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ABSTRACT: We numerically simulate three-dimensional
fluidized beds of monodisperse spheres using a two-way
Euler/Lagrange method. Particles trajectories are tracked in a
Lagrangian way, and particles collisions are computed by a soft
sphere model. The fluid conservation equations are written in
a classical Eulerian fashion and are locally averaged on cells 1
order of magnitude larger than particles. We detail the
equations of the model and their numerical implementation.
We study the influence of numerical parameters and simula-
tion domain size on computed results in a biperiodic fluidized
bed. We then validate the model against theoretical results for a bubbling fluidized bed and against experimental data for a
single- and multi-nozzle spouted bed. Finally, we investigate the influence of the Coulomb friction coefficient magnitude on a
single-nozzle spouted bed dynamics in order to emphasize the importance of tangential friction in such processes.

1. INTRODUCTION

Fluid−particle two-phase flows such as fluidized beds are
involved in several industrial domains as, e.g., chemical and
process engineering. In fact, due to its high heat and mass
transfer rates, the fluidized bed flow configuration is widely
used in coal gasification, chemical looping combustion (CLC),
atmospheric or pressurized fluidized bed combustion (FBC),
and fluid catalytic cracking (FCC). Solid particle diameters
generally range from a few tens of micrometers to a few
millimeters. In fluidized or fixed beds, a lighter fluid, that can be
either a liquid or a gas, is injected at the bottom wall of the
reactor and flows out at the top wall of the reactor. If the force
exerted on particles by the fluid flow is strong enough (and
actually stronger than the net weight of particles), particles are
fluidized, i.e., they are set in motion. In a reactor containing up
to several billions of particles, their spatial distribution is very
often heterogeneous. Indeed, particles trajectories are affected
both by hydrodynamic interactions with the surrounding fluid
flow and collisions with neighboring particles and wall
boundaries. This leads to the formation of particles clusters
and void areas called fluid bubbles. The typical size of these
structures can be significantly larger than the average particle
diameter.1−3 As a result of this intricate dynamics of the fluid−
particle system, the whole bed expands until it reaches a
pseudosteady state over which its height fluctuates either
slightly or markedly depending on the flow regime. This
dynamics of fluidized beds is undoubtedly multiscale, from the
microscale of the fluid flow around individual particles and
interparticle contacts to the mesoscale of particle clusters and

fluid bubbles, and eventually to the macro-scale of the whole
bed behavior. Related to these three spatial scales, three
corresponding modeling strategies are often adopted. At the
microscale, Navier−Stokes equations are solved over the fluid
domain on a grid much thinner than each individual particle
and particles trajectories are fully described. This approach
enables one to accurately compute the flow kinematics around
each solid particle. The fluid−solid interaction is then reliably
computed by any appropriate integration of the fluid stress
tensor over the particle surface. The corresponding simulations
are high-fidelity provided the fluid cell size over particle
diameter ratio is small enough (at least 1/10 and sometimes
up to 1/40 to guarantee accurate computed solutions). The
aftermath of this constraint on the grid size is the rather limited
size of systems that can be reasonably simulated even with
massively parallel codes on the most powerful supercomputers.
Apart from a few exceptions,4 microscale simulations are
generally limited to a few thousands of particles. At the macro-
scale, both the fluid and solid phases are described by locally
averaged continuous conservation equations. Since the solid
phase is assumed to be continuous, particles trajectories are not
individually tracked anymore, and instead, the solid phase is
described in terms of a local volume fraction or porosity. This
kind of approach, often referred to as the Euler−Euler model,
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has been widely applied to fluidized beds by Gidaspow (see the
Two Fluid Model (TFM) in, e.g., ref 5) and enables one to
examine systems containing billions of particles representative
of a human-size chemical process. The mesoscale model repre-
sents a compromise between microscale models and macroscale
models. In the mesoscale model, often called two-way Euler/
Lagrange or DEM-CFD (for DEM (Discrete Element Method)-
CFD (Computational Fluid Dynamics)), the fluid phase is
locally averaged as in the macroscale model, but particles are
still tracked individually as in the microscale model. Particle−
particle and particle−wall collisions are precisely handled while
fluid−solid interactions rely on closure laws. However, fluid−
solid interactions are deemed to be more accurately modeled
than in macroscale Euler−Euler approaches. This results in a
better prediction of the dynamics of fluid bubbles and particles
clusters comprising several thousands of particles or more.
Conceptually, fluid cells in the mesoscale model are much
smaller than in the macroscale Euler−Euler model but much
larger than in the microscale model. Furthermore, several
numerical knacks were developed over the past 20 years to
improve computing performances in such a way that nowadays
simulations with up to a few tens of millions or even a few
hundreds of millions of particles are attainable.6 Typically, a
system containing such a number of particles mimics pretty
well a small size 3D experimental fluidized bed and hence offers
the opportunity to perform a direct simulations−experiments
comparison. It is particularly important to emphasize that
the dynamics of a fluidized bed is fully three-dimensional and
that consequently the attempt to model and understand the
global behavior of a bed with 2D simulations is mostly worth-
less.6

The two-way Euler−Lagrange approach has been first
introduced by Tsuji et al.7 in the early 1990s. In the pioneering
form of the model, collisions were handled by a soft sphere
approach. A couple of years later, Hoomans et al.8 proposed a
DEM-CFD model based on a hard sphere principle. Such a col-
lision approach is better suited to dilute fluid/particles mixture
since collisions are assumed to be binary and instantaneous and
therefore request to be treated one after another.9 Then, the
formulation of the model was improved by several research
groups. In particular, the interested reader will refer to the
prolific scientific exchange between the group of Xu and Yu and
Hoomans and his collaborators10−12 on the consistency of the
model.
The total hydrodynamic force, i.e., integration of fluid stress

tensor over particle surface can be expressed as the sum of
different hydrodynamic contributions, mainly drag force, lift
force, added mass force, and Basset force. For gas-particles
flows, the drag force is the leading contribution, and cor-
respondingly, the other contributions are generally neglected.
The expression of the drag force experienced by an isolated
particle in an infinite domain is well known and was derived
theoretically and empirically for Stokes and inertial flows,
respectively. This force is not only dependent on the relative
velocity between the fluid and the particle but also on the
presence of surrounding particles. The influence of surrounding
particles is often expressed by the local fluid volume fraction f .
So far, there exists neither a theoretical formula nor accurate
correlation that describes faithfully the drag force intensity in
moderately dense to dense suspensions and any flow regimes.
However, several expressions were proposed in the literature
with various domains of validity in terms of particle Reynolds

number Rep and fluid volume fraction f . In a fluidized bed, the

solid concentration varies from close packing ( − ≈1 0.6f )

to dilute regime ( − ≲1 0f ) in relation to the fluid bubbles/
particles clusters dynamics. Hence, the drag force correlation is
required to be reliable on a wide range of f . The classical
approach to construct such a reliable closure law is to combine
Wen and Yu’s correlation13 for dilute regimes to Ergun’s
correlation14 for dense regimes. The former is derived by
multiplying an infinitely dilute drag force formula by a function
of f while the latter is based on a porous media assumption.
The threshold to switch from Wen and Yu’s correlation to
Ergun’s correlation and vice versa is generally set to = 0.8f .
Over the years, many other correlations were suggested in the
literature. For instance, to extend the range of validity of Wen
and Yu’s correlation to the full f range, Di Felice

15 suggested
an improvement based on experimental results that has been
widely adopted by the community. In Wen and Yu’s
correlation, the presence of surrounding particles is accounted
for by a constant power of f . In Di Felice’s improved model,

the power of f is not a constant anymore but a function of Rep
and f itself. For many years, experiments were the most
reliable source of data (assuming measurement uncertainty is
controlled) to derive drag force closure laws. However, mea-
surement techniques can be intrusive, and detailed informa-
tion in the core of the flow in a (generally fixed) bed is not
necessarily easy to extract. A more recent alternative is micro-
scale simulation that supplies detailed information to derive
new drag force correlations. As an example, Hill and Koch
performed many lattice-Boltzmann microscale simulations on a
wide range of f and suggested two drag force correlations, the
former for low Reynolds number flows16 and the latter for
moderate Reynolds number flows.17 These two correlations
have then been employed by several other research teams. The
correlations were even further improved by the group of
Kuipers that suggested another correlation18 also often used in
the community.6,19,20

The aim of this paper is not to derive yet another drag law
correlation. Our goal is to discuss the numerical implementa-
tion of our DEM-CFD model and examine the influence of various
numerical and geometric parameters on the computed results
produced by such a numerical model. Looking at the broad
literature on DEM-CFD simulations, our impression is that many
papers do not detail enough their numerical implementation
and the selected values of the associated numerical parameters.
This inevitably leads to significant variations of bed dynamics
and impedes a proper comparison between different works.
From a physical viewpoint, the influence of tangential friction
on fluidized bed dynamics has not yet received a large amount
of attention, and we intend with this work to contribute to
filling that gap in the literature.
The rest of the paper is organized as follows. Section 2 gives

the set of volume-averaged Navier−Stokes equations describing
the fluid phase, the DEM/soft sphere model used to compute
collisions, and the interphase coupling terms. We present the
numerical implementation of the model and dedicate particular
attention to the Lagrangian−Eulerian projection operator used
for interphase coupling. Using statistical analysis tools, we
investigate in Section 3 the dependence of bubbling fluidized
bed dynamics to the following numerical parameters: solid
time-step magnitude, fluid time-step magnitude, and fluid grid
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size to particle diameter ratio, and to the size of the domain in
the biperiodic configuration adopted. In Section 4, we perform
validation tests on two different fluidized bed configurations, a
bubbling fluidized bed and a semi-3D spouted fluidized bed, i.e.,
a spouted bed whose depth spans a few particle diameters only,
to further assess the consistency of the model and the validity
of the implementation. Finally, we perform in Section 5 sim-
ulations of the same semi-3D spouted bed with different values
of the Coulomb friction coefficient to investigate the
quantitative impact of tangential friction on the dynamics of
the spouted bed. A conclusion together with perspectives is
given in Section 6.

2. EQUATIONS OF THE MODEL
We present below the governing equations of the model,
i.e., conservation equations and closure laws, and detail their
numerical implementation. The surrounding fluid is assumed to
be Newtonian with viscosity μf and to have a constant den-
sity ρf.
2.1. Computational Fluid Dynamics. In a way similar to

the TFM, the fluid phase is governed by the volume-averaged
Navier−Stokes equations. Control volumes ΔV are at least
an order of magnitude larger than the particle volume Vp.
The mass and momentum equations are solved on the
actual volume occupied by the fluid. This leads to the clas-
sical f -weighted formulation of the mass and momentum
equations as follows:

τ

ε ρ ε ρ

ρ ε ρ ε ε

∂
∂

+ ∇· =

∂
∂

+ ∇· = −∇ + + ∇·

⎧
⎨
⎪⎪

⎩
⎪⎪

u

u u u F

t

t
p

( ) ( ) 0 (1a)

( ) ( ) ( ) (1b)

f f f f f

f f f f f f f pf f f

where uf denotes the fluid velocity. The momentum equation
(eq 1b) does not contain any gravity term, and hence, the
pressure p represents the hydrodynamic pressure, i.e., the total
pressure minus the hydrostatic pressure contribution. Con-
sequently, the buoyancy force exerted on particles is explicitly
accounted for in Newton’s equations such that particles are
subjected to the right net weight (Section 2.2). At the micro-
scale, the stress tensor τf of an incompressible Newtonian fluid
reads as follows:

τ μ μ= ∇ + ∇ =u u D( ) 2f f f f
t

f (2)

where = ∇ + ∇D u u( )f f
t1

2
is the rate-of-strain tensor. Here,

Fpf represents the particles to fluid interphase momentum
transfer. The pressure gradient is not multiplied by εf in the
momentum equation (eq 1b); thus, this set of equations
corresponds to the so-called model B in the literature.5 An
alternative formulation of the model is the so-called model A
in which the pressure gradient is also weighted by εf. These
two formulations lead to slightly different expressions for the
interphase momentum transfer (with or without an explicit
contribution of the pressure gradient). Both formulations are
self-consistent and have led to long discussions in the literature
(see, e.g.,refs 10−12, 21−23). There are no significant dif-
ferences in the performance of the two model formulations,21

although some authors favored model B as more prone to yield
accurate results at low fluidization velocity.12 In this work, we
use model B.
As fluid density ρf and fluid viscosity μf are assumed to be

constant, the system of eqs 1 can be rewritten as follows:

ε
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We discretize eqs 3 with a classical Finite Volume/Staggered
Grid scheme on a Cartesian grid. Pressure and fluid volume
fraction are located at the center of each computational fluid
cell. Fluid velocity components are defined at cell face centers
as follows: ui is defined at the center of the cell face perpendic-
ular to xi, i = 1, 2, 3. The system of eqs 3 is solved in time by a
first-order Marchuk−Yanenko operator-splitting solution algo-
rithm24,25 in the spirit of a pseudo-L2 projection method. Intro-
ducing a constant time step Δtf and knowing the solution at time
tn = nΔtf and tn−1 = (n−1) Δtf, the solution at time tn+1 = (n+1)
Δtf is obtained through the following sequence of subproblems:

1. We first solve the following advection-diffusion problem:

ρ
ε ε

μ ε

ρ ε

* −
Δ
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(4)

where uf* stands for the velocity field at the intermediate
stage. Note that in eq 4, the viscous term 2 μf ∇·(εfn
D(uf*)) is treated implicitly and the explicit treatment of
the advection term ρf ∇·(εfn−1 ufn ufn) requires us to satisfy
a CFL stability condition.

2. We then impose mass conservation through the solution
of a Stokes-like problem as follows:
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In eq 44, the viscous term 2 μf ∇ · (εf
n D(uf*)) and the

advection term ρf ∇ · (εf
n−1 uf

n uf
n) are discretized in space with a

classical second order accurate centered scheme and a second
order accurate TVD/Superbee limiter scheme, respectively (see
ref 26 among others).

2.2. Discrete Element Model. In DEM modeling, particles
position and velocity are known for each individual particle and
particles are tracked in a Lagrangian way.27 In this work, we
assume that all particles are spherical. The linear and angular
motion of a (spherical) particle is given by the Newton’s
second law as follows:

ω

= + +

= +

⎧
⎨
⎪⎪

⎩
⎪⎪

v
g f f

I T T

m
d

dt
m

d

dt

(6a)

(6b)

p
p

p pp fp

p
p

pp fp

where mp = ρp πdp
3/6 is the particle mass, ρp the particle density,

dp the particle diameter, Ip = ipI the particle moment of inertia
tensor, I the identity tensor, ip = ρp πdp

5/60 the diagonal
coefficient of Ip, g the gravity acceleration, vp the particle
translational velocity, and ωp the particle angular velocity. Here,
f pp is the total particle−particle and wall−particle contact (also
denoted as collision) force acting on the particle, and f f p is the
total fluid−particle hydrodynamic interaction force. Also Tpp
and Tf p denote the total contact torque and the total hydro-
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dynamic torque, respectively. To solve the system of eqs 6, we
need a model for the contact contribution (f pp,Tpp) as well as a
model for the hydrodyamic contribution (f fp,Tfp).
The binary hard sphere model and soft sphere model are the

two categories of collision models generally used for particu-
late flows.28 For the former, the whole momentum exchange
between two colliding particles takes place exactly at the time
when the two particles touch each other. Thus, contacts are
instantaneous, and even if a particle is colliding with more than
one neighboring particle, contacts must be treated one after
another, i.e., in a binary way. In contrast, for the latter, particles
overlap slightly (Figure 1) such that a contact lasts a few time

steps and that collision forces are function of overlap distance
δij and relative velocity vr between two colliding particles. Then,
contacts between a given particle and its colliding neighbors
can be integrated in time all together.
In our DEM granular solver,29,30 the total collision force

comprises the following terms:

• An elastic restoring force

δ=f nkel n ij ij (7)

in the normal direction where kn denotes the normal
contact stiffness, δij the overlapping distance between
particles i and j, and nij the unit normal vector between
particles i and j centers of mass.

• A viscous dynamic force

γ= −f vm2dn n ij rn ij, (8)

in the normal direction to account for the dissipative
nature of the contact, where γn is the normal dynamic

friction coefficient, =
+

m
M M

M Mij
i j

i j
the reduced mass of par-

ticles i and j, and vrn,ij the normal relative velocity
between particles i and j.

• A tangential friction force

μ= − | | | |f f f tmin{ , }t C el dt ij (9)

γ= −f vm2dt t ij rt ij, (10)

where fdt denotes the dissipative frictional contribution, γt
the dissipative tangential friction coefficient, vrn,ij the
tangential relative velocity between particles i and j, and
tij the unit tangential vector. Note that the magnitude of
the tangential friction force is limited by the Coulomb
frictional limit calculated with the Coulomb dynamic
friction coefficient μC.

The total collision force acting on a particle i is the sum of
contributions related to the contact with neighboring particles j
and walls w:

∑ ∑

∑ ∑

= +

= + + + + +

f f f

f f f f f f( ) ( )

pp i
j

pp ij
w

pp iw

j
el dn t ij

w
el dn t iw

, , ,

(11)

Since for a sphere the radial vector Rij from particle i center of
mass to the point of contact with particle j is always colinear to
the unit normal vector nij, only the tangential contact force
contributes to the contact torque (same applies for a contact
with a wall). The corresponding total collision torque for
spheres hence reads as follows:

∑ ∑= ∧ + ∧T R f R fpp i
j

ij t ij
w

iw t iw, , ,
(12)

The Lagrangian tracking of all particles with collisions is
computed by our in-house massively parallel DEM solver
Grains3D.29 In this DEM code, we solve Newton’s eqs 6 in
time with a second order time-accurate leapfrog scheme. Thus,
particles linear and angular velocity (vp,ωp) and position (xp,θp)
are computed in the following way:

ω ω

+ Δ = − Δ +
∑

Δ

+ Δ = − Δ +
∑

Δ

v v
f
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t t t t
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t t t t
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i
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(13)

θ θ ω

+ Δ = + + Δ Δ

+ Δ = + + Δ Δ

x x vt t t t t t

t t t t t t

( ) ( ) ( /2)

( ) ( ) ( /2)

p p p p p p

p p p p p p (14)

where Δtp denotes the solid time step. Note that the integration
of θp as written above is only formal. In practice, it involves
rotation matrices or quaternions. Grains3D can compute col-
lisions between particles of arbitrary convex shape. In fact, the
collision detection strategy is based on a Gilbert−Johnson−
Keerthi (GJK) distance algorithm.31 However, for spheres, the
contact detection (contact point and overlap distance) relies on
an analytical formula (Figure 1). This remarkably speeds up
contact detection. To accelerate even more contact detection, a
classical linked-cell spatial sorting32 is used to identify particles
that potentially collide. More details about the granular solver
Grains3D can be found in.29

2.3. Action of the Fluid on Particles. Following the
classical DEM-CFD models in the literature, we neglect the
hydrodynamic torque Tfp in eq 6b. This implies that particles
angular motion is due to collisions only. The fluid−solid
interaction force f fp derives from integration of the fluid stress
tensor over the particle surface and requires to be closed. In this
study, we assume that dominant hydrodynamic forces are
buoyancy force and drag force. The added mass force and the
Basset force are assumed to be negligible due to the high solid/
fluid density ratio and the low fluid viscosity considered later on
in this work. Finally, we neglect the Saffman lift force and the
Magnus lift force for the two following primary reasons: (i) to
be coherent with the assumption Tfp = 0 as these two forces
imply fluid-induced particle rotation and (ii) the lack of reliable
correlations in the literature at high solid volume fraction/low
εf (hindrance effect). Thus, the force exerted by the fluid on
each individual particle is

ρ= − +f g fVfp f p D (15)

Figure 1. Contact between two particles: Gi and Gj denote the centers
of mass of particles i and j, respectively, M the contact point, n and t
the unit normal and tangential vectors at the contact point,
respectively, and δij the overlapping distance.
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where −ρf Vp g corresponds to buoyancy force and f D to drag
force. Several drag force expressions have been suggested in
the literature depending on the flow regime characterized by
particle Reynolds number Rep and local fluid volume fraction εf.
All these expressions can be written in the following form:

β
ε ε

=
−

−f u vV
(1 )

( )D p
f f

f p
(16)

where β denotes the interphase momentum transfer coefficient.
The presence of 1/εf in the denominator is specific to model B.
Indeed, coefficients β in model A and model B are related to
each other by the following formula: βB = βA /εf.

5 In process
engineering, the most commonly used expression of this
coefficient is a combination of Wen and Yu’s equation for low
particle concentration (high εf, dilute regime)13 to Ergun’s
equation for moderate to high particle concentration (low εf,
dense regime):14
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where the drag coefficient CD is given by the Schiller−Naumann
correlation33 as follows:
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where the particle Reynolds number Rep is defined as

ρ ε

μ
=

| − |u v
Re

d
p

f p f f p

f (20)

To avoid any discontinuity between eqs 17 and 18, Huilin and
Gidaspow34 introduced an additional function that smoothes
out the transition from low to high εf regimes.

φ
ε

π
=

× − −
+

−tan (150 1.75(0.2 (1 )))
0.5f

Huilin

1

(21)

β φ β φ β= − +(1 )Huilin Huilin Ergun Huilin Wen&Yu (22)

Over the past 20 years, other correlations reasonably valid
for a wide range of Rep and εf were suggested in the litera-
ture.15,17,18,35 Among others, the expression proposed by
Beetstra et al.18 seems to perform quite well:
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In this work, simulations are performed with the expression of
Huilin and Gidaspow34 or the expression of Beetstra et al.18

As plotted in Figure 2, different drag correlations predict

significantly different values of the drag force for low εf (dense
regime), while they generally agree with each other for high εf
(dilute regime).

2.4. Action of Particles on the Fluid. According to
Newton’s third law of motion (action−reaction principle),
momentum transfer from solid phase to fluid phase should be
equal to the one from fluid phase to solid phase but with
opposite sign. This equality has to be satisfied at a global
level as much as at the local level, i.e., in each cell of the
computational fluid domain. Note that for consistency with the
form of eq 1b without any gravity term, there is no contribution
of the buoyancy force in the action of the particles on the fluid.
When a particle belongs to a single computational fluid cell,

its total drag force fd contributes to Fpf in that cell. However,
when a particle overlaps several fluid cells, the contribution of
its drag force fd must be shared between (projected onto) the
cells it belongs to. Here, Fpf represents a source term in the
momentum equation (eq 3b) and is computed explicitly before
each fluid solver iteration. It models the particles feedback
effect or particles reaction on the fluid. Here, we use a simple
projection operator based on the fraction of the particle
belonging to a control volume. Hence, Ffp is computed as
follows:

∑ θ=F f
V

1
pf

k
CV

i
i k D i, ,

(26)

where θi,k is a measure of the fraction of particle i in control
volume k. The computational details to estimate θi,k are given in
Section 2.5. With the Finite Volume/Staggered Grid discretiza-
tion scheme used in this study, the projection of fd to compute
Fpf is performed for each velocity component separately as each
velocity component is defined on a different control volume
(staggered layout of the velocity components).

2.5. Projection Operator from Lagrangian to Eulerian.
We detail here how we project Lagrangian quantities on the
Eulerian grid and illustrate the method on the computation of
the fluid volume fraction εf. The same projection operator is
used to project the hydrodynamic Lagrangian forces fd on the
Eulerian grid to compute the source term Fpf (particles reac-
tion of the fluid) in the momentum equation. The projection
operator is a key component of the interphase coupling. For
instance, the drag force acting on a particle is highly dependent

Figure 2. Drag force depending on the fluid volume fraction for a
particle of diameter dp = 10−3 m with a relative velocity |uf − vp| =
0.35 m/s in air (ρf = 1.2 kg/m3, μf = 1.8 Pa s). Correlations proposed
by Di Felice,15 Hill and Koch,17 Huilin,34 and Beetstra.18
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on the fluid volume fraction εf (Figure 2); hence, an as accurate
as possible computation of εf is crucial. The fluid grid size is
controlled by two somehow contradictory constraints: (i) A
fluid grid cell volume ΔV needs to be an order of magnitude
larger that a particle volume for the averaging process to be
sensible, i.e.,

Δ ≥V V10 p (27)

(ii) The smaller the grid size is, the more accurate the fluid flow
features are captured.
An intuitive method to compute the fluid volume fraction εf

in each cell depending on the presence of the particles has been
proposed by Hoomans et al.:8

∑ε θ= −
V

V1
1

f
j
CV

i
i j p i, ,

(28)

where θi,k is the portion of particle i in cell k (similarly to Ffp in
eq 26).
In two dimensions, the calculation of θi,j is straightforward

using geometrical considerations, and an analytical formula is
available for the intersected surface area of a disc and a
rectangle. In three dimensions, it is much more difficult to
calculate the exact portion of the particle volume that belongs
to each cell when this particle straddles several fluid cells
(maximum 8 cells if condition 27 is satisfied). Actually, no
analytical formula exists for the intersected volume of a sphere
and a box. Different techniques have been used to circumvent
this problem. The simplest technique, called the center particle
method, assumes that a particle can only be either fully inside or
fully outside a cell, depending on the position of its center of
mass. It is an extremely fast computing way of approximating εf
but presents two drawbacks. First, its accuracy is extremely low
and can lead to a totally wrong approximation of εf as illustrated
in Figure 3. Second, εf time variations are not smooth because

of the sudden consideration of a particle in a cell (out at tn−1

and in at tn). This jump leads to spurious oscillations, especially
due to the presence of the fluid volume fraction εf time-
derivative term in the degenerated Stokes problem (eq 5). The
center particle method does not satisfy the basic time-step
convergence property, and we have instead

ε ε−
Δ

= ±∞
Δ →

−

t
lim
t

f
n

f
n

0

1

(29)

For finite Δt, it also performs worse and worse as the fluid grid
size decreases (since the particle volume is finite, Δεf = εf

n −
εf
n−1 increases as the fluid grid size decreases), hence impacting
the overall space convergence of the numerical method too.
In order to improve the fluid volume fraction εf calculation,

other methods were suggested in the literature as, e.g., the of fset
method of Alobaid et al.,19 the porous cube method of Link

et al.,36,37 or more recently, the interesting mollif ication kernel/
Gaussian f iltering method of Pepiot and Desjardins.6 The
method we adopt in this work derives from the porous cube
method proposed by Link et al. and assumes that the portion of
the particle i belonging to a control volume k, i.e., θi,k, can be
approximated by the intersected volume of the smallest cube
embedding the particle i (a cube whose edge length is equal to
the particle diameter) and the control volume k.

θ =
V
Vi k

k

i
,

approx

cube, (30)

where Vcube,i = dp
3 is the volume of the cube embedding the

spherical particle i and Vk
approx is the intersected volume of the

cube with the fluid cell k. Figure 4a shows the methodology in a
2D case, the extension to 3D is straightforward.

Our method smoothes out the calculation of the εf time-
derivative term in the degenerated Stokes problem (eqs 5) and
recovers time convergence. This is a very important property. It
also permits to use a smaller grid size than the particle center
method, i.e., down to ΔV ≃ 6Vp, while yielding a reasonably
accurate approximation of εf as illustrated in Figure 4b.

2.6. Space/Time Complexity and Computing Perform-
ance. Bubbling and spouted fluidized beds are generally
considered as moderately dense to dense fluid/particles sys-
tems. In fact, the average porosity εf is ≈ 0.7 in the bed (i.e., the
solid volume fraction is ≈0.3 = 30%). Hence, the major part of
the computing time as well as the space/time complexity of our
DEM-CFD model is related to particles. The time complexity
of particles motion is simply O(Ns), where Ns is the total
number of solid time steps performed over a simulation. The
Lagrangian particle tracking and the computation of the
hydrodynamic force f fp exerted on each particle scale linearly
with the total number of particles Np, i.e., O(Np). The com-
putation of particles collisions theoretically scales as O(Np

2),
but the use of a linked-cell spatial sorting reduces the space
complexity to O(13NcNp), where Nc is the average number of
particles per linked cell. In fluidized bed simulations, Nc ≈ 1,
such that the space complexity of particles collisions computa-
tion is O(13Np). The overall space/time complexity of particles
motion is thus formally O(15NpNs) (we say “formally”, as
the constant 15 is not necessarily relevant). The projection
operator scales linearly with Np. The corresponding space
complexity is bounded by O(8Np) as a particle overlaps eight
fluid cells at most. The projection operator is used both for

Figure 3. Examples of particles/cell configurations illustrating the
wrong evaluation of the fluid volume fraction by using the Particle
Center Method.

Figure 4. Our embedding cube/square approximation method:
(a) principle and (b) accuracy of the approximation as the evolution
of particle volume crossing control volume l: (green dots) disc analytic
solution, (blue line) our embedding square approximation method,
(red dotted line) particle center method.
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porosity and the three components of the velocity; hence, the
space complexity is bounded by O(32Np). As the projection
operator is used once per fluid time step, the overall space/time
complexity of our DEM-CFD model is O(15NpNs+32NpNf),
where Nf is the total number of fluid time steps performed over
a simulation. Introducing the integer ratio of fluid time-step
magnitude over solid time-step magnitude rN = Δtf/Δtp, the
space/time complexity of our DEM-CFD model can be for-
mally rewritten as O((15 + 32/rN) NpNs). Dropping the pre-
factor 15 + 32/rN, the space/time complexity of our DEM-CFD
model is essentially O(NpNs).
The model presented previously has been implemented in

the fully MPI platform PeliGRIFF38 in order to simulate
systems containing up to a few tens of millions of particles. For
fluidized beds and simple box geometries, a 2D domain
decomposition in the horizontal plane x−y (assuming gravity
and inlet velocity are in the vertical direction z) and a similar
domain decomposition for fluid domain and particles domain
supplies the best parallel performance. In fact, it guarantees a
reasonably constant particle load balancing over time and sig-
nificantly reduces the number of proc-to-proc (i.e., subdomain-
to-subdomain) communications. Each subdomain slightly
overlaps with its neighboring subdomains by (i) two layers of
fluid grid cells to properly assemble all terms in the fluid
conservation equations (and, in particular, the advection term
with the second order TVD scheme) and (ii) a single layer of
cells of the linked-cell grid to detect collisions with particles
located in a neighboring subdomain.
Several simulations are performed on different configurations

in order to study the parallel scalability of our numerical imple-
mentation. As we are interested in large-scale simulations, we
evaluate the parallel scalability with weak scaling tests only. In
other words, we set up the system in terms of a constant load
per node, and we record the computing time as a function of
the number of nodes with the size of the system increasing
accordingly in the horizontal directions (which means that the
height of the domain is constant while the cross section
increases with the number of nodes). We present below results
of a representative scalability test for a homogeneous bubbling
fluidized bed. Features of the system are as follows:

• Inlet velocity at the bottom wall is constant in space and
in time and is set to Uin = 3Umf.

• Boundary conditions on the lateral (vertical) boundaries
are biperiodic.

• Each subdomain (i.e., core) has a size of 20dp × 20dp ×
200dp.

• Grid size is set to Δx = 2.5dp, and hence, each subdomain
(i.e., core) contains 8 × 8 × 80 = 5120 fluid cells.

• Each subdomain (i.e., core) contains at the initial time
20 × 20 × 200 = 80,000 spherical particles.

• Our jobs run on a 16-core per node supercomputer,
so the reference for the weak scaling test is a full
node, i.e., a simulation on 16 cores with 16 × 80,000 =
1,280,000 particles and 16 × 5,120 = 81,920 fluid cells.

An ideal scalability means that the computing time is constant
as the domain size and number of nodes increase simul-
taneously. Figure 5 shows the evolution of the computing time
spent in each part of the code as a function of the number of
nodes/system size. For the granular solver, we observe that
after a rise of 5% between 1 and 2 nodes as a result of the
internode communication overhead mainly related to the
supercomputer architecture, the computing time keeps being

quasi-constant up to 32 nodes (i.e., 512 cores and 40,960,000
particles). This emphasizes the highly satisfactory parallel scal-
ability of the granular solver. Concerning the fluid solver, the
advection−diffusion problem scales quite well up to 16 nodes/
256 cores and then a little less satisfactorily at 32 nodes/
512 cores. The decay of the scalability of the advection−
diffusion problem solution over 16 nodes/256 cores is not
entirely clear and is currently investigated in our group. It could
be related to many diverse causes (as, e.g., the supercomputer
network architecture on which jobs were run that groups
18 nodes together in a chassis; a 16 nodes job uses a single
chassis of nodes, while a 32 nodes requires two chassis, and
interchassis communication may cause an additional overhead)
that are beyond the scope of this paper. The Stokes problem
solution scales quite poorly as the number of nodes/cores
increases. In fact, the computing time increases a lot from
1 node to 32 nodes. This was however predictable as the
number of fluid cells per subdomain is rather low (due to the
fluid grid size constraint (eq 27), and the Stokes problem
involves the solution of a pressure Poisson problem solved in
our code by an algebraic multigrid conjugate gradient method.
It is known that the scalability of the multigrid method (or
more generally any iterative solver) decays as the number of
nodes/cores increases if the number of fluid cells (pressure
unknowns) per core is too small. This has been verified by
increasing the number of fluid cells per core in the horizontal
direction from 8 × 8 × 80 = 5120 to 32 × 32 × 80 = 81,920.
In fact, Figure 6 clearly highlights that the multigrid solver for
the pressure Poisson problem performs better and better in
terms of parallel scalability as the load of fluid cells per core
increases. Obviously, since a 32 × 32 × 80 subdomain now
hosts 16 times more particles, the total computing time
increases accordingly although the parallel scalability
improves. However, even with a 8 × 8 × 80 subdomain, the
overall parallel scalability is rather satisfactory. In fact, the red
line in Figure 5 indicating the total computing time increase
for a given number of nodes with respect to a single node
shows a linear trend with a very small slope. For 32 nodes/
512 cores/40,960,000 particles/2,621,440 fluid cells, this
increases is around 30% only, i.e., a parallel scalability of
100/130 ≃ 0.77. On the basis of this weak scaling test, we
believe that configurations similar to our representative test
(fluidized beds in a box geometry) in which dynamic load
balancing is not required can easily be simulated with our
code with up to a few hundreds of millions of spherical
particles on a few thousands of cores with a good parallel
scalability, i.e., larger than 0.7, provided the load of particles
per core is of the order of 105.

Figure 5. Scaling performance for a constant load per core
(80,000 particles/5120 fluid cells). Evolution of the computational
time spent in the various parts of the code as a function of the number
of cores normalized by the time spent on a full node (16 cores).
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3. SENSITIVITY OF THE MODEL TO NUMERICAL AND
GEOMETRIC PARAMETERS IN THE CASE OF
BUBBLING FLUIDIZED BEDS

As many variants of the two-way Euler−Lagrange model exist
as, e.g., formulations A and B,39 contact solver, fluid flow solver,
we would like to provide here a clear and detailed validation
and sensitivity survey of our model that any other group can
reproduce. In this section, we consider bubbling fluidized beds
without wall effects. We first define statistical tools to analyze
the bed dynamics. Then, we examine the influence of the
following numerical parameters: solid time-step magnitude,
fluid time-step magnitude, and fluid grid size on the computed
solution as well as the influence of the geometric size of the
domain in controlling the bubbling dynamics of the system.
3.1. Bed Statistics. A three-dimensional fluidized bed

generally comprises a large number of particles and exhibits
a highly unsteady dynamics. As a result, the system can be
characterized in terms of statictics only. It is hence crucial to
define relevant statistical markers of the flow and a criterion to
assess the convergence of the statistics. We show in Figure 7

the typical time evolution of dynamic pressure drop across the
bed together with the corresponding time evolution of bed
height for a homogeneous bubbling fluidization starting from
a bed at rest. All parameters of this simulation are listed in
Table 1. The early transient over which the bed expands a lot
and the dynamic pressure drop across the bed overshoots is
discarded in the analysis. Then, the bed transitions to its
stationary (or pseudostationary) bubbling regime, and these
two markers oscillate in time around their time-averaged value.
In this stationary regime, we study particles trajectories sam-

pled at a frequency fsample = 1/Δtsample during a time Tsample, and
we compute bed statistics. We define a criterion which permits
us to determine when statistics converge, i.e., when they remain

the same regardless of Tsample. For instance, let us consider the
time-averaged sum of all particles velocity norm in the domain.
It can be computed in the following way:

∫ ∑
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where Tsample = NTsample
Δtsample, tj = tss + jΔtsample, t0 = tss, and

tNTsample
= t0,s + Tsample · tss denotes the starting time of the pseu-

dostationary regime or equivalently the end of the early
transient regime (Figure 7, tss = 1 s) . “X” means global
statistics, i.e., on all particles or in the whole domain. We
consider that the sample duration Tsample is large enough to
form relevant statistics once ⟨Sum |vp|⟩X,Tsample

reaches a steady
value. We therefore introduce the following convergence
criterion C:where and represent
the maximum and minimum values reached by ⟨Sum|vp|⟩X,Tsample

over [tss,tss+Tsample], and Tvar. is a time period of variation.
The maximum and minimum values of ⟨Sum|vp|⟩X,Tsample

over
[tss,tss+Tsample] normalize C(Tsample,Tvar.). The convergence
criterion C(Tsample,Tvar.) contains one problem-dependent
time parameter Tvar.. To compute C(Tsample,Tvar.), we also
assume that Δtsample is a multiple of Δtf and that Tvar. is a
multiple of Δtsample to avoid any interpolation in time.

Figure 6. Evolution of the scaling performace for the solution of the
Stokes problem as a function of the number of cores for different fluid
cells loads per core. The reference is the time spent on a full node
(16 cores).

Figure 7. Time evolution of the bed height (dashed blue) and of the
dynamic pressure drop across the bubbling bed (solid red).

Table 1. Parameters of Homogeneous Bubbling Fluidized
Bed Considered To Illustrate Bed Statistics Convergence
Criteriona

parameter value

particles
diameter dp 1 mm
density ρp 1500 kg m−3

dimensionless maximum overlapping distance
δij,max/dp

0.05

stiffness coefficient kn 4000 N m−1

normal restitution coefficient en 0.9
Coulomb friction coefficient μC 0.4
solid time-step magnitude Δtp 5 × 10−6 s
fluid
dimensionless mesh size Δx/dp 2
fluid time-step magnitude Δtf 2 × 10−5 s
density ρf 1.2 kg m−3

viscosity μ 1.8 × 10−5 Pa s
fluidization velocity Umf(εf = 0.37) 0.315 m s−1

Uin/Umf 2.5
geometry
domain size Lx × Ly × Lz 0.08 m × 0.08 m × 0.2 m
BC on lateral (vertical) boundaries biperiodic
initial bed height H0 0.05 m (SCL)
number of particles 80 × 80 × 50 = 320,000
dimensionless numbers

eUin 52.53

ρp/ρf 1500
aSCL means Simple Cubic Lattice to describe the initial layout of
particles. BC stands for boundary conditions.
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For each flow configuration, we set the values of Δtsample and
Tvar. using characteristic time scales as, e.g., time period of

pressure drop across the bed oscillations or average convec-
tive time scale of particles motion. Figure 8 shows the time

evolution of (Sum|vp|)X, ⟨Sum|vp|⟩X,Tsample
and the convergence

criterion described above. For that case, we assume that
statistics are converged when C(Tsample,Tvar.) is less than 0.05
over Tvar. = 1 s. As shown in Figure 8, this condition is satisfied
for Tsample ≃ 7.6 s.
3.2. Numerical Parameters. In order to perform

simulations as accurate and reproducible as possible, we study
the influence of numerical parameters that have a major
influence on the computed solution. First, we study the con-
vergence of the numerical method with the solid and fluid time-
step magnitudes. Second, as an actual grid size convergence
analysis cannot be conducted in relation to the grid size
constraint ΔV ≃ 10Vp, we identify what grid size offers the best
compromise between accurate resolution of the fluid flow
(small grid size) and relevant averaging process (large grid
size).
The selected test case is once again a homogeneous bubbling

fluidized bed. All simulation parameters are listed in Table 2.
The configuration is similar to the one in Section 3.1, but the
flow regime is slightly more inertial ( =e 301.33Uin

versus
52.53 in Section 3.1).
3.2.1. Particle Time Step. In dense fluidized bed simulations

performed with our DEM-CFD model, most of the computing
time is spent in the Lagrangian tracking of particles with
collisions. In his pioneering work on DEM-CFD models, Tsuji7

emphasized that an accurate resolution of particle−particle
and particle−wall contacts is necessary to describe properly
the whole fluidized bed dynamics. As usual, we expect our
simulation method to be quick and accurate. These two
expectations are generally contradictory as far as the time-step
magnitude is concerned. In fact, a small time step guarantees
accuracy but requires more time steps to be computed for the
same physical time and vice versa for a large time step. As in a
fluidized bed, the interphase coupling is dominant in the overall
dynamics, determining the right compromise between accuracy
and fast computing for the solid time-step magnitude Δtp is not
an easy task.

As presented in ref 29, the collision characteristic time Tcol
arising from the mass-spring-dashpot contact force model used
in this work (see Section 2.2) in the case of a normal gravityless
collision of two spheres reads as follows:

π

ω γ
=

−
T

n

col
0
2 2

(33)

with ω0
2 = 2kn/mp. The normal dissipative coefficient γn can

be related to the coefficient of restitution en ∈ [0,1] in the

following way: γ = − ω

π +n
e

e

ln

(ln )
n

n

0
2 2

.29 As contacts are (very often

explicitly) integrated in time in soft sphere models, this
integration should be carried out at the discrete level with a
time step Δtp much smaller than the contact duration Tcol to
guarantee an accurate resolution of the contact. Practically, it is
recommended in the literature29,40,41 to integrate a dry contact
with Δtp in the range [Tcol/50, Tcol/15]. In a fluidized bed,
most contacts are physically different from an ideal normal
gravityless dry contact, and we hence rely on simulation tests to
estimate the appropriate magnitude of Δtp.
From Table 2 and eq 33, we have Tcol = 10−4 s. We fix

Δx/dp = 2, Δtf = 2 × 10−5 s and perform a series of simulations
with a solid time step Δtp in the range [0.25, 2] × 10−5 s, i.e.,
Δtp ∈ [Tcol/40, Tcol/5]. We compare statistics as a function of
Δtp in order to determine the maximal time-step magnitude
required in our DEM-CFD simulations to describe accurately the
bed dynamics. We plot in Figure 9 the converged statistics of
the velocity norm of all particles ⟨Sum|vp|⟩X,Tsample

as a function of

the solid time step Δtp. Here, ⟨Sum |vp|⟩X,Tsample
converges pro-

gressively to a constant value as Δtp decreases. For Δtp ≤ Tcol/10,
the dynamics of the bed seems to be unaffected by the

Figure 8. Time evolution of (Sum|vp|)X, its time average ⟨Sum|vp|⟩X,Tsample

(above) and the convergence criterion C(Tsample,Tvar.) (below).

Table 2. Parameters of Homogeneous Bubbling Fluidized
Bed Considered to Illustrate the Bed Statistics Convergence
Criteriona

parameter value

particles
diameter dp 2 mm
density ρp 2500 kg m−3

dimensionless maximum overlapping distance
δij,max/dp

0.05

stiffness coefficient kn 4000 N m−1

normal restitution coefficient en 0.9
Coulomb friction coefficient μC 0.4
solid time-step magnitude Δtp 0.25−2 × 10−5 s
fluid
dimensionless mesh size Δx/dp 1.47−2.5
fluid time-step magnitude Δtf 0.5−5 × 10−5 s
fensity ρf 1.2 kg m−3

viscosity μ 1.8 × 10−5 Pa s
fluidization velocity Umf(εf = 0.37) 0.904 m s−1

Uin/Umf 2.5
geometry
domain size Lx × Ly × Lz 0.16 m × 0.16 m × 0.5 m
BC on lateral (vertical) boundaries biperiodic
initial bed height H0 0.1 m (SCL)
number of particles 80 × 80 × 50 = 320,000
dimensionless numbers

eUin 301.33

ρp/ρf 2500
aSCL means Simple Cubic Lattice to describe the initial layout of
particles. BC stands for boundary conditions.
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magnitude of Δtp. Interestingly, this upper bound for Δtp is
higher that the one generally used for dry granular simulations
performed with the same DEM code that generally around
Tcol/20.

29 Actually, in a fluidized bed, particles motion is as
much driven by the hydrodynamic force f fp than the collision
force f pp. For high Uin/Umf ratios, f fp actually dominates f pp.
This sheds some light on why the dry granular upper bound is
not directly applicable to DEM-CFD simulations.
Another constraint on the solid time-step magnitude Δtp

common to dry granular simulations and DEM-CFD simulations is
related to the maximum displacement of each individual par-
ticle over Δtp with respect to the maximum overlap distance per
particle allowed over a contact δij,max (also referred to in DEM
models as crust thickness29). Indeed, in a soft sphere model, a
particle should not move more than its crust thickness over Δtp,
otherwise two colliding particles may overlap more than
allowed to. This condition reads as follows:

δ
=

Δ
<

tv
CFL 1ij p

ij
particle

,max (34)

where vij is the relative velocity between colliding particles i and
j. It is somehow similar to a Courant−Friedrichs−Lewy (CFL)
stability condition for the fluid motion. The crust thickness
δij,max is a fixed simulation parameter, set in our simulations to
δij,max/dp = 0.05 (Table 2). An upper bound for vij needs to be
estimated before the simulation in order to properly set Δtp
according to relation 34. Note that our DEM solver uses a
constant time-step integration and is not able to perform local
time-step adaption. In practice, as the estimation of the upper
bound for vij is not straightforward, we introduce a safety
coefficient of 2 and require the following condition CFLparticle <
0.5 to be satisfied.
In the case of homogeneous bubbling fluidized beds with

an inlet velocity Uin ranging from Umf to 7Umf, extensive
computing indicates that the following empirical formula:
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is a reliable approximation of the maximum particle velocity
norm (in the sense over all particles and a long enough sim-
ulation time). Thus, the solid time step Δtp in homogeneous
bubbling fluidized bed simulations is set as a combination of
the CFLparticle condition and the contact integration condition as
follows:
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3.2.2. Fluid Time Step. The explicit treatment of the
advective term in the fluid momentum eq 4 requires the fluid
time step Δtf to satisfy a CFL condition to ensure stability. For
constant grid size Δx in all 3 directions, the CFL condition reads
as follows:
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| |Δ
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u t
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d j

f d j f
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(37)

where d denotes the space direction index, j the velocity node
index, and uf,d,j the d component of uf at velocity node j. For our
first-order explicit treatment of the advection term, CFLmax is
theoretically 1. In practice, we use a safety coefficient of 2 and
impose CFL < 0.5 instead. As for the granular time-step mag-
nitude Δtp, we do not known a priori what will be the value
of maxd=1,2,3 maxj |uf,d,j| over a whole simulation. Extensive
computing indicates that high solid volume fraction hetero-
geneities lead to local velocity overshoots as large as 10 times
the inlet velocity. Then, a first constraint to determine the
magnitude of Δtf is as follows:

Δ < Δ
t

x
U

0.5
10f

in (38)

However, contrary to the granular flow solver, the fluid solver
possesses a local time adaption mechanism to ensure stability
by temporarily splitting the diffusion−advection problem (eq 4)
into a separate diffusion subproblem and a separate advection
subproblem and subtime stepping the advection subproblem
such that eq 37 is recovered. The advection subproblem is
hence solved m consecutive times with a time step Δtadv as
follows:
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with Δtadv satisfying (37), m × Δtadv = Δtf, ũfn = uf
n and uf* =

ũf
n+1. It is recommended not to perform these subiterations too
often over a simulation as it affects the time accuracy of the
solution. If this does happen too often, it is safer to redo the
simulation with a smaller Δtf.
The second constraint to determine Δtf derives from the

loose (explicit) coupling of the fluid and solid governing
equations in our solution algorithm. In fact, we solve the fluid
governing equations for a fixed position and reaction source
term of the particles computed at the previous time and then
advance the particles for a fixed hydrodynamic force exerted on
them. In other words, the particles as seen by the fluid are
frozen over Δtf and similarly the fluid as seen by the particles is
frozen over Δtf. If Δtf is “small enough”, this loose coupling
strategy yields a reasonably accurate time evolution of the
system. However, to the best of our knowledge, there is no
theoretical way to estimate an upper bound of Δtf that enables
one to avoid a nonphysical and nonrealistic evolution of the
system. Hence, we rely once again on extensive computing to
empirically determine the optimal magnitude of Δtf. We fix
Δx/dp = 2, Δtp = Tcol/20 = 5 × 10−6 s and perform a series of
simulations with a fluid time step Δtf in the range [Tcol/20,
Tcol/2]. In all these simulations, Δtf satisfies eq 37. We compute

Figure 9. Influence of solid time-step magnitude (red line), fluid time-
step magnitude (red dotted line), and fluid grid size (blue dotted line)
on the time-averaged sum of all particles velocity norm, selected as a
major feature of the computed solution.
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the statistics of the bed as a function of Δtf. In Figure 9, we
plot as a dashed red line the velocity norm of all particles
⟨Sum|vp|⟩X,Tsample

versus Δtf. For Δtf < Tcol/5, ⟨Sum|vp|⟩X,Tsample
is

almost independent of Δtf, giving an upper bound for describing
properly the bed dynamics. Since the solution of the fluid
problem is rather computationally inexpensive with respect to
the Lagrangian tracking of particles with collisions, a sensible
guideline seems to be Δtf ≤ Tcol/5. This guideline has proven to
be reliable in our simulations. Note that the loose coupling of
the fluid and solid governing equations can be improved in
different ways as, e.g., (i) using a second order time accurate
leapfrog algorithm for the fluid solver in the same spirit as
the granular solver or (ii) interpolating the fluid velocity field
at particles positions both in time and in space as particles
move and hence update f pp at each granular solver subtime.
Improvement (ii) will increase considerably the computing cost
but should enable us to compute solutions of higher precision
and stability. This is a topic of ongoing work for the enhance-
ment of our DEM-CFD model.
3.2.3. Fluid Grid Size. Our DEM-CFD numerical model is based

on a unique grid to solve the Navier−Stokes equations, to
compute f and to compute the fluid−solid interphase coupl-
ing. In other words, contrary to, e.g., ref 6, our projection
operator from Lagrangian to Eulerian depends on the grid size
Δx. A true grid size convergence analysis cannot be performed
as Δx must satisfy (30) or at least Vp < Δx3 to avoid = 0f

(Section 2.5). In any case, Δx cannot tend to zero as in a
classical grid size convergence analysis. What we can however
investigate in the range Δx ∈ [1.47 dp; + ∞] is the lower and
upper bounds of Δx to guarantee quasi-grid independent
computed results. Once again, the method requires a large
enough Δx for the spatial averaging process and a small enough
Δx to properly capture the fluid flow dynamics. To estimate the
optimal grid size range, we fix Δtp = Tcol/20 = 5 × 10−6 s, Δtf =
10−5 s = 2Δtp and perform a series of simulations with Δx ∈
[1.47 dp, 3.57 dp]. We plot ⟨Sum|vp|⟩X,Tsample

versus Δx in Figure 9
as a representative measure of bed statistics. It is pretty
visible that bed statistics are quasi independent of Δx for Δx ∈
[1.85 dp, 2.5 dp]. The trend is similar for other measures of
bed statistics. The lower bound is in agreement with the
theoretical lower bound (eq 27) for the separation of scales
(1 order of magnitude) as originally introduced by.42 All
simulations in the rest of the paper are performed with Δx close
to 2 dp.
3.3. Domain Size Influence. In fluidized beds, large flow

structures such as particles clustering, i.e., regions of low f ,

and fluid bubbles, i.e., regions of high f (close to 1), develop
in the core of the bed. The size of these structures is controlled
by the flow regime, i.e., the dimensionless numbers that govern
the system (density ratio, Reynolds number, Uin/Umf ratio), and
the lateral boundary conditions. Although it is known (and
rather intuitive) that the domain size controls the dynamics of
the system with lateral solid wall boundary conditions (no slip
condition on the fluid velocity), biperiodic domains are
assumed to represent infinitely large domains in directions of
periodicity. However, the size of the computational domain in
each periodic direction needs to be larger than the characteristic
length scale of the system dynamics for this assumption to hold.
If this assumption is not satisfied, the size of these repre-
sentative flow structures (essentially fluid bubbles) can match
the domain size, and then, a bubbling bed can degenerate into a

slugging bed as presented in Figure 10, even with biperiodic
boundary conditions. In fact, if the domain is transversely
(horizontally) too narrow and a particles cluster is as large as
the domain cross section, the fluid cannot easily flow through
this cluster. Instead, a fluid bubble manifests upstream of the
particles cluster, grows, and carries upward the cluster as an
homogeneous dense pack of particles, as shown in Figure 10b.

Particles progressively plummet downward from the bottom of
the cluster to the bottom of the bed until the cluster vanishes
and another cluster (slug) appears. This cyclic slugging
behavior is representative of narrow fluidized beds. In fact,
the primary instability, i.e., the vertical instability, can develop
while the secondary transverse instability is damped by the
narrowness of the domain. Conversely, with all other param-
eters kept the same, if the domain cross section is large enough,
in the sense larger than the largest particles cluster, the fluid
flows across these clusters more easily, and the secondary
transverse instability develops. As shown in Figure 10a, the size
of created bubbles is not controlled by the domain cross
section, and the bed dynamics is totally different.
From these preliminary results, it is rather remarkable that

the bed dynamics is strongly affected by the computational
domain periodic size. A valuable question to answer is the
minimum domain size for a certain flow regime to exhibit cross-
section size-independent bed statictics and behavior, such that
the biperiodic simulation indeed represent an infinitely larger
fluidized bed. Performing computations in a small biperiodic
domain is tempting as it involves less computing resources but
at the cost of producing physical results biased by the domain
cross-section size.
To highlight the influence of the cross-section size of

biperiodic domains, we perform a series of simulations in
domains of increasing cross-section size and examine how this
affects bed statistics, in the same manner as in ref 6. This sur-
vey is carried out with three-dimensional systems as two- and
three-dimensional beds do not lead to the same statistics and
presumably to different dynamics. The initial configuration is
a simple cubic arrangement of 50 particles height, and the
number of particles and the domain size in the transverse direc-
tions are increased simultaneously. Simulations are performed
on domains with a cross section in the range of 20dp × 20dp to
120dp × 120dp. All other parameters are similar to the ones
used in Section 3.1 and listed in Table 1. Converged in time
bed statistics are plotted in Figure 11. The top row shows axial
profiles of time-averaged porosity ⟨ ⟩f Tsample

and time-averaged

particles velocity norm ⟨Sum|vp|⟩Tsample
and the bottom row their

corresponding time variance. Please note that ⟨Sum|vp|⟩Tsample
is

Figure 10. Snapshots at t = 2.8 s of the fluid volume fraction spatial
distribution in a homogeneous bubbling fluidized bed in a vertical cut
plane for domains with (a) a wide cross section and (b) a narrow cross
section.
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divided by the cross-section area such that results can be properly
compared to each other. Results for the smallest domain 20dp ×
20dp markedly depart from other cases. The time-averaged
porosity axial profile shows a significantly higher (respectively
lower) presence of particles in the low (respectively high)
region of the bed. This more homogeneous distribution of
particles is related to the slugging regime, i.e., the cyclic rise of
large fluid bubbles that occupy the whole domain cross section.
Besides, ⟨ ⟩f Tsample

reaches 1 at a much higher vertical coordinate,

indicating that the time averaged bed height for the domain
with a 20dp × 20dp cross section is larger than that of domains
with a larger cross section. From the domain with a 40dp × 40dp
cross section, the bed qualitatively behaves in the same way but
bed statictics are unaffected by the domain cross-section size
from 100dp × 100dp only. In Figure 11, we plot the axial profile
of the time-averaged cumulative particles velocity norm divided
by the cross-section area, while Figure 12 shows the time-
averaged velocity norm of all particles (note that as expected
the cumulative particles velocity norm at the top of the bed
matches the velocity norm of all particles). Once again, these
two figures confirm that for domains with a cross section larger
than 100dp × 100dp, the bed behavior is unchanged.

For the particular case studied here, the minimum domain
cross-section size to yield cross-section independent results is
100dp × 100dp. It also signifies that performing computations
with a domain cross section larger than 100dp × 100dp would
not bring any additional knowledge of the system but will
essentially require unnecessarily larger computing resources.
The result 100dp × 100dp as a minimal domain cross section
can unfortunately not be generalized to other flow config-
urations as the minimal domain cross section depends on the
flow regime and presumably on the initial bed height to cross-
section length ratio. Our objective here is primarily to point out
that the assumption that periodic or biperiodic fluidized beds
mimic infinitely large fluidized beds strongly depends on the
geometric configuration and dimensionless parameters and
has to be very meticulously investigated, either with reliable
theoretical arguments or by numerical experimentation.

4. VALIDATION AGAINST PHYSICAL DATA

We select two configurations: (i) a homogeneous bubbling
fluidized bed for which we compare our numerical predictions
to theoretical results and (ii) a spouted bed for which we com-
pare our numerical predictions to experimental data.

Figure 11. Axial profile of bed statistics for domains of increasing cross section.

Figure 12. Influence of the domain cross-section size on the time-averaged particles velocity norm.
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4.1. Onset of Fluidization in a Bubbling Fluidized Bed.
This first validation test corresponds to a homogeneous
bubbling fluidized bed with solid wall boundary conditions
on the vertical walls. The homogeneous (in the sense constant
in space over the bottom wall) inlet velocity Uin is increased
step by step until the particles begin to bubble and is then
reduced back to zero. At each step, the simulation is run until a
new pseudostationary state is reached. This test case is basic but
very valuable to verify both the minimum fluidization velocity
Umf and the dynamic pressure drop across the bed Δpbed. When
the bed is fluidized, Δpbed is equal to the total net weight of the
bed of particles Wbed. The prediction of Umf is obtained by
solving the balance equation between Δpbed as predicted by
Ergun’s equation and Wbed as follows:
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where f ,mf denotes the porosity of the bed at the onset of
fluidization. Another interesting and documented phenomenon
is the expected hysteresis of the dynamic pressure drop across
the bed between increasing and decreasing the inlet velocity Uin
(see, e.g., ref 43). The complete set of parameters for this
system is given in Table 3.

The initial layout of particles in the domain is the results of a
purely granular simulation (without fluid) in which particles are
inserted at the top of the domain, settle under gravity, and
collide and arrange themselves at the bottom of the domain.
The initial bed height H0 exhibits a porosity of ≈ 0.378f ,0 ,
relevant of the empirical value of random close packing.

As we increase the inlet velocity Uin, Δpbed rises from zero and
follows the Ergun equation with =f f ,0 until an inlet

velocity threshold slightly above U ( )fmf ,0 is reached. At that
stage, particles begin to vibrate and rearrange themselves while
the dynamic pressure drop across the bed slightly decreases and
stabilizes at Δpbed = Wbed. This moderate pressure drop
overshoot arises from a specific arrangement of particles in
the presence of walls for systems whose particle−reactor size
ratio does not satisfy the condition dp/Lx ≪ 1.43 Here, this
ratio is 0.025 and is apparently not small enough to prevent
the appearance of this hysteresis phenomenon. The phys-
ical comprehension of this hysteresis phenomenon is well
established. Granular arches form in the random pack of
particles and these structures cause higher flow resistance
than if particles were free to move.43 While decreasing the
inlet velocity from Uin > Umf to Uin = 0, particles begin to settle
for a higher velocity than the one they started to vibrate
from while increasing Uin. They hence arrange themselves
in such a way that flow resistance is minimized. In the case
presented in Figure 13, this arrangement corresponds to a

bed porosity of = 0.385f ,mf . Assuming ≃ = 0.378f f,mf ,0

and Hmf ≃ H0 and (40), the theoretical dynamic pres-
sure drop across the bed once the bed is fluidized is

ρ ρΔ = − − ≈p (1 )( )gH 3017Paf p ffluidizedbed ,0 0 . The value

computed by our model is ≈3050Pa, in very satisfactory
agreement with the theoretical estimate.
Our model reproduces well the main features of the selected

fluidized bed. In fact, dynamic pressure drop across the bed and
minimum fluidization velocity are both satisfactorily predicted.
The expected hysteresis phenomenon is also qualitatively well
reproduced by the model. This simple but essential validation
case gives confidence in the consistency of our set of governing
equations as well as in the numerical implementation of the
model.

4.2. Dynamics of Spouted Beds. Experimental data
available for 3D bubbling beds are generally limited to macro-
scopic measures as average bed height, pressure drop across the
bed or minimum fluidization velocity as experimental measure-
ments in the core of the bed remains challenging. Quasi-3D or
2.5D configurations (i.e., one dimension of the cross section
only spans a few particle diameters) enable one to better
visualize the bed dynamics and its corresponding flow struc-
tures. These configurations hence yield more precise data in the
core of the bed to compare our DEM-CFD numerical model’s
predictions to. The second validation case is hence a quasi-3D
spouted bed for which experimental data are available.
We compare our numerical results to experimental data col-

lected by Brown over his Ph.D thesis.44 The spouted bed

Table 3. Parameters of Fluidized Bed Considered for
Validation Test Δp = f(Uin)

a

parameter value

particles
diameter dp 2 mm
density ρp 1500 kg m−3

dimensionless maximum overlapping distance
δij,max/dp

0.05

stiffness coefficient kn 4000 N ·m−1

normal restitution coefficient en 0.9
Coulomb friction coefficient μC 0.4
solid time-step magnitude Δtp 2 × 10−5 s
fluid
dimensionless mesh size Δx/dp 2
fluid time-step magnitude Δtf 4 × 10−5 s
density ρf 1.2 kg m−3

viscosity μ 1.8 × 10−5 Pa s
fluidization velocity Umf(εf = 0.378) 0.692 m s−1

Uin/Umf 0−1.3
geometry
domain size Lx × Ly × Lz 0.08 m × 0.08 m × 0.6 m
BC on lateral (vertical) boundaries walls
initial bed height H0 ≈0.335 m
number of particles 320,000
dimensionless numbers

eUmf 93.33

ρp/ρf 1500
aBC stands for boundary conditions.

Figure 13. Dynamic pressure drop across the bed as a function of the
inlet flow velocity.
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configuration is presented in Figure 14. Lateral (vertical) bound-
aries are solid walls. Glass particles with two different diameters

dp = 550 μm and dp = 750 μm and three different injection
conditions, namely, single, double, or triple nozzles, were
investigated in the experiments. All parameters for the dp =
550 μm and dp = 750 μm systems are listed in Tables 4 and 5,

respectively. The bulk velocity Ubulk is defined as the mean
velocity over the whole bed horizontal cross section and is
related to the inlet velocity Uin by the following simple formula:

=U
N

U
1.6

56.4bulk
nozzles

in (41)

where 56.4 is the bed width, 1.6 the width of each individual
nozzle slit (Figure 14) and Nnozzles ∈ {1,2,3} is the number of
nozzles. As Nnozzles increases, Uin is divided by Nnozzles such that
Ubulk is constant regardless of Nnozzles.
Figures 15 and 16 show the time-averaged fluid volume

fraction distribution ⟨ ⟩f Tsample
in an x−z plan for the three injec-

tion conditions and for the two particle diameters, dp = 550 μm
and dp = 750 μm, respectively. Both bed height and particles
spatial distribution are faithfully reproduced by our model. The
agreement is particularly satisfactory for the double- and triple-
nozzle cases and slightly less for the single-nozzle cases. In ref 45,
the authors, who also compared their numerical predictions
with the same grid size to Brown’s experiments, attributed the
observable discrepancies between numerical results and
experimental data to the coarse fluid grid size. In fact, in both
the simulations of45 and ours, the channel width is discretized
by a single fluid cell. However, the grid size employed for the
single-nozzle cases is the same as the one for the double- and
triple-nozzle cases. It seems to us that the argument of low fluid
flow resolution might not be the only explanation. It is however
expected that a DEM-CFD model as the one of ref 6 that permits
us to use a smaller grid size would improve the quality of the
computed results and would presumably match more accu-
rately experimental data. Another plausible explanation is that
single-nozzle experiments led to a higher level of experimental
uncertainty or were more difficult to time average. Nevertheless,
computed pressure fluctuations at the inlet cross section of the

Figure 14. Domain geometry of the spouted bed experiment used by
Brown.44

Table 4. Parameters of Spouted Fluidized Bed of Brown44

with Particles of Diameter dp = 550 μma

parameter value

particles
diameter dp 0.550 mm
density ρp 2500 kg m−3

dimensionless maximum overlapping
distance δij,max/dp

0.05

stiffness coefficient kn 10000 N m−1

normal restitution coefficient en 0.9
Coulomb friction coefficient μC 0.1
solid time-step magnitude Δtp 1 × 10−6 s
fluid
dimensionless mesh size Δx/dp
in x direction 2.927
in y direction 3
in z direction 1.818
fluid time-step magnitude Δtf 5 × 10−6 s
density ρf 1.2 kg m−3

viscosity μ 1.8 × 10−5 Pa s
fluidization velocity Umf(εf = 0.395) 0.24 m s−1

Ubulk/Umf 3 (except for Figure 17, 2.6)
geometry
domain size Lx × Ly × Lz 0.0564 m × 0.00495 m × 0.15 m
BC on lateral (vertical) boundaries walls
initial bed height H0 0.052 m
number of particles 100,000
dimensionless numbers

eUbulk 26.4

eUin,1N 930.6

ρp/ρf 2500
aBC and 1N stand for boundary conditions and one nozzle,
respectively.

Table 5. Parameters of Spouted Fluidized Bed of Brown44

with Particles of Diameter dp = 750 μma

parameter value

particles
diameter dp 0.750 mm
density ρp 2500 kg m−3

dimensionless maximum overlapping
distance δij,max/dp

0.05

stiffness coefficient kn 10000 N m−1

normal restitution coefficient en 0.9
Coulomb friction coefficient μC 0.1
solid time-step magnitude Δtp 1.5 × 10−6 s
fluid
dimensionless mesh size Δx/dp
in x direction 2.927
in y direction 3
in z direction 1.818
fluid time step-magnitude Δtf 4.5 × 10−6 s
density ρf 1.2 kg m−3

viscosity μ 1.8 × 10−5 Pa s
fluidization velocity Umf(εf = 0.41) 0.43 m s−1

Ubulk/Umf 3
geometry
domain size Lx × Ly × Lz 0.0564 m × 0.00495 m × 0.15 m
BC on lateral (vertical) boundaries walls
initial bed height H0 0.07 m
number of particles 50,000
dimensionless numbers

eUbulk 64.5

eUin,1N 2273.6

ρp/ρf 2500
aBC and 1N stand for boundary conditions and one nozzle,
respectively.
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domain for the single-nozzle case with dp = 550 μm and
Ubulk/Umf = 2.6 is close those measured by Brown as shown in
Figure 17. The satisfactory agreement of the pressure
fluctuations spectrum emphasizes that the bubbles creation
and migration dynamics is very well predicted by our model. In
this case, the fact that the spectrum shows a single well-defined
frequency peak indicates that the dynamics of the system is very
cyclic: every 1/10 = 0.1 s, a bubble forms downstream of the
nozzle, rises, and bursts at the free surface.

5. INFLUENCE OF THE FRICTION COEFFICIENT ON
THE DYNAMICS OF A SPOUTED BED

In a spouted bed, the relative collisional velocity between
particles carried upward by the channel flow and particles at the
channel flow/lateral static regions interface is generally pretty
high. These contacts are mostly tangent. Hence, the relative
magnitude of the tangential friction force to the hydrodynamic
force exerted by the fluid influences the bed dynamics. In our
contact model, the tangential friction force magnitude is
controlled by a single material parameter: the Coulomb friction
coefficient μC. The value of this coefficient is itself strongly
dependent on particle surface roughness that can significantly
evolve over time due to mutiple successive collisions. As an
example, glass beads have a friction coefficient ranging from μC
= 0.05 for highly polished surfaces to μC = 0.7 for rough sur-
faces. Hence, a particle that experiences numerous high speed
collisions may see its surface wearing down over time and the

corresponding μC markedly increasing. In a spouted bed,
particles with a high μC will resist more to the entrainment of
the fluid in the central channel. This results in a different bed
behavior. Our objective here is to capture this effect quantita-
tively on the single-nozzle configuration with dp = 750 μm
examined in Section 4.2.
The overall dynamics of a single-nozzle spouted bed is as

follows. Particles right above the injection nozzle experience a
large hydrodynamic force due to the high injection velocity.
Their momentum is transferred to the surrounding static
particles through normal and tangential contact forces. These
static particles are then pushed aside and upward, leading to the
creation of a fluid bubble. The fluid bubble grows in size and
starts to rise through the bed, fed by continuous fluid injection.
As the fluid manages to flow with less resistance through the
bed, the pressure drop across the bed decays. The higher
granular pressure in the quasi-static dense regions on the sides
of the central channel flow pushes particles back into the fluid
bubble. While the bubble rises, some particles from the quasi-
static dense regions start to fill the fluid region above the
nozzle. The fluid flow experiences again a strong resistance and
the pressure drop across the bed increases. While a first bubble
reaches the bed surface and bursts, a new bubble is created
above the injection nozzle and moving particles are trapped
between the two bubbles. These moving particles, that move at
a high velocity, collide with particles in the quasi-static dense
regions on the sides of the channel. In general, as fluid bubbles

Figure 15. Time-averaged fluid volume fraction contour plots for 1, 2, and nozzles (left to right), Ubulk/Umf = 3 and dp = 550 μm. Top: Brown’s
experiments.44 Bottom: Our simulation results. Top figures reprinted in part with permission from Brown, S. L., Hydrodynamics and Transient Heat
Transfer Characteristics in Fluidized and Spouted Beds. M.Sc. Thesis, Virginia Polytechnic Institute and State University.44 Copyright 2012, Steven L.
Brown.
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rise with a high velocity, they propel entrained particles above
the bed height. As particles disperse above the bed height and

experience a lower upward hydrodynamic force, they plummet
on both sides of the channel.
On the basis of the above, it is rather predictable that the

magnitude of μC quantitatively modifies the bed dynamics. For
low values of μC, fluid bubbles are larger than for high μC and
generally wider than the injection nozzle. This effect is related
to the lower tangential resistance to displacement experienced
by particles set in motion by rising bubbles. This also impacts
the migration of fluid bubbles to the bed surface that rise faster
than for high μC. As a result, particles trapped between two
bubbles are propelled higher (Figure 18) and settle laterally

Figure 16. Time-averaged fluid volume fraction contour plots for 1, 2, and nozzles (left to right), Ubulk/Umf = 3 and dp = 750 μm. Top: Brown’s
experiments.44 Bottom: Our simulation results. Top figures reprinted in part with permission from Brown, S. L., Hydrodynamics and Transient Heat
Transfer Characteristics in Fluidized and Spouted Beds. M.Sc. Thesis, Virginia Polytechnic Institute and State University.44 Copyright 2012,
Steven L. Brown.

Figure 17. Frequency spectrum of the dynamic pressure oscillations at
the inlet cross section for the single-nozzle case, Ubulk/Umf = 2.6 and dp
= 550 μm. Top: Brown’s experiments.44 Bottom: Our simulation
results. Top figure reprinted in part with permission from Brown, S. L.,
Hydrodynamics and Transient Heat Transfer Characteristics in Fluidized
and Spouted Beds. M.Sc. Thesis, Virginia Polytechnic Institute and
State University.44 Copyright 2012, Steven L. Brown.

Figure 18. Snapshots at t = 1.5 s of the fluid volume fraction spatial
distribution for two different values of the tangential friction coefficient
μC = 0.05 and μC = 0.3 in the single-nozzle spouted bed.
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farther from the central channel (i.e., closer to the walls), in a
fountain-like shape (Figure 19a). Finally, as a new bubble
detaches from the injection nozzle and starts to rise, particles
migrate faster from the sides to the channel center in the wake
of the bubble. This leads faster to a higher flow resistance to
fluid flow that translates into a higher pressure drop across the
bed. This overall faster dynamics results in a larger amplitude of
pressure drop oscillations for low μC as illustrated in Figure 20.
For high values of μC, particles displacement is more

hindered due to higher friction with surrounding particles.
Consequently, fluid bubbles are thinner, generally no more
than the nozzle width. Particles are carried to the bed surface
with a lower velocity as energy is dissipated by particle−particle
tangential friction. Particles are also propelled with a lower
velocity. The resulting bed height is then smaller as presented
in Figure 19d. Particles settle laterally closer to the channel. It is
rather visible that the time-averaged free surface of the bed
(from the channel to the walls) has a remarkable upward

oriented conic shape for high μC, while for low μC the cone
is downward oriented. As a new bubble detaches from the
injection nozzle and starts to rise, particles migrate rather
slowly from the sides to the channel center in the wake of the
bubble, such that resistance to fluid flow is almost continuous.
As a result, the pressure drop across the bed does not fluctuate
much over time as shown in Figure 20. The influence of μC on
the pressure drop across the bed is summarized in Figure 21. It
is rather obvious that the lower the friction coefficient is, the
more frequent and the larger the pressure oscillations are.

6. CONCLUSION AND PERSPECTIVES
We presented a two-way Euler/Lagrange (DEM-CFD) numerical
model for the simulation of fluid/solid flows. The mass and
momentum conservation equations are discretized by a second
order in space Finite Volume/Staggered Grid scheme. The
Lagrangian tracking of particles with collisions is carried out
with a Discrete Element Method. The coupled system of equa-
tions is advanced in time by a first-order operator-splitting
algorithm. Finally, the fluid−solid momentum transfer is
modeled at the discrete level by a simple but conservative
projection operator. Our projection operator, also referred to
in the literature as averaging operator or filter, is grid size
dependent. Although very robust as it smoothes out time-
dependent terms in a reliable way, it does not enable to refine
the grid below the particle diameter.
We carefully evaluated the sensitivity of our numerical model

to the following numerical parameters: solid time-step mag-
nitude, fluid time-step magnitude, and grid size. The objective is
to better control the quality of the computed solution based on
detailed bed statistics. In the case of bubbling fluidized beds,
we derived guidelines to produce results of reliable accuracy

Figure 19. Time-averaged fluid volume fraction contour plots for different values of the tangential friction coefficient μC in the single-nozzle spouted
bed.

Figure 20. Time evolution of the dynamic pressure drop across the
bed for two different friction coefficients μC = 0.1 and μC = 0.5 in the
single-nozzle spouted bed.

Figure 21. Influence of the Coulomb friction coefficient on the pressure drop across the bed in the single-nozzle spouted bed.
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both in space and time that can be easily extrapolated. We also
assessed the parallel computing performance of our numerical
implementation. The preliminary tests carried out exhibit a
very satisfactory scalability. In systems in which dynamic load
balancing is not necessary, i.e., the number of particles per sub-
domain (core) does not vary much over time, as bubbling
fluidized beds, computations with up to a hundred millions
of particles on a few hundreds of core can be performed as a
standard computation with our code. The extension to a few
hundreds of millions on a few thousands of cores seem reason-
ably attainable too.
In a way to provide guidelines for more reliable benchmarks

for fluidized bed simulations without lateral solid wall effects
with DEM-CFD numerical models, we investigated the influence
of the cross-section size of the biperiodic domain on the
bed behavior. We showed than even in a biperiodic domain,
selecting a certain cross-section size imposes flow structures
that are not representative of the equivalent infinitely large
fluidized bed the biperiodic computational domain is supposed
to mimic. As the characteristic size of the flow structures is not
easy to predict analytically or empirically, selecting the right
domain cross-section size to yield computed results independ-
ent of the domain cross-section size has to be determined
by numerical experiments. We illustrated this on a bubbling
fluidized bed. In the flow regime investigated, the domain cross-
section size needs to be roughly twice larger than the initial bed
height and of the order of three-four times the size of the
largest fluid bubble.
Our model was eventually validated against well documented

experimental data relevant of a spouted bed with different
injection configurations and different particle diameters. On
this particular test case, our model performs quite well and
agrees very satisfactorily with experimental data. Although this
first validation step is promising, additional comparisons on
more detailed flow markers are necessary. This is not neces-
sarily straightforward as experimental measurements of these
flow markers in the core of the bed as, e.g., particles velocity
fluctuations, are still very challenging and experimental
uncertainties can be quite large depending on the measurement
technique employed.46

Finally, we investigated the influence of the Coulomb friction
coefficient μC on the dynamics of a single-nozzle spouted bed.
We showed that as tangential frictional resistance is increased
by increasing μC, the overall bed dynamics is strongly affected.
To summarize, low μC result in large and fast rising bubbles,
particles propelled much higher than the average bed height
and significant fluctuations of the pressure drop across the bed
while high μC produce the reverse. This has important impli-
cations for industrial practices. In fact, over long operations,
numerous high velocity collisions undergone by particles wear
down (degrade) their surface, i.e., increase surface roughness, a
phenomenon known as attrition. Since a spouted bed with
smooth particles exhibit a markedly different dynamics than the
same spouted bed with rough particles, this sheds some light on
the fact that the corresponding industrial reactor might require
to be operated differently over time to guarantee the same level
of heat/mass transfer and thus a constant chemical conversion
efficiency.
In terms of improvements of the numerical model, there are

essentially two research paths to follow. The former concerns
the use of a projection operator or filtering kernel independent
of the grid size but instead dependent on the particle diameter.
It is not only physically more sensible but also enables one to

use any fluid grid size and hence potentially more accurately
capture the fluid flow dynamics. In general, we expect any
projection operator that conceptually decouples fluid grid
size from particle size, e.g., offset method,19 porous cube
method,36,37 or Gaussian filtering method,6 to perform better
than the embedding cube method suggested in this work. We
recently implemented the Gaussian filtering method, and our
simulation results confirmed that using this Gaussian filtering
method further improves the quality of numerical results com-
pared to using the embedding cube method. We intend to
publish very soon this ongoing work in the scientific literature.
The latter is the enhancement of the time algorithm to solve
the coupled system of equations. In fact, our first-order oper-
ator splitting algoritm, although robust and efficient, is
essentially a simple loose coupling algorithm. The development
of strong coupling solution algorithms will undoutedly improve
the time accuracy of the computed solutions.
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