
Debugging Cyber-Physical Systems with Pharo
An Experience Report

Matteo Marra
Elisa Gonzalez Boix
Software Languages Lab
Vrije Universiteit Brussel

{mmarra, egonzale}@vub.be

Steven Costiou
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Abstract
Cyber-Physical Systems (CPS) integrate sensors and actua-
tors to collect data and control entities in the physical world.
Debugging CPS systems is hard due to the time-sensitive
nature of a distributed applications combined with the lack
of control on the surrounding physical environment. This
makes bugs in CPS systems hard to reproduce and thus to
fix. In this context, on-line debugging techniques are help-
ful because the debugger is connected to the device when an
exception or crash occurs.

This paper reports on our experiences on applying two
different on-line debugging techniques for a CPS system: re-
mote debugging using the Pharo remote debugger and our
IDRA debugger. In contrast to traditional remote debug-
ging, IDRA allows to on-line debug an application locally in
another client machine by reproducing the runtime context
where the bug manifested. Our qualitative evaluation shows
that IDRA provides almost the same interaction capabilities
than Pharo’s remote debugger and is less intrusive when per-
forming hot-modifications. Our benchmarks also show that
IDRA is significantly faster than the Pharo remote debugger,
although it increases the amount of data transferred over the
network.

Keywords Cyber-Physical Systems, software tools, debug-
ging
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1. Introduction
In the recent years we have witnessed a revolution in net-
working technology and mobile computing making embed-
ded computers get every day smaller and more powerful.
This in turn has boosted the development of a novel type
of distributed systems called Cyber-Physical Systems (CPS)
which integrate sensors and actuators to collect data and con-
trol entities in the physical world. Broadly speaking, CPS
systems are distributed applications that track, observe and
analyse large collections of data from computerized entities,
e.g. robots on a factory floor, vehicles and sensor-equipped
road infrastructure, etc. Examples of CPS systems are di-
verse and include smart grids, medical care systems, au-
tonomous vehicle systems, robotics systems integrated in
smart factories, etc.

CPS systems exhibit a number of characteristics which
distinguishes them from traditional distributed embedded
systems. Like embedded systems, CPS systems consist of
a number of interconnected devices with limited resource
constraints. However, the main goal of a CPS system is to re-
main responsive to environment changes and network com-
mands. As such, the massive amount of data being collected
by sensors requires the execution to have safe boundaries of
time while delivering consistent and accurate operations. In
addition, time synchronization has to take into account the
inherent latency of the networking layer between the physi-
cal entity and the algorithms monitoring and running analy-
sis on the received data.

In this paper, we focus on debugging support for CPS
systems (cf. Section 2). Debugging distributed systems is
hard because developers must deal with the inherent non-
determinism of concurrent processes and partial failures.
This complicates the debugging task since an error detected
in one execution might not manifest itself in the debugging
session. Furthermore, the mere presence of the debugger
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might exacerbate this non-determinism by affecting the way
in which the program behaves [MH89]. Debugging CPS sys-
tems is even harder due to the time-sensitive nature of CPS
applications combined with the fact that computerized enti-
ties are embedded in the physical word. In this context, on-
line debugging techniques are helpful because the debugger
is connected to the device when an exception or crash oc-
curs.

This paper reports on our experiences on applying two
different families of remote debugging techniques for CPS
systems: traditional remote debugging (cf. Section 3) and a
novel debug technique we call out-of-place debugging (cf.
Section 4). Remote debugging allows developers to debug
from another machine than the one where the target appli-
cation runs. In particular, we study online remote debug-
ging which typically offers the same functionalities than on-
line debuggers (i.e. breakpoints and step-by-step execution)
while performing them from a remote machine by means
of e.g. remote proxies. This experience report shows how
we use these two remote debugging with a real CPS im-
plemented in Pharo. Our evaluation (cf. Section 5) shows
that out-of-place debugging is a promising technique to de-
bug CPS systems as it improves the debugging experience
by considerably minimising network exchanges.

2. Motivation
Debugging CPS systems is hard. Indeed the complexity of
distributed applications together with the lack of control of
the physical world makes bugs dependent on the context
and hard to reproduce. To illustrate these problems, in this
section we introduce a case study application in the do-
main of energy monitoring. This case study presents spo-
radic failures that seem at first sight hardware-related. We
then present several debugging techniques and briefly dis-
cuss how they address this application scenario. This discus-
sion motivates the choice of debugging techniques compared
in this article.

2.1 Case Study: Sensor Monitoring App
Our case study is a CPS that monitors the temperature of
a room. We called this case study Sensor Monitoring App.
This monitoring system is made of a small computer (re-
ferred to as the device) connected to a temperature sensor
and an LCD screen. We deploy the device in the room that
we are interested to monitor. The sensor probes the room’s
temperature and displays the result on the LCD screen. This
device is connected to the network via WiFi or ethernet and
is configured to send alarms to the end-user if the temper-
ature of the room exceeds a given level (e.g in a food stor-
age room). The internet connection is bi-directional: the de-
vice can also receive updates such as user configuration and
firmware updates.

Architecture. The application’s architecture is illustrated
in Figure 1. We built this monitoring system using a Rasp-

berry Pi computer 1 together with a GrovePi board2. The
Raspberry Pi is a cheap but powerful small computer that
can run a Linux operating system and can be extended with
standard sensors and actuators such as humidity sensors or
screens. The GrovePi board has been designed to be put on
top of the Raspberry Pi and provide easy access to a vari-
ety of sensors. GrovePi already ships with specific drivers
written in different programming languages. Our monitor-
ing system controls the hardware using a Pharo API to the
Python driver of the board, to ask for sensor input and dis-
play data on the LCD screen. The application’s architecture
is illustrated in Figure 1.

Figure 1. CPS scenario. A Raspberry Pi with a GrovePi
board controls LEDs, a temperature sensor and an LCD
screen. The developer remotely deploys, tests and interacts
with the application from his development machine through
WiFi.

Our monitoring software installed in the device is written
as a Pharo [BDN+09] application. This application queries
the GrovePi driver for the current temperature with a fre-
quency of 2 Hertz. The driver performs a sensor read and
returns a string value of it. Our application then converts the
obtained string to a number and shows it in an LCD screen.
Our application is also configured with a max temperature
threshold. While the sensed temperature is lower than the
configured threshold, a green LED is turned on. Otherwise,
the application sends an alarm to the end-user. We imple-
mented this alarm for our scenario as a red LED turning on.

It is worth to note that we take into account in Sensor
Monitoring App that i/o errors can occur and that sometimes
the sensor coming from the data could be erratic. As such,
the application validates the value obtained by the sensor
before treating it (i.e. checks the value is not a null string).

Development process. Several options exist to deploy, up-
date and launch our application in the device. This can be

1 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
2 https://www.dexterindustries.com/site/?product=grovepi-starter-kit-
raspberry-pi
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done remotely from the developer’s computer. The devel-
oper must have network access to the device to be able to
do any maintenance task. As a result, the development and
debugging cycles are much slower since deploying and test-
ing a change in the application requires connecting to the
device, transferring the program, installing and testing. Any
new bug fix that needs to be tested on the real device requires
restarting this cycle.

Alternatively, a developer may develop in-place, i.e. di-
rectly in the device. This speeds-up the development cycle
by removing remote program transfers. However, this typi-
cally requires physical access to the device to plug a screen,
mouse and keyboard which is not always possible in a CPS
system.

Finally, the developer could opt for a hybrid approach that
maximizes the work done on the local development machine.
In this way, the developer will delay the deployment and
testing in the real device until he/she believes that the code is
correct. The main drawback of this approach is that at deploy
time many unanticipated issues could appear due to the late
integration and testing with the real hardware.

The bug. When testing our application, the device works
fine the majority of the time. However, from time to time
false alarms are sent to the user. Restarting the device solves
temporarily the problem: after an undetermined period of
time the bug reappears. Reproducing the bug is not easy be-
cause we cannot predict the timing of the bug. In addition, in
production mode the temperature monitor works remotely,
so when there is a problem we cannot know for sure what
is happening. Reproducing the exact conditions under which
the bug happens is complicated.

The Sensor Monitoring App illustrates the core problems
when debugging CPS systems. The main problems steams
from the fact that CPS systems combine the challenges of
both debugging distributed and embedded systems: they de-
pend on a sequence of events that may happen in unexpected
timings and depend on the external physical environment.
This makes bugs hard to reproduce, and thus difficult to di-
agnose and fix.

2.2 Debugging techniques overview
In this section we discuss debugging techniques that can be
employed for CPS Systems. Since CPS systems are still in
their infancy, we review general-purpose debugging tech-
niques, and later discuss the closest related work in dis-
tributed debugging. We classify debugging support in (1)
techniques that simulate or emulate hardware (called pre-
deployment in [TS12]) and (2) online and offline debug-
gers (called post-development tools in [TS12]).

Simulators. Simulating the CPS allows the developer to
experiment scenarios to study the CPS or to reproduce
bugs [TS12]. While debugging, the developer can fully ben-
efit from an offline environment and simulate input from
the hardware, e.g., sensor reads. It becomes possible to ex-

periment with bug fixes until a solution is found. Then the
corrected code must be put in place in the real CPS. Simu-
lating a CPS requires to fully understand and model both the
CPS and the cause of the bug [TS12]. Otherwise, it is com-
plicated to reproduce the non-determinism causing the bug.
The main drawback of simulators is that if they do not ac-
curately capture the behaviour of the CPS to anticipate and
reproduce the problem, unanticipated problems can happen
in the productive environment after deployment.

Offline debuggers. When debugging non-deterministic
systems like CPS, a complete view of the system is nec-
essary to analyze the state that made the program crash. This
could be achieved by extracting core dumps, i.e., a snapshot
of the whole state of the program when a crash happens, and
providing interpreters for these dumps [MM80]. However,
a core dump does not provide enough information to debug
high-level programs as it only provides the state of the mem-
ory and a call-stack. These two elements are not sufficient
in many occasions, since they miss other contextual infor-
mation needed to totally understand the nature of a bug. For
example, the value of the function arguments are not pro-
vided, nor the values referenced in the different levels of the
stack.

Alternatively, one can turn to replay debuggers [MH89]
in which the debugger records a trace of relevant events of
a program and re-executes them in a debugging session.
The debugger offers online debugging primitives such as
breakpoint and stepping to examine the recorded state of
the program without altering its behaviour. However, the
overhead introduced to produce a trace of the execution
is high [MH89]. The fault is debugged when the system
finished running. This means that applications that need to
analyse large quantities of data could produce hours of lost
computations [GIY+16].

Online debuggers. Opposite to offline debuggers, online
debuggers, often called breakpoint-based debuggers, con-
trol the execution of the program and interact with it through
operations like pausing/resuming execution and step-by-step
execution. Among online debuggers we can find remote de-
buggers, which particularly suit CPS systems. In fact remote
debuggers allow developers to remotely connect to a running
application and actively debug it.

When an exception is raised, a debug session is started
on the CPS but the debugger window opens on the devel-
oper’s computer. One can debug the program as if it was
running on its own machine except every action is per-
formed remotely on the CPS device. Remote debuggers are
widespread in general-purpose mainstream languages. Ex-
amples of them are: JPDA [Ora17] provides remote debug-
ging support for Java programs, the Visual Studio debug-
ger [Mic17] for .NET applications, GDB [FSF17] for lan-
guages of the C family, and Mercury [PBF+15] for Pharo
applications.
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Remote debugging is a promising technique in the con-
text of CPS since it is difficult to physically access a de-
vice and those devices may not have commodities for de-
bugging like GUIs, mouse or keyboards. However, similarly
to classic online debuggers, remote debuggers suspends the
execution of an application when a breakpoint or a failure
is encountered. This execution remains suspended until the
execution is resumed manually by the developer. In a CPS
system, it may not be possible to stop all the nodes partici-
pating in the system. In addition, the procedure can be error-
prone as it is invasive, i.e., modifications are directly applied
in the system. Finally, remote debuggers require a constant
connection with the remote device: if the connection is lost,
unfinished modifications can lead to non-deterministic be-
haviour.

Alternatively, out-of-place debugging could be employed
for CPS systems [Mar17]. This is a novel debugging tech-
nique explored by some of the authors in prior work which
allows to do online debugging on a program while avoid-
ing the suspension of the overall application’s execution. An
out-of-place debugger allows to remotely debug an excep-
tion on a machine external to the CPS by transferring the en-
tire runtime information required to debug to the developer’s
machine. This allows developers to work on a complete de-
bug session without affecting the debugged application. A
developer can finally deploy all changes required to fix the
bug as a single final commit step and resume the execution.
These changes are propagated to all the debugged machines.

Distributed Debugging. A bulk of related work in dis-
tributed debugging has focused on Wireless Sensor Net-
works (WSN), the closest distributed systems to CPS [TS12].
Existing debugging for WSN are mainly designed to under-
stand and reproduce the conditions of a bug [TS12]. How-
ever, they are typically limited to one aspect of debugging
at a time; the addressed concerns are mainly monitoring,
record and replay facilities and event analysis. Such systems
would benefit from an online debugger to investigate and fix
bugs at runtime.

2.3 Conclusion
From our literature review, we argue that online debugging
techniques are better suited for CPS systems since they po-
tentially could minimize the need for reproducing the bug:
the debugger can be connected at the moment of the bug and
then capture the runtime environment information of the bug
as it manifests. The developer has access to the application’s
state at the exact moment the problem was perceived, signif-
icantly simplifying the debugging task. Since in CPS a bug
can manifest in devices in which we cannot employ facilities
to support debugging like a screen, keyboard, or mouse, we
also argue that remote online debuggers are better suited than
classical interactive online debuggers. Alternatively, out-of-
space debugging could be also a good approach for CPS de-
bugging since it allows to debug remote programs as if they

are running in the local developer’s machine, and then only
a bugfix when it is considered properly tested.

In the remainder of this paper, we analyse both traditional
remote and out-of-place debugging in the context of the
Sensor Monitoring App. Before delving into the comparison
of both approaches, we provide further details on PharmIDE
and IDRA, the two concrete debugging tools used in our
study which implement remote and out-of-place debugging
for Pharo, respectively.

3. Remote Debugging in Pharo
In Pharo, developers can remotely debug a running appli-
cation using the PharmIDE [Kud17], an implementation of
the Mercury debugging model [PBF+15] which is now part
of the Pharo distribution. PharmIDE offers online debugging
with breakpoints and stepping commands and keeps a com-
plete view of the stack, which is represented by an accessi-
ble object. It also supports restarting the program’s execution
from a particular context of the stack, hot-swapping the up-
dated code when necessary. Mercury uses mirrors [BU04] to
access objects in the debugged machine from the developer’s
machine. Applying a code change to a mirror immediately
transfers such change to the debugged application and ap-
plies it in the debugged exception.

The general architecture of PharmIDE consists of two
parts:

• A server running on the debugged Pharo application
• A client running on the developer’s computer

A client can connect at any time to the remote running
program and start a debugging session. When an uncaught
exception happens, a debugger GUI spawns in the client
side. This debugger GUI is the same one used to debug
local processes. The difference between a local and a remote
debugging session is that in a remote session every action
happens on the remote side. The debugger allows then to
inspect remote objects, to change remote code and perform
all debugging operations (restart, step-over, step-through)
on the debugged program. As in a classic debugger, it is
possible to manually skip the faulting code to allow the
execution to resume, but it is not possible to use it as a
permanent workaround.

Note that every action performed through the debugger
requires a network transfer. Changing a value, committing
code modifications or stepping through an instruction sends
a request to the debugged application and triggers data ex-
changes. Practical use of PharmIDE directly depends on the
performance of the remote system, on which every debug
operation is executed, and on the available network band-
width.

4. Out-of-place debugging in Pharo
This section presents an overview of IDRA, an out-of-place
debugger that the authors implemented in Pharo [Mar17]. In
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a nutshell, IDRA supports online debugging by transferring
the execution state of the debugged application to the local
developer’s machine. The developer proceeds then to debug
as if the application was originally a local application. The
remote application can then continue executing the next task
that should process. Note that in the Sensor Monitoring App,
however, there is only one task being executed, as such,
the remote application is suspended after transferring the
execution state to the remote machine.

IDRA debugging cycle. When a program running under
IDRA throws an exception or stops in a breakpoint, IDRA
serializes the program execution state and transfers it to
the developer’s machine. The developer can then proceed
to debug locally an exact copy of the original program at
the moment of the exception. If the developer discovers the
cause, he can modify the application code locally to create a
bugfix. At any time, the developer can decide to send all the
changes of a bugfix in a single commit step to the debugged
application. Finally, whether the developer submitted a fix
or not, it is possible to resume the execution of the Sensor
Monitoring App running on the device from the point it
failed.

IDRA aims to provide a faster debugging cycle than
PharmIDE since every debugging operation runs locally ex-
cept for:

1. The initial start of the session that requires the transfer of
the program state.

2. The final commit and proceed operations that require the
transfer of the changes made locally.

IDRA allows the developer to modify and explore possible
solutions locally without affecting in the deployed applica-
tion that keeps running. IDRA is thus designed to require
less network roundtrips during debugging exposing the same
performance as debugging a local process with the single
overcome of a slower startup and commit phases.

General Architecture. Figure 2 shows the overall architec-
ture of IDRA consisting of two components: the IDRA Mon-
itor (running as part of the debugged process) and the IDRA
Manager (running in the developer’s machine). The IDRA
Monitor controls the target application and suspends its exe-
cution when it finds a breakpoint. Every time a breakpoint is
hit, the IDRA Monitor serializes the stack trace and all ob-
jects reachable from it using the Fuel serializer [DPDA11]
and sends it to the IDRA Manager. Fuel will serialize the
contexts of the call stack and all the objects referenced from
each context. The full state of these objects will be serialized
in order to properly reconstruct the state. However, classes,
global variables and the instances of IDRA are not included
in the serialization.

On the developer’s machine, the IDRA Manager deserial-
izes the stack traces and opens a local Pharo debugger GUI
on it. The developer’s machine has a local copy of the stack
at the moment the bug was produced, i.e., no proxies to the

remote machine are used at all. While the developer interacts
with the application to produce a bug fix, all interactions are
recorded by the Epicea changes logger [DCD13]. Finally,
when a bug-fix is ready, all changes logged are serialized
using Fuel and sent to the IDRA Monitor to be applied.

Figure 2. Representation of IDRA instances, manager and
monitor, in a distributed system of two machines.

5. Comparing Remote and Out-of-place
Debugging in the Sensor Monitoring App

In order to compare PharmIDE and IDRA, we benchmarked
several isolated scenarios. The goal of the comparison is to
determine the performance differences between both solu-
tions.While remote debugging incurs on network overhead
through the whole debugging session, out-of-place requires
capturing once the whole application’s state and transmitting
it over the network. In the remainder of this section, we ex-
plain the benchmark setup we did on the Sensor Monitoring
App and the results we obtained.

5.1 Debugging the sensor Monitoring App
We tried to solve the bug using PharmIDE and IDRA as de-
buggers. With both debuggers we have been able to spot the
problem: sometimes the temperature sensor fails to read a
correct value and cannot provide input to the querying soft-
ware (i.e. our application). This bug seems random and is
difficult to reproduce. However when the application runs
for a significant amount of time, the bug appears from time
to time and randomly produces exceptions. These excep-
tions are non-blocking but until they are solved, the appli-
cation cannot be trusted by the user as it sends false alarms.
In that case the inspected values in the debugger showed
that the sensor returned a string with a specific value ”nan”
which meant that the returned sensor input was ”not a num-
ber”. Our program was not entirely following the hardware’s
specifications, and we were looking for null values to handle
invalid sensor inputs instead of this ”nan” string.

Since our model was wrong, this particular problem may
never have been reproduced in a simulation if we assumed
that invalid inputs were null values. As such invalid inputs
are rare, the effort to reproduce the bug can be huge as we
did not know what we were looking for. In addition, on a
so small and simple CPS device like the sensor applica-
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tion, having runtime logging capabilities to trace the prob-
lem is not granted. Remotely debugging the application was
of great help to catch the problem at the time it did appear.

We have been able to fix the bug with both debug-
gers, although the methodologies did differ. For example,
in PharmIDE we remotely changed the code which was run-
ning on the Raspberry Pi. In this case we risk introducing
new bugs that could make the device crash. However, we
were able to query sensor inputs to test our modifications
during the debugging process. Using PharmIDE we also ex-
perienced different performance problems, that were leading
to the debugger hanging making it impossible to continue
debugging.

With IDRA, we could experiment and validate changes
before sending them to the system, but we were unable to
request new sensor input as everything was done locally on
the developer’s machine.

5.2 Benchmarks Setup
To benchmark both scenarios we use the Sensor Monitoring
App.

To run our benchmarks we used two different machines:

Developer Machine. Intel Core i7 6700HQ @2.60GHz x 8
with Intel Turbo Boost, 16 GB DDR4 RAM, Linux Mint
18.1 Serena - 64 bit, Pharo 6.0 #60499.

Raspberry Pi. ARMv8 quad-core @ 1.2GHz, 1 GB DDR3
RAM, Raspbian GNU/Linux 8 (jessie), Pharo 6.0 #60499.

We deployed the Sensor Monitoring App on a Raspberry
Pi, and we let it run long enough to generate the required
number of exceptions for each benchmark. The Raspberry
was connected to a local network through a 100mbps ether-
net connection. For each benchmark, we activated the Pharo
Remote Debugger and the IDRA out-of-place debugger on
a remote computer connected to the same network through
a 100mbps ethernet connection.

Whenever an exception was raised, debuggers opened on
the remote computer for the debugging activity. This setup
was used to perform the benchmarks and to compare both
debuggers.

5.2.1 Benchmark 1 - Session initialization
This benchmark measures how much time it takes for each
debugger to open a debugging session on a given exception.

Benchmarking Methodology. This benchmark measures
how much time passes between the developer’s machine
receives an exception and a debugger is opened for it. The
Pharo remote debugger opens immediately a debugger for
each exception it receives. On the other hand, IDRA opens
only one debugging session at a time. Thus, to have an
equivalent evaluation, we made sure to close each debugging
session opened by IDRA before opening another one. We

do not consider the time needed by the user interface to
open a debugger GUI as both debuggers use a classic Pharo
debugger session.

Results. We can observe that, on average, the Pharo Re-
mote debugger is between a thousand and ten thousand times
faster than IDRA. Figure 3 shows a boxplot of the results.
The time is calculated in milliseconds. In fact the Pharo re-
mote debugger takes approximately 15 µs on average, while
IDRA takes around 60 ms. A 60 ms delay is however hardly
noticeable to a developer’s eye, and moreover it happens
only once during the debugging life-cycle, when the session
is opened.

Figure 3. Boxplot of the session initialization time for an
exception.

This result is expected because of the way IDRA han-
dles arriving exceptions: while the Pharo Remote Debugger
immediately calls the user interface to generate a debugger,
IDRA puts the received exception in a queue, then another
thread reads from that queue, and asks the user interface to
open a debugger. This thread reads on the queue every 60
ms, approximately the delay measured in this benchmark.

5.2.2 Benchmark 2 - Stepping operations
We performed a series of benchmarks to measure the time
spent to execute the different stepping operations using each
debugger. The operations we are interested in in this bench-
mark are:

Restart the execution from a selected point in the stack.

Step Into the next expression, shows the code correspond-
ing to the method invoked in that line.
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Step Over the next expression, executes the next line and
goes to the following.

Step Through the next expression, executes parameters
evaluated and steps into the proper code execution.

Proceed simply continues the execution not debugging.

Benchmarking Methodology. We wrote our benchmarks
as follows:

1. We first Restart the execution from a point in the stack.

2. We then execute the operation that insterests us (Step
into/over/through). When we measure Restart, we skip
this step Restart operation.

3. Finally, Proceed the computation

This actions represent a typical debugging session, except
by the fact that no code is changed. It is however consistent
to evaluate the execution time of the operations on both
debuggers.

Results. Our results show that IDRA is constantly faster
than the Pharo Remote Debugger by more than one thou-
sand times. Table 1 shows the result of this benchmark on
the Sensor Monitoring App. The time was calculated in mi-
croseconds.

Operation IDRA [µs] PharmIDE [µs] Speedup
Step Into 372.1 1353378.4 3600x
Step Over 345.1 1571287.6 4500x
Step Through 353.6 1378951.5 3900x
Restart 362.5 1044374.9 2800x

Table 1. Execution time of single debugging operations (on
average) on the Sensor Monitoring App.

When IDRA handles a remote exception, the exception
and all the stack information is copied and sent to the devel-
oper’s machine. A debugging session is always opened on a
local copy of the exception (and its stack), which makes the
debugging session a normal local Pharo debugging session.

On the other hand, the Pharo Remote Debugger recon-
structs a remote exception by means of proxy objects of the
exception itself and of the related stack. The debugging oper-
ations will be executed on the remote machine, introducing
communication and network overhead for each of the exe-
cuted operations.

5.3 Benchmark 3: Network usage per exception
This benchmark measures how much data is sent (in bytes)
between the two components of the debuggers. This means
exchanging data between monitor and manager in the case
of IDRA and server and client in the case of the Pharo
remote debugger.

Benchmarking Methodology. We measure this overhead
in different ways, depending on the debugger. In IDRA we
measure the size of the data received on the IDRA Manager,

since we have control over the TCP connection. On the other
hand, the Pharo Remote Debugger uses the library Seam-
less [PBF+15] to handle the TCP communication. To assess
how much data is exchanged through Seamless, we use a
logger provided by the framework, which returns detailed
statistics over all the communication that happened since it
was started.

This benchmark measures this transfer size of each de-
bugger when transferring 0, 10, 20, 30, 40 and 50 excep-
tions. It gives an idea on how much communication time is
needed to transfer an exception using both debuggers. The
communication time is not evaluated since it depends on the
network and it would require a notion of distributed clocks to
be correctly evaluated. This communication time can be in-
ferred knowing the amount of data transferred and the com-
munication speed of the network.

Results. Our results show that the data exchanged per ex-
ception is significantly higher in the case of IDRA. Figure 4
shows the number of exchanged bytes with different number
of exceptions. The x-axis shows the number of exceptions
and the y-axis the number of bytes exchanged. The y-axis is
displayed with a logarithmic scale.

Figure 4. Plot of the number of bytes exchanged for an
increasing number of exceptions.

For each exception, in a constant way when increasing
the number of exceptions, IDRA exchanges over network
ten to one hundred times more bytes than the Pharo Remote
Debugger. The two curves mostly have the same increasing,
similar to logarithmic. However, as it is clearly visible, be-
tween five and ten exceptions IDRA consumes a consider-
ably higher number of bytes. At the moment of writing, this
entropy is believed to be due to a bug of the serialization
graph produced by Fuel. Moreover, we obtained these results
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in a IDRA prototype that has no optimizations. We expect to
improve these results in further work.

5.4 Benchmark 4: Network usage per code change
This benchmark evaluates the size of code changes trans-
ferred to the debugged machine.

Benchmarking methodology. We analyzed the size in
bytes, in the means of network communication, of transfer-
ring a change from the developer’s machine to the debugged
machine. The changes that interest us are the following:

• No operation: no changes are made. A browser is opened
and changes are sent.

• A class addition: a class named Test01 is added to the
default package.

• An instance variable addition: an instance variable
named instanceVariable is added to Test01.

• A class variable addition: a class variable named
classVariable is added to Test01

• A method code change: a method of the class Test01 is
changed adding a line of code.

The way we measured this data for each debugger differs
because both debuggers do not behave similarly. In IDRA,
changes happen locally and are then sent to the remote ma-
chine through the IDRA Changes Handler. The changes are
applied in the remote machine only when the user explic-
itly calls this functionality. The Pharo Remote Debugger, on
the other hand, applies directly the changes on the debugged
machine. This is why all the operations are evaluated only
after opening the browser and browsing to the right class.

We consider and measure also the transfer of a no oper-
ation. In IDRA, a no operation means to commit an empty
list of changes. In the Pharo Remote Debugger it means the
operation of opening opening a browser without doing any
modification.

Results Figure 5 shows the network usage in bytes for
each operation, the y-axis uses a logarithmic scale. Our
results show that IDRA uses eight to ten times less network
when compared to the Pharo Remote Debugger for simple
committing operations. The only exception to this is the no
operation case where there is no evident difference.

We believe that these results are due to the fact that
the Pharo Remote Debugger uses a remote browser, which
contains proxies to many entities of the remote image. Every
modification constantly generates a request to the remote
image to update, which does not happen in IDRA because
the changes are applied to the local code base.

5.5 Discussion
Our IDRA prototype shows promising results for CPS de-
bugging. Indeed, it has all the features of an online debug-
ger: breakpoints, stepping operations, the ability to inspect
and interact with the executing program. Moreover, it gives

developers the illusion of working as a regular local debug-
ger while indeed it debugs a remote process. This feature
also isolates the developer’s environment from the debugged
environment, giving live programming developers the free-
dom to explore several solutions to the bug before commit-
ting one. Generally speaking, IDRA is a complete debugger
achieving good performance.

We discuss in the following points the applicability, limi-
tations and point of improvement of IDRA.

Applicability. The benchmarks show that IDRA is a promis-
ing alternative to PharmIDE, especially when comparing the
execution time of single debugging operations. Since we are
talking about remote debuggers which communicate over
network, the speed of the network can play a decisive role
in choosing one of the two debuggers. In fact, if the network
imposes less overhead, it might be convenient to use one or
the other depending, for example, on the stack size. In this
respect one needs to consider that IDRA is only a research
prototype, and does not present any optimization. As part of
the future work we plan on creating concrete guidelines to
help developers choosing between classic remote debugging
and out-of-place debugging.

External Resources. External resources such as local files
or sensors at the local machine’s hardware are not shared
between the IDRA Manager and the IDRA Monitor. This
means that a developer using IDRA has to avoid the access
to sensors from her machine because that resource is not lo-
cally available. This problem does not appear in the remote
debugger because the remote resources can usually be ac-
cessed through proxies. However, in our solution we recon-
struct an environment on a separate machine. This problem
is akin to code mobility, and many possible solutions can be
found in the literature [FPV98].

Control Serialized Objects. Fuel [DPDA11] allows the se-
rialization of all objects reachable from a certain starting ob-
ject, exceptions and stack traces comprised. While this is a
desirable property for a serializer, this may become problem-
atic when employing it for an out-of-place debugger. Indeed,
sometimes the reachable object graph may have references
to global objects and/or include objects that the developer
did not expect. This has a direct impact on the size of the
exchanged stack traces.

A possible solution for this issue would be to analyze and
optimize the serialization process for our case. For example
in the current implementation of the Pharo Remote Debug-
ger [Kud17], the serialization process is optimized to serial-
ize proxies over the TCP network.

Network stability. Communication in IDRA happens over
TCP/IP and we rely on its mechanisms for network failure
handling. This means a slow network or machine can lead
to errors because of too short timeouts. IDRA does not
include so far any high level failure handling, nor a robust
re-connection mechanism either.
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Figure 5. Bar plot of the bytes exchanged to commit one change.

Concurrency. Out-of-place debugging does not explicitly
support multi-threading. Concurrent processes will not be
handled in a particular way, and eventual state changes are
not considered. However, this limitation is also present in
classic debuggers, including the compared PharmIDE.

6. Conclusion
Cyber-Physical Systems (CPS) are an emerging kind of
distributed systems that introduce hardware components to
sense and interact their surrounding environment. In this pa-
per, we studied debugging support for CPS written in Pharo.
Reproducing errors due to unpredictable and live environ-
ments is particularly hard. All the runtime information from
the moment when the bug shows itself is lost if the debug-
ging activity does not happen at that exact moment.

This paper reported our experiences with using two re-
mote online debuggers available in Pharo for debugging
CPS: the Remote Pharo debugger named PharmIDE and a
novel out-of-place debugger IDRA. PharmIDE allows to de-
bug the running application directly on the device. All debug
operations are performed on the remote device but from the
developer’s computer. IDRA, on the other hand, is an out-
of-place debugger which allows the developer to debug a re-
mote program on his own computer instead of directly on
the device. Debug actions are performed locally and all code
changes are later committed to the remote device.

We studied both Pharo remote and out-of-place debug-
gers in the context of the Sensor Monitoring App, a tem-
perature monitoring application written in Pharo. The ap-
plication uses a driver to access the temperature sensor and
from time to time the recovered value provokes an excep-
tion. This is due to a sensor error, which conditions are
very hard to reproduce. Our evaluation of both approaches
showed that IDRA provides faster performances in terms
of debugging operations speed and consumes less network

data when committing code changes. On the other hand, the
Pharo Remote Debugger is faster to initialize debugging ses-
sions, mainly because Idra uses an exception queue-handling
mechanism. The Pharo Remote Debugger also consumes
significantly less data when exchanging exceptions on the
network, which is probably due to the non-optimized under-
lying serialization mechanism of IDRA.

Having faster debugging operation improves the user ex-
perience, since the user would not need to wait several sec-
onds for an operation to be executed (i.e. it does not affect the
remote execution context). Considering a live programming
environment, IDRA also allows to locally test a solution be-
fore deploying the code. This is not possible using classic
remote debuggers like the Pharo Remote Debugger.
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