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A phenomenology of magnetic chiral damping is proposed in the context of magnetic materi-
als lacking inversion symmetry breaking. We show that the magnetic damping tensor adopts a
general form that accounts for a component linear in magnetization gradient in the form of Lif-
shitz invariants. We propose different microscopic mechanisms that can produce such a damping in
ferromagnetic metals, among which spin pumping in the presence of anomalous Hall effect and an ef-
fective ”s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping
in terms of domain wall motion is investigated in the flow and creep regimes. These predictions have
major importance in the context of field- and current-driven texture motion in noncentrosymmetric
(ferro-, ferri-, antiferro-)magnets, not limited to metals.

PACS numbers: 75.40.Gb,76.60.Es,75.60.Ch

Understanding energy relaxation processes of fast dis-
sipative systems at the nanoscale is of paramount im-
portance for the smart design and operation of ultra-
fast nano devices. In this respect, magnetic heterostruc-
tures have drawn increasing enthusiasm in the past ten
years with the optical control of magnetic order at the
sub-picosecond scale [1, 2] and the promises of ultra-
fast domain wall motion in asymmetrically grown metal-
lic multilayers [3]. In fact, the observation of ultrahigh
current-driven velocity in ultrathin multilayers with po-
tentially strong disorder has come as a surprise and trig-
gered intense investigations on the physics emerging from
symmetry breaking in strong spin-orbit coupled magnets
[4, 5]. These studies have unravelled the essential role
played by Dzyaloshinskii-Moriya interaction [6, 7] (DMI),
an antisymmetric exchange interaction that emerges in
magnets lacking spatial inversion symmetry. This in-
teraction forces neighboring spin to align perpendicular
to each other and competes with the ferromagnetic ex-
change resulting in distorted textures such as spin spirals
or skyrmions, as observed in bulk inversion asymmetric
magnets [8] (B20, ZnS or pyrochlores three-dimensional
crystals) as well as at the interface of transition met-
als [9, 10] (Mn/W, Fe/W, Pt/Co etc.). In perpendic-
ularly magnetized domain walls, this interaction favors
Néel over Bloch configuration [11–13], a key ingredient
explaining most of the thought-provoking observations
reported to date [14]. The dynamics of spin waves can
also be modified by DMI, which distorts the energy dis-
persion [15] and results in a relaxation that depends on
the propagation direction [16, 17].

Another crucial aspect of fast dynamical processes is
the nature of the energy relaxation. In the hydrodynamic
limit of magnetic systems, this dissipation is written in
the form of a non-local tensor [see Eq. (1)] whose complex
physics is associated with a wide variety of mechanisms

such as many-magnon scattering [18] and itinerant elec-
tron spin relaxation [19]. Since the energy relaxation rate
of spin waves depends on their wave vector (the higher
the spin wave energy, the stronger its dissipation), the
magnetic damping of smooth magnetic textures (i.e. in
the long wavelength limit q) depends on the inverse of the
exchange length, q ∼ 1/∆. In inversion symmetric sys-
tems, this results in a correction to the magnetic damping
of the order of 1/∆2 [20–22]. However, in magnetic sys-
tems lacking inversion symmetry such as the systems in
which DMI is observed (i.e. B20 and ZnS crystals and
transition metal interfaces), one can reasonably expect
that the energy dissipation becomes chiral, namely that a
component linear in the magnetization gradient emerges
thereby fulfilling Neumann’s principle stating that ”any
physical properties of a system possesses the symmetry
of that system”.
In the present work, we phenomenologically explore

the nature of the magnetic damping in noncentrosym-
metric magnets and reveal that spatial inversion sym-
metry breaking results in the emergence of such a chiral
damping that vanishes when the symmetry of inversion is
recovered. The inclusion of such a chiral damping in the
equation of motion of magnetic textures opens appealing
avenues to solve recent puzzling observations that can
not be fully accounted for with DMI only.
Symmetry considerations - The equation of motion

governing the dynamics of continuous magnetic textures
is given by the extended Landau-Lifschitz-Gilbert (LLG)
equation

∂tm = −γm×Heff +m(r)×

∫

dr′α(r, r′)∂tm(r′), (1)

where m(r, t) = M(r, t)/Ms is a unit vector in the direc-
tion of the magnetization M(r, t), γ is the gyromagnetic
ratio, Heff is the effective field incorporating the external
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applied, anisotropy, exchange, DMI and demagnetizing
fields, and α(r, r′) is the magnetic damping expressed as
a non-local second-rank tensor. In the limit of smooth
textures, the tensorial components of the damping is a
function of the magnetization direction and of its spatial
gradients, αij = αij(m,∇m). Performing an expansion
up to the first order in magnetization gradient, one ob-
tains (see also [23])

αij = αij
0 +

∑

lm

Kij
lmmlmm +

∑

klm

Lij
klmmk∂lmm. (2)

The first term is the isotropic damping, the second term
(∼ Kij

lm) amounts for the anisotropy arising from the
crystalline environment and the third term is the chiral
damping. It should be noted that only terms bilinear in
magnetization direction mi, i.e. even under time rever-
sal symmetry, are retained in the expansion. Since the
focus of this study is on the chiral nature of magnetic
dissipation, we ignore the anisotropy term (∝ Kij

lm) at
this stage. Spatial inversion symmetry breaking imposes
the third term of Eq. (2) to reduce to a sum of Lif-
shitz antisymmetric invariants, ∝ mk∂lmm − mm∂lmk

(i.e. Lij
klm = −Lij

mlk). To illustrate the general form of
this chiral damping, we consider two prototypical sys-
tems. In the case of a cubic three-dimensional system
with bulk spatial inversion symmetry breaking (e.g. B20
or ZnS crystals), all the three directions (x , y and z) are
equivalent, and the chiral damping adopts the general
form

αij = αij
0 + αij

3d∆m · [∇×m], (3)

where ∆ defines the characteristic exchange length. In a
two-dimensional system with interfacial symmetry break-
ing along z, i.e. invariant under C∞z rotation symmetry,
the damping takes the form

αij = αij
0 + αij

z ∆m · [(z ×∇)×m]. (4)

As dictated by Neumann’s principle, the chiral damp-
ing possesses the same symmetry as DMI given by Na-
gaosa et. al. [8] and Thiaville et. al. [14], respectively.
In addition, Onsager reciprocity imposes that αij = αji.
Therefore, using simple symmetry arguments, one can
construct a chiral damping up to linear order in mag-
netization gradient. These considerations suggest that
such a damping is present in noncentrosymmetric (ferro-
, ferri- and antiferro-)magnets in general, not limited to
metals. However, this phenomenology does not provide
information regarding the strength of the chiral damping
itself, the relative values of the off-diagonal tensor ele-
ments (∼ αi6=j) compared to the diagonal ones (∼ αii)
nor does it indicate the underlying physical mechanisms
responsible for it. Let us now turn our attention towards
the microscopic origin of such chiral damping.
Microscopic origin of the chiral damping - In this work,

we focus our attention on magnetic textures in metals

where the magnetic damping is driven by the spin relax-
ation of itinerant electrons [19]. In ferromagnets with in-
terfacial Rashba spin-orbit coupling, the magnetic damp-
ing adopts the form of a tensor linear in both magneti-
zation gradient and Rashba strength, as derived by Kim
et al. [24] and Wang et al. [25]. In this model, the
magnetic dissipation is mediated by the same spin-orbit
coupled itinerant electrons which mediate the DMI on
the local magnetic moment (see e.g. Ref [26]). Besides
this effect, we here propose two additional mechanisms
that can contribute to the chiral damping.
The first mechanism arises from the interplay between

spin motive force and anomalous Hall effect. It has been
recently shown that time-dependent spin textures gen-
erate a local spin current [27], Js

i = gµB h̄G0

4e2 ∂tm × ∂im,
flowing along the direction of the texture ei, polarized
along ∂tm × ∂im (G0 is the electrical conductivity),
and that induces a magnetic damping at the second or-
der of spatial gradient [20]. When anomalous Hall ef-
fect is present in the ferromagnet, this primary spin
current Js

i is converted into a secondary spin current
Js
j = θHP [Js

i · (ei × ej)]ei × ej , flowing along ej and
polarized along ei × ej . Here, θH is the spin Hall angle
and P is the spin polarization in the ferromagnet. This
secondary spin current can be injected in an adjacent
spin sink with strong spin relaxation, thereby inducing a
damping torque on the magnetization, similar to the spin
pumping mechanism [28]. Considering a one-dimensional
domain wall along x deposited on a heavy metal with an
interface normal to z, we obtain a damping torque on the
form [29]

τ = θHA
gµBh̄PG0

4e2
[(∂tm× ∂im) · y]m× (y ×m), (5)

A being a renormalization factor arising from the spin
current backflow. This damping torque is proportional
to ∼ sin 2ϕ, ϕ being the azimuthal angle of the magne-
tization, and vanishes when the wall is either in Bloch
(ϕ = 0) or Néel configuration (ϕ = π/2).
The second mechanism is directly related to DMI. In

transition metal ferromagnets, the orbital characters of
the delocalized (spd hybridized) and localized electrons
(pd hybridized) are mixed so that both types of electrons
contribute to the magnetic exchange. This is particu-
larly true in the case of DMI: ab initio calculations indi-
cate that interactions beyond the next-nearest neighbor
contribute significantly to the total DMI [30], proving
that delocalized orbitals are crucial in determining the
overall strength of DMI. Therefore, by parsing the to-
tal spin Si into localized (d-dominated) and delocalized
(s-dominated) contributions, Si = Sd

i + ŝsi , the DMI be-
tween sites i and j can be phenomenologically rewritten
Dij · Si × Sj = Ddd

ij · Sd
i × Ŝd

j + Dsd
ij · Sd

i × ŝsj . The
first term only involves orbital overlap between localized
states while the second term describes the chiral exchange
between the local spin and the itinerant spin. In the con-
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tinuous limit, the Hamiltonian of the itinerant electron
can be then written

Ĥsd =
p̂2

2m
+ Jexm · σ̂

+
D

h̄
[(z× p̂)×m] · σ̂ +

αR

h̄
(z × p̂) · σ̂, (6)

where σ̂ is the vector of Pauli spin matrices, Jex, D
and αR are the strength of the exchange, s-d DM and
Rashba spin-orbit interactions respectively. In other
words, because of the magnetic texture the itinerant elec-
tron spin experiences an additional effective field of the
form ∼ (z × p̂) × m. This introduces a chirality in the
magnetic damping mediated by itinerant electrons.
From this point, deriving the effective magnetic damp-

ing follows the standard procedure. One can extract the
equation of motion of the itinerant spins from Eq. (6) and
define the spin current induced by the moving magnetic
texture (see Supplementary Materials [29]). Following
this method, we obtain a semi-classical Bloch equation
for the itinerant electron spin density s = 〈σ̂〉 as

∂ts+∇·J = −
1

τex
s×m−

∆

τD
(∇z×m)×s−

∆

τR
∇z×s−Γre,

(7)
where∇z = z×∇, Γre represents the spin relaxation and
dephasing, ∆ is the exchange length, τex = h̄/2Jex is the
spin precession time, τD = h̄∆/D and τR = h̄∆/αR are
the characteristic time scales for the DMI and Rashba
interaction respectively. J = −D∇ ⊗ s is the spin cur-
rent density tensor, D being the diffusion constant. Let
us now write the spin density in the form s = nsm+ δs,
where ns (δs) is the (non-)equilibrium spin density, and
assume the relaxation time approximation such that
Γre(s) =

1
τsf

δs+ 1
τϕ
m×(δs×m), accounting for the spin-

flip relaxation (∼ τsf) and the spin dephasing (∼ τϕ).
After some algebra [29], one obtains the torque τ gener-
ated by a precessing magnetization ∼ ∂tm

τ/ñs ≈ (1 + χξ − βm×) [−∂tm (8)

+λD[((z×∇)×m)× (m× ∂tm+ ξ∂tm)]⊥

+λR[(z×∇)× (m × ∂tm+ ξ∂tm)]⊥] .

In this expression, β = τex/τsf , χ = τex/τϕ, ξ = χ + β,
and ñs = ns/(1 + ξ2) and the subscript ⊥ indicates that
the torque is defined perpendicular to the magnetization
m. The first term has been derived previously [31], the
second term (λD = ∆τex/τD) arises from the s-d DMI
exchange, and the third term (λR = τex/τR) arises from
Rashba spin-orbit coupling [24, 25]. The total torque τ

contributes both to the renormalization of the gyromatic
ratio (terms that preserve time-reversal symmetry) and
to dissipation (terms that break time-reversal symme-
try).
Domain wall motion - To illustrate the effect of

this chiral damping on the dynamics of magnetic tex-
tures in noncentrosymmetric metals, we first derive

the equation of motion of a one-dimensional perpen-
dicular domain wall, such as the ones commonly ob-
served in heavy metal/ferromagnet asymmetric mul-
tilayers [3–5]. The magnetization is defined m =
(cosϕ sin θ, sinϕ sin θ, cos θ), where ϕ = ϕ(t) is the az-
imuthal angle and θ(x) = 2 tan−1 (exp[s(x−X)/∆]), X
being the domain wall centre, and s = ±1 defining the
domain wall chirality (↑↓ or ↓↑, respectively). We con-
sider a magnetic domain wall submitted to a magnetic
anisotropy fieldHk = Hk sin θ sinϕy, favoring Bloch con-
figuration and an applied magnetic field H = Hxx favor-
ing Néel configuration. The damping torque is given by
Eq. (8)(for the sake of simplicity, we do not consider
the influence of the torque arising from anomalous Hall
effect, Eq. (5), in this work). The rigid domain wall
dynamics is described by the coupled equations

s∂τx

∆
=

π

2
(−Hx sinϕ+

Hk

2
sin 2ϕ) + (α− sν cosϕ)Hz,

∂τϕ = −s
π

2
(α− sµ cosϕ)(−Hx sinϕ+

Hk

2
sin 2ϕ) +Hz,

(9)

where we defined τ = γt, µ = (λD − ξλS)(πñs/4∆), and
ν = (βλD + λS)(πñs/4∆) (α, ν, µ ≪ 1). In Eq. (9), we
neglected the components of the torque τ that are even in
magnetization (i.e. that renormalizes the gyromagnetic
ratio) and only consider the dissipative components. The
damping due to s-d DMI and Rashba SOC both produce
a contribution proportional to s cosϕ, i.e. it depends on
the domain wall chirality s as well as on the direction of
the azimuthal angle ϕ. Notice that the DM field does not
explicitly enters these equations since it can be simply
modeled by a chiral in-plane field ∼ sHx [14].
Let us now investigate the influence of this damping

on the field-driven motion of a domain wall submitted
to both perpendicular (Hz) and in-plane (Hx) magnetic
fields. In this example, we chose µ = ν = αc for sim-
plicity. Figure 1(a) shows the (time-averaged) velocity
of the domain wall as a function of Hz for difference
chiral damping strengths and Hx = 0. These veloc-
ity curves display the usual Walker breakdown around
Hz ≈ 12 − 19 mT, with an additional kink at nega-
tive Hz directly attributed to the chiral damping. Be-
low Walker breakdown and in the absence of in-plane
field Hx, the domain wall azimuthal angle ϕ obeys
Hz = sπ

4
Hk(α − sαc cosϕ) sin 2ϕ, which produces a

kink around Hz ≈ sαcHWB/α where HWB = απHk/4,
which is associated with a jump in the effective damp-
ing, αeff = α − αc cosϕ [see Fig. 1(c)]. When applying
a large in-plane field Hx, the azimuthal angle is ϕ ≈ 0
(Néel configuration) and the damping does not depend
on Hz. Hence, the kink disappears as shown in Fig. 1(b).
More interestingly, when the domain wall is tuned from
Bloch to Néel configuration by an in-plane field [see Figs.
1(d)-(f)], the effective damping is strongly modified [Fig.
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FIG. 1. (Color online) (a,b) Domain wall velocity as a func-
tion of perpendicular magnetic field for different chiral damp-
ing strengths, at Hx =0 mT and Hx =25 mT, respectively;
(c) corresponding effective damping. (d) Domain wall veloc-
ity as a function of in-plane magnetic field for different chiral
damping strengths, and for Hz =5 mT; (e,f) corresponding
azimuthal angle and effective damping, respectively. The pa-
rameters are α= 0.5 , HWB = 12.5 mT.

1(f)] and domain wall velocity becomes strongly asym-
metric as reported on Fig. 1(d). Notice that the kink is
still observable at small negative in-plane field.

We now turn our attention towards the creep regime,
which is of most importance for field-driven domain wall
motion in ultrathin disordered multilayers. In this case,
the creep law predicts [32]

vcreep = v0 exp
(

−(Tc/T )(Hc/Hz)
1/4
)

(10)

where Tc is the critical temperature (close to the depin-
ning temperature in fact), T is the sample temperature,
Hz is the applied field and Hc is the critical field needed
to overcome the disorder pinning potential. This expres-
sion assumes Hz ≪ Hc, as well as Tc ≫ T . The ex-
ponent gathers only terms accounting for the disordered
energy landscape of the system and does not include any
dissipative contributions in principle. In contrast, the
coefficient v0 depends on both the energy landscape as
well as on the viscosity of the elastic wall. In the limit
of an overdamped membrane (i.e., when α∂tm ≫ ∂tm),
one can show that v0 ≈ γ∆Hc/α [32]. It is mostly prob-
able that even for strongly disordered ferromagnets, the
creeping domain wall is not in the overdamped regime,
although very large damping (α ≈ 0.5) have been re-
ported in Pt/Co/AlOx and Pt/Co/Pt systems [3]. How-
ever, since the theoretical description of the creep motion
of intermediate damped systems is not fully understood,
we propose to investigate the impact of chiral damping
in this limit.

To evaluate the impact of the chiral damping, we follow
the procedure proposed by Je et al. [33] and rewrite the

creep law

vcreep(H) = η0
σDW(Hx)

β

αeff(Hx)
exp

(

−χ0

σ
1/4
DW(Hx)

σ
1/4
DW(0)

H
− 1

4

z

)

.

(11)
Here, σDW is the (chiral) energy of the domain wall and β
is a coefficient that describes the scaling law between the
critical force Hc and the domain wall energy and η0 and
χ0 are normalization factors which can be chosen to fit
experimental data of Ref. [33]. In the phenomenological
model adopted here, the domain wall energy reads

σDW = σ0 + π∆µ0Ms

[

1

2
Hk cosϕ−Hx

]

cosϕ. (12)

In the right-hand side of Eq. (12), the first term accounts
for the ϕ-independent contribution to the magnetic en-
ergy, the second term is the in-plane magnetic anisotropy
favoring Bloch configuration and the last term is the in-
plane longitudinal magnetic field favoring Néel configu-
ration. The energy minimization ∂ϕσDW = 0 gives [33]

cosϕ =

{

Hx/Hk : |Hx| ≤ Hk,
sign(Hx/Hk) : |Hx| > Hk.

(13)

and the corresponding domain wall energy

σDW

σ0

=

{

1− (Hx)
2/HDWHk : |Hx| ≤ Hk

1 + (Hk − 2|Hx|)/HDW : |Hx| > Hk
(14)

where HDW = π
2
∆µ0Ms/σ0. The magnetic damping αeff

is written in the simplest form αeff = α + sαc cosϕ. To
investigate the impact of chiral damping on the creep
motion, we chose HDW = 1T , and Hk = 50mT . The
normalized velocity v(Hx)/v(0) of a domain wall as a
function of the in-plane field and for different strengths
of chiral damping αc is represented on Fig. 2. It shows
three distinct regions: a smooth variation of the velocity
in the intermediate field region, |Hx| < Hk, where the
domain wall is changed from one Néel chirality to an-
other, as well as two external region, |Hx| > Hk, where
the domain wall remains in the Néel configuration. In
this case, the velocity increases following the exponential
law given above. Notice that in this regime and for such
a one-dimensional domain wall, the DMI results in an
effective in-plane magnetic field whose sign depends on
the chirality of the wall, i.e. Hx → Hx − sHDMI (see e.g.
Ref. [33]). Thus, including DMI in the calculation only
results in a horizontal shift of the velocity curve in Fig.
2.
We acknowledge that the present phenomenology re-

mains essentially qualitative and although the orders of
magnitude discussed in this work are globally consistent
with the experimental observations, a microscopic the-
ory of chiral damping using, for instance, density func-
tion theory techniques, as well as a more comprehensive
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FIG. 2. (Color online) Normalized domain wall velocity as
a function of in-plane magnetic field Hx in the presence of a
driving field Hz = 20mT. In-plane magnetic field pushes the
domain from a Bloch to a Néel configuration and hence in-
creases the azimuthal angle ϕ thereby modifying the damping
of the wall. A kink in the velocity is observed at Hx=Hk,
when the domain wall saturates in the Néel configuration
when the damping becomes independent on the in-plane field
Hx.

model of the creep motion of magnetic domain walls are
highly desirable to quantitatively confront with experi-
ments. Nonetheless, the symmetry principles discussed
in this Letter are quite general and ensure the existence of
such a chiral damping in any magnetic structures (ferro-
magnets, antiferromagnets, chiral magnets, but also met-
als and insulators etc.) presenting spatial inversion sym-
metry breaking. The physical mechanisms responsible for
this chiral damping can be spin-orbit coupling but also
dipolar coupling or magnetic frustrations, as in the case
of DMI. Recent indications of such an asymmetric damp-
ing of spin waves [16], correlated with a strong magnonic
Rashba effect [15] are encouraging indications that such
an effect is reasonable and call for more systematic inves-
tigations of chiral damping in noncentrosymmetric mag-
nets.
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from King Abdullah University of Science and Technol-
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Europhys. Lett. 100, 57002 (2012).
[15] Kh. Zakeri, et al. Phys. Rev. Lett. 104, 137203 (2010).
[16] Kh. Zakeri, Y. Zhang, T.-H. Chuang, and J. Kirschner

Phys. Rev. Lett. 108, 197205 (2012).
[17] J.-H. Moon et al., Phys. Rev. B 88, 184404 (2013).
[18] D. L. Mills and S. M. Rezende, Topics Appl. Phys. 87,

27 (2003).
[19] V. Kambersky, Czech. J. Phys. B 28, 1366 (1976); Phys.

Rev. B 76, 134416 (2007).
[20] S. Zhang, S.S.-L. Zhang, Phys. Rev. Lett. 102, 086601

(2009); J. Foros, A. Brataas, Y. Tserkovnyak, and G. E.
W. Bauer, Phys. Rev. B 78, 140402 (2008).

[21] H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J.
Silva, Phys. Rev. Lett. 110, 117201 (2013); Y. Li and W.
E. Bailey, arXiv:1401.6467 (2014).

[22] Z. Yuan, et al., Phys. Rev. Lett. 113, 266603 (2014).
[23] K. M. D. Hals and A. Brataas, Phys. Rev. B 89, 064426

(2014).
[24] K.-W. Kim, J.-H. Moon, K.-J. Lee, and H.-W. Lee,

Phys. Rev. Lett. 108, 217202 (2012); J.-V. Kim, arXiv:
1502.04695v1 (2014).

[25] X. Wang, C. O. Pauyac, and A. Manchon, Phys. Rev. B
89, 054405 (2014).

[26] K.-W. Kim, H.-W. Lee, K.-J. Lee, and M. D. Stiles, Phys.
Rev. Lett. 111, 216601(2013).

[27] S. E. Barnes and S. Maekawa, Phys. Rev. Lett. 98,
246601 (2007).

[28] Y. Tserkovnyak, A. Brataas and G. E.W. Bauer, Phys.
Rev. Lett. 88, 117601 (2002).

[29] Supplementary Materials
[30] V. Kashid, et al., Phys. Rev. B 90, 054412 (2014).
[31] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
[32] P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev.

B 62, 6241 (2000).
[33] S.-G. Je, et al., Phys. Rev. B 88, 214401 (2013).

mailto:aurelien.manchon@kaust.edu.sa
http://arxiv.org/abs/1401.6467

