EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2017 4–8 September 2017 Dublin, Ireland

Towards processing chains to estimate the urban heat island intensity using FOSS tools

Jérémy Bernard^{1,3,4}, Erwan Bocher¹, Pascal Kéravec^{2,3}, Marjorie Musy^{3,5}, and Isabelle Calmet^{2,3}

jeremy.bernard@univ-ubs.fr

¹ CNRS, Laboratoire Lab-STICC, UMR 6285 - Vannes, France

- ² CNRS, LHEEA, UMR 6598, École Centrale de Nantes Nantes, France
- ³ CNRS, IRSTV, FR 2488, École Centrale de Nantes Nantes France
- ⁴ CNRS, CRENAU, UMR 1563, École Nationale Supérieure d'Architecture de Nantes Nantes, France

⁵ Cerema Ouest - Nantes, France

Statement: UHI depends on

x geographical context*x* meteorological conditions

Statement: UHI depends on

x geographical context*x* meteorological conditions

Objective: estimate the temperature of any point of an urban area from :

Data available and homogeneous

- I reference station for the temperature
- morphological and land cover data
- meteorological conditions

Softwares

- open and free tools
- using scripting

Objective: estimate the temperature of any point of an urban area from :

Data available and homogeneous

- I reference station for the temperature
- morphological and land cover data
- meteorological conditions

Softwares

- open and free tools
- using scripting

Presentation content:

- x processing chain to calibrate the model
- x processing chain to verify or apply the model to any city

1st processing chain Model calibration

1st processing chain Model calibration

Geographic reference data

1st processing chain Model calibration

Geographic reference data

Geographic reference data

Geographic reference data

French IGN Vector database Buildings and water

French IGN Sat. Image (Rapideye) Land cover

Geographic reference data

Geographic reference data

Geographic reference data

Climatic data

Stations i

Meteorological reference data

3/8

Geographic reference data

Climatic data

Geographic reference data

3/8

Resulting spatial models

$$\overline{\Delta T}^{(aut)} = 5.3x_{D_f} +0.15ln(d_{op}+1) - 5.7x_{NDVI} -5.5x_{D_b} - 0.39$$

$$\overline{\Delta T}^{(win)} = 2.0x_{D_s} +0.12ln(d_{op}+1) - 2.7x_{NDVI} -4.0x_{D_b} - 0.2$$

$$\overline{\Delta T}^{(spr)} = 3.3x_{D_w} -5.1x_{NDVI} +0.031$$

$$\overline{\Delta T}^{(sum)} = 12.0x_{D_w} -4.5x_{NDVI} +0.23$$

$$\begin{aligned} \sigma_{\Delta T}^{(aut)} = 3.2x_{D_f} &+ 0.06ln(d_{op} + 1) - 2.7x_{NDVI} &- 2.9x_{D_b} + 0.38\\ \sigma_{\Delta T}^{(win)} = -3.0x_{D_f} &+ 1.4x_{D_s} &+ 0.065ln(d_{op} + 1) &+ 0.5\\ \sigma_{\Delta T}^{(spr)} = & 1.7x_{D_s} &+ 0.12ln(d_{op} + 1) - 2.9x_{NDVI} &- 3.4x_{D_b} + 0.41\\ \sigma_{\Delta T}^{(sum)} = -6.4x_{D_f} &+ 3.0x_{D_s} + 4.8x_{D_w} &+ 0.15ln(d_{op} + 1) &+ 0.86 \end{aligned}$$

Météo-France Air temperature and other weather variables (RH, U, K, N)

Resulting temporal models

$$\begin{split} \widetilde{\Delta T}^{(aut)} = & 0.0016K(p_C) & + 6.3 \frac{1}{U(p_A) + 3.0} & + 0.01T(p_C) - 0.095exp(\frac{N(p_B) - 6}{6}) & -1.1 \\ \widetilde{\Delta T}^{(win)} = & 0.081exp(-U(p_B) + 3) & - 0.12N(p_A) & +0.64 \\ \widetilde{\Delta T}^{(spr)} = & 0.0011K(p_C) & + 11.0 \frac{1}{U(p_A) + 3.0} & + 0.033T(p_D) - 0.12N(p_A) & -2.3 \\ \widetilde{\Delta T}^{(sum)} = & -0.0083RH(p_D) - 0.36U(p_A) & -0.13T(p_A) & +3.2 \end{split}$$

Resulting temporal models

$$\begin{split} \widetilde{\Delta T}^{(aut)} = & 0.0016K(p_C) & + 6.3\frac{1}{U(p_A) + 3.0} & + 0.01T(p_C) - 0.095exp(\frac{N(p_B) - 6}{6}) & -1.1\\ \widetilde{\Delta T}^{(win)} = & 0.081exp(-U(p_B) + 3) & -0.12N(p_A) & +0.64\\ \widetilde{\Delta T}^{(spr)} = & 0.0011K(p_C) & + 11.0\frac{1}{U(p_A) + 3.0} & + 0.033T(p_D) - 0.12N(p_A) & -2.3\\ \widetilde{\Delta T}^{(sum)} = & -0.0083RH(p_D) - 0.36U(p_A) & -0.13T(p_A) & +3.2 \end{split}$$

Geographic reference data

Meteorological reference data

7/8

Geographic reference data

Geographic reference data

Geographic reference data

Climatic data

Geographic reference data

Geographic reference data

Geographic reference data

Geographic reference data

Conclusion and improvements

Conclusion:

We proposed a method to estimate the night-time UHI for:

×any day

x any location of any French city

Improvements:

Scientific improvements

x data for calibration (amount of data, OSM)

x method : buffer size

- × Technical improvements
 - replace QGIS and MorphoLim steps by scripts
 - > plug-in development

Any question, suggestion, comment ?

For further details concerning the method, please refer to :

Jérémy Bernard, Marjorie Musy, Isabelle Calmet, Erwan Bocher, Pascal Kéravec. Urban heat island temporal and spatial variations : empirical modelling from geographical and meteorological data, Building environment, Elsevier (accepted)

Jérémy Bernard - jeremy.bernard@univ-ubs.fr