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Abstract

Cross-validation is widely used for selecting among a family of learning
rules. This paper studies a related method, called aggregated hold-out
(Agghoo), which mixes cross-validation with aggregation; Agghoo can
also be related to bagging. According to numerical experiments, Agghoo
can improve significantly cross-validation’s prediction error, at the same
computational cost; this makes it very promising as a general-purpose tool
for prediction. We provide the first theoretical guarantees on Agghoo, in
the supervised classification setting, ensuring that one can use it safely:
at worse, Agghoo performs like the hold-out, up to a constant factor.
We also prove a non-asymptotic oracle inequality, in binary classification
under the margin condition, which is sharp enough to get (fast) minimax
rates.

1 Introduction

Machine learning rules almost always depend on some hyperparameters, whose
choice has a strong impact on the final performance. For instance, nearest-
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neighbor rules [Biau and Devroye, 2015] depend on the number k of neigh-
bors and on some distance measure over the feature space. Kernel methods
[Scholkopf and Smola, 2001] require to choose an appropriate kernel. A third
example, among many others, is given by regularized empirical risk minimization
rules, such as support vector machines [Steinwart and Christmann, 2008] or the
Lasso [Tibshirani, 1996, Bühlmann and van de Geer, 2011], which all depend on
some regularization parameter. More generally, the problem of choosing from
data among a family of learning rules is central to machine learning, includ-
ing model selection [Burnham and Anderson, 2002, Massart, 2007] and when
one hesitates between different kinds of rules —for instance, support vector
machines or random forests.

In supervised learning, cross-validation (CV) is a general, efficient and clas-
sical answer to this problem [Arlot and Celisse, 2010]. It relies on the idea of
splitting data into a training sample —used for training a predictor with each
rule in competition— and a validation sample —used for assessing the perfor-
mance of each predictor. This leads to an estimator of the risk —the hold-out
estimator when data are split once, the CV estimator when an average is taken
over several data splits—, which can be minimized for selecting among a family
of competing rules.

A completely different strategy, called aggregation, is to combine the predic-
tors obtained with all candidate rules [Nemirovski, 2000, Yang, 2001, Tsybakov,
2004]. A major interest of aggregation is that it builds a learning rule in a
much larger set that the family of rules in competition; therefore, it can some-
times yield a better performance than the best of all rules. Aggregation is the
keystone of ensemble methods [Dietterich, 2000], among which we can mention
bagging [Breiman, 1996], AdaBoost [Freund and Schapire, 1997] and random
forests [Breiman, 2001, Biau and Scornet, 2016].

This paper studies a mix of cross-validation and aggregation ideas, called
aggregated hold-out (Agghoo). Data are split several times; for each split, the
hold-out selects one predictor; then, the predictors obtained with the differ-
ent splits are aggregated. This procedure is as general as cross-validation and
it has the same computational cost. Moreover, it seems to be folklore knowl-
edge among practicioners that Agghoo (or its variants) performs better than
CV for prediction. Yet, Agghoo has never been properly studied in the liter-
ature, even experimentally, to the best of our knowledge. The closest results
we found [Jung and Hu, 2015, Jung, 2016] study other procedures, called ACV
and EKCV, and prove weaker theoretical results than ours; we explain in Sec-
tion 2.3 why Agghoo is more natural and should be preferred to ACV and EKCV
in general.

Because of the aggregation step, Agghoo is an ensemble method, and it is
particularly close to subagging —a variant of bagging where the bootstrap is
replaced by subsampling— [Bühlmann and Yu, 2002], since both combine sub-
sampling with aggregation. However, Agghoo is not subagging applied to the
hold-out selected predictor, in which the subsample itself is split into training
and validation samples; see Section 2.3. Therefore, we cannot apply previous re-
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sults on subagging for analyzing Agghoo; new developments are required. Since
bagging and subagging are well-known for their stabilizing effects [Breiman,
1996, Bühlmann and Yu, 2002], we can expect Agghoo to behave similarly; in
particular, it should improve much the prediction performance of CV when the
hold-out selected predictor is unstable. The simulation experiments of Section 4
confirm this intuition.

Contributions The purpose of this paper is to investigate both theoretical
and practical performances of Agghoo. As a first step, we focus on supervised
classification with the 0–1 loss. First, Section 3 provides three theoretical re-
sults on the classification error of Agghoo. Proposition 3.1 is a general result
—valid for any family of learning rules— proving that the excess risk of Ag-
ghoo is smaller than the excess risk of hold-out selection, multiplied by the
number of classes. This ensures that Agghoo can be used safely: one cannot
loose too much by preferring Agghoo to the hold-out. We then focus on bi-
nary classification under the margin condition [Mammen and Tsybakov, 1999],
which is well-known for allowing fast learning rates [Audibert and Tsybakov,
2007, Lecué, 2007, Audibert, 2009]. Theorem 3.2 is a non-asymptotic oracle in-
equality for Agghoo, showing that Agghoo performs almost as well as the best
possible selection rule (called the oracle). We illustrate the sharpness of this
oracle inequality by considering the setting of Audibert and Tsybakov [2007,
Section 3]: Theorem 3.4 shows that Agghoo applied to a well-chosen family
of classifiers yields a minimax-adaptive procedure —hence, optimal in worst-
case. Finally, Section 4 is a numerical study of the performance of Agghoo,
on synthetic and real data sets, with two different kinds of selection problems.
It illustrates that Agghoo actually performs much better than hold-out, and
even better than CV —provided its parameters are well-chosen. When choosing
among decision trees, the prediction performance of Agghoo is much better than
the one of CV —for the same computational cost—, which illustrates the strong
interest of using Agghoo when the choice among competing learning rules is
“unstable”. Based upon our experiments, we also give in Section 4 some guide-
lines for choosing Agghoo’s parameters: the training set size and the number of
data splits.

2 Setting and definitions

2.1 Supervised classification

Consider the supervised classification problem where a sample (X1, Y1), . . .,
(Xn, Yn) ∈ X×Y is given, with X any measurable space and Y = {0, . . . ,M−1}
for some integer M ≥ 2. The goal is to build a classifier —that is, a measur-
able map f : X → Y— such that, for any new observation (X,Y ), f(X) is
a good prediction for Y . Throughout the paper, (X1, Y1), . . . , (Xn, Yn), (X,Y )
are assumed independent with the same distribution P . Let F denote the set
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of classifiers. The quality of any classifier f ∈ F is measured by its risk

R(f) = P(X,Y )∼P

(
Y 6= f(X)

)

and any optimal classifier f∗ ∈ argminf∈F R(f) is called a Bayes classifier
[Devroye et al., 1996]. We also define the excess risk of f ∈ F by ℓ(f∗, f) =
R(f)−R(f∗) = R(f)− inff∈F R(f) ≥ 0.

Since we only have access to P through the data Dn := (Xi, Yi)1≤i≤n, a
classifier is built from data, thanks to a classification rule G : ∪k≥1(X ×Y)k →
F , which maps a sample (of any size) into a classifier.

2.2 Selection of classification rules by cross-validation

A generic situation is when a family G of classification rules is given, and not
only a single rule, so that we have to select one of them —or to combine their
outputs. For instance, we can consider the family (GNN

k )k≥1 of nearest neighbors
classifiers when X is a metric space —the parameter k denoting the number of
neighbors—, or the family (GSVM

λ )λ∈[0,+∞) of support vector machine classifiers
for a given kernel on X —λ denoting the regularization parameter.

A common answer to this problem is to select one of these rules from data,
and cross-validation methods are a general tool for doing so. Let us briefly recall
these methods here; we refer the reader to the survey by Arlot and Celisse [2010]
for details and references, and to the paper by Arlot and Lerasle [2016] for the
most recent results.

For any non-empty B ⊂ {1, . . . , n}, define the corresponding sample and
empirical risk by

DB
n := (Xi, Yi)i∈B and ∀f ∈ F , R̂B(f) :=

1

|B|
∑

i∈B

1{f(Xi) 6=Yi} ,

respectively. Then, for any classification rule G, f̂G,B := G(DB
n ) is the (random)

classifier obtained by training G on the subsample of Dn indexed by B.
Given a non-empty subset T of {1, . . . , n} and some classification rule G,

the hold-out estimator of the risk of G is defined by HOT (G) := R̂T c(f̂G,T ). A

classifier f̂G,T is built from the training sample DT
n , then its quality is assessed

on the validation sample DT c

n . Note that HOT (G) depends on the sample Dn

even if this does not appear in the notation. Then, hold-out can be used for
selecting one rule among G, by minimizing HOT (G) over G ∈ G:

f̂ ho
G,T := Ĝho

G,T (D
T
n ), where Ĝho

G,T ∈ argmin
G∈G

HOT (G) . (1)

We call f̂ ho
G,T the hold-out classifier.

Hold-out depends on the arbitrary choice of a training set T , and is known
to be quite unstable, despite its good theoretical properties [Massart, 2007, Sec-
tion 8.5.1]. Therefore, practicioners often prefer to use cross-validation instead,
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which considers several training sets. Given a family T = {T1, . . . , TV } of train-
ing sets, the cross-validation risk estimator of any classification rule G is defined
by

CVT (G) =
1

V

V∑

j=1

HOTj
(G) ,

leading to the cross-validation classifier

f̂ cv
G,T := Ĝcv

G,T (Dn) where Ĝcv
G,T ∈ argmin

G∈G
CVT (G) . (2)

Depending on how T is chosen, this can lead to leave-one-out, leave-p-out, V -fold
cross-validation or Monte-Carlo cross-validation, among others [Arlot and Celisse,
2010].

2.3 Aggregated hold-out (Agghoo)

In this paper, we study another way to improve on the stability of hold-out
classifiers, by aggregating the hold-out classifiers f̂ ho

G,Tj
obtained from several

training sets T1, . . . , TV . Formally, the aggregated hold-out classifer (Agghoo)
is obtained by making a majority vote among them:

∀x ∈ X , f̂ag
G,T (x) ∈ argmax

y∈Y

1

V

V∑

j=1

1{
f̂ ho
G,Tj

(x)=y
} . (3)

Compared to cross-validation classifiers defined by Eq. (2), we reverse the
order between aggregation (majority vote or averaging) and minimization of the
risk estimator. To the best of our knowledge, Agghoo has not appeared before
in the literature. The closest procedures we found are “K-fold averaging cross-
validation” (ACV) proposed by Jung and Hu [2015] for linear regression, and
“efficient K-fold cross-validation” (EKCV) proposed by Jung [2016] for high-
dimensional regression. The main difference with Agghoo is that ACV and
EKCV average the chosen parameters —the models for ACV, the regulariza-
tion parameters for EKCV—, whereas Agghoo averages the chosen classifiers.
This leads to completely different procedures for learning rules that are not
linear functions of their parameters. Even in the case of linear regression with
ACV, where the estimator is a linear function of the projection matrix onto the
model —which is the “parameter” averaged by ACV—, Agghoo would lead to

a different procedure since it averages the Ĝho

G,Tj
(D

Tj
n ) while ACV averages the

Ĝho

G,Tj
(Dn). In the general case, and in particular for classification, averaging

the classifiers Ĝho

G,Tj
(D

Tj
n ), which have been selected for their good performance

on the validation set T c
j , is more natural than averaging the Ĝho

G,Tj
(Dn) whose

performance has not been assessed on independent data.
Another related procedure —not explicitly studied in the literature— is sub-

agging applied to hold-out selection Dn 7→ Ĝho

G,T (D
T
n ), as defined by Eq. (1).
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Denoting by T1, . . . , TV the subsample sets chosen by the subagging step, and

by T ′
j the training set used by the hold-out applied to the subsample D

Tj
n ,

the subagged hold-out predictor is obtained by making a majority vote among

f̂
Ĝho

G,T ′
j

(D
Tj
n )

(D
Tj
n ) = Ĝho

G,T ′
j
(D

Tj
n ). Compared to Agghoo, the main difference is

that this aggregates predictors trained on a subsample of D
Tj
n —instead of the

entire D
Tj
n .

3 Theoretical guarantees

In this section, we make the following two assumptions on the training sets:

T1, . . . , TV ⊂ {1, . . . , n} are independent of Dn = (Xi, Yi)1≤i≤n , (H1)

|T1| = · · · = |TV | = n− p ∈ {1, . . . , n− 1} . (H2)

These assumptions are satisfied for the most classical cross-validation methods,
including leave-p-out, V -fold cross-validation (with p = n/V ) and Monte-Carlo
cross-validation [Arlot and Celisse, 2010].

General bound Our first theoretical result connects the performances of Ag-
ghoo and hold-out.

Proposition 3.1 Let G denote a collection of classification rules and T a col-
lection of training sets satisfying (H1)–(H2). The aggregated hold-out estimator

f̂ag
G,T defined by Eq. (3) and the hold-out estimator defined by Eq. (1) satisfy:

E
[
ℓ(f∗, f̂ag

G,T )
]
≤ ME

[
ℓ(f∗, f̂ ho

G,T1
)
]

and E
[
R(f̂ag

G,T )
]
≤ 2E

[
R(f̂ ho

G,T1
)
]
.

Proposition 3.1 is proved in supplementary material.
Up to the multiplicative constant M , the Agghoo predictor f̂ag

G,T performs
theoretically at least as well as the hold-out selected estimator. When the
number of classes M is small —for instance, in the binary case—, this guarantees
that Agghoo’s prediction error cannot be too large. Let us now use this general
bound to obtain oracle and minimax properties for Agghoo.

Oracle inequality in binary classification From now on, we focus on the
binary classification case, that is, M = 2. A classical assumption in this setting
is the so-called margin assumption [Mammen and Tsybakov, 1999], for some
β ≥ 0 and c ≥ 1:

∀h > 0, P
(∣∣2η(X)− 1

∣∣ ≤ h
)
≤ chβ where η(X) := P(Y = 1|X) ;

(MA)
η is called the regression function. Agghoo satisfies the following non-asymptotic
oracle inequality under (MA).
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Theorem 3.2 Let G denote a collection of classification rules and T a collection
of training sets satisfying (H1)–(H2). If β ≥ 0 and c ≥ 1 exist such that (MA)
holds true, we have:

E
[
ℓ(f∗, f̂ag

G,T )
]
≤ 3E

[
inf
G∈G

ℓ(f∗, f̂G,T1)

]
+

29c
1

β+2 log(e|G|)
p

β+1
β+2

.

Theorem 3.2 is proved in supplementary material. Note that the constant 3
in front of the oracle excess risk E[infG∈G ℓ(f∗, f̂G,T1)] can be made as close as
desired to 2, at the price of enlarging the constant 29 in the remainder term.

Theorem 3.2 shows that Agghoo performs as well as the best classification
rule in the collection G trained with n− p data (called the oracle classifier),

provided that the remainder term O(log(e|G|)/p β+1
β+2 ) can be neglected. This is

a strong result, since it shows that Agghoo attains the same learning rates as
the oracle classifier. In comparison, the results proved by Jung and Hu [2015]
on ACV are much weaker, since they do not allow to derive any rate for ACV,
except in the “parametric” setting.

Minimax rates We now address the main possible limitation of Theorem 3.2:
is the remainder term negligible in front of the oracle excess risk in some “inter-
esting” frameworks? To this end, we consider the setting of Audibert and Tsybakov
[2007, Section 3], which is an example where fast minimax rates are known under
the margin assumption. Let us briefly describe this setting. For any γ, L > 0,
let Σγ,L denote the class of functions with γ-Hölder semi-norm smaller than L (a
formal definition is given in supplementary material). The classes of probability
distributions that we’ll be interested in is defined as follows.

Definition 3.3 For any γ, L > 0, β ≥ 0 and c ≥ 1, Pγ,L,β,c denotes the set
of probability distributions P on R

d × {0, 1} such that (MA) holds true —with
parameters β, c—, the regression function η ∈ Σγ,L(R

d) and X has a density q
with respect to the Lebesgue measure satisfying:

1

L
1[0;1]d ≤ q(X) ≤ L1[0;1]d almost surely.

By Audibert and Tsybakov [2007, Theorem 3.5], the minimax rate of conver-

gence over Pγ,L,β,c is n− γ(1+β)
2γ+d if γβ ≤ d; this result is recalled in supplementary

material. When γβ < d, we have γ(1 + β)/(2γ + d) < (β + 1)/(β + 2), so the
remainder term in Theorem 3.2 can be neglected in front of the minimax rate
of convergence over Pγ,L,β,c, if G is a polynomial collection —that is, |G| ≤ nα

for some α ≥ 0— and if p ≥ δn with δ > 0.
As detailed by Audibert and Tsybakov [2007, Section 3], having γβ > d is

a strong constraint on P , hence we can leave it aside in the following without
losing too much. We can also remark that when L = +∞ —which removes
the condition on the density q of X—, Audibert and Tsybakov [2007, Section 4]

show that the minimax rate then is n− γ(1+β)
γ(2+β)+d —even when γβ ≥ d—, and this
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rate is always larger than the remainder term in Theorem 3.2 if G and p are
taken as previously.

Let us now explain how Agghoo can be used for building a minimax classifier,
simultaneously over all classes Pγ,L,β,c such that γβ < d. The construction
relies on a family of classification rules proposed by Audibert and Tsybakov
[2007, Definition 2.3]. For any ℓ ≥ 1 and h > 0, GLP

ℓ,h is a plug-in classification

rule based upon a local-polynomial Gaussian kernel estimator Q̂ℓ,h of η, where
ℓ is the polynomial degree and h is the kernel bandwidth. Then, GLP

⌊γ⌋,hn(γ,d)
is

minimax over Pγ,L,β,c, where hn(γ, d) is a well-chosen bandwidth. This result,
and the full definition of GLP

ℓ,h, are recalled in supplementary material. Its main
limitation is that the minimax rule depends on γ which is unknown; in other
words, it is not adaptive to the smoothness γ of the regression function. The
next theorem shows that Agghoo is a simple way to get rid of this issue.

Theorem 3.4 Let τ ∈ (0, 1) be fixed. For any n ≥ 1, let Tn = {T1, . . . , TV }
be a collection of training sets satisfying (H1)–(H2) and |T1| = ⌊τn⌋, for some
V ≥ 1 (possibly depending on n), and let us define the collection

GLP
n :=

(
GLP

ℓ, 1
k

)
1≤ℓ≤n,1≤k≤n

of classification rules, where GLP
l,h are defined above. Then, the Agghoo classifier

f̂ag
GLP
n ,Tn

defined by Eq. (3) is minimax over classes Pγ,L,β,c simultaneously for

all γ, L, β, c such that γβ < d.

Theorem 3.4 is proved in supplementary material. It shows that Agghoo applied
to a well-chosen collection of local polynomial estimators defined by Audibert and Tsybakov
[2007] yields a minimax adaptive classifier. Let us emphasize that minimax
adaptivity is a strong theoretical property.

Of course, Agghoo is not the only way to obtain such an adaptivity result
—for instance, hold-out selection is sufficient to get it, as can be seen by taking
V = 1 in Theorem 3.4—, even if we have not found such a minimax-adaptive
statement for this problem in the literature. The main goal of Theorem 3.4 is
to illustrate that our oracle inequality (Theorem 3.2, from which the minimax
adaptivity of Agghoo derives) is sharp, and that Agghoo can lead to optimal
classifiers, in one non-trivial setting at least.

4 Numerical experiments

This section illustrates the performance of Agghoo and CV on synthetic and
real data.

4.1 k-nearest neighbors classification

We first consider the collection GNN = (GNN
k )k≥1, k odd of nearest-neighbors

classifiers —assuming k is odd for avoiding ties— on the following binary clas-
sification problem.
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Experimental setup Data (X1, Y1), . . . , (Xn, Yn) are independent, with Xi

uniformly distributed over X = [0, 1]2 and

P(Yi = 1|Xi) = σ

(
g(Xi)− b

λ

)
where σ(u) =

1

1 + e−u
, g(u, v) = e−(u2+v)3+u2+v2 ,

b = 1.18 and λ = 0.05; the parameters have been chosen to get a challeng-
ing but feasible problem. The Bayes classifier is f∗ : x 7→ 1g(x)≥b and the
Bayes risk, computed numerically using the scipy.integrate python library, is
approximately equal to 0.242. Agghoo and CV are used with the collection
GNN with training sets T1, . . . , TV that are chosen independently and uniformly
among the subsets of {1, . . . , n} with cardinality ⌊τn⌋, for different values of
τ and V ; hence, CV corresponds to what is usually called “Monte-Carlo CV”
[Arlot and Celisse, 2010]. Each algorithm is run on 1000 independent samples
of size n = 500, and independent test samples of size 1000 are used for esti-
mating the 0–1 excess risks ℓ(f∗, f̂ag

GNN,T ), ℓ(f∗, f̂ cv
GNN,T ) and the oracle excess

risk infG∈GNN ℓ(f∗, G(Dn)). Expectations of these quantities are estimated by
taking an average over the 1000 samples; we also compute standard deviations
for these estimates, which are not shown on Figure 1 since they are all smaller
than 3.6% of the estimated value, so that all visible differences on the graph are
significant.

Results are shown on Figure 1. The performance of Agghoo strongly depends
on both parameters τ and V . Increasing V improves significantly the perfor-
mance of the resulting estimator. However, most of the improvement seems to
occur between V = 2 and V = 10, so that taking V much larger seems useless, a
behaviour previously observed for CV [Arlot and Lerasle, 2016]. As a function
of τ , the performance of Agghoo is U-shaped although not symmetric around
1/2. It seems that τ ∈ [0.5, 0.8] yields better performances, while taking τ close
to 0 or 1 should be avoided (at least for V ≤ 20). Taking V large enough, say
V = 10, makes the choice of τ less crucial: a large region of values of τ yield
(almost) optimal performance. Similar conclusions can be drawn for CV, with
the major difference that its performance depends much less on V : only V = 2
appears to be significantly worse than V ≥ 5.

Let us now compare Agghoo with the hold-out (that is, V = 1) and CV. For a
given τ , Agghoo and CV are much better than the hold-out; there is no surprise
here, considering several data splits is always useful. For fixed (τ, V ), Agghoo
does significantly better than CV if V ≥ 10, worse if V = 2, and they yield
similar performance for V = 5. Overall, if we can afford the computational cost
of V = 10 data splits, Agghoo with optimized parameters (V = 10, τ ∈ [0.5, 0.8])
clearly improves over CV with optimized parameters (V = 10, τ = 0.7). This
advocates for the use of Agghoo instead of CV, unless we have to take V < 5
for computational reasons.
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4.2 CART decision trees

In a second experiment, we consider the CART classification trees of Breiman et al.
[1984].

Experimental setup Data samples of size n = 500 are generated, following
an experiment of Genuer et al. [2010, Section 2]: Y ∼ B(0.5) and ε ∼ B(0.7)
are independent Bernoulli variables, X = R

d with d ≥ 6 and, given (Y, ε),
the coordinates X(j), j = 1, . . . , d of X are independent with the following
distribution. When ε = 1, X(j) ∼ N (jY, 1) for j ∈ {1, 2, 3} and X(j) ∼ N (0, 1)
otherwise. When ε = 1, X(j) ∼ N ((j − 3)Y, 1) for j ∈ {4, 5, 6} and X(j) ∼
N (0, 1) otherwise. We estimate numerically that the Bayes risk is 0.041.

Agghoo and 10-fold CV are used with the family (GCART
α )α>0 of pruned

CART classifiers, with training sets Tj chosen as in Section 4.1. Let us detail
how GCART

α is defined. For any α > 0 and any sample Dn, the α-pruned CART
classifier GCART

α (Dn) is defined as the partitioning classifier built on the tree

t̂α,n = argmin
t⊂t̂

{
R̂(f̂t) + α|Lt|

}
,

where t̂ denotes the fully grown CART tree, f̂t is the partitioning classifier
associated with any tree t, R̂ = R̂{1,...,n} is the empirical risk on the whole data
set Dn and |Lt| is the number of leaves (terminal nodes) of the tree t. We also
consider random forests (RF), which are a natural competitor to Agghoo applied
on pruned CART trees, using the R package randomForest [Liaw and Wiener,
2002] with default values for all parameters. Since RF typically build hundred of
trees —500 by default—, whereas Agghoo only requires to build around V = 10
trees, we also consider RF with ntree = 10 trees (and default values for all
other parameters). The rest of the experimental protocole is the same as in
Section 4.1, in particular we consider 1000 samples of size n = 500, and risks
are estimated with test samples of size 1000. Standard deviations of our risk
estimations are not shown since they never exceed 2.5% of the excess risk.

Results are shown on Figure 2, with d = 7 (only one noise variable) and
d = 50 (large majority of noise variables). Concerning Agghoo and CV, the
conclusions are similar to the k-NN case, studied in Section 4.1. This is why we
only report here their performances for V = 10. Let us only notice that Agghoo
with τ = 0.8 and V = 10 performs almost as well as the oracle, which is a
strong competitor since it uses the knowledge of data distribution P . The main
novelty here is the comparison to RF: RF with 500 trees clearly outperform all
other procedures (and the oracle!), whereas RF with 10 trees works well only
for d = 7. We explain this fact by noticing that RF builds trees with more
randomization than Agghoo (especially when many variables are pure noise, in
the d = 50 case), so that individual trees (and small forests) perform worse
than hold-out selected classifiers, whereas a large enough forest performs much
better. Therefore, when such a specific algorithm is available, our advice is to

10
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excess risk is 0.0034± 0.0004
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Table 1: Results for the breast-cancer Wisconsin dataset, CART-based classi-
fiers.

Procedure 0–1 risk in %

10-fold CV 6.66± 0.06
Agghoo (V = 10, τ = 0.8) 5.36± 0.05

Procedure 0–1 risk in %

Oracle 5.08± 0.04
RF (ntree = 10) 3.68± 0.04
RF (ntree = 500) 3.01± 0.03

prefer it to Agghoo; but in the general case, it might be difficult to add some
randomization individual classifiers, so that Agghoo remains useful. Agghoo
can also be interesting when we cannot afford to aggregate more than a few
tens of classifiers.

Real-data experiment We also consider the same procedures on the breast-
cancer Wisconsin dataset from UCI Machine Learning Repository [Lichman,
2013], for which n = 699 and d = 10. We use samples of size 500 and the
remaining 199 data as test samples. The split between sample and test sample
is done 1000 times, so that we can provide error bars for the estimated risks
reported in Table 1. The conclusion is similar to what has been obtained on
synthetic data with d = 7, which confirms our interpretation: when most vari-
ables are relevant, RF’s individual trees are less randomized so that RF can
perform well even with a small number of trees.

5 Discussion

The theoretical and numerical results of the paper show that Agghoo can be used
safely in supervised classification with the 0–1 loss, at least when its parameters
are properly chosen —V ≥ 10 and τ ∈ [0.5, 0.8] seem to be safe choices. On the
theoretical side, Agghoo performs at least as well as the hold-out and it satisfies
some sharp oracle inequality. Experiments show that Agghoo actually performs
much better, improving over cross-validation except when the number of data
splits is strictly smaller than 5, especially when basis classifiers are unstable
—like decision trees. Proving theoretically that Agghoo can improve over CV
is an exciting, but challenging, open problem that we would like to address in
future works.

So, for the same computational cost, Agghoo —with properly chosen pa-
rameters V, τ— should be preferred to CV, unless the final classifier has to be
interpretable (which makes selection better than aggregation). Yet, Agghoo and
CV only are general-purpose tools. For some specific families of classifiers, bet-
ter procedures can be used. For instance, when one wants a classifier built upon

12



decision trees, random forests —with sufficiently many trees if there are many
irrelevant variables— certainly are a better choice, as shown by our experiments.

Our results can be extended in several ways. First, our theoretical bounds
directly apply to subagging hold-out, since it also makes a majority vote among
hold-out selected estimators. The difference is that in subagging the training set
size is n− p− q and the validation set size is q, for some q ∈ {1, . . . , n− p− 1},
leading to slightly worse bounds than the ones we obtained for Agghoo (not
much if q is well chosen). Oracle inequalities and minimax results can also be
obtained for Agghoo in other settings; this paper focuses on two such results
for length reasons only. Second, Agghoo can be extended to other learning
problems, such as regression and density estimation, replacing the majority
vote by an average. Proposition 3.1 then holds true with M replaced by 1 if the
loss is convex —for instance, for the least-squares loss—, by Jensen’s inequality.
Then, Theorem 3.2 could be proved based upon the general results of Massart
[2007, Section 8.5]. Third, Agghoo might be improved by weighting the votes
of the different hold-out classifiers, as suggested by Jung [2016].

References

S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.
Statistics Surveys, 4:40–79, 2010.

S. Arlot and M. Lerasle. Choice of V for V -fold cross-validation in least-squares density
estimation. Journal of Machine Learning Research (JMLR), 17(208):1–50, 2016.

J.-Y. Audibert. Fast learning rates in statistical inference through aggregation. The
Annals of Statistics, 37(4):1591–1646, 2009.

J.-Y. Audibert and A. Tsybakov. Fast learning rates for plug-in classifiers. Annals of
Statistics, 35(2):608–633, 2007.

G. Biau and L. Devroye. Lectures on the Nearest Neighbor Method. Springer Series in
the Data Sciences. Springer, 2015.

G. Biau and E. Scornet. A random forest guided tour. TEST, 25(2):197–227, 2016.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books
and Software, Belmont, CA, 1984.

P. Bühlmann and S. van de Geer. Statistics for high-dimensional data. Springer Series
in Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.

P. Bühlmann and B. Yu. Analyzing bagging. The Annals of Statistics, 30(4):927–961,
2002.

13



K. P. Burnham and D. R. Anderson. Model Selection and Multimodel Inference.
Springer-Verlag, New York, second edition, 2002. A practical information-theoretic
approach.

L. P. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition,
volume 31 of Applications of Mathematics (New York). Springer-Verlag, New York,
1996.

T. G. Dietterich. Ensemble methods in machine learning. In International workshop
on multiple classifier systems, pages 1–15. Springer, 2000.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1,
part 2):119–139, 1997. EuroCOLT ’95.

R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random forests.
Pattern Recognition Letters, 31(14):2225–2236, 2010.

Y. Jung. Efficient tuning parameter selection by cross-validated score in high dimen-
sional models. International Journal of Mathematical, Computational, Physical,
Electrical and Computer Engineering, 10(1):19 – 25, 2016.

Y. Jung and J. Hu. A K-fold averaging cross-validation procedure. Journal of Non-
parametric Statistics, 27(2):167–179, 2015.

G. Lecué. Optimal rates of aggregation in classification under low noise assumption.
Bernoulli, 13(4):1000–1022, 2007.

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):
18–22, 2002. URL http://CRAN.R-project.org/doc/Rnews/.

M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. The Annals of
Statistics, 27(6):1808–1829, 1999.

P. Massart. Concentration Inequalities and Model Selection, volume 1896 of Lecture
Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer
School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword
by Jean Picard.

A. Nemirovski. Topics in Non-parametric Statistics, volume 1738 of Lecture Notes in
Math. Springer, Berlin, 2000.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

I. Steinwart and A. Christmann. Support vector machines. Information Science and
Statistics. Springer, New York, 2008.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B. Methodological, 58(1):267–288, 1996.

14

http://CRAN.R-project.org/doc/Rnews/
http://archive.ics.uci.edu/ml


A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals
of Statistics, 32(1):135–166, 2004.

Y. Yang. Adaptive regression by mixing. Journal of the American Statistical Associ-
ation, 96(454):574–588, 2001.

15



A Proof of Proposition 3.1

The proof immediately follows from the following convexity-type property of the
majority vote, applied to (f̂ ho

G,Tj
)1≤j≤V , since E

[
ℓ(f∗, f̂ ho

G,Tj
)
]

and E
[
R(f̂ ho

G,Tj
)
]

do

not depend on j under assumptions (H1)–(H2) (they only depend on Tj through
its cardinality n− p).

Proposition A.1 Let (f̂i)1≤i≤V denote a finite family of classifiers and let f̂mv

be some majority vote rule: ∀x ∈ X , f̂mv(x) ∈ argmaxm∈Y |{i ∈ [V ] : f̂i(x) =
m}|. Then,

ℓ(f∗, f̂mv) ≤ M

V

V∑

i=1

ℓ(f∗, f̂i) and R(f̂mv) ≤ 2

V

V∑

i=1

R(f̂i) .

Proof For any y ∈ Y, define ηy : x → P[Y = y|X = x]. Then, for any f ∈ F ,
R(f) = E[1 − ηf(X)(X)] hence f∗(X) ∈ argmaxy∈Y ηy(X) and

ℓ(f∗, f) = E

[
max
y∈Y

ηy(X)− ηf(X)(X)
]
= E

[
ηf∗(X)(X)− ηf(X)(X)

]
.

We now fix some x ∈ X and define Cx(y) = {i ∈ [V ] : f̂i(x) = y} and Cx =
maxy∈Y |Cx(y)|. Since CxM ≥∑y∈Y |Cx(y)| = V , it holds Cx ≥ V/M . On the

other hand, by definition of f̂mv,

1

V

V∑

i=1

[
ηf∗(x)(x) − ηf̂i(x)(x)︸ ︷︷ ︸

≥0

]
≥ Cx

V

(
ηf∗(x)(x) − ηf̂mv(x)(x)

)
≥ 1

M

(
ηf∗(x)(x) − ηf̂mv(x)(x)

)
.

Integrating over x (with respect to the distribution of X) yields the first bound.
For the second bound, fix x ∈ X and define Cx(y) and Cx as above. Let

y ∈ Y be such that f̂mv(x) 6= y. Since y occurs less often than f̂mv(x) among

f̂1(x), . . . , f̂V (x), we have |Cx(y)| ≤ V/2. Therefore,

1

V

V∑

i=1

1{f̂i(x) 6=y} =
V − |Cx(y)|

V
≥ 1

2
.

Thus

f̂mv(x) 6= y =⇒ 1

V

V∑

i=1

1{f̂i(x) 6=y} ≥ 1

2
.

Hence, for any y ∈ Y,

1{f̂mv(x) 6=y} ≤ 2

V

V∑

i=1

1{f̂i(x) 6=y} .

Taking expectations with respect to (x, y) yields R(f̂mv) ≤ 2V −1
∑V

i=1 R(f̂i).
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B Proof of Theorem 3.2

The proof relies on a result by Massart [2007, Eq. (8.60), which is itself a
consequence of Corollary 8.8], which holds true as soon as

∀f ∈ F , Var
(
1{f(X) 6=Y } − 1{f∗(X) 6=Y }

)
≤
[
w
(√

ℓ(f∗, f)
)]2

(4)

for some nonnegative and nondecreasing continuous function w on R
+, such

that x 7→ w(x)/x is nonincreasing on (0,+∞) and w(1) ≥ 1.
Let us first prove that assumption (4) holds true. On one hand, for any

f ∈ F ,

Var
(
1{f(X) 6=Y } − 1{f∗(X) 6=Y }

)
≤ E[|1{f(X) 6=Y } − 1{f∗(X) 6=Y }|2]

= E[1{f(X) 6=f∗(X)}] = E
[
|f(X)− f∗(X)|] . (5)

On the other hand, since we consider binary classification with the 0–1 loss, for
any f ∈ F and h > 0,

ℓ(f∗, f) = E
[
|2η(X)− 1| · |f(X)− f∗(X)|

]
by Devroye et al. [1996, Theorem 2.2]

≥ hE
[
|f(X)− f∗(X)|1{|2η(X)−1|≥h}

]

≥ hE
[
|f(X)− f∗(X)| − 1{|2η(X)−1|<h}

]
since |f − f∗| ≤ 1

≥ hE
[
|f(X)− f∗(X)|

]
− chβ+1 by (MA).

This lower bound is maximized by taking

h = h∗ :=

(
E
[
|f(X)− f∗(X)|

]

c(β + 1)

) 1
β

,

which belongs to [0, 1] since c ≥ 1 and E
[
|f(X)− f∗(X)|

]
≤ 1. Thus, we obtain

ℓ(f∗, f) ≥ h∗
β

β + 1
E
[
|f(X)− f∗(X)|

]
=

β

(β + 1)(β+1)/βc1/β
E
[
|f(X)− f∗(X)|

](β+1)/β

hence Eq. (5) leads to

Var
(
1{f(X) 6=Y } − 1{f∗(X) 6=Y }

)
≤ E

[
|f(X)− f∗(X)|

]
≤ β + 1

ββ/(β+1)
c

1
β+1 ℓ(f∗, f)

β
β+1 ≤ 2c

1
β+1 ℓ(f∗, f)

β
β+1 .

Therefore, Eq. (4) holds true with w(u) =
√
c1u

β
β+1 and c1 = 2c

1
β+1 , which

statisfies the required conditions. So, by Massart [2007, Eq. (8.60)], for any
θ ∈ (0, 1),

E
[
ℓ(f∗, f̂ ho

G,T ) |DT
n

]
≤ 1 + θ

1− θ
inf
G∈G

ℓ(f∗, f̂G,T )+
δ2∗

1− θ

[
2θ + log(e|G|)

(
1

3
+ θ−1

)]

(6)
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where δ∗ is the positive solution of the fixed-point equation w(δ∗) =
√
pδ2∗, that

is δ2∗ = (c1/p)
β+1
β+2 . Taking expectations with respect to the training data DT

n ,
we obtain

E
[
ℓ(f∗, f̂ ho

G,T )
]
≤ 1 + θ

1− θ
E

[
inf
G∈G

ℓ(f∗, f̂G,T )

]
+

2c
1

β+2

1− θ

2θ + log(e|G|)
(
1
3 + θ−1

)

p
β+1
β+2

.

Now, by Proposition 3.1,

E
[
ℓ(f∗, f̂ag

G,T )
]
≤ 2E

[
ℓ(f∗, f̂ ho

G,T1
)
]
≤ 2

1 + θ

1− θ
E

[
inf
G∈G

ℓ(f∗, f̂G,T )

]
+
4c

1
β+2

1− θ

2θ + log(e|G|)
(
1
3 + θ−1

)

p
β+1
β+2

.

Taking θ = 1/5 leads to the result.

C Proofs of minimax results

C.1 Formal framework and result

To begin with, let us recall the definition of minimax optimality.

Definition C.1 Let P be a class of probability distributions over X × Y. A
classifier f̂n is said to be minimax over the class P when its maximal excess loss
on P satisfies

sup
P∈P

EP

[
ℓ(f∗

P , f̂n)
]
≤ κ(P) inf

G
sup
P∈P

EP [ℓ(f∗
P , G(Dn)))] .

Any sequence un such that u−1
n infG supP∈P EP [ℓ(f∗

P , G(Dn))] is bounded and
bounded away from 0 is called a minimax rate of convergence.

We now define formally Σγ,L.

Definition C.2 For any k = (k1, ..., kd) ∈ N
d, any x = (x1, . . . , xd) ∈ R

d and
any sufficiently smooth function f : Rd → R, let

|k| =
d∑

i=1

ki, k! =

d∏

i=1

ki!, Dkf(x) =
∂|k|

∂xk1
1 ...∂xkd

d

f(x1, ..., xd), xk =

d∏

i=1

xki

i .

For any α ∈ N, any Cα-function f and any point x ∈ R
d, let

Qα
xf(y) =

∑

k:|k|≤α

Dkf(x)

k!
(y − x)k .

The class of γ-smooth functions with constant L is defined as

Σγ,L(R
d) =

{
f ∈ C⌊γ⌋

(
R

d,R
)
: ∀x, y ∈ R

d, |f(y)−Q⌊γ⌋
x (y)| ≤ L ‖y − x‖γ

}
.
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Let us conclude this section with the definition of the minimax classification
rules.

Estimators achieving the minimax rates over the classes Pγ,L,β,c were ob-
tained by Audibert and Tsybakov [2007]. Let us recall this construction.

Definition C.3 Let ℓ ∈ N, h > 0 and let K denote the standard gaussian
Kernel. For any polynomial Q, let

Ch,x(Q) =

n∑

i=1

(Yi −Q(Xi − x))2K

(
Xi − x

h

)
.

Denote by
Q̂ℓ,h,x = argmin

Q:degQ≤ℓ
Ch,x(Q)

if the minimum exists and is unique and Q̂ℓ,h,x = 0 otherwise.
Let also B̄ be the matrix (Bs1,s2)|s1|,|s2|≤⌊γ⌋ where

Bs1,s2 =
1

nhd

n∑

i=1

(
Xi − x

h

)s1+s2

K

(
Xi − x

h

)
.

Let λmin = sup{λ ∈ R | ∀u ∈ R
d
∥∥B̄u

∥∥ ≥ λ ‖u‖}. The local polynomial rule with
degree ℓ and bandwidth h is defined by GLP

ℓ,h,x(Dn) : x 7→ 1{η̂ℓ,h(x)≥
1
2}, where

η̂ℓ,h(x) =

{
Q̂ℓ,h,x(0) if λmin ≥ (log n)−1

0 otherwise
.

Theorem C.4 The rate un = n− γ(1+β)
2γ+d is minimax over the classes Pγ,L,β,c,

for any β ≥ 0, γ > 0, L > 0, c ≥ 1 and γβ < d.

Furthermore, if n
1

2γ+dhn ∈ [τ, τ ′] for some τ ′ > τ > 0, the estimator
GLP

⌊γ⌋,hn
(Dn) is minimax over Pγ,L,β,c for any L > 0, c > 0, γβ < d.

Proof The lower bound is proved in [Audibert and Tsybakov, 2007, Theorem
3.5].
For the upper bound, we shall denote by C1, C2, C3 functions of the parameters
γ, L, a, b, d but neither h nor n which may vary from line to line. Eq (3.7) in
[Audibert and Tsybakov, 2007, Theorem 3.2] implies that

sup
P∈Pγ,L,β,c

P (|η̂⌊γ⌋,h(x)− η(x)| ≥ δ) ≤ C1 exp(−C2nh
dδ2)

for h, δ such that 0 < h ≤ L2 and C3h
γ ≤ δ.

Then our choice of hn yields, for any δ ≥ C3h
γ
n,

sup
P∈Pγ,L,β,c

P (|η̂⌊γ⌋,hn
(x) − η(x)| ≥ δ) ≤ C1 exp(−C2n

2γ
2γ+d δ2) . (7)
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Moreover, for δ < C3h
γ
n,

nhd
nδ

2 ≤ C3nh
2γ+d
n ≤ C3b

2γ+d ,

therefore, inequality (7) holds for all δ > 0 and [Audibert and Tsybakov, 2007,
Lemma 3.1] concludes the proof.

C.2 Proof of Theorem 3.4

Let kn = ⌊n 1
2γ+d ⌋ and hn = 1/kn. Then for n > d, the risk of the oracle is

bounded from above by

E

[
inf

G∈GLP
n

ℓ(f∗, f̂G,T1)

]
≤ inf

G∈GLP
n

E[ℓ(f∗, f̂G,T1)] ≤ E
[
ℓ(f∗, f̂GLP

⌊γ⌋,hn
,T1

)
]
.

Moreover,

1 = ⌊n 1
2γ+d ⌋hn ≤ n

1
2γ+dhn ≤ (⌊n 1

2γ+d ⌋+ 1)hn ≤ 1 + hn ≤ 2 .

Therefore 1 ≤ n
1

2γ+dhn ≤ 2 and, by Theorem C.4 and the fact that n − p ≥
τn − 1 ≥ τn/2 for n ≥ 2/τ , there exist constants C· depending on various
parameters indicated in subscript, but not on n such that

E[ℓ(f∗, f̂GLP
⌊γ⌋,hn

,T1
)] ≤ Cγ,L,β,c(n− pn)

− γ(1+β)
2γ+d ≤ Cγ,L,β,c,τn

−γ(1+β)
2γ+d .

By Theorem 3.2, there exists a constant Cc,β such that

E
[
ℓ(f∗, f̂ag

GLP
n ,Tn

)
]
≤ Cc,β


E
[
ℓ(f∗, f̂GLP

⌊γ⌋,hn
,T1

)
]
+

log(e|GLP
n |)

p
β+1
β+2
n


 .

Since pn ≥ (1− τ)n and |GLP
n | = n2, it follows that

E
[
ℓ(f∗, f̂ag

GLP
n ,Tn

)
]
≤ Cγ,L,β,c,τn

−
γ(1+β)
2γ+d + Cc,β

log n

n
β+1
β+2

. (8)

Finally, since γβ < d, (β + 1)/(β + 2) > [γ(1 + β)]/[2γ + d], and therefore

logn

n
β+1
β+2

≤ Cβ,γ,dn
−

γ(1+β)
2γ+d .

It follows from Eq. (8) that the Agghoo estimator is minimax.

20


	Introduction
	Setting and definitions
	Supervised classification
	Selection of classification rules by cross-validation
	Aggregated hold-out (Agghoo)

	Theoretical guarantees
	Numerical experiments
	k-nearest neighbors classification
	CART decision trees

	Discussion
	Proof of Proposition 3.1
	Proof of Theorem 3.2
	Proofs of minimax results
	Formal framework and result
	Proof of Theorem 3.4


