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Abstract—Nowadays, more and more data are being generated
and collected in electrical smart grids. Most of these data
are coming from smart meters and sensors deployed massively
throughout the power grid. As the generation of data is becoming
ever more frequent and with the constantly increasing volumes,
it is becoming harder and harder to manage and process these
data at the scale of a smart grid within legacy systems. In this
work, we focus on investigating the scalability and performance of
different data management approaches for meter data processing.
To this end, we conduct a thorough experimental study of
various systems including a parallel relational database system,
MapReduce based systems including Hadoop and Spark, and a
NoSQL datastore system. Our experiment sets were conducted
on up to 140 nodes on Grid5000 and up to 1.4 TB of meter data.
Our results demonstrate that parallel relational systems are more
suited for most processing types on smart meter data in the smart
grid. In contrast, we show that with the appropriate distribution
model, data partitioning and modeling choices we achieve very
fast and scalable bill computations, the main complex processing
for utilities providers.

I. INTRODUCTION

Smart grids are electrical grids that combine conventional
and renewable energy resources, and rely on digital advances
in smart metering, sensoring technologies and two-way com-
munication means in order to provide efficient management
of energy. Recent years have seen many energy utilities invest
heavily to transform their power grid infrastructures. For
instance, in France ERDF is planning to deploy 35 million
smart meters by the year 2021 [1]. With massive deployments
of millions of smart meters and sensors throughout the power
grid, more and more data are collected providing fine grain
insights about client consumption profiles and the behavior of
the power grid. Such data are critical towards more efficient
management of energy resources and provides new level of
efficiency for analytic-based applications such as predictive
maintenance and demand forecasting. However, the frequency
in which data are generated and collected from millions of
sensors and smart meters at the scale of a country makes the
task of data management and processing very complex. This
complexity is due to the huge volumes of data collected over
long periods of time to be stored, as well as the performance
requirements on accessing and processing these data.

Legacy data management systems in smart grids are typ-
ically based on relational database management systems. As
a result, many of these systems have started to exhibit major
difficulties to cope with the data deluge of smart metering

and sensoring and meet the scalability requirements of these
systems. Fortunately, dealing with huge amounts of data is
a common issue in the era of Big Data. In recent years,
many data management and processing systems have emerged
to cope with various challenges (volumes, velocity, variety,
load variability, performance, etc.). These systems vary in
their models and architectures, with many being specific to
use cases such as graph processing and documents manage-
ment. In this work, we investigate four approaches with their
emerging models and systems for scalable data management
and processing. We further evaluate their capacities to deal
with massive meters data and compare their parallelism and
distribution architectures, their data partitioning schemes, and
their data models and query languages support. Within the first
approach, we investigate MapReduce based processing frame-
works [2]. The second approach is based on next-generation
of MapReduce computations with acyclic graph execution
engines and in-memory processing. The third approach relies
on NoSQL datastores with peer-to-peer architectures, which
are known for their scale-out properties. The last approach
consists of parallel relational database management systems
(RDBMS) with massively parallel processing (MPP) models.
Lately, parallel RDBMS models have been revisited to provide
solutions to many Big Data problems at scale. As illustrative
implementations, we rely on the following systems respec-
tively: Hadoop [3], Spark [4], Cassandra [5], and Postgres-
XL [6]. To evaluate these approaches for our smart meter
data management case, we introduce a set of queries that
exhibit the different processing types on smart meter data.
These are queries that are mainly of three types: queries based
on aggregation functions (such as the sum of measurements),
selection and filtering queries based on some criteria (e.g. a
measurement threshold), and bill computation queries that are
based on some complex rules (e.g. tarif vert of EDF). Bill
computation is considered to be the most complex type of
processing for utilities providers and is a bottleneck for many
meter data management systems [7].

We conduct a thorough experimental evaluation on
GRID5000 [8], the French cloud and grid testbed. First, fol-
lowing the methodology in [9], we generate data for more than
4 million meters over a period of one year with a measurement
every hour and a total of more than 35 billion measurements.
Thereafter, we conduct several experimental sets on these data
on up to 140 nodes to evaluate and compare data management



approaches for smart meter data processing queries. Our
extensive evaluation demonstrates that Postgres-XL relying
on massively parallel processing (MPP) outperforms all other
systems for aggregation queries over meter data. Furthermore,
we show that due to data partitioning and layout scheme in
Cassandra, Spark on top of Cassandra provides an extremely
fast response time for bill computation queries with massive
data sizes and scales out with the increasing number of nodes.
Furthermore, our study reveals that overall, MapReduce based
systems (Hadoop and Spark) tend to generate more data
transfer throughout the processing cluster, which in turn delays
response times for many queries. In addition, Spark processing
performance is bound to the size of live memory.

The remaining of this paper is organized as follows. Section
II gives an overview of meter data processing. In Section III,
we introduce the data management approaches. We further
provide a comparison of these approaches in Section IV.
Section V shows our experimental methodology while Section
VI zooms into our experimental evaluation. Related work is
presented in Section VII and our conclusions in Section VIII.

II. METER DATA PROCESSING IN THE SMART GRID

A. Smart meter systems

Many utility providers (electricity, water, etc.) nowadays
rely on smart metering and deploy Advanced Metering In-
frastructures (AMIs) to guarantee an efficient management of
their resources. The Advanced Metering Infrastructure (AMI)
is the system that integrates smart meters, network protocols,
and the meter data management system (MDM). In smart
grids, data are generally sent from meters to head-ends (such
as data concentrators) using low-throughput communication
means such as the G3-CPL protocol. Meter data is further
sent to the MDM where it should be stored. The MDM system
insures data cleaning, storage, access, and processing. Many of
the MDM systems rely on legacy relational database systems
adapted to manage meter data. Recent years however have seen
meter data volumes grow very fast due to massive deployment
of smart meters and the increase of the number of meter
measurements by households. As a result, many of the current
MDM systems will have major difficulties to meet the data
deluge of future smart grids. According to Navigant Research,
smart grid IT software and services expenditures are expected
to reach 20 billion $ by 2022 [7], [10].

B. Data processing types

Meter data are used for multiple purposes in the smart grid:
Bill computations, consumption analysis, power generation
forecasting, fraud detection etc. Most of these services and
applications exhibit three types of meter data processing
queries as shown in [7]. First, the aggregation queries that
consist of applying a computation function on the dataset as
a whole or a subset of data. The computation functions can
be of various natures such as the sum of consumption in a
given region or for a given set of clients, the count of total
measurements, or the max measurement to infer the highest
consuming client in a given time of the year. The second

type of processing queries consists of selection and filtering
based on some predicates. A typical application for this type of
queries is the selection of all meter ids (clients) that exceeds a
given threshold consumption at a given bill period to determine
the highest consuming homes during this period. The last type
of processing queries are the bill computation queries. These
are complex queries that consist of sub queries that can be
of different nature in order to compute the bill based on very
specific tarification rules.

III. LARGE SCALE DATA MANAGEMENT AND PROCESSING

In this section, we introduce four approaches to large-
sale data management and processing that are widely adopted
nowadays. Their illustrative systems are depicted in Figure 1.

A. MapReduce based systems

The MapReduce programming model for data-intensive
large-scale applications was first introduced by Google [2].
Inspired by divide and conquer principle, it consists of defining
a Map phase to decompose big problem into a set of small
sub problems and a Reduce phase to address the small sub-
problems. The success Goolge had with their implementation
of the MapReduce paradigm in solving their large-scale data
processing problems has resulted in a big enthusiasm around
the model, in particular with the exponential grow of data
volumes. Furthermore, open sourcing Hadoop [3] implemen-
tation of MapReduce has resulted in a wide adoption of
this paradigm. Although, Hadoop remains the most popular
implementation of MapReduce, many other implementations
have been introduced such as Disco [11], and MARIANE [12].

Hadoop: Hadoop [3], shown in Figure 1c, is the most pop-
ular implementation of MapReduce. The Hadoop ecosystem
consists of multiple projects including the MapReduce frame-
work and the Yarn resource manager, the Hadoop distributed
file system (HDFS) designed after Google File System [13],
and the HBase data store [14] designed after Google Big Table
[15]. An important component of the Hadoop ecosystem is
Hive SQL query engine [16]. Hive provides SQL on top of
MapReduce where its query engine generates MapReduce jobs
for SQL statements.

B. Next-generation MapReduce in-memory processing

In recent years, many efforts have been dedicated to enhance
the performance of MapReduce systems. One of the main
issues with Hadoop was its inflexible programming API (in
particular with iterative computations) and its disk bound high
latency. As a result, a new generation of MapReduce process-
ing frameworks has emerged. They mainly provide richer APIs
that provide various types of Map and Reduce functions and
acyclic graph execution engines for multiple Map and Reduce
steps and thus multiple intermediate phases (compared to only
one with early MapReduce implementations). Furthermore,
many rely on in-memory processing to provide fast computa-
tions compared to disk-bound computations. The most popular
solution in use today is Spark [4]. Other solutions such as Tez
[17], or Flink [18] are also being widely used.



(a) Postgres-XL (b) Cassandra
(c) Hadoop

(d) Spark

Fig. 1: Data management and processing systems investigated in our study: Postgres-XL a distributed RDBMS; Hadoop ecosystem with
MapReduce framework and HDFS; Spark with in-memory processing; Cassandra NoSQL data store with its peer-to-peer consistent hashing based architecture

Spark: Spark framework [4], depicted in Figure 1d, is
implemented in the Scala programming language and provides
a rich programming API to users. Within this API, opera-
tions are divided into a set of transformations, which are
specific Map functions and a set of actions that are specific
Reduce functions. Spark API in addition, is very powerful to
express iterative operations. In order to facilitate data manipu-
lation, Spark introduces the abstraction of resilient distributed
datasets (RDDs), a read-only collections of objects partitioned
across a set of machines that can be recovered in case of
failures. RDDs can be cached in memory prior to processing
to avoid disk high latency. Within Spark framework, the Spark
SQL [19] module provides an SQL query engine that generates
Spark jobs for SQL statements. Spark SQL relies on the
introduced DataFrame API to perform relational operations
on both external data sources and spark built-in collections,
which facilitates the integration with native Spark.

C. NoSQL and Peer-to-peer based systems

Historically, data storage and management was provided
mainly by filesystems or relational database systems. However,
the last two decades have seen a major shift with the appear-
ance of new systems due to many reasons. For instance, the
emergence of web applications such as e-commerce and social
media sharing has introduced new challenges and requirements
to data management and storage. Nowadays, applications vary
in their requirements for data availability, data consistency,
data formats and models, scalability, etc. As a result various
NoSQL (Not only SQL) datastore systems have emerged.
Many of them introduce data models specific to some use-
cases such as document stores or graph database systems.
Other NoSQL systems target high availability and scalability
at scale such for Amazon Dynamo [20], Google Big Table
[15], Google Spanner [21], and Cassandra [5]. To achieve their
goals, these systems either rely on Master/Slave architectures
or peer-to-peer architectures. These latter have been widely
used to build datastores mainly due to their horizontal scala-
bility capacities where data nodes are equals, host equal shares
of data, and fairly participate in the cluster management with
no single point of failure.

Apache Cassandra: Cassandra [5] was first designed and
implemented at Facebook. It was designed for managing large
objects of structured data spread over a large amount of

commodity hardware located in different datacenters world-
wide. Cassandra design was highly inspired by that of two
other distributed storage systems: Amazon Dynamo [20] and
Google BigTable [15]. It inherited the peer-to-peer architecture
with the consistent hashing [22] based data partitioning (as
shown in Figure 1b) from the first and the column family
based data model from the second. In Cassandra, data is
stored in structures called column families where columns
can be created dynamically. Data access is usually key-based.
However, with the latest versions of Apache Cassandra [23],
a Cassandra Query Language (CQL) has been introduced.
CQL allows users to write declarative queries in an SQL-like
manner. Nevertheless, CQL still lacks many features such as
join operations and aggregation functions.

D. Parallel relational database management systems

In the 1980s and early 1990s, relational database manage-
ment systems were already facing scalability problems. Many
applications, including scientific and engineering ones, have
started to deal with large volumes of data that overwhelmed the
single-machine database systems at the time. In this context,
parallel database systems have emerged. Many architectural
models have been proposed but the most viable architecture
that provided the needed scalability was the shared nothing
architecture where processors have their own private memory
and disk resources. With the explosion of Big Data in recent
years, NoSQL and MapReduce based systems have emerged
to the rescue. However, lately parallel RDBMS (relational
database management systems) models have been revisited
to provide an efficient data processing at scale. The mas-
sive parallel processing (MPP) of these systems that allows
processors to be as independent as possible and to have
minimal communications together with the power of optimized
query engines can provide solutions to many complex data
processing at scale in many cases. Many parallel RDBMS have
been deployed within many organizations for many years such
as IBM DB2 Parallel Edition [24] and Teradata [25]. More
recently, emerging systems with novel designs, such as open
source solution Postgres-XL [6], have been introduced.

1) Postgres-XL: Postgres-XL [6] is an open source parallel
relational database management system. Its architecture is
shared nothing master/slave based, as depicted in Figure 1a.
Postgres-XL provides massively parallel processing (MPP)



and a strong SQL support. Additionally, in a Postgres-XL
database, ACID semantics (atomicity, Consistency, Isolation,
and Durability) are guaranteed. To provide such features,
Postgres-XL relies on a cluster wide Multi-Versioning Con-
currency Control (MVCC) that allows it to be faster in
comparison to traditional systems with 2-phase locking (2PL).
Furthermore, Postgres-XL is designed to support both OLAP
(online analytical processing) and OLTP (online transaction
processing) workloads.

IV. COMPARISON OF LARGE-SCALE DATA MANAGEMENT
AND PROCESSING SYSTEMS

In this section, we zoom on parallelism and distribution
models, data partitioning schemes, and data models of each
data management system. Table I summarizes the character-
istics and models for each system. In this study, we do not
consider optimizations that can be specific to each solution
such as indexing, columnar file formats, compression, etc.

A. Parallelism and Distribution architectures

The data management and processing systems in our study
(Postgres-XL, Hadoop, Spark, and Cassandra) have different
and various schemes of distributed architectures and parallel
processing. Postgres-XL relies on a Master/Slave architecture
where a GTM master manages the global coordination to pro-
vide ACID semantics of transactions relying on MVCC. Every
slave has, typically, two main components : the coordinator
that handles clients request and manages communication with
other slaves and its datanodes. The datanodes are responsi-
ble of hosting their fraction of data. Both components are
implemented using a postgreSQL database. Similarly HDFS
consists of a Master/Slave architecture. A master called Na-
meNode, hosts the metadata server that typically keeps track
of global information on the filesystem and the location of
file chunks. Slaves called DataNodes host their share of file
chunks. An HDFS client typically request information from
the NameNode about which datanodes are involved in its
operations before sending requests to datanodes. In contrast,
Cassandra relies on a peer-to-peer architecture. All nodes are
equals, where they handle equal ranges of the data space and
share similar tasks in the cluster management. Every node can
handle client requests and locate data as well as respond to data
access operations for its data. Whereas, Hadoop and Spark rely
on MapReduce parallel processing, Postgres-XL implements
an MPP (massively parallel processing) where processors are
loosely coupled and should be as independent as possible
with only minimal communications. Furthermore, it relies on
a SQL query engine that computes the best execution plan
prior to processing favoring computation transfer and min-
imizing data movement. MapReduce computations however,
rely on completely independent Map operations that can be
executed in parallel without any communication. However, to
perform Reduce operations processors need their input data
(intermediate data from the Map phase) to be moved to them,
which is done by the shuffle-sort phase. Spark further provides
various implementations to be specified for the shuffle phase

including shuffle-sort and shuffle-hash. With its programming
API and acyclic graph execution engine, Spark applications
tend to have more intermediate phases and thus more shuffle
operations. In many cases and for many types of applications,
the shuffle phase results in the transfer of huge amounts of data
throughout the cluster resulting in a performance bottleneck.

B. Data Partitioning

The data partitioning schemes within the aforementioned
systems are quite different. Postgres-XL relies on sharding
where tables are partitioned horizontally. Every shard is as-
signed to a datanode based on either range hashing or in a
round robin manner. As a result, operations that involve only a
subset of shards can be handled by only the datanodes hosting
them, which in turn reduce data transfer compared to cases
where data is located on larger number of nodes. In contrast,
Cassandra relies on consistent hashing [22] where every data
row is assigned to a node based on the hash value of its key.
Every node in Cassandra is responsible of an equal range of the
data space. A direct result of this scheme is the fast response
time of accessing data based on keys (eg. read a specific row).
Furthermore, at scale, this approach has potential for high load
balancing compared to sharding when row keys are carefully
defined. Additionally, recent versions of Cassandra integrated
the concept of virtual nodes in peer-to-peer systems where data
ranges are assigned to virtual nodes instead of physical nodes
and a physical node can host one or more virtual nodes. This
approach allows even better load balancing in many cases.
However, range queries can be much slower since data can
be potentially spread over all the nodes in the cluster even for
small ranges. In the Hadoop ecosystem, the Hadoop distributed
file system (HDFS) is the component responsible for storing
data. Within HDFS, data is stored, typically in big files. A
file is split into a set of chunks (with a default size of 64MB)
where every chunk is assigned by the metadata server to a
datanode. As a result, data partitioning depends greatly on the
file format and layout used to store data.

C. Data Model and Query Language

Similar to their different data partitioning schemes, these
data management and processing systems vary in their data
models as well. Postgres-XL is a relational system with a
relational data model. All data have to be well structured and
stored in well-defined relations and supports relational algebra.
Postgres-XL provides a full ANSI SQL 2008 standard support.
It supports however only declarative queries. In contrast,
Cassandra relies on the column families model introduced by
Google for their storage system BigTable [15]. In this model,
data are stored in dynamic tables called column families. In
column families, columns can be defined on the fly specifically
for every row. Furthermore, an additional abstraction in a
column family is introduced: a super column. A super column
can group columns together but not other super columns. This
data model was introduced to provide flexibility to both data
layout in physical storage (memory and disk) and to allow
better modeling for unstructured and semi structured data



System Distribution & Paral-
lelism

Partitioning Data model SQL Support

Postgres-XL Master/slave, MPP
(massive parallel
processing)

Range hashing, round
robin

Relational ANSI SQL:2008

Hadoop MapReduce,
master/slave

file chunks based files Hive SQL query en-
gine

Spark and HDFS MapReduce based,
master/slave, acyclic
graph execution
engine

file chunks based files and RDDs SparkSQL query en-
gine

Cassandra peer-to-peer consistent hashing
(key-based)

column families CQL (restricted num-
ber of operations)

Spark and Cassandra peer-to-peer, MapRe-
duce, acyclic graph
execution engine

consistent hashing
(key-based)

column families and
RDDs

SparkSQL query en-
gine

TABLE I: Data management and processing systems

while making it possible to store structured data. Cassandra
however does not support transactions nor a full SQL-like and
linear algebra operations natively. With earlier versions, data
were accessed based on key specification. Lately, Cassandra
Query Language (CQL), a declarative query language have
been introduced. However, this language does not support
aggregation queries and time functions. Instead, users have to
implement their own solutions within their applications or rely
on a third party data processing that integrates with Cassandra
such as Spark. In MapReduce based systems (Hadoop and
Spark), data are usually stored in a filesystem (HDFS) with
no specification about the data model. Data are however
put in key/value model for Hadoop MapReduce and RDDs
Spark native data collections. Natively, Both Hadoop and
Spark rely on their procedural programming to process data.
Nevertheless, declarative queries are supported by SQL query
engines Hive and SparkSQL that generate native MapReduce
code for Hadoop MapReduce and Spark respectively.

V. BENCHMARKING FOR METER DATA MANAGEMENT

A. Methodology

In this section, we aim to compare and analyze the per-
formance of the aforementioned systems for meter data pro-
cessing that can be encountered in a smart grid. In order to
achieve this goal, we first generate data for more than 4 million
meters with a measurement every hour in a period of one
year. Then, we conduct a set of three experiments. The first
set consists of deploying the aforementioned data management
and processing systems on 110 nodes and increase the dataset
size from 0.55 million meters to 4 million meters to measure
the response time for every query. In the second set of
experiments, we evaluate the horizontal scalability for each
system with the different queries increasing the number of
nodes from 70 to 140. In the last experiment set, we vary the
number of nodes from 5 to 30 nodes hosting only 10 thousands
meters data in order to guarantee that initial data can be fit in
memory. This allows us to evaluate the performance in a fair
manner for in-memory processing systems.

Experimental Setup: We run our experiments on Grid5000
cloud and grid testbed [8] in France. For this purpose we
use nodes in the Griffon and Graphene clusters located in
the Nancy site in north east of France. All nodes in these
two clusters are equipped with 298GB HDDs, 16GB of Ram
and two 2.5GHz CPUs with 4 cores/CPU. We use from 5
nodes up to 140 nodes to run our experiments. Furthermore,
we rely on Storage5K 1 that provides the necessary storage
space to store 1.4TB of meter data prior to the experiment and
in order to load them to data management systems. Hadoop-
2.5 [3] is deployed within Cloudera CDH-5.2.3 distribution
[26] including Hive-0.13 [16]. As for Spark we deploy Spark-
1.5 [27] with its built-in Spark SQL. Additionally, we deploy
Apache Cassandra-2.2 [23] as well as Postgres-XL-9.2 [6]. In
order to implement processing queries, we rely on Spark on
top of Cassandra using the Spark-Cassandra-1.5 connector.

B. Data processing queries

We introduce 7 queries that illustrate processing types on
meter data presented in Section II. The queries are summarized
in Table II. Queries Query1, Query2, and Query3 are three
aggregation queries that compute the sum of measurements.
Query2 computes the sum for a subset of clients whereas
Query3 computes the sum of measurements in just 1-month
period of time. Query4, Query5, and Query6 are selection and
filtering queries. Query4 in addition sorts the results by their
measurements value whereas Query6 filters the results on a
2-months period of time for a given list of meter ids. The
last query (Query7) is a bill computation query that is based
on the tarif vert of EDF the electricity provider utility in
France 2. Within this tarification scheme, the electricity price
varies according to power provided and the time in the day of
consumption.

C. Data generation and loading

For data privacy reasons, it has not been possible for us
to get real meter data from energy utilities. Fortunately, it

1https://www.grid5000.fr/mediawiki/index.php/Storage
2http://www.fournisseurs-electricite.com/tarif-vert



Query Type Description
Query1 Aggregation Sum of all measurements (consumption of all meters) for 1-

year period (2013)
Query2 Aggregation Sum of all measurements for a given range of meter ids

(clients)
Query3 Aggregation Sum of measurements in a 1-month period (march 2013)
Query4 Selection & filtering Selection of the first 20k meter ids and their measurements

over a 2-month time interval where the consumption exceeds
a given threshold, then sort the result by their consumption
values (order by clause)

Query5 Selection & filtering Selection of meter ids and their measurements where the
consumption exceeds a given threshold

Query6 Selection & filtering Selection of measurements given the list of meter ids over a
2-months period of time

Query7 Bill Compute the bill for a given client following the tarif vert
billing rules of ERDF

TABLE II: Processing Queries on meter data
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Fig. 2: Data loading

was possible to generate realistic datasets that illustrate meter
data as described in [9]. In [9], the authors rely on a small
client dataset in order to create data for new clients. First,
a temperature-independent profiles from existing clients are
extracted. These profiles are further used in combination with
randomly selected weather data, while adding some noise, in
order to create consumption data for new clients. In this work,
we follow a similar methodology and use the authors approach
to create our meter dataset. In this context, we rely on 50 nodes
in Grid5000 to distribute the generation process of more than
4 millions meters data in a reasonably short time.

The generated data can be loaded to Storage5K in Grid5000
prior to experimentation. This allows us to load data to the
target data management system directly from within Grid5000
without encountering wide areas network latencies at the time
of experimentation.

The data loading process consists of creating clients that
fetch data from storage5K and load it to each storage system
(Postgres-XL, HDFS, Cassandra) in the target data model
(relational tables, big CSV files, and column families respec-
tively). The number of clients equals the number of data node
in each system. Figures 2a and 2b depicts the data loading
total time for every storage solution when increasing the data
size and when increasing the number of nodes respectively.
In both figures, we can observe that data loading is much
slower with Postgres-XL. This is mainly because Postgres-XL
is transaction-based and data are stored in relational tables,
which makes it slower to load compared to raw files with
HDFS. Figure 2a shows that HDFS is faster than Cassandra

with small data sizes (0.5 and 1.5 millions of meter data)
but Cassandra slightly outperforms HDFS when data sizes
grow further. This can be explained by the fact that with
high loads at longer running time Cassandra with its peer-
to-peer architecture exploits better the capacities of all its
nodes compared to HDFS that direct data to nodes in a round
robin manner based on chunks. Furthermore, Cassandra has
an additional operational node that can host data compared to
HDFS that has to dedicate at least one node to be master.
In Figure 2b, the main observation is that increasing the
number of nodes does not decrease the loading time. The
main cause for this behavior is that with an increasing number
of concurrent clients fetching data from Storage5K (which is
provided by the NFS file system), copying data from source
becomes even slower than loading it in the destination storage.

VI. EXPERIMENTAL EVALUATION

A. Increasing data size

The first experiment set consists of evaluating data manage-
ment and processing systems on 110 nodes with increasing
volumes. The data size is increased gradually to have 4 dif-
ferent sizes: 0.55 million meters (4.82 billion measurements),
1.5 M meters (13.14 B measurements) 2.5 M meters (21.9 B
measurements), and 4 M meters (35.04 B measurements).

Aggregation queries: Figure 3 depicts the response time
with the 3 aggregation queries (Query1, Query2, and Query3
shown in Table II). For the 3 queries Postgres-XL is outper-
forming all the other system no matter the size of the data size.
Such behavior is explained by the fact that for aggregation



0.
5

1.
5

2.
5

4.
0

0.00

500.00

1000.00

1500.00

2000.00

meters number (million)
re

s
p

o
n

s
e
 t
im

e
 (
s
)

postgres-xl

hive-hdfs

spark-hdfs

spark-cassandra

(a) Query1: sum, all

0.
5

1.
5

2.
5

4.
0

0.00

500.00

1000.00

1500.00

2000.00

meters number (million)

re
s
p

o
n

s
e
 t
im

e
 (
s
)

postgres-xl

hive-hdfs

spark-hdfs

spark-cassandra
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Fig. 3: Aggregation queries evaluation: increasing number of meters

queries computation is moved to nodes according to the MPP
architecture rather than moving data around. This results in
a faster computation and minimal data movement. A main
observation in Figures 3a and 3b is that Spark with both
Cassandra and HDFS are the slowest systems. Furthermore,
response time gets increasingly worse with these solutions as
data size increases. For instance in Figure 3a, Spark-HDFS is
7.5 times slower than Postgres-XL with 0.55 million meters,
but is almost 26 times slower when the number of meters reach
4 millions. This is mainly caused by the fact that when data
and intermediate data grow by order of magnitude bigger than
the size of memory, processing aggregation queries becomes
very slow due to the need to swap data from disk every time.
Moreover, the programming API of Spark and its acyclic graph
execution engine results in many intermediate stages where
data get shuffled and moved around, which in turn has an
impact on performance. Figure 3c demonstrates however, that
the response time of Cassandra with Spark is close to that
of Postgres-XL (only 1.14 times slower when the number of
meters is 2.5 millions). With its column family data model,
and even with its consistent hashing model, Cassandra allows
data storage ordered on the time column on disk in each node.
This allows faster filtering on the time column for Query3
when using CQL (Cassandra Query Language), which in turn
results in a smaller dataset to be loaded in-memory for Spark.
As a result, response time is much faster since data can be fit
in memory.

Selection and Filtering, and Bill queries: Figure 4 shows
the response time of the selection and filtering queries, Query5,
and Query6 as well as the bill query Query7. Postgres-XL is
order of magnitude faster than all other systems with Query4
as shown in Figure 4a. Similar to the case with aggregation
queries, Postgres-XL execution engine compute the optimal
plan and sends computation to nodes whereas Spark and
Hadoop are delayed with data movement in intermediate
phases, in particular, with additional order by clause (in
Query4) that starts new MapReduce jobs. Furthermore, with
Spark, this introduces additional data that cannot be fit in
memory for fast processing on our setup. With Query5 in
Figure 4b however, Spark with Cassandra is much faster
with a response time comparable to that of Postgres-XL
because there is no order by clause while filtering on a time
interval, which reduces the dataset size that can be fit in
memory and results in faster processing. However, moving

data around in intermediate phases is still less efficient than
sending computation to nodes. In contrast, Spark on top of
Cassandra is outperforming all other systems with less than
1s response time for Query6 and Query7 (Figures 4c and 4d
respectively). The main reason for this extremely fast response
time is that Cassandra relies on peer-to-peer architecture with
consistent hashing. Therefore, when the meter ids (that are part
of the row keys) are specified as query input, accessing data
is straightforward based on the hash function. Moreover, with
even data distribution there is a high level of parallelism to
get data from different nodes simultaneously. As demonstrated
in [7], The bill queries are the most complex queries with
very slow response times and are considered, in general, as a
bottleneck for meter data management within energy utilities.
However, with the right data model and a suitable architecture
such as exhibited by Apache Cassandra, these queries can
become the fastest in the data management ecosystem as
demonstrated in Figure 4d.

B. Horizontal scalability

In these experiment sets, we evaluate the aforementioned
systems with increasing number of nodes. In a first set, that
we refer to as the big set or the big experiments, we increase
the number of nodes gradually to have the following number of
nodes: 70, 85, 105, and 140 nodes where we load 500 thousand
meters data (4.38 B measurements) to each data management
system. Since not all data and intermediate data can be fit in
memory, we introduce another experiment set, that we refer
to as the small experiments, where we load only 10 thousands
meters to the data management systems. In this experiment
set, the various configurations have the following number of
nodes: 5, 10, 20, and 30.

Aggregation queries: Figure 5 depicts the scale-out proper-
ties of the various data management and processing systems
with the aggregation queries Query2 and Query3. It clearly
demonstrates that Postgres-XL is the most efficient solution
for this type of processing outperforming all other solutions
for both the big and small experiments while scaling out
with increasing number of nodes. However, with this system,
our experimentation have failed when the number of nodes
reached 140 where tables creation was no longer possible
without any exception or error message. We can observe
clearly that all other solutions exhibit a performance speedup
with increasing number of nodes. For instance Hadoop with
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(d) Query7: Bill

Fig. 4: Bill, Selection and filtering queries evaluation: increasing number of meters
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(c) Big set - Query3
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Fig. 5: Aggregation queries evaluation: increasing number of nodes

Hive is 1.41 times faster when the cluster size grows from 70
nodes to 140 nodes. Moreover, with the big experiment set,
Hadoop-Hive response times is faster than Spark with both
Cassandra and HDFS because Hadoop does not rely on in-
memory processing (which is more efficient when data and
intermediate data do not fit in memory). For instance, it is
4.8 times faster than Spark-Cassandra when the number of
nodes is 70 with Query2 and 1.67 times faster than Spark-
HDFS with Query3 on 70 nodes as well. However, with
the small experiment set when data are fit in memory, both
Spark-HDFS and Spark-Cassandra are faster then Hadoop-
Hive exceeding its response time by up to 5.55 times for Spark
HDFS (when number of nodes is 30 with Query2) and up to
11.10 times for Spark-Cassandra (when the number of nodes is
30 with Query3). Spark-HDFS outperforms Spark-Cassandra
with Query2 because Cassandra with its architecture behaves
badly with range queries. However, when filtering on time
interval, Cassandra outperforms HDFS and loads a smaller
data set to Spark memory resulting in a faster response time.

1) Selection and Filtering, and Bill queries: Similar to
the results observed with aggregation queries, Figures 6a and
6b demonstrates that Postgres-XL is the fastest for Query4
because of the presence of the additional order by clause that
tends to generate more intermediate phases, and thus more data
movement for MapReduce based processing. Furthermore,
Postgres-XL exhibits a small speedup with increasing number
of nodes. For instance, it is 1.05 times faster on 105 nodes
compared to 85 nodes. For Query4, Hadoop-Hive outper-
forms Spark-HDFS because data size exceeds the memory
size, in particular with the order by clause. However with
the small experiments Spark-HDFS outperforms Hadoop-Hive
while speeding up performance by up to 2.43 times when

going from 5 nodes to 30 nodes. For this type of processing
Cassandra with Spark is completely inefficient exhibiting the
worst performance in most cases. This is because of range
queries in addition to the exploding size of intermediate data
that exceeds the memory capacity. However, with small size
experiment set, Cassandra outperforms Hadoop-Hive when the
number of nodes increases beyond 20 nodes. This is mainly
because of increasing size of available memory in the cluster
that speeds up performance. In contrast, Spark-Cassandra
response time is quite unmatched with Query6 and Query7.
As depicted in Figures 6c, 6d, 7a, and 7b, no matter the size
of the cluster, the response time does not exceed 1s, which
is impressive at this scale. We can observe that Postgres-XL
provides almost the same response time as Hadoop-Hive (36
times longer than Spark-Cassandra) being less suitable for Ad
Hoc queries. Nevertheless, Postgres-XL is still outperforming
Hadoop-Hive and Spark-HDFS with both Query6 and Query7.

C. Data transfer

At scale with massive data sizes, every fraction of data
transferred can be very penalizing for performance. In order to
measure the network traffic in the cluster for the studied data
processing and management systems, we rely on the vnstat
tool 3. We monitor and store the size of data transferred from
every node in the cluster and that for every deployed system
including the data loading phase and the experimentation
phase with the small experiment set (from 5 to 30 nodes with
10 thousand meters data). Figure 8 depicts the obtained results.
The main observation is that Postgres-XL is by far the solution
that moves data around the least no matter the number of

3http://humdi.net/vnstat/
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Fig. 6: Selection and filtering queries evaluation: increasing number of nodes
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Fig. 7: Bill query evaluation: increasing number of nodes
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Fig. 8: Total data transfer

nodes. Such a result is expected because of the MPP model of
Postgres-XL where computation is moved to nodes rather than
data. This explains why it outperforms other solutions with
aggregation queries and those with many intermediate phases.
In addition, it is noteworthy to observe that Postgres-XL moves
less data than Hadoop and Spark-Hdfs even if we consider that
the data loading process does not generate data transfer with
HDFS. Within Hadoop Master/Slave architecture, the master
provides HDFS clients with the address of the datanode that
will host the file chunk (with a replication factor of 1). As a
result data is transferred from external source to nodes with no
internal traffic. With Postgres-XL and Cassandra however, data
transfer occurs even at loading time because of table range
hashing scheme for the first and consistent hashing for the
second. In both schemes, there is always a strong probability
that loaded data does not fall in the hash range of a given
coordinator, and thus data is transferred to another location
in the cluster. Figure 8 demonstrates further that Hadoop-
Hive moves less data than Spark (with Spark SQL on top

of HDFS and Cassandra). The main cause is that Spark SQL
and Spark tend to create more transformations and thus more
intermediate phases (where data is shuffled and moved) than
Hive on top of Hadoop MapReduce. In fact, Spark with its rich
programming API and acyclic graph engines allow users to
make many Map and Reduce steps then Hadoop Map Reduce.

VII. RELATED WORK

In recent years, many efforts were dedicated to compare
MapReduce based processing to parallel RDBMS [28], [29],
[30]. In [28], Stonebraker argues that both RDBMS and
MapReduce systems should be considered as complementary
rather then competing systems. Furthermore, Hadoop, with its
MapReduce processing and Hive query engine, was compared
to RDBMS for many SQL queries in [29]. However, these
studies only compare to early models of MapReduce systems
and did not address the impact of data storage and layout
schemes on data processing performance. In addition, data
processing types similar to those of our case of meter systems
were not targeted.

Data management in power grid systems is an issue that
is widely investigated. Many energy utilities providers rely
on legacy relational systems in order to manage their data
because of their level of reliability and familiarity, such as
with Teradata [31]. However in recent years, novel approaches
to provide scalable data management approaches for smart
grids data have been introduced [32], [33], [34]. In [32], the
authors propose to leverage Cloud Computing paradigm to
manage smart grid data. Public cloud infrastructures provide
the necessary distributed data management and a high level
of reliability to handle smart grid data. Similarly, the authors
in [33], propose a distributed data management architecture to



deal with the explosion of meter and sensor data in residen-
tial distribution systems. Their architecture relies on Hadoop
MapReduce processing and a distributed filesystem. More
recently, a few efforts were focused more on realtime analysis
of power grid data [35], [36]. Most of these aforementioned
studies however, lack a thorough analysis of performance and
scalability evaluation of data management architectures for
smargrid data processing. In [9], a benchmarking study of
meter data was introduced. In their study, the authors compare
several analytic algorithms with a wide range of platforms
including Madlib, Matlab, Hive and Spark.

VIII. CONCLUSION

With the deployment of smart meters throughout the power
grid and the generation of data in small time intervals,
legacy meter data management systems are overwhelmed with
the data deluge. In our study, we investigated large-scale
data management and processing systems and compared their
scalability capacities over storing, managing and processing
massive amounts of meter data. To achieve this goal, we have
identified three types of processing on meter data that were
implemented in four systems: Postgres-XL a parallel RDBMS,
Hadoop MapReduce, Spark, a next generation MapReduce
with in-memory processing framework, and Cassandra, a peer-
to-peer NoSQL datastore. Our results have demonstrated that
Postgres-XL with its massively parallel processing (MPP) out-
performs the other systems for many queries because it reduces
data transfer. Furthermore, we have showed that Cassandra
with its consistent hashing scheme, is more suitable providing
extremely fast response times to the billing queries and many
selection and filtering queries. In contrast, we have showed
that Spark computations are strongly bound to the size of
available memory. Future designs of meter data management
systems (MDM) should focus on the minimization of data
transfer. With massive volumes of data, any fraction of data
to be moved introduces important delays in data processing.
Furthermore, future efforts should focus on hybrid systems
and models to achieve efficient data processing at scale given
no current model is suitable for all types of processing.
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