1i, i = 0, . . . , n1, the zeroes of ψ ◦ ξ̂

occurring in Î1 and ŝ3i, i = 0, . . . n3, the zeroes of ψ ◦ ξ̂ occurring in Î3. Set a0 = sgn(ψ(x̂0)) and

a2 = sgn(ψ(ξ̂(τ̂2))). In particular

sgn
(
ψ ◦ ξ̂|(ŝ1 i−1,ŝ1i)

)
= a0(−1)i−1, i ∈ {1, . . . , n1 + 1},

sgn
(
ψ ◦ ξ̂|(ŝ3 i−1,ŝ3i)

)
= a2(−1)i−1, i ∈ {1, . . . , n3 + 1},

(here we set ŝ10 = 0, ŝ1n1+1 = τ̂1, ŝ30 = τ̂2, ŝ3n3+1 = T ).

Remark 1 By continuity and Assumption 1, there exist two neighbourhoods V1,V3 of the range

of ξ̂
∣∣∣
Î1
, ξ̂

∣∣∣
Î3

respectively, such that the zero level sets of ψ|V1
and ψ|V3

are hypersurfaces of M ,

transverse to h1 and h3, respectively. Moreover the zero level set of ψ|Vj
, j = 1, 3, has nj connected

components.

Our next assumption is that the reference pair satisfies PMP in its normal form; in principle,
non-smooth versions of PMP (see e.g. [10, Theorem 22.26]) are required. Indeed our problem can
be seen as a hybrid control problem as defined in [10, Section 22.5] with the switching surface
S given by {(t, x, y) : ψ(x) = 0, y = x}. Nevertheless, thanks to Assumption 1, in the case under
study [10, Theorem 22.26] reduces to the standard smooth version of PMP (as stated, for instance,
in [11]).

In order to apply it, we define the (normal) control-dependent Hamiltonian and reference
Hamiltonian respectively as

h(u, ℓ) := F0 + uF1(ℓ)− |uψ(πℓ)|, (u, ℓ) ∈ [−1, 1]× T ∗M (5)

Ĥt(ℓ) := F0 + û(t)F1(ℓ)− |û(t)ψ(πℓ)|, ℓ ∈ T ∗M (6)

and we assume the following.

Assumption 2 (PMP) There exists a Lipschitzian curve λ̂ : [0, T ] → T ∗M such that

˙̂
λ(t) =

−→
Ĥt(λ̂(t)) a.e. t ∈ [0, T ],

πλ̂(t) = ξ̂(t), ∀t ∈ [0, T ].

Ĥt(λ̂(t)) = max
u∈[−1,1]

h(u, ℓ), a.e. t ∈ [0, T ]. (7)

The curve λ̂(·) is called the reference extremal. In the following, we set

ℓ̂0 = λ̂(0), ℓ̂1 = λ̂(τ̂1), ℓ̂2 = λ̂(τ̂2), ℓ̂T = λ̂(T ).
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Remark 2 Assumption 1 ensures that in a neighbourhood of the range of λ̂(·) the switching sur-
face is composed by two non-intersecting connected components, {F1 = |Ψ|} and {F1 = − |Ψ|}.

Moreover, it guarantees that the Hamiltonian vector field associated with Ĥt is well defined along
the reference trajectory, except at the times t = ŝ1i, i = 1, . . . , n1, ŝ3i, i = 1, . . . , n3, τ̂1, τ̂2, where
it has possibly different left-sided and right-sided limits.

Remark 3 Let ξ(·) be an admissible trajectory of (1b) that satisfies the Pontryagin Maximum
Principle (PMP from now on) with associated extremal λ(·). If the costate λ(t) does not belong to
the set

{ℓ ∈ T ∗M : |F1(ℓ)| = |Ψ(ℓ)|} , (8)

then the control associated with ξ can be recovered uniquely by equation (7). Analogously to the
smooth case, we call such set the switching surface of problem (1).

It is easy to see that the reference Hamiltonian (6) is piecewise-constant with respect to time,
and it takes the values

Ĥt(ℓ) :=





Hσ0i

1 := F0 + u1F1 + σ0iψ ◦ π t ∈ [ŝ1 i−1, ŝ1i] i = 1, . . . , n1 + 1,

H2 := F0 t ∈ [τ̂1, τ̂2],

Hσ2i

3 := F0 + u3F1 + σ2iψ ◦ π t ∈ [ŝ3 i−1, ŝ3i] i = 1, . . . , n3 + 1,

(9)

where we used the following symbols:

σ0i = a0(−1)i, i = 1, . . . , n1, σ2i = a2(−1)i, i = 1, . . . , n3.

Because of the maximality condition of PMP (equation (7)), the following inequalities hold along
the reference extremal:

u1F1(λ̂(t)) ≥
∣∣ψ(ξ̂(t))

∣∣, t ∈ Î1,
∣∣F1(λ̂(t))

∣∣ ≤
∣∣ψ(ξ̂(t))

∣∣, t ∈ Î2, (10)

u3F1(λ̂(t)) ≥
∣∣ψ(ξ̂(t))

∣∣, t ∈ Î3. (11)

In addition, the following relations must hold:

d

dt

(
H2 −H

σ0n1

1

)
(λ̂(t))|t=τ̂1 ≥ 0,

d

dt

(
Hσ20

3 −H2

)
(λ̂(t))|t=τ̂2 ≥ 0. (12)

Even though the derivative λ̂(t) is discontinuous at t = τ̂i, i = 1, 2, the two derivatives in (12)
exist and are well defined. In particular, they can be expressed as follows:

d

dt

(
H2 −H

σ0n1

1

)
(λ̂(t))

∣∣∣
t=τ̂1

= σ

(−→
H1

σ0n1 ,
−→
H2

)
(ℓ̂1), (13)

d

dt

(
Hσ20

3 −H2

)
(λ̂(t))

∣∣∣
t=τ̂2

= σ

(−→
H2,

−→
H3

σ20

)
(ℓ̂2). (14)

Remark 4 Due to the nonlinearity introduced by the absolute value of the control in the integral
cost, two consecutive bang arcs can exist only if ψ annihilates at the switching point between such
arcs (this is a straightforward application of the PMP and of previous remarks). In particular,
we relate this fact to [3, Theorem 3.1], that states the impossibility of the existence of bang-bang
junctions: indeed, the results of [3] hold for the case ψ ≡ 1 (plus some other control-independent
terms in the cost).

As already anticipated in the Introduction, in order to apply the Hamiltonian methods we need
the maximised Hamiltonian (right hand side of equation (7)) to be well defined and sufficiently
regular in a neighbourhood of the range of the reference extremal; this is guaranteed by the
strengthened version of the necessary conditions (10) and (12).
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Assumption 3 Along each arc the reference control is the only one that maximises over u ∈
[−1, 1] the control-dependent Hamiltonian evaluated along λ̂. Equivalently, in equations (10) the
strict inequalities hold true.

The following assumptions, Assumptions 4 and 5, are the strict form of the necessary conditions
(13)-(14). They basically state that the change of value in the control û can be detected by the

first order approximation of
(
H2 −H

σ0n1

1

)
◦ λ̂ at τ̂1 and (Hσ20

3 −H2) ◦ λ̂ at τ̂2, respectively. They

ensure the transversality of the intersection between the reference extremal λ̂ and the switching
surface (8), thus avoiding bang-singular junctions.

Assumption 4
d

dt

(
H2 −H

σ0n1

1

)
(λ̂(t))|t=τ̂1 > 0

Assumption 5
d

dt

(
Hσ20

3 −H2

)
(λ̂(t))|t=τ̂2 > 0

2.3 The second variation

This section is devoted to the construction of the second variation associated with the problem
(1), in the spirit of [15, 13, 16, 14].

In order to compute the second variation of the cost functional, one should take into account
all the admissible variations of the reference trajectory ξ̂. Actually, as it will be proved, it suffices
to consider only the trajectories corresponding to controls having the same bang-inactive-bang
structure of the reference one, that is, to allow only variations of the switching times τ̂1 and τ̂2.
We thus obtain the following two dimensional sub-problem of (1):

min
0<τ1<τ2<T

∫

I1∪I3

|ψ(ξ(t))| dt (15)

subject to 



ξ̇ = hi ◦ ξ(t) t ∈ Ii, i = 1, 2, 3,
ξ(0) = x̂0, ξ(T ) = x̂f ,

I1 = (0, τ1), I2 = (τ1, τ2), I3 = (τ2, T ),
(16)

It is well known that, on a smooth manifold, the second derivatives are highly coordinate-
dependent, unless they are computed with respect to variations contained in the kernel of the
differential of the function to be derived. To overcome this problem and obtain an intrinsic
expression of the second variation of the cost (15), we introduce two smooth functions α, β : M → R

satisfying
dα(x̂0) = ℓ̂0, dβ(x̂f ) = −ℓ̂T , (17)

and remove the constraint on the initial point of the trajectories, thus obtaining the extended
sub-problem:

min
τ1,τ2

(
α(ξ(0)) + β(ξ(T )) +

∫

I1∪I3

|ψ(ξ(t))| dt
)

(18)

subject to 



ξ̇ = hi ◦ ξ(t) t ∈ Ii, i = 1, 2, 3,
ξ(0) ∈M, ξ(T ) = x̂f

I1 = (0, τ1), I2 = (τ1, τ2), I3 = (τ2, T )
(19)

It is easy to see, by PMP, that the differential of the new cost (18) is zero at x̂0.
The necessity of summing variations belonging to tangents spaces based at different points of

the reference trajectory is a typical issue in geometric control. We get around this problem by
pulling-back the solutions of (19) to the initial point x̂0 by means of the flow of the reference
vector field; in this way, the variations of the trajectory will evolve on the tangent space Tx̂0

M .
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To simplify the expressions of the pull-backs, we first reparametrise time in such a way that
each interval Ij is mapped into the corresponding reference interval Îj ; to do that, we consider the
variations of the lengths of the intervals

θi := (τi − τi−1)− (τ̂i − τ̂i−1) ,

we set θ :=
(
θ1, θ2, θ3

)
, and define the piecewise-affine reparametrisation ϕθ : [0, T ] → [0, T ] by

means of the Cauchy problem

ϕθ(0) = 0, ϕ̇θ(t) =
τi − τi−1

τ̂i − τ̂i−1
∀t ∈ [τ̂i−1, τ̂i), i = 1, 2, 3.

Denoting the pull-back fields as

gi := Ŝ−1
t ∗ hi ◦ Ŝt, t ∈ [τ̂i−1, τ̂i], (20)

the pullback system of (19) has the form

{
ζ̇t(x, θ) =

θi
τ̂i−τ̂i−1

gi(ζt(x, θ)) t ∈ [τ̂i−1, τ̂i), i = 1, 2, 3,

ζ0(x, θ) = x,

where we notice that ϕ̇θ(t) = 1 + θi
τ̂i−τ̂i−1

for every t ∈ Îi. Finally, setting

β̂ := β ◦ ŜT , ψ̂t := ψ ◦ Ŝt, (21)

γ̂(x) := α(x) + β̂(x) +

∫

Î1∪Î3

|ψ̂s(x)|ds,

the cost can be written as

J(x, θ) = α(x) + β̂(ζT (x, θ)) +

∫

Î1∪Î3

ϕ̇θ(t)
∣∣ψ̂t(ζt(x, θ))

∣∣ dt.

Since we need to compute the first and second variations of J , it is necessary to get rid of the
absolute value inside the integral, that is, to locate the zeroes of the function ψ̂t(ζt(x, θ)) for

t ∈ Î1 ∪ Î3. They turn out to be smooth functions of the initial state x and of the switching time
variations θ, as the following Lemma states.

Lemma 1 Locally around (x̂0,0), there exist n1 smooth functions s1i of (x, θ) such that s1i(x̂0,0) =
ŝ1i and

ψ̂
s1i(x,θ) ◦ exp

(
s1i(x, θ)

θ1

τ̂1
g1

)
(x) = 0, i = 1, . . . , n1. (22)

Analogously, there exist n3 smooth functions s3i of (x, θ) such that s3i(x̂0,0) = ŝ3i and

ψ̂
s3i(x,θ) ◦ exp

(
(s3i(x, θ)− τ̂2)

θ3

T − τ̂2
g3

)
◦ exp

(
θ2g2

)
◦ exp

(
θ1g1

)
(x) = 0, i = 1, . . . , n3. (23)

Moreover, the following relations hold at the point (x̂0,0):

∂s1i

∂x
= −

Lδxψ̂ŝ1i(x̂0)

Lg1ψ̂ŝ1i (x̂0)
,

∂s1i

∂θ1
= −

ŝ1i

τ̂1
,

∂s1i

∂θ2
=
∂s1i

∂θ3
= 0,

∂s3i

∂x
= −

Lδxψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i (x̂0)
,

∂s3i

∂θ1
= −

Lg1ψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i(x̂0)
,

∂s3i

∂θ2
= −

Lg2ψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i(x̂0)
,

∂s3i

∂θ3
= −

ŝ3i − τ̂2

T − τ̂2
.
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The Lemma is proved applying the implicit function theorem to the functions defined in (22) and
(23); this can be done thanks to Assumption 1. As usual, we set s10 = 0, s1n1+1 = τ̂1, s30 =
τ̂2, s3n3+1 = T .

Taking advantage of the functions s1i, s3i, we can rewrite the cost J(x, θ) as

J(x, θ) = α(x) + β̂(ζT (x, θ)) + a0

(
1 +

θ1

τ̂1

) n1+1∑

i=1

(−1)i−1

∫
s1i(x,θ)

s1 i−1(x,θ)

ψ̂t ◦ exp
( tθ1
τ̂1
g1

)
(x) dt

+ a2

(
1 +

θ3

T − τ̂2

)
×

×

n3+1∑

i=1

(−1)i−1

∫
s3i(x,θ)

s3 i−1(x,θ)

ψ̂t ◦ exp
( (t− τ̂2)θ3

T − τ̂2
g3

)
◦ exp

(
θ2g2

)
◦ exp

(
θ1g1

)
(x)dt,

and compute its second variation at the point (x̂0,0) along all variations (δx, ε) ∈ Tx̂0
M × R

3

compatible with the constraints (19), that is, along the variations in the space

V = {(δx, ε) : δx+

3∑

i=1

εigi = 0,

3∑

i=1

εi = 0}. (24)

After some easy but tedious manipulations we end up with the following expression:

J ′′[δx, ε]2 =
1

2
D2γ̂(x̂0)[δx]

2+

+ a2

n3∑

i=1

(−1)i
Lδxψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i(x̂0)

(
2Lδx+ε1g1+ε2g2 ψ̂ŝ3i(x̂0)− Lδxψ̂ŝ3i(x̂0)

)

+ a0

n1∑

i=1

(−1)i

(
Lδxψ̂ŝ1i(x̂0)

)2

Lg1 ψ̂ŝ1i(x̂0)
+

∫

Î3

LδxLε1g1+ε2g2

∣∣∣ψ̂t

∣∣∣(x̂0) dt+ LδxL 3∑
i=1

εigi

β̂(x̂0)

+ a0
ε1

2
(−1)n1

(
Lδxψ̂τ̂1(x̂0) + Lδx+ε1g1 ψ̂τ̂1(x̂0)

)
+ a2(−1)n3ε3L

δx+
3∑

i=1

εigi

ψ̂T (x̂0)

−
ε23
2
Lg3 ψ̂T (x̂0) + a2

n3∑

i=1

(−1)i

(
Lε1g1+ε2g2 ψ̂ŝ3i(x̂0)

)2

Lg3 ψ̂ŝ3i(x̂0)
+

1

2

∫

Î3

L2
ε1g1+ε2g2

∣∣∣ψ̂t̂

∣∣∣ (x̂0) dt

+
ε1ε2

2

∫

Î3

L[g1,g2]

∣∣∣ψ̂t

∣∣∣(x̂0) dt+ L2
3∑

i=1

εigi

β̂ (x̂0) +
1

2

∑

1≤i<j≤3

εiεjL[gi,gj ]β̂(x̂0).

(25)

Remark 5 The terms containing the Lie derivative of |ψ̂t| are defined everywhere, except for a
finite number of values of t, therefore the integrals are well defined.

We recall that the space of admissible variations for the original subproblem (15)-(16) is

V0 = {(δx, ε) : δx+

3∑

i=1

εigi = 0,

3∑

i=1

εi = 0, δx = 0}.

Indeed, only the restriction to V0 of (25) is independent of the choice of α and β, while its value
on the whole V depends on the choice of these two functions.

Moreover we notice that we can write the second variation as the sum J ′′ =
1

2
D2γ̂(x̂0)[δx]

2+J ′′
0 ,

where J ′′
0 does not depend on α. Since D2γ̂(x̂0)[δx]

2|V0
is null, then, if J ′′|V0

is coercive, we can
always choose α in such a way that J ′′ is coercive on the whole V . In Section 4 we will prove that
the coercivity of J ′′ on V implies the existence of a suitable Lagrangian submanifold such that
the projection of the maximised Hamiltonian flow is an invertible map between this manifold and
its image on M . In view of this, our last assumption is the following:
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Assumption 6 J ′′ is coercive on V0.

Remark 6 We stress that, in order to apply the Hamiltonian methods, we need to know the
expression of the second variation, equation (25), of the extended sub-problem. Nevertheless, the
invertibility is guaranteed under Assumption 6, i.e. it suffices to check the coercivity of the quadratic
form

J ′′[0, ε]2 = a0
ε1

2
(−1)n1Lε1g1 ψ̂τ̂1(x̂0)−

ε23
2
Lg3 ψ̂T (x̂0) + a2 ε

2
3

n3∑

i=1

(−1)iLg3ψ̂ŝ3i (x̂0)

+
1

2

∫

Î3

L2
ε1g1+ε2g2

∣∣∣ψ̂t̂

∣∣∣ (x̂0) dt+
ε1ε2

2

∫

Î3

L[g1,g2]

∣∣∣ψ̂t

∣∣∣(x̂0) dt+
1

2

∑

1≤i<j≤3

εiεjL[gi,gj ]β̂(x̂0).

(26)

on the triples ε ∈ R
3 satisfying

ε1 + ε2 + ε3 = 0 ε1g1(x̂0) + ε2g2(x̂0) + ε3g3(x̂0) = 0.

In particular, this means that, if the two vectors (g3 − g2)(x̂0) and (g2 − g1)(x̂0) are linearly
independent, then the space V0 is trivial, so that the second variation is coercive by definition.
Else, V0 is a one-dimensional linear space.

3 Hamiltonian formulation

3.1 Construction of the maximised Hamiltonian flow

The maximised Hamiltonian is well defined, continuous and piecewise smooth in T ∗M . On the
contrary, its associated Hamiltonian vector field is not well defined on the switching surfaces and
on the zero level set of Ψ. The scope of this section is to prove that, nevertheless, the flow
associated with the maximised Hamiltonian is well defined, at least in a tubular neighbourhood of
the graph of the reference extremal. This property relies on the fact that the reference extremal
crosses transversally the hypersurfaces of discontinuity of the Hamiltonian vector field.

Fix ǫ > 0; then on a suitable neighbourhood of the range of λ̂|[0,τ̂1−ǫ] the maximised Hamilto-

nian vector field is ill-defined on the zero level set of Ψ, else it coincides with
−→
F0+u1

−→
F1−sgn(ψ)

−→
Ψ.

By Assumption 1, in this neighbourhood the set {Ψ = 0} has n1 connected components, transver-

sal to λ̂(·). By means of the implicit function theorem, we can express the hitting times of the

integral curves of
−→
F0 + u1

−→
F1 − sgn(ψ)

−→
Ψ with each connected component as a smooth function of

their starting point.

Proposition 1 There exists a neighbourhood U of ℓ̂0 in T ∗M such that for any ℓ ∈ U there exists
a unique s11 = s11(ℓ) such that s11(ℓ̂0) = ŝ11 and

Ψ ◦ exp(s11(ℓ)
−→
H1

σ01 )(ℓ) = 0 ∀ℓ ∈ U .

Proof. Since Ψ ◦ exp(t
−→
H1

σ01)(ℓ) = ψ ◦ exp(th1)(πℓ), it suffices to notice that

∂

∂t
ψ ◦ exp(th1)(πℓ)

∣∣∣∣
(ŝ11,ℓ̂0)

= Lh1
ψ
(
ξ̂(ŝ11)

)
.

Thus, Assumption 1 yields the result. �

The curves exp(t
−→
H1

σ01)(ℓ) cross transversally the zero level set of Ψ (thanks to the fact that
they project on the integral curves of f0+u1f1 and to Assumption 1), so that for t in a sufficiently

small right neighbourhood of s11(ℓ) the maximised Hamiltonian on the points exp(t
−→
H1

σ01 )(ℓ) is

9



x̂0 ξ̂

{ψ = 0} {ψ = 0}

exp(si1(·)h1)(·)

exp(si2(·)h1)(·)

Figure 1: The times s1i, i = 1, 2

Hσ02

1 , that is,
−→
H1

σ01 is no more the vector field associated with the maximised Hamiltonian. On
the other hand, Hσ02

1 is the maximised Hamiltonian also at the points

exp((t− s11(ℓ))
−→
H1

σ02) ◦ exp(s11(ℓ)
−→
H1

σ01 )(ℓ), ℓ ∈ U . (27)

Then, for t in a right neighbourhood of s11(ℓ), the maximised Hamiltonian flow is (27).
Iterating the same argument as above, we can prove the following

Proposition 2 Possibly shrinking the neighbourhood U , for every i = 1, . . . , n1 there exists a
unique smooth function s1i : U → R such that s1i(ℓ̂0) = ŝ1i and

Ψ ◦ exp(s1i(ℓ)− s1 i−1(ℓ))
−→
H1

σ0 i ◦ · · · ◦ exp(s11(ℓ)
−→
H1

σ01 )(ℓ) = 0 ∀ℓ ∈ U .

Moreover, the differential of s1i at ℓ̂0 is given by

〈ds1i(ℓ̂0), δℓ〉 = −
Lπ∗δℓψ̂ŝ1i(x̂0)

Lg1 ψ̂ŝ1i(x̂0)
.

Taking advantage of the functions ŝ1i defined here above, on the set {(t, ℓ) ∈ R× U : 0 ≤ t ≤
s1n1

(ℓ)} we can write the maximised Hamiltonian flow as the following concatenation:

Ht(ℓ) = exp
(
(t− s1 i−1(ℓ))

−→
H1

σ0i
)
◦ Hs1 i−1(ℓ)(ℓ) t ∈ [s1 i−1(ℓ), s1i(ℓ)], i = 1, . . . , n1, (28)

where we defined s10(ℓ) ≡ ŝ10 = 0.

Remark 7 Actually, the functions s1i depend only on the projection πℓ. We write them as func-
tions of ℓ for symmetry with other functions s3i that will be defined below.

Reasoning as above, we see that, for t belonging on a right neighbourhood of s1n1
(ℓ), the max-

imised Hamiltonian at the points exp(t− s1n1
(ℓ))

−→
H1

σ0 n1+1 ◦Hs1n1
(ℓ)(ℓ) is H

σ0 n1+1

1 ; in particular,

H
σ0 n1+1

1 is the maximised Hamiltonian along its integral curves until such curves intersect the
hypersurface {H2 −H

σ0 n1+1

1 = 0}. As above, thanks to the regularity assumptions (in this case
Assumption 4), we can characterise the intersection time as a smooth function of the initial point
ℓ.

Proposition 3 Possibly shrinking U , for any ℓ ∈ U there exists a unique τ1 = τ1(ℓ) such that

τ1(ℓ̂0) = τ̂1 and

(
H2 −H

σ0n1+1

1

)
◦ exp

(
(τ1(ℓ)− s1n1

(ℓ))
−→
H1

σ0n1+1
)
◦ Hs1n1

(ℓ)(ℓ) = 0

10



Moreover, τ1(ℓ) is smooth and its differential at ℓ̂0 is

〈dτ1(ℓ̂0) , δℓ〉 =
1

σ

(−→
H1

σ0 n1+1 ,
−→
H2

)
(ℓ̂1)

×

{
−σ

(
Ĥτ̂1∗δℓ, (

−→
H2 −

−→
H1

σ0 n1+1)(ℓ̂1)
)
+ 2

n1∑

i=1

σ0i
Lπ∗δℓψ̂ŝ1i(x̂0)Lg2−g1 ψ̂ŝ1i(x̂0)

Lg1ψ̂ŝ1i (x̂0)

}
(29)

Proof. The proof is analogous to that of Proposition 1. It suffices to notice that

∂

∂t

(
H2 −H

σ0 n1+1

1

)
◦ exp

(
(t− s1n1

(ℓ))
−→
H1

σ0 n1+1
)
◦ Hs1n1

(ℓ)(ℓ)

∣∣∣∣
(τ̂1,ℓ̂0)

= σ

(−→
H1

σ0 n1+1 ,
−→
H2

)
(ℓ̂1),

which is positive by Assumption 4. �

We extend the maximised Hamiltonian flow Ht to the whole interval [0, τ1(ℓ)] setting

Ht(ℓ) = exp
(
(t− s1n1

(ℓ))
−→
H1

σ0 n1+1
)
◦ Hs1n1

(ℓ)(ℓ), t ∈ [s1n1
(ℓ), τ1(ℓ)].

Analogously, Assumption 4 implies that the function

(
F1(ℓ)− |ψ(πℓ)|

)
◦ exp

(
(t− s1n1

(ℓ))
−→
H1

σ0 n1+1
)
◦ Hs1n1

(ℓ)(ℓ)

is strictly decreasing with respect to t, for t belonging to a neighbourhood of τ1(ℓ), so that H
σ0 n1+1

1

cannot be the maximised Hamiltonian on exp
(
(t − s1n1

(ℓ))
−→
H1

σ0 n1+1

)
◦ Hs1n1

(ℓ)(ℓ) if t > τ1(ℓ).
Indeed, the maximised Hamiltonian flow is

exp
(
(t− τ1(ℓ))

−→
H2

)
◦ Hτ1(ℓ)(ℓ).

Along these curves, for t > τ1(ℓ), H2 is the maximised Hamiltonian until the hypersurface {H2 −
Hσ21

3 = 0} is reached. The time for this to happen is, as above, a smooth function of ℓ, thanks to
Assumption 5. The proof is completely analogous to that of Proposition 3.

Proposition 4 Possibly shrinking U , for every ℓ ∈ U there exists a unique τ2 = τ2(ℓ) such that

τ2(ℓ̂0) = τ̂2 and

(Hσ21

3 −H2) ◦ exp(τ2(ℓ)− τ1(ℓ))
−→
H2 ◦ Hτ1(ℓ)(ℓ) = 0.

Moreover, the differential of τ2(ℓ) at ℓ̂0 is given by

〈dτ2(ℓ̂0) , δℓ〉 =
1

σ

(−→
H2,

−→
H3

σ21

)
(ℓ̂2)

{
− σ

(
Ĥτ̂2∗δℓ, (

−→
H3

σ21 −
−→
H2)(ℓ̂2)

)
(30)

+ 〈dτ1(ℓ̂0) , δℓ〉σ
(
Ĥτ̂2∗Ĥ

−1
τ̂1∗

(−→
H2 −

−→
H1

σ0 n1+1

)
(ℓ̂1),

−→
H3

σ21 −
−→
H2

)
(ℓ̂2)

+ 2

n1∑

i=1

σ0i
Lπ∗δℓψ̂ŝ1i(x̂0)Lg3−g2 ψ̂ŝ1i(x̂0)

Lg1 ψ̂ŝ1i(x̂0)

}
.

We thus extend the maximised Hamiltonian flow to the interval [0, τ2(ℓ)] setting

Ht(ℓ) = exp
(
(t− τ1(ℓ))

−→
H2

)
◦ Hτ1(ℓ)(ℓ), t ∈ [τ1(ℓ), τ2(ℓ)].

The construction of the maximised Hamiltonian flow on the whole interval [0, T ] follows the
same lines: we characterise the discontinuities of the vector field as smooth functions of the initial
state, and then we concatenate the corresponding Hamiltonian flows. Regularity assumptions are,
as usual, crucial for this.
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Proposition 5 Possibly shrinking U , for every i = 1, . . . , n3 there exist a unique smooth function
s3i : U → R such that s3i(ℓ̂0) = ŝ3i and

Ψ ◦ exp(s3i(ℓ)− s3i(ℓ))
−→
H3

σ2i ◦ · · · ◦ exp((s31(ℓ)− τ2(ℓ))
−→
H3

σ21) ◦ Hτ2(ℓ)(ℓ) = 0 ∀ℓ ∈ U .

Moreover, the differential of s3i at ℓ̂0 is given by

〈ds3i(ℓ̂0), δℓ〉 =
−1

Lg3ψ̂ŝ3i(x̂0)

{
Lπ∗δℓψ̂ŝ3i(x̂0)− 〈dτ1(ℓ̂0), δℓ〉Lg2−g1 ψ̂s3i(x̂0)

− 〈dτ2(ℓ̂0), δℓ〉Lg3−g2 ψ̂s3i(x̂0)
}
, i = 1, . . . , n3.

We finally define the maximised flow, for initial conditions in U , on the whole [0, T ]:

Ht(ℓ) = exp
(
(t− s3 i−1(ℓ))

−→
H3

σ2i
)
◦ Hs3 i−1(ℓ)(ℓ) t ∈ [s3 i−1(ℓ), s3i(ℓ)], i = 1, . . . , n3 + 1, (31)

where we put s30(ℓ) := τ2(ℓ) and s3n3+1(ℓ) ≡ T .

3.2 Hamiltonian form of the second variation

In this section we propose an alternative representation of the second variation, more compact
and easier to handle with. To do that, we establish an isomorphism between T ∗

x̂0
M × Tx̂0

M and
T
ℓ̂0
(T ∗M), and we map the Hamiltonians defined in (9) to some Hamiltonian functions G′′

i defined
on T ∗

x̂0
M × Tx̂0

M ; we then express the second variation J ′′ in terms of these Hamiltonians. The
new expression of the second variation highlights its links with the Hamiltonian vector fields and
with the maximised Hamiltonian flow.

First, we define the following anti-symplectic isomorphism1 between T ∗
x̂0
M×Tx̂0

M and T
ℓ̂0
(T ∗M):

ι(δp, δx) = (−δp+A[δx, ·], δx),

where A is the symmetric bilinear form on Tx̂0
M defined by

A[δx, δy] := D2
(
− β̂ −

∫

Î1∪Î3

∣∣ψ̂s

∣∣ds
)
(x̂0)[δx, δy]− 2a0

n1∑

i=1

(−1)i
Lδxψ̂ŝ1i(x̂0)Lδyψ̂ŝ1i(x̂0)

Lg1ψ̂ŝ1i(x̂0)

− 2a2

n3∑

i=1

(−1)i
Lδxψ̂ŝ3i(x̂0)Lδyψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i(x̂0)
.

We then set
−→
G′′

1 := ι−1−→H1
σ01 (ℓ̂0),

−→
G′′

2 = ι−1Ĥ−1
τ̂1∗

−→
H2(ℓ̂1),

−→
G′′

3 := ι−1Ĥ−1
τ̂2∗

−→
H3

σ21 (ℓ̂2). (32)

By computation (see Appendix A), one can see that each
−→
G′′

i is the constant Hamiltonian vector
field associated with the following linear Hamiltonian functions:

G′′
1(δp, δx) = 〈δp , g1(x̂0)〉+ LδxLg1

(
β̂ +

∫

Î3

∣∣ψ̂s

∣∣ds
)
(x̂0) + a0(−1)n1Lδxψ̂τ̂1(x̂0) (33)

+ 2a2

n3∑

i=1

(−1)i
Lg1 ψ̂ŝ3i(x̂0)Lδxψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i (x̂0)
,

G′′
2(δp, δx) = 〈δp , g2(x̂0)〉+ LδxLg2

(
β̂ +

∫

Î3

∣∣ψ̂s

∣∣ds
)
(x̂0) (34)

+ 2a2

n3∑

i=1

(−1)i
Lg2 ψ̂ŝ3i(x̂0)Lδxψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i (x̂0)
,

G′′
3(δp, δx) = 〈δp , g3(x̂0)〉+ LδxLg3 β̂(x̂0) + a2(−1)n3Lδxψ̂T (x̂0). (35)

1in particular, if ς is the standard symplectic form on the product T ∗
x̂0

M × T
x̂0

M , then ς = −σ ◦ (ι, ι).
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By means of rather tedious computations, it is possible to prove the following equalities (details
in Appendix A).

G′′
2(
−→
G′′

1 ) = L[g1,g2]

(
β̂ +

∫

Î3

∣∣ψ̂s

∣∣ds
)
(x̂0)− a0(−1)n1Lg2 ψ̂τ̂1(x̂0)

= −σ

(−→
H1

σ0 n1+1 ,
−→
H2

)
(ℓ̂1) (36)

G′′
3(
−→
G′′

2 ) = L[g2,g3]

(
β̂ +

∫

Î3

∣∣ψ̂s

∣∣ds
)
(x̂0) + a2Lg2ψ̂τ̂2(x̂0)

= −σ

(−→
H2,

−→
H3

σ21

)
(ℓ̂2) (37)

G′′
3(
−→
G′′

1 ) = L[g1,g3]

(
β̂ +

∫

Î3

∣∣ψ̂s

∣∣ds
)
(x̂0)− a0(−1)n1Lg3 ψ̂τ̂1(x̂0) + a2Lg1 ψ̂τ̂2(x̂0)

= −σ

(
Ĥτ̂2∗Ĥ

−1
τ̂1∗

−→
H1

σ1 n1+1 ,
−→
H3

σ21

)
(ℓ̂2) (38)

We also define ω0(δx, ·) such that ι−1dα∗δx = (ω0(δx, ·), δx). By computations

ω0(δx, ·) = −D2
(
α+ β̂ +

∫

Î1∪Î3

∣∣ψ̂s

∣∣ds
)
(x̂0)[δx, ·]

− 2a0

n1∑

i=1

(−1)i
Lδxψ̂ŝ1i(x̂0)L·ψ̂ŝ1i(x̂0)

Lg1 ψ̂ŝ1i(x̂0)
− 2a2

n3∑

i=1

(−1)i
Lδxψ̂ŝ3i(x̂0)L·ψ̂ŝ3i(x̂0)

Lg3ψ̂ŝ3i(x̂0)
.

In particular we can write equations (29)-(30) and the second variation J ′′ in the following form:

〈dτ1(ℓ̂0) , dα∗δx〉 =
−1

G′′
2 (
−→
G′′

1 )
(G′′

2 −G′′
1 ) (ω0(δx), δx) (39)

〈dτ2(ℓ̂0) , dα∗δx〉 =
−1

G′′
3 (
−→
G′′

2 )
(G′′

3 −G′′
2 )

(
(ω0(δx), dx)− 〈dτ1(ℓ̂0) , dα∗δx〉(

−→
G′′

2 −
−→
G′′

1 )
)

(40)

J ′′[δe]2 =
1

2

(
ε1G

′′
1 (ω0(δx), δx) + ε2G

′′
2

(
(ω0(δx), δx) + ε1

−→
G′′

1

)
(41)

+ ε3G
′′
3

(
(ω0(δx), δx) + ε1

−→
G′′

1 + ε2
−→
G′′

2

))

for every δe = (δx, ε) ∈ V . The proof is just a straightforward application of the definitions.

We end this section by writing two conditions that are equivalent to the coercivity of J ′′ on V .
These conditions take advantage of the Hamiltonian formulation of the second variation described
here above. We recall that, given any linear subspaceW ⊂ V , then J ′′ is coercive on V if and only
if it is coercive both on W and on the orthogonal complement to W with respect to the bilinear
symmetric form J associated with J ′′. By lengthy but standard computations, see for example
[16], and setting

γ′′[δx, δy] := 〈−ω0(δx) , δy〉

it is possible to see that

J[δe, δf ] =
1

2

(
γ′′[δx, δy] + 〈ω0(δx) , δy〉+ η1G

′′
1 (ω0(δx), δx) + η2G

′′
2

(
(ω0(δx), δx) + ε1

−→
G′′

1

)

+ η3G
′′
3

(
(ω0(δx), δx) + ε1

−→
G′′

1 + ε2
−→
G′′

2

))
.

For the sake of forthcoming computations, we choose W as the linear space

W = {δe = (δx, ε) ∈ V : ε3 = 0}. (42)

By computations, it is easy to prove that

W⊥J = {(δx, ε) ∈ V : ε1 = 〈dτ1(ℓ̂0), dα∗δx〉}, (43)

J ′′[δe]2 =
ε3

2

(
G′′

3 −G′′
2

)(
(ω0(δx), x) + ε1

−→
G′′

1 + ε2
−→
G′′

2

)
∀δe = (δx, ε) ∈W⊥J . (44)
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4 Main result

In this section we state and prove the main result of the paper.

Theorem 1 Let ξ̂ : [0, T ] → M be an admissible trajectory for the control system (1b)-(1c)-(1d)

that satisfies Assumptions 1–6. Then the trajectory ξ̂ is a strict strong-local minimiser for the
OCP (1).

The proof is inspired by those of [12, Theorem 3.9] and [14, Theorem 4.1], and is based on the
following result.

Theorem 2 Assume that the assumptions of Theorem 1 are satisfied. Then there exist a neigh-
bourhood U of x̂0 such that the set

Λ0 = {dα(x) : x ∈ U} (45)

is a smooth simply-connected Lagrangian submanifold that contains ℓ̂0 and, for every t ∈ [0, T ],
the map

π ◦ Ht|Λ0
(46)

is invertible onto a neighbourhood of ξ̂(t) with piecewise-C1 inverse.

Proof. (of Theorem 1) First of all, we define the following subsets of R× T ∗M

O1i = {(t, ℓ) : ℓ ∈ U , s1 i−1(ℓ) ≤ t ≤ s1i(ℓ)} i = 1, . . . , n1 + 1,

O2 = {(t, ℓ) : ℓ ∈ U , τ1(ℓ) ≤ t ≤ τ2(ℓ)},

O3i = {(t, ℓ) : ℓ ∈ U , s3 i−1(ℓ) ≤ t ≤ s3i(ℓ)} i = 1, . . . , n3 + 1,

and the flow H : [0, T ]× U → R× T ∗M

H(t, ℓ) = (t,Ht(ℓ)).

We also define the sets Ωij = Oij ∩ (R×Λ0), i = 1, 3, and Ω2 = O2 ∩ (R×Λ0), and we call Ω the
union of all these sets. We remark that the restriction ofH to each of the Oij , O2 (as well as to each
of the Ωij , Ω2) is smooth. Moreover, thanks to Theorem 2, the map πH : (t, ℓ) 7→ (t, π ◦H(t, ℓ)) is
invertible with piecewise-C1 inverse. The points of non differentiability occur when (t, ℓ) belongs
to the intersection of two of the Ωij , Ω2. Indeed, we notice that

π ◦ Ht(ℓ) =





exp(th1)(ℓ) t ∈ [0, τ1(ℓ)],

exp((t− τ1(ℓ))h2) ◦ exp(τ1(ℓ)h1)(ℓ) t ∈ [τ1(ℓ), τ2(ℓ)],

exp((t− τ2(ℓ))h3) ◦ exp((τ2(ℓ)− τ1(ℓ))h2) ◦ exp(τ1(ℓ)h1)(ℓ) t ∈ [τ2(ℓ), T ],

so that, at the switching times, the piecewise linearisation of π ◦ Ht is given by

π∗Hτ̂1∗(δℓ) =

{
Ŝτ̂1∗(π∗δℓ) for 〈dτ1(ℓ̂0), δℓ〉 ≥ 0,

Ŝτ̂1∗(π∗δℓ+ 〈dτ1(ℓ̂0), δℓ〉(g1 − g2)(x̂0)) for 〈dτ1(ℓ̂0), δℓ〉 ≤ 0,
(47)

π∗Hτ̂2∗(δℓ) =





Ŝτ̂2∗(π∗δℓ+ 〈dτ1(ℓ̂0), δℓ〉(g1 − g2)(x̂0)) for 〈dτ2(ℓ̂0), δℓ〉 ≥ 0,

Ŝτ̂2∗(π∗δℓ+ 〈dτ1(ℓ̂0), δℓ〉(g1 − g2)(x̂0)

+〈dτ2(ℓ̂0), δℓ〉(g2 − g3)(x̂0))
for 〈dτ2(ℓ̂0), δℓ〉 ≤ 0.

(48)

Let ω(t,ℓ) = sℓ −max|u|≤1 h(u, ℓ)dt be the Poincaré-Cartan one-form (in the following we omit the
dependence on the basepoint (t, ℓ)). Lemma 3.3 in [12] guarantees that the one-form H∗ω is exact
on each of the Ωij , Ω2, and therefore on the whole Ω.

Let now ξ : [0, T ] → M be any admissible trajectory of the control system (1b)-(1c) whose graph
is contained in πH(Ω), and call v(t) its associated control function. Define moreover λ0(t), λ(t)
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by the equalities (t, λ0(t)) := (π ◦H)−1(t, ξ(t)) and λ(t) := H(t, λ0(t)); in particular, πλ(t) = ξ(t).
Consider the two paths in Ω

γ = {(t, λ0(t)) : t ∈ [0, T ]} γ̂ = {(t, ℓ̂0) : t ∈ [0, T ]}.

We notice that the concatenation of γ̂(·) with γ(T − ·) is a closed path in [0, T ] × Λ0, so that∫
γ̂
H∗ω =

∫
γ
H∗ω. In particular,

∫
γ̂
H∗ω =

∫ T

0 |û(t)ψ(ξ̂(t))| dt, while

∫

γ

H∗ω =

∫ T

0

sλ(t) − max
|u|≤1

h(u, λ(t)) dt ≤

∫ T

0

|v(t)ψ(ξ(t))| dt, (49)

and this implies that ξ̂ is a strong-local minimiser.

Let us now assume that
∫ T

0
|û(t)ψ(ξ̂(t))| dt =

∫ T

0
|v(t)ψ(ξ(t))| dt, that is, the equality holds in

equation (49). This implies that

v(t)F1(λ(t)) − |v(t)ψ(ξ(t))| = max
w∈[−1,1]

(
wF1(λ(t)) − |wψ(ξ(t))|

)
a.e. t ∈ [0, T ]. (50)

By continuity, for t small enough (t, λ0(t)) belongs to Ω11, hence wF1(λ(t))−|wψ(ξ(t))| attains

its maximum only for w = u1; equation (50) yields that v(t) = u1 a.e. and ξ(t) = ξ̂(t) as long
as (t, λ0(t)) ∈ Ω11, that is, for t ∈ [0, ŝ11). For t in a sufficiently small right neighbourhood of
ŝ11, (t, ξ(t)) belongs to Ω11 or Ω12; in both cases, (50) implies that v(t) = u1. We can proceed

iteratively and obtain that v(t) = u1 a.e. and ξ(t) = ξ̂(t) for t ∈ [0, τ̂1).
For t in a sufficiently small right neighbourhood of τ̂1, three cases are possible: (t, λ0(t)) may

belong to Ω2 \ Ω1n1+1, to Ω1n1+1 \ Ω2, or to the intersection Ω1n1+1 ∩ Ω2.
In the first case, the maximised Hamiltonian is attained for w = 0, so that, reasoning as above,

we obtain that v(t) = 0 and then ξ(t) = ξ̂(t) for t ≤ τ̂2. If (t, λ0(t)) ∈ Ω1n1+1 \Ω2, the maximised
Hamiltonian is attained for w = u1 and then (50) yields that v(t) = u1. This is impossible, since,

by Assumption 4 and by continuity, in a neighbourhood of ℓ̂1 the function F1(ℓ)−|ψ(πℓ)| is strictly

decreasing along the integral lines of
−→
H1

σ0 n1+1 .
In the last case, for t in a sufficiently small right neighbourhood of τ̂1 it holds t = τ1(λ0(t))

which implies that
1 = 〈dτ1(λ0(t)) , λ̇0(t)〉 for a.e. t. (51)

Moreover (50) implies that v(t) has the same sign of u1, so that f0+v(t)f1 is a convex combination
of h1 and h2, and there exists some µ(t) ∈ [0, 1] such that ξ̇(t) = µ(t)h1(ξ(t)) + (1− µ(t))h2(ξ(t)).

By computations ξ̇(t) = h1(ξ(t)) + (π ◦ Ht)∗λ̇0(t) for a.e. t, so that

π∗λ̇0(t) = (1− µ(t))π∗(π ◦ Ht)
−1
∗ (h2 − h1)(ξ(t)) a.e. t. (52)

By compactness, there exists a sequence tn → τ̂+1 such that µ(tn) → µ ∈ [0, 1]. Passing to the
limit in (51)-(52) we obtain that

π∗λ̇0(tn) → (1− µ)(g2 − g1)(x̂0)

and 1 = (1 − µ)〈dτ1(ℓ̂0) , dα∗(g2 − g1)(x̂0)〉. In particular, µ ∈ [0, 1) and the variation δe =
((g2 − g1)(x̂0), 1,−1, 0) belongs to W . Thus, by (41) and (39) we obtain that

J ′′[δe]2 =
1

2
G′′

2 (
−→
G′′

1 )
µ

1− µ
,

which cannot be positive, due to (13) and (36). This contradicts Assumption 6, thus this case is
not possible. Therefore we must conclude that v(t) = û(t) for a.e. t ∈ [0, τ̂2].

Analogous computations show that v(t) coincides with the reference control almost everywhere

in the interval [0, T ], that is, ξ = ξ̂. �
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Proof. (of Theorem 2) By construction the manifold Λ0 defined in (45) is a horizontal La-

grangian submanifold of T ∗M containing ℓ̂0.
The map π ◦ Ht is the concatenation of smooth invertible mappings (flows). To check its

invertibility at ℓ̂0, it is sufficient to consider it at the switching times only: indeed, the map is
invertible at ℓ̂0 for every t < τ̂1 and, if it is also invertible for t = τ̂1, then it is invertible on the
whole [0, τ̂2); analogously, if the map is invertible for t ≤ τ̂2, then it is invertible for every t ∈ [0, T ].

To verify the invertibility at the switching times, we use Clarke’s inverse function theorem
(see [17]), that is, we prove that all convex combination of the “left” and “right” linearisations
(47)–(48) have full rank.

More precisely, for the first switching time, we show by contradiction that there is no a ∈ [0, 1]
and no δℓ ∈ T

ℓ̂0
Λ0, δℓ 6= 0, such that

(1− a)Ŝτ̂1∗(π∗δℓ) + aŜτ̂1∗(π∗δℓ+ (g1 − g2)(x̂0)〈dτ1(ℓ̂0), δℓ〉) = 0. (53)

Indeed, assume that (53) holds true for some a and some δℓ 6= 0. Then 〈dτ1(ℓ̂0), δℓ〉 6= 0, and,

since Ŝτ̂1∗ is an isomorphism, then

π∗δℓ+ a〈dτ1(ℓ̂0) , δℓ〉(g1 − g2)(x̂0) = 0

i.e. δe =
(
π∗δℓ, a〈dτ1(ℓ̂0) , δℓ〉,−a〈dτ1(ℓ̂0) , δℓ〉, 0

)
∈ W . As before, thanks to (39)-(36) and As-

sumption 4, it is possible to prove that

J ′′[δe]2 = −
a

2
〈dτ1(ℓ̂0) , δℓ〉(G

′′
2 −G′′

1 )
(
(ω0(δx), δx) + ε1

−→
G′′

1

)

=
a

2
(1− a)〈dτ1(ℓ̂0) , δℓ〉

2G′′
2(
−→
G′′

1 ) ≤ 0,

which contradicts the coercivity of the second variation on W .
Analogously, the linearisation of the maximised flow at time τ̂2 is invertible if for every δℓ ∈

T
ℓ̂0
Λ0 and for every a ∈ [0, 1] satisfying

π∗δℓ+ 〈dτ1(ℓ̂0), δℓ〉(g1 − g2)(x̂0) + a〈dτ2(ℓ̂0), δℓ〉(g2 − g3)(x̂0) = 0 (54)

it must be δℓ = 0. Indeed, if (54) holds, then the variation

δe =
(
δx, 〈dτ1(ℓ̂0), dα∗δx〉, 〈d(aτ2 − τ1)(ℓ̂0), dα∗δx〉,−a〈dτ2(ℓ̂0), dα∗δx〉

)

is admissible and it is contained in W⊥J . Again, using (37), we observe that

J ′′[δe]2 =
a

2
(1− a)〈dτ2(ℓ̂0) , dα∗δx〉

2G′′
3(
−→
G′′

2 )

which cannot be positive due to Assumption 5. This contradicts the coercivity of the second
variation on V . The Theorem is proved.

�

5 An example

In this section we apply our result to the following OCP

min
|u(·)|≤1

∫ T

0

|u(t)x2(t)| dt
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subject to the control system





ẋ1 = x2

ẋ2 = u− αx2 α > 0

x1(0) = 0, x2(0) = 0

x1(T ) = X > 0, x2(T ) = 0.

It models the problem of minimising the consumption of an academic electric vehicle moving with
friction along a flat road; it has been studied in details in [4].

Let Tmin(α,X) be the minimum time needed to reach (X, 0) from (0, 0); in [4] it is shown that
there exists a time Tlim(α,X) > Tmin(α,X) such that, if Tmin(α,X) < T ≤ Tlim(α,X), the optimal
control for this problem has the form (3), with u1 = 1, u3 = −1 (for the analytic expressions of
Tlim and of the switching times as functions of α and X , we refer to [4]). In particular, the cost
function ψ(x1, x2) = x2 never vanishes along the reference trajectory (except at the endpoints),
so in this case we have a0 = a2 = 1 and n1 = n3 = 0.

First of all, we compute the pull-back vector fields. Obviously, g1 = h1 = f0 + f1. To compute
g2 and g3, we consider the functions

ϕ2(x, t) = exp(−th1)∗h2 exp(th1)(x)

ϕ3(x, t, s) = exp(−th1)∗ exp(−sh2)∗h3 ◦ ◦ exp(sh2) ◦ exp(th1)(x),

and notice that g2(x) = ϕ2(x, τ̂1) and g3(x) = ϕ3(x, τ̂1, τ̂2). The pull-back vector fields can be
then computed developing ϕ2, ϕ3 in powers of t and (t, s), respectively; we obtain

g2 = f0 +
η(τ̂1)

α
f01 g3 = f0 − f1 +

η(τ̂1) + η(τ̂2)

α
f01,

where η(t) = 1− eαt and f01 = [f0, f1].
Let (δx, ε) be an admissible variation contained in V0; from δx = (0, 0) and the linear inde-

pendence of f1 and f01, we obtain that (ε1, ε2, ε3) must satisfy the system




ε1 + ε2 + ε3 = 0

ε1 − ε3 = 0

ε2η(τ̂1) + ε3(η(τ̂1) + η(τ̂2)) = 0,

so that, if τ̂1 6= τ̂2, then V0 is the trivial linear space, and the second variation is coercive by
definition.

We remark that, for τ̂1 = τ̂2, the reference trajectory satisfies the PMP in the abnormal form,
a case which is not covered by our theory.

A Appendix

Here we give some hints for the computations appearing in Section 3.2.

First of all let us recall that for every Hamiltonian vector field
−→
F and every Hamiltonian flow

Kt, the following identity holds for every fixed t:

Kt∗
−→
F =

−−−−−−→
F ◦ Kt

−1. (55)

Proof of equations (32).

We can see that the Hamiltonian vector field associated with G′′
1 is



−L·Lg1

(
β̂ +

∫

Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0)− σ0n1

L·ψ̂τ̂1(x̂0)− 2

n3∑

i=1

σ2iL·ψ̂ŝ3i (x̂0)Lg1 ψ̂ŝ3i(x̂0)Lg3 ψ̂ŝ3i(x̂0)

g1(x̂0)


 .
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Applying the antisymplectic isomorphism ι to the vector here above we obtain



L·Lg1

(
β̂ +

∫

Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0) + σ0n1

L·ψ̂τ̂1(x̂0) +D2

(
β̂ +

∫

Î1∪Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0)[g1, ·]− 2

n1∑

i=1

σ0iL·ψ̂ŝ1i(x̂0)

g1(x̂0)


 .

(56)

Adding and subtracting D2α(x̂0)[g1, ·] and noticing that d

(
α+ β̂ +

∫

Î1∪Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0) = 0 by

PMP, we obtain that

D2

(
α+ β̂ +

∫

Î1∪Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0)[g1, ·] = L·Lg1

(
α+ β̂ +

∫

Î1∪Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0)

so that the upper term in (56) reduces to

L·Lg1

(
−α−

∫

Î1

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0) + σ0n1

L·ψ̂τ̂1(x̂0)− 2

n1∑

i=1

σ0iL·ψ̂ŝ1i(x̂0) = (57)

= −dα(x̂0)Dg1(x̂0)(·)− σ01L·ψ̂0(x̂0) = −dα(x̂0)Dh1(x̂0)(·) − σ01L·ψ(x̂0) (58)

This proves that the Hamiltonian vector field associated with G′′
1 is ι−1−→H1

σ01 , i.e.
−→
G′′

1 by definition.
Analogous computations show that applying the antisymplectic isomorphism ι to the vector

field associated to G′′
2 we obtain



−dα(x̂0)Dg2(x̂0)− L·Lg2

∫

Î1

∣∣∣ψ̂s

∣∣∣ ds(x̂0)−

n1∑

i=1

σ0i
L·ψ̂s1i(x̂0)Lg2 ψ̂s1i(x̂0)

Lg1 ψ̂s1i(x̂0)
g2(x̂0)


 . (59)

Let us choose a coordinate system (p, q) in T ∗M and let (p0, q0) be some point. Since

Hτ̂1

(
p0
q0

)
=




(
p0 +

∫

Î1

d |ψs| ds

)
Ŝ−1
τ̂1∗

Ŝτ̂1(q0)


 , (60)

applying (55) to
−→
H2 ◦Hτ̂1 we get the proof of (32) for i = 2. The proof for i = 3 follows the same

lines.

Proof of equation (36).

The first equality in (36) is a straightforward computation. Moreover

σ

(−→
H1

σ0 n1+1 ,
−→
H2

)
(ℓ̂1) = −u1〈ℓ̂1, [f0, f1]〉 − σ0n1

Lg2 ψ̂τ̂1(x̂0).

Applying (60) and noticing that, by PMP, d

(
α+

∫

Î1

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0) = −d

(
β̂ +

∫

Î3

∣∣∣ψ̂s

∣∣∣ ds
)
(x̂0),

also the second equality in (36) is proved.
Analogous computation prove (37)-(38).
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