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Magneto-optical micromechanical 
systems for magnetic field mapping
Alain Truong1,2,3, Guillermo Ortiz1,2,3, Mélissa Morcrette1,2,3, Thomas Dietsch1,2,3, 
Philippe Sabon1,2,3, Isabelle Joumard1,2,3, Alain Marty1,2,3, Hélène Joisten1,2,3,4 & 
Bernard Dieny1,2,3

A new method for magnetic field mapping based on the optical response of organized dense arrays of 
flexible magnetic cantilevers is explored. When subjected to the stray field of a magnetized material, 
the mobile parts of the cantilevers deviate from their initial positions, which locally changes the light 
reflectivity on the magneto-optical surface, thus allowing to visualize the field lines. While the final goal 
is to be able to map and quantify non-uniform fields, calibrating and testing the device can be done 
with uniform fields. Under a uniform field, the device can be assimilated to a magnetic-field-sensitive 
diffraction grating, and therefore, can be analyzed by coherent light diffraction. A theoretical model 
for the diffraction patterns, which accounts for both magnetic and mechanical interactions within each 
cantilever, is proposed and confronted to the experimental data.

Magnetic field mapping techniques have continuously been developed due to the necessity for determining 
the spatial components of local magnetic fields in many industrial applications and fundamental research1–4. 
A well-established tool for obtaining the spatial distribution of magnetic fields is the magneto-optical imaging 
(MOI) method, which makes use of so-called MOI films such as ferrite garnet films with uniaxial or planar 
anisotropy5,6, and nanoparticle Bitter films7–11. A MOI film placed on a magnetized surface will have its mag-
netic domain structure reorganized in accordance with the local intensity of the magnetization or stray field 
produced by the analyzed material. However, the method is non-quantitative and depositing a MOI film is an 
invasive process that leaves traces after removal. Other field mapping techniques are based on scanning, such 
as superconducting quantum interference device (SQUID)12,13, Hall bar14–16, magnetic force17,18, and scanning 
magnetoresistive microscopy19. Despite being highly sensitive, scanning techniques are slow and each of them 
has its own drawback. For instance, SQUID microscopy operates at low temperatures, and magnetoresistive sen-
sors operate with dc currents, thus possibly introducing heat and magnetic fields that can alter the sample. Due 
to their long spin coherence time, negatively charged nitrogen-vacancy centers in diamond are also promising 
for magnetometry20–23. However, nanometer scale proximity to the surface of the diamond film is necessary and 
is limited by the charge stability of the surface state acceptors. Several factors are considered for sensors12 such 
as spatial resolution, sensitivity, linear response, required proximity to the sample, as well as the ability to fil-
ter noise and to measure without bringing in any perturbations to the sample. The existing techniques usually 
combine several of the desired features and in many cases they are found to be complementary. In this paper, we 
report magnetic field mapping by use of a structure based on organized arrays of close-packed mobile magnetic 
elements. Each element is a magnetic cantilever with microscopic length and nanometer scale thickness. When 
placed in proximity to magnetized materials, the cantilevers are deflected depending on the intensity and direc-
tion of the stray fields. Due to a local change of reflectivity induced by the stray field, the field lines generate a 
contrast, which is even visible to the naked eye on the surface of the mapping device. Such magneto-optical sur-
face offers the advantage of being a passive and easy-to-use device, since neither power source nor sample prepa-
ration is required. It is also directly sensitive to magnetic torques rather than magnetic field gradients. The goal 
of such device is to map non-uniform fields by extracting from each cantilever the local intensity and direction 
of the field. Uniform magnetic fields can however be used to calibrate and quantify the sensitivity of the mapping 
device. Since all cantilevers deflect the same way in a uniform magnetic field, the device is optically equivalent to 
a magnetic-field-sensitive diffraction grating. The field mapping technique presented here opens up possibilities 
for applications such as microcracks detection by measuring current distributions in metals or detection of ferro-
magnetic pigments used in security applications.
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Results
Visualizing field lines with organized arrays of magnetic cantilevers. The magneto-optical surfaces 
are developed by a top-down technique on silicon (Si) substrates. A Ma-N 2403 negative tone photoresist layer 
is deposited by spin-coating and patterned after the rectangular-section beam shape of the microelements by 
UV lithography. Then, a 100 nm layer of permalloy (Ni81Fe19) is deposited by sputtering on a 3 nm titanium (Ti) 
layer. The purpose of the Ti layer is to promote the adhesion of the permalloy layer on Si. Different lengths and 
spacings between each beam can be achieved with different types of masks. The remaining photoresist is then lift-
ed-off and the Si substrate is isotropically etched by reactive ion etching using a sulfur hexafluoride (SF6) plasma, 
which liberates the beams. The beams have one end, which is patterned with wider dimensions to ensure that the 
SF6 plasma does not entirely etch the Si underneath, so that the anchor contact (Fig. 1a) can be formed. Once 
the substrate is removed, the free-standing part of the cantilevers bends because of the residual stress24,25 due 
to the elevated deposition temperature (~100 °C) and the difference of thermal expansion coefficients between 
Si (2.56 ×  10−6 K−1), Ti (8.6 ×  10−6 K−1) and permalloy (12 ×  10−6 K−1). Once liberated, the magnetic microele-
ments are free to be actuated by an external magnetic field. Typical scanning electron microscope (SEM) images 
of arrays of magnetic cantilevers are shown in Fig. 1b,c. Optical microscopy coupled with a high-speed camera 
system allows to observe the real-time spontaneous motion of the beams when they are exposed to a magnetic 
field (Fig. 1d,e). In our case, the permalloy layers are vacuum-deposited. So, to ensure the stability of the magnetic 
cantilevers against oxidation when exposed to the air, a 1 or 2 nm layer of a metal that gets passivated in the air 
(Al, Ta) can be grown before taking the permalloy film out of the vacuum chamber. Such thin film does not sig-
nificantly alter the Young’s modulus of the cantilever.

To test this concept of field mapping, an experiment is first conducted at macroscopic scale. A test device 
(Fig. 2a) is placed over a NdFeB permanent magnet (Fig. 2b). A striking result is that the field lines produce 
contrasted regions that are visible to the naked eyes on the magneto-optical surface (Fig. 2c,d). The surface of 
the device recovers its initial state after the field is removed, so the effect is reversible. The white light reflects 

Figure 1. (a) Schematic of one magnetic microcantilever. (b,c) SEM images of arrays of cantilevers of several 
size and density. The influence of a magnetic field causes a curvature. Optical microscope images are taken 
(d) without an external magnetic field and (e) with a field. The magnetic field is applied by placing a NdFeB 
permanent magnet under the substrate of the sample.
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differently depending on the local deflection of each cantilever caused by the stray field, thus giving rise to the 
dark regions that recreate the shape of the magnet. In a second step, in order to quantify the strength of the 
observed stray field, we employ optical diffraction by coherent light in a uniform magnetic field.

Theoretical model using Hamiltonian mechanics. Considering the arrays of microcantilevers as an 
actuable diffraction grating, we establish a theoretical model that relates the diffraction pattern to the deflection 
caused by a magnetic field with a certain magnitude and direction. Expressing the shape of the deflected cantile-
vers by an adequate function is required to obtain the diffraction patterns analytically. The coordinate system and 
the notations related to the array of cantilever are defined in Fig. 3. For the theoretical model, the deformation 
occurs in the (zOx) plane, and the cantilevers are considered to be long and slender beams that are made of iso-
tropic materials. Those conditions being met, the model accounting for the internal stress caused by the action of 
an external magnetic field on the magnetic cantilever can be developed in the frame of the Euler-Bernoulli beam 
theory26. Here, we choose an energy approach to describe the interplay between the magnetic and the mechanical 
properties of the materials. The total energy per unit length of the beam, expressed as a function of the curvilinear 
coordinate s, includes the bending energy Ec(s), and the magnetic energy Em(s), which contains the Zeeman term 
due to the external field and the shape anisotropy term. α and β are the local angles between the neutral axis of 
the beam and the x–axis, and between the magnetization and the x–axis, respectively. Since the beams are made 
of permalloy, the magnetocrystalline anisotropy and the effects of magnetostriction are negligible. Therefore, the 
uniaxial shape anisotropy along the neutral axis of the beam is the dominant form of magnetic anisotropy. The 
influence of the exchange and dipolar interactions on the deformation are neglected. For a given external load 
on the cantilevers, the functional minimization of the total energy with respect to the function α(s) leads to the 
relation between ds and dα.
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 are characteristic lengths that are related to the external magnetic field 
and the uniaxial anisotropy, respectively. Ms is the saturation magnetization of permalloy, Ku is the uniaxial 

Figure 2. (a) Test device made of four different arrays of cantilevers of different size (2 μm wide and 30, 60,  
40, and 80 μm long respectively, from left to right) on a Si wafer, similar to the one magnified in Fig. 1d,e.  
(b) The NdFeB permanent magnet is (c) placed under the test device, which is perfectly opaque. The field lines 
form contrasted regions, which remind of shape of the magnet. (d) Close-up view by optical microscopy of a 
contrasted area.
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anisotropy energy coefficient, θB is the magnetic field angle, E is the combination of the Young’s moduli of both 
permalloy and Ti layers according to the Reuss rule of mixture27, =I wh

12

3
 is the centroidal bending stiffness. In 

order to account for the initial bending of the cantilevers, a homogeneous residual stress is included in the bend-
ing energy term by giving a constant initial radius of curvature R to the beam. From equation (2), one can express 
the shape of the beam with a parametric curve (see the Methods section). For the calculations, R and θB are fitting 
parameters.

The values of α and β at the free end of the cantilever are noted as α


 and β


, respectively. A consequence of 
this model is that α and β are single-valued functions of s. Thus, for a given length  of the beam, applying an 
external applied magnetic field with a certain magnitude B and a certain angle θB will result in a unique set of 
values for the pair α β

 

( , ).
Equation (1) implies that the external field applies a torque on the magnetization of the material, which in 

turn exerts a torque on the easy axis of the ferromagnet, thus causing the beam to bend. Although the uniaxial 
shape anisotropy would normally favor an alignment of the magnetization along the neutral axis of the cantilever, 
the combined presence of both bending and Zeeman energies can, in principle, allow the magnetization to be 
oriented in directions non-parallel to the tangent to the beam. To verify this hypothesis, the equilibrium angle of 
the magnetization with respect to the neutral axis of the beam is determined at each point on the cantilever by 
minimizing the magnetic energy with respect to β, i.e. ∂ Em/∂ β =  0, which results in the following relation:

θ β β α− = − .M B Ksin( ) sin[2( )] (3)Bs u

Equation (3) can also be seen as an equilibrium between the torque exerted by the external field on the mag-
netization and that exerted by the magnetization on the easy magnetization axis. The calculations are done with 
Ms =  800 emu.cm−3, Ku =  43000 erg.cm−3, values for permalloy thin films28–30 at 300 K, and the beams have a 
length = 100 μm and width w =  2 μm. Figure 4 represents the shape of a 100 μm long beam deflected under a 
magnetic field of 700 Oe, with a field angle θB =  1.36 rad, and the stable equilibrium orientation of the magnetiza-
tion calculated at several positions on the beam. It is clear from Fig. 4 that the magnetization vectors slightly point 
out of the beam. The effect becomes weaker as one approaches the free end, which is consistent with a decreasing 
bending torque as x increases, since β gets closer to θB.

Discussion
The magneto-mechanical model computes the cantilever shape that best fits the intensity profile of the coherent 
light diffraction patterns measured experimentally in the Fraunhofer conditions. The theoretical wave diffraction 
patterns are obtained by calculating the total diffracted intensity for a given curvature. The total intensity of the 
diffracted light, at coordinates (xM, yM) on the observation plane, is the product of the interference grating term 
I x y( , )M Mg  by the Fraunhofer diffraction term I x y( , )M Md , which is adjusted to account for the curvature. Using 
the notations in Fig. 3, the phase difference between the waves diffracted at O(0, 0, 0) and P(x, y, z(x)) is given by 
ϕ = − ⋅

� � ��
k k OP( )i d , for an incidence quasi-normal to the magneto-optical surface:

Figure 3. Coordinate system used for the calculations. (a) The beam and the magnetization have a local angle 
α and β with the x–axis, respectively. The external magnetic field 

��
B is applied with an angle θB with respect to 

the x–axis. The optical phase differences are calculated from the clamped origin point O. (b) The dimensions of 
a beam are noted , h, w for the length, the thickness and the width, respectively. The geometric centers of the 
cantilevers are separated by the distances Sx and Sy in the x and y directions, respectively.
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The spacing of the grating and the number of cantilevers are Sx =  112 μm, Nx =  20 and Sy =  4 μm, Ny =  100 in 
the x and y directions, respectively. When the cantilevers are flat, the array gives an optical response correspond-
ing to a symmetric pattern (Fig. 5a,b). When the structure is bent, the diffraction pattern becomes asymmetric 
because the envelope of the optical signal, determined by Id, changes when the magnitude of the external field 
varies (Fig. 5a,c,d). The results in Fig. 4 are obtained with the fitting parameters R =  155 μm and θB =  1.36 rad. 
Then, by incorporating the mathematical expression of the shape of the cantilevers in equation (6), we found a 
relatively good match between the measured optical signals and the calculated diffracted intensities. The data 
fittings in Fig. 5c,d yield the magnitude of the magnetic field B: 700 Oe and 800 Oe, respectively. A gaussmeter is 
placed under the sample to confirm the value of the field. Consequently, the above-mentioned theoretical 
approach appropriately models the shape of the beams bent under the influence of a certain stray field. In addi-
tion, this model can also be used to predict the most optimal cantilever dimensions to improve the sensitivity and 
the resolution for magnetic field mapping. The quantity α



 is the highest value of α(s) for a given length , hence 
it measures how much a cantilever can be deflected by a field. Shorter beams make it possible to build denser 
arrays for better spatial resolution but reduce the ability of the beam to deflect. However, thinner beams can be 
deflected more easily, therefore at an equal amplitude of external field, they have a higher sensitivity than thicker 
beams (Fig. 5e,f ). A possible way to enhance the sensitivity of the device is to fabricate cantilevers with 
non-uniform thicknesses: smaller thicknesses around the clamped end will reduce the overall stiffness, while 
higher thicknesses near the free end will increase the magnetic torque. The fabrication process would nonetheless 
be more complexe. Tuning the centroidal stiffness I by changing the geometry of the cantilevers in the y direction 
can be a more feasible alternative.

In summary, we have shown that a magneto-optical surface made up of organized arrays of magnetic- 
field-actuable cantilever beams can react to the direction and the magnitude of a stray field emanated from a 
magnetized material. At the macroscopic scale, the effects can be visible to the naked eye, but they can also be 
visualized at the microscopic scale by optical microscopy, which allows a real-time two-dimensional imaging 
of the magnetic field distribution. The arrays of magnetic cantilevers are directly sensitive to magnetic torques, 
rather than magnetic field gradients. This property is attractive because measuring the deflection of the cantile-
vers is equivalent to measuring the magnetic torque applied on it, hence magnetic fields can be quantified. An 
interesting challenge is to further improve the spatial resolution and the sensitivity by changing the dimensions 
or the geometry of the beams. Beam thicknesses of a few tens of nanometers offer higher sensitivity, while lengths 
as short as a few microns stiffen the beams, which goes against optimizing the sensitivity. Augmenting the sensi-
tivity of the device by changing the geometry of the cantilevers and in particular by using beams of non-uniform 

Figure 4. The beam is deflected under an external field of 700 Oe (red curve). The calculated magnetization 
vectors are represented by black arrows. The angle (β −  α) between the magnetization and the neutral axis 
decreases along the beam (blue curve).
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thickness is a path to explore. The upper and lower limit depends on the mechanical properties of the cantilevers. 
A quantitative description of the relationship between applied field and cantilever deflection is given in relation to 
Fig. 5e,f. With the geometry described in this paper, fields in the range 0.1 to 2 kOe can be detected and mapped. 
In principle, the sensitivity of this approach could be much increased by using vertically suspended magnetic 
cantilevers, which would hang below the substrate. In this case, the cantilever could be made much thinner since 
they would not have to support their own weight. As a result, they would react to much lower field than those 
described in Fig. 3. In this case, magnetic fields of the order of the earth field could be detected. For the type of 
foreseen applications, there is no interest in trying to further enhance the sensitivity of the cantilevers since they 
are expected to be used in presence of the earth field. The drawback of this technique is however its sensitivity to 
vibrations and the volume required not for the device itself but for the optical readout setup.

Methods
Distributed magnetic torque on the magnetic beams. The magneto-mechanical model is developed 
in the frame of Hamiltonian mechanics. The total energy per unit length of the beam corresponds to a Lagrangian 
L given in terms of generalized coordinate α and generalized velocity α α=


sd /d . For a given external load 

imposed by the applied magnetic field, the Legendre transform of L is invariant along the beam:

α
α
∂
∂
− = − = − .�

�
�L

L E s E s E( ) ( ) ( ) (7)c m m

Figure 5. (a) The diffraction patterns measured for three different configurations in the xM direction at a fixed 
value of yM: array of flat cantilevers (top), array of bent cantilevers under a magnetic field of 700 Oe (center), and 
800 Oe (bottom). The corresponding intensity profiles are shown: (b) flat configuration, (c) under a field of 700 
Oe, and (d) 800 Oe. By inputting different values of thickness h in the model, we obtain: (e) the predicted values 
of α



 as a function of the total length  of the beam at B =  700 Oe, and (f) the relation between the values of 
magnetic field and the deflection for = 20 μm.
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The equation above leads to the following first order differential equation:
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Solving the equation analytically is not trivial because the variable s is contained in both functions α and β. 
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, equation (3) allows to isolate the variables α and β, which eliminates α in the 
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. The shape of the cantilever is given by 

a parametric curve by calculating ∫β α β β β= Λ ′ ′ ′
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β
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, 
where β0 =  β(s =  0) is found with equation (3) using the boundary condition at the clamped end α(s =  0) =  0. 
Since s is a single-valued function of β, β(s) is found by inverting s(β). By inserting the values of β(s) in equation 
(2), α(s) is determined, thus allowing to calculate the difference of angles β(s) −  α(s) along the beam.
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