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Abstract
Locating and fixing bugs is a well-known time consuming
task. Advanced approaches such as object-centric or back-
in-time debuggers have been proposed in the literature, still
in many scenarios developers are left alone with primitive
tools such as manual breakpoints and execution stepping.
In this position paper we explore several advanced on-line
debugging techniques such as advanced breakpoints and on-
line execution comparison, that could help developers solve
complex debugging scenarios. We analyse the challenges
and underlying mechanisms required by these techniques.
We present some early but promising prototypes we built on
the Pharo programming language. We finally identify future
research paths by analysing existing research and connecting
it to the techniques we presented before.
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1. Introduction
Identifying and fixing bugs is an important task in soft-
ware development. It is also well-known that this is a
time-consuming activities [Som01, Zel05]. Several works
have been proposed to help developers with such compli-
cated task. Automatic validation of conditions [LHS99] and
watchpoints [ADRC17] help developers to spot divergences
from the expected program execution. Back-in-time debug-
gers offer the possibility to navigate the program execu-
tion history with several promising research reults [LD03,
Hof06, PTP07, LGN08]. More recently, object-centric de-
buggers presented advanced stepping mechanisms targetting
individual objects [RBN12]. Moldable debuggers [CGN14]

[Copyright notice will appear here once ’preprint’ option is removed.]

offer a different perspective to this problem: it should be
possible to adapt a debugger to a given domain or task.

In this position paper we motivate the need to mature and
develop more advanced techniques by showing a complex
debugging scenario obtained from a real use case. We then
explore several promising advanced debugging techniques
and analyse the key challenges they pose:

Advanced Breakpoints. What if a developer had the poten-
tial to create new smart breakpoints? What would be such
breakpoints? What kind of runtime information should
they have access to to be both useful and efficient?

Execution Comparison. What if a developer could, after
modifying his codebase and breaking some tests, com-
pare the executions of the program before the change and
after the change to find the cause of the bug? What would
be the infrastructure required for this technique? What
are the tools we could provide to a developer to perform
this task?

Accessing Execution History. Back-in-time debuggers are
nowadays the referent debuggers to navigate history.
However, many questions remain still open. What would
be a both a practical and efficient solution? What are the
alternatives to store both the execution and the objects in
the program’s state? How can we navigate the program
history to find a bug?

During our analysis, we also present some promising
ideas like the possibility of scripting the stack navigation.
Finally we present some prototypes we implemented show-
ing the feasibility of some of them.

2. Debugging Terminology
Debugging is the process of finding and repairing defects in
software. Informally, we refer to software defects as bugs,
due to the difficulty they may present to be spotted and
removed. The main challenge of debugging is to spot bugs
i.e., to examine a program and understand what is the exact
cause of the misbehaviour or error.
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In general, a developer performs such debugging process
with the aid of a debugger tool, or simply a debugger.
Debuggers allow developers to suspend a program execution
to inspect and explore the execution. This includes both
observing the execution path and the state of objects existing
in the application.

Mainstream debuggers offer the possibility to suspend the
program execution by placing breakpoints. When the pro-
gram execution arrives to a breakpoint, the execution is sus-
pended and the debugger shows to the developer the current
state of the execution. This execution is generally shown as
a stack trace. A stack trace is a sequence of methods exe-
cutions (usually called contexts or stack frames). In such a
sequence, the context that precedes another context is called
its caller or sender. This sequence represents then a pro-
gram execution path from a first context until a context with
a breakpoint. We call the first context of the program its en-
try point. In most programming languages, a program entry
point is the first execution of the main function of a thread. In
Pharo, a program entry point is the first context of a Process,
usually executing the Block>>#newProcess method.

The utility of the stack trace is twofold. On the one hand,
a developer can use it to navigate the execution path and
control flow that led to a problem. On the other hand, he
can also use it to inspect previous states of the execution, by
looking at the execution contexts .

3. A Real Complex Debugging Scenario
To illustrate why debugging is a complex task and motivate
the need of new debugging techniques, we isolated a real
bug that appeared while refactoring the latest versions of
the Pillar markup language[ADCD16]. In this section we
present the issue found and the way to reproduce it. We setup
a repository explaining in details the steps to reproduce the
bug in https://github.com/guillep/pillar-bug,

Pillar uses an object called PRPillarConfiguration to
manage all project settings e.g., what is the output format,
whether it needs to numerate sections or not, print a contents
table or not. PRPillarConfiguration semantics are compli-
cated. First, it overrides doesNotUnderstand: [Duc99] to
dynamically interpret some message sends as configuration
setters or getters. Second, it uses the Magritte [Ren06] meta-
description framework to control how a configuration values
should behave by default, be serialized, deserialized, and
validated. Finally, a PRConfiguration is organised in a hi-
erarchy of configurations, and some operations may lookup
settings in the hierarchy of the configuration while others do
not.

Given this situation, the pillar developers decided to
refactor PRPillarConfiguration to depend less on doesNo-
tUnderstand: semantics. They so decided to introduce in
PRPillarConfiguration a disabledPhases instance variable
with its respective accessors. Before doing such a change,
all 3182 Pillar tests were running ok.

$ ./pharo Pharo.image test ”Pillar.∗”
[...]
3182 run, 3182 passes, 0 failures, 0 errors.

However, as soon as we introduce the new accessors, 16
new errors appeared:

$ ./pharo Pharo.image test ”Pillar.∗”
[...]
3182 run, 3166 passes, 0 failures, 16 errors

Checking the tests, we observe that the bug happens in an
apparently unrelated piece of code, the
PREPubMenuJustHeaderTransformer>>actionOn: method.
The symptom of the bug is that outputType is nil. However,
this piece of failing code plus the fact that 3166 tests are still
working, give us no clue about the relation with the change
and the bug.

PREPubMenuJustHeaderTransformer>>actionOn: anInput
ˆ (self class writers

includes: anInput configuration outputType writerName)
ifTrue: [ maxHeader := self maxHeaderOf: anInput input.

super actionOn: anInput ]
ifFalse: [ anInput ]

In the following sections of this paper, we explore several
advanced debugging techniques that could help us finding
the cause of this bug.

4. Technique 1: Advanced Breakpoints
Breakpoints are a very common feature among debuggers.
They let developers specify a point in a program where the
execution should be suspended. However, debuggers usually
limit breakpoints to a limited set of pre-existing ones such as
breaking when the program arrives to a particular line. De-
velopers are not usually capable of tailoring breakpoints to
some more specific needs. This section presents some ideas
that would increase the expressiveness of breakpoints and
allow developers to specify more precise trigger conditions.

4.1 Idea 1: Conditional Breakpoints
Scenario. The developer debugging Pillar is interested
in looking at what happens to the problematic actionOn:
method only when it is called with a specific argument. If
he places a normal breakpoint in the method, the breakpoint
will trigger no matter the argument and he will have to check
himself whether the arguments are those he is interested in.

Idea. The developer could place a conditional breakpoint
that only triggers if the arguments are those he is interested
in. Conditional breakpoints are nowadays available in many
existing debuggers such as Pharo’s and C’s gdb, mostly al-
lowing the execution of simple conditional expressions. We
would like to explore their limitations and further possibili-
ties.
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4.2 Idea 2: Contextual Breakpoints
Scenario. The Pillar developer would like her breakpoints
to only be triggered when her code is launched from a test.
A normal breakpoint triggers from any execution, whether a
test or not. This may interfere with the normal execution of
the program, even in cases where the bug does not reproduce
or appear.

Idea. The developer could place a contextual breakpoint: a
conditional breakpoint that depends on the dynamic execu-
tion of the program. For example, a breakpoint could detect
whether the current execution was initiated by a test process
or not, or by an HTTP request or not. Moreover, this selec-
tive breakpointing could be useful to debug core libraries
such as collections or compilers. Since core libraries are in
usage by the runtime, setting a breakpoint in the may cause
the entire runtime to suspend.

Alternative Scenario. A developer wrote a test to vali-
date his implementation. He placed breakpoints in different
methods invoked in the test because he is adjusting the be-
haviour of such methods to make the tests pass. Alternately,
he may want that when executing the test, only the break-
points placed in the test method itself trigger.

4.3 Challenges
These ideas rely on the possibility for the breakpoints to de-
cide whether to trigger based on the context they are exe-
cuted in. This means that the breakpoints must be able to
access their context, which is not trivial in most languages.
Moreover, we ask ourselves the following research ques-
tions: What is the debugger support required to interactively
set conditional breakpoints? What is the runtime informa-
tion they can and could access? How could we easily define
dynamic contexts that would help debugging?

5. Technique 2: Execution Comparison
5.1 Scenarios
In our Pillar scenario, the developer has two versions of the
program: a first one that passes the test and another one that
does not. Moreover, he knows what code-change made the
test fail. This scenario is similar to the one studied by Zeller
et al. in delta-debugging [Zel05].

The developer can then try to compare the execution of
the broken program with some other running version of it.
For example, he could try to compare the broken test with its
previous version that was working. Alternatively, he could
try to compare the broken test with a working test from the
same version of the code. If the working test exercises the
same program but with a different input, it could give her
enough insight on the origin of the problem.

In both scenarios, the developer would like the debugger
to provide her with information about how the two test
executions differ so that he can understand how his change

made the test fail. For the sake of presentation, we will focus
in the following subsections on the first scenario.

5.2 Idea 1: Comparing Execution Paths
The developer would like to spot differences between the
execution paths of the programs. A naive idea to achieve this
would be to run the two executions in parallel, compare the
sequences of messages sent and stop the executions when
they diverge. This would effectively pinpoint the first path
difference between the two executions.

Unfortunately, this is most likely not enough to entirely
cover the needs of the developer. For example, the cause of
the bug may not be related to the first found difference, but to
a difference occurring later in the execution. A possible way
to address this concern would be to offer the developer a way
to smart step from difference to difference, which would step
both executions until the next difference.

Challenge: Defining Execution Path Differences. Notice
we referred to the concept of differences between execution
paths without precisely defining it. Indeed, this is to us an
open research question: What is a definition of difference
that is useful for debugging? Indeed, a too strict definition of
difference (e.g., comparing the two sequences of messages
and flagging the positions where different messages were
sent) would drown the developer in differences instead of
showing a bigger picture, delivering a bad debugging expe-
rience. On the other hand, a too relaxed definition of differ-
ence could miss some genuine differences.

Besides a definition of execution path difference, we also
need a definition of similarity. As the execution paths ad-
vance and diverge, they may converge later if the two execu-
tions are similar enough, allowing us to find the next diver-
gence. This problem is particularly challenging when debug-
ging complex applications using big libraries or frameworks
because they may have complex execution flows.

5.3 Idea 2: Comparing Object Interaction History
The developer would also like to spot differences between
the interactions with some particular object(s) in both exe-
cutions. For example, we would like to compare the times
an object was sent a particular message in both executions.
Moreover, this idea can also be applied to track the evolu-
tions of the state of an object.Similarly to the Execution Path
Differences idea, we could offer the developer a smart step
that would allow him to navigate the executions according
to what happens to a given object.

Challenge: Object Equivalence. Comparing object inter-
actions in both executions requires defining an object equiv-
alence criteria. Depending on the debugging scenario, we
estimate different criterion could be applied. For example,
using strict equality can be useful in the scenario where we
debug two versions of the program with the same input. On
the other hand, a more relaxed equality, e.g., a manually se-
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lection done by the developer, could be useful in the scenario
comparing the same program with different input.

Moreover, we identify other open questions related to this
topic. Can we automatically detect and propose the most
suitable object equivalence strategy given a debugging sce-
nario? Given an object equivalence strategy, can we auto-
matically identify pairs of objects representing conceptually
the same instance?

5.4 Technical Challenge
Running and Isolating two Simultaneous Executions.
Both of the ideas we expressed in this section relies on the
ability of the debugger to run and control two executions at
the same time in an isolated fashion. The isolation is impor-
tant to prevent the two processes from interfering with each
other, for example by accessing the same global variable

6. Technique 3: Accessing Execution History
6.1 Scenario
The bug in Pillar is difficult to debug because the stack trace
does not contain all the information relevant to the bug.
Indeed, even if we know that the bug’s symptom is that the
expression anInput configuration outputType evaluates to
nil, we do not know how that value arrived there nor why.

The general problem is that a stack trace shows only a
single path in the program’s execution. That is, if we think
a program’s execution as a call graph [GDDC97], the stack
trace shown in the debugger represents a single path from
that call graph. In this terminology, a stack trace only shows
the current execution path from the program entry point until
the break point. Previous execution paths and their execution
contexts are discarded and the state they held is not available
for debugging anymore.

This problem also happens with the program state. A
stack trace only provides access to temporary variables in
the stack. Moreover, these values are stored as object refer-
ences, so if the related objects were modified during in the
execution, then the stack trace shows only their last version.
Thus, when using a traditional stack trace, we only have a
view at the moment the execution was suspended, and not as
they were when these execution contexts were captured.

6.2 Idea 1: Storing the History of Executions
In order to have access to more information about the exe-
cution, without having to constantly place new breakpoints
and re-running it, we could store more information as the
execution progresses.

Storing the Result of Expressions Evaluations. A first
way the debugger could provide more information to devel-
opers is to store the results of the evaluation of the expres-
sions (and their sub-expressions) in the execution as it pro-
gresses. These results could then be displayed to developers
to improve the debugging session.

Storing the Entire Execution History. Even more in-
formation about the execution could be stored by using
techniques from the back-in-time debugging field [LD03]
[PTP07][Hof06] [Fie09] [LGN08].

Challenges 1: Temporality of the Stored Objects. A stan-
dard issue with storing objects during an execution is their
”temporality”, as side effects in the following execution may
alter them, hence defeating the point of storing them for later
review. A simple solution would be to copy the objects and
storing the copies instead of the originals, however, this ties
into a second challenge.

Challenge 2: Memory Consumption. A limitation of any
storing solution is the memory limit. The evolution of the
program state and execution path throughout an entire ex-
ecution represents a lot of data. To circumvent this limita-
tion, one can restrict the scope of the information stored (for
example only storing the evolution of the state of a few ob-
jects). Another solution consists in taking advantage of the
deterministic nature of executions and only storing some of
the states of the execution. Then any state of the execution
can be reached by simulating the execution starting from one
of these stored states [ADRC17]. These two solutions high-
light two dimensions of execution information storage tech-
niques: the granularity of the storage i.e., how much of the
execution state do we store, and the frequency of the storage
i.e., at which intervals do we store the state of the execution.

6.3 Idea 2: Navigating the History of Executions
Another important aspect of helping developers to debug by
showing them more information is providing them with tools
allowing them to quickly find the information they need.

Expression Watchpoint. Sometimes developers know the
cause of a bug (for example a collection containing cor-
rupted values is sent as argument to a function, that cannot
process it and raises an exception) but cannot locate the the
point in the execution where this cause appeared (in this ex-
ample, when did the collection become corrupted). To solve
this issue, they could write an expression that would evalu-
ate to true as long as the execution is in a non-bugged state
(in this example, the expression would return whether the
collection is not corrupted) and have the debugger run the
execution and suspend it when the expression evaluates to a
different value.

DSL for Custom Debugger Steps. Mainstream debuggers,
to control executions, offer generic step commands usable in
most circumstances. However, developers working on spe-
cific applications may want to leverage the specificities of
these applications to improve their debugging experience.
For example, if an application processes data via a succes-
sion of operation (a pipeline), developers debugging it reg-
ularly may greatly benefit from their debugger integrating
specific step commands stepping from an operation to the
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next. In this regard, debuggers could include a DSL allow-
ing developers to script new step commands specific to their
applications.

Challenge: Expressiveness. A common point we glossed
over in the previous two paragraphs is how to write the ex-
pressions or custom debugger steps. The objects contained
in these expressions need to be reachable from the context in
which they are evaluated, so these expressions can be eval-
uated either in the scope of execution context (for exam-
ple, having access to temporary variables) or in the global
scope (only having access to global variables). Both solu-
tions have drawbacks. The first one may create unwanted
behaviours if multiple unrelated temporary variables across
multiple methods have the same names, and requires a se-
mantic for when the expression is evaluated in a context
that for example does not contain temporary variables the
expression refers to. The second one requires making rele-
vant objects accessible from the global scope, which poses a
constraint on the source code.

7. Prototypes for New Generations
Debuggers

This section describes the prototypes we developed based on
the ideas we previously exposed in this paper. These proto-
types were developed in the Pharo programming language
[BDN+09], an implementation of the Smalltalk language.

7.1 Advanced Breakpoints
Conditional breakpoints already exist in Pharo. Conditional
breakpoints combine breakpoints with block closures en-
closing a boolean condition. When the execution arrives to
the breakpoint the condition is evaluated. If the block closure
evaluates to true, the breakpoint is activated.

The existing conditional breakpoints can be further com-
bined with contextual information to create contextual break-
points. An example of adding contextual information is to
reify the execution environment to say e.g., whether we are
in the context of a test or not. Figure 1 shows how we could
use such reification to create a conditional breakpoint that
will only trigger while tests are run.

self haltIf: [ CurrentExecutionEnvironment value
isTestEnvironment ].

Figure 1: Breakpoint that only triggers while tests are run.

7.2 Expression Evaluation Recording
We implemented a mechanism to record the results of ex-
pression evaluations inside a given method. This contex-
tual information is useful during debugging because a de-
veloper can quickly see the values of previously evaluated

expressions without having to re-evaluate them. This is par-
ticularly handy when previous expressions depend on side-
effects such as reading or writing to a file.

We implemented this prototype by using the code instru-
mentation features offered by the metalinks library [Den08].
Our instrumentation consists in replacing the AST nodes of
the method with nodes that perform the same computation
but also store the result of it in a dictionary. In addition, re-
turn nodes are altered to set a breakpoint and open an inspec-
tor on the dictionary the results are stored in.

We consider further enhancing our prototype in two main
ways:

More generic handling of the types of nodes. Currently, a
specific replacement node must be written for each dif-
ferent type of AST node (e.g., message-send, variable as-
signment...). For this, we consider using metalinks in a
more general fashion. Instead of replacing nodes, we will
insert after metalinks after the nodes, that will access the
result values and store them (instead of computing the
values themselves).

Improved usability. Our prototype opens an inspector as
soon as a return node of an instrumented method is eval-
uated, immediately stopping the execution. This prevents
the program from executing further than this point which
is a real limitation.

7.3 Transition Watchpoints
We wrote a prototype of Transition Watchpoints, inspired
by the original paper [ADRC17]. Transition watchpoints are
watchpoints that evaluate the value of a given expression in
several points in the execution, to find when such evaluation
transitions from one expected value to a different one. When
the evaluation differs we activate a breakpoint, suspending
the execution and opening the debugger. Well chosen expres-
sions can find the precise line of code breaking an invariant
and introducing a bug.

Our prototype takes as input an expression that can only
reference elements reachable from the global scope (like
global variables). This is to always be able to evaluate the
expression regardless of the precise execution context.

Moreover, we figured out it was not necessary to restrain
ourselves to expressions with boolean value and to the true-
to-false transition as in the original implementation. Our
expression is evaluated before the execution starts and this
initial value is stored and serves as the reference value. The
obvious limitation of not using snapshots as described in the
paper is the potentially very high performance cost if the
expression is complex to evaluate, as it is evaluated after
each execution step.

8. Related Works
Delta-Debugging. Delta-Debugging [Zel05] encompasses
multiple techniques whose common idea is to perform auto-
mated debugging by finding failure-inducing circumstances.
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One of these techniques takes as in put a buggy source code,
and attempt to find the part of it that makes the code buggy,
by selectively removing pieces of it and checking whether
the same bug is present.

Stateful Breakpoints. Stateful Breakpoints [Bod11] are
about building runtime monitors out of normal breakpoints:
a developer defines some normal breakpoints and gives them
a name and an expression (built out of the variables avail-
able in the scope the breakpoint is in). Then he gives a pat-
tern (a regex on the labels given to the breakpoints). The
Eclipse plugin creates a runtime parameterized monitor out
of these information, that triggers when the breakpoints are
encountered in an order that matches the regex AND the ex-
pressions associated to the breakpoints evaluate to the same
value/objects.

Back in Time Debugging. The basic idea behind Back in
Time debugging [LD03] [PTP07][Hof06] [Fie09] [LGN08]
is to store information about an execution to be able to go
back in time in it and analyse it as it was.

Domain Specific Debugger. Domain Specific Debuggers
[CGN14] are about providing debuggers dedicated to partic-
ular user’s needs.

Watchpoints. Watchpoints [LHS99] [ADRC17] [Cor16]
are tools to specify conditions upon which an execution
should be suspended for analyse purposes.
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[CGN14] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. The
Moldable Debugger: A framework for developing
domain-specific debuggers. In Benoit Combemale,
DavidJ. Pearce, Olivier Barais, and JurgenJ. Vinju,
editors, Software Language Engineering, volume
8706 of Lecture Notes in Computer Science, pages
102–121. Springer International Publishing, 2014.

[Cor16] Claudio Corrodi. Towards efficient object-centric de-
bugging with declarative breakpoints. In SATToSE
2016, 2016.

[Den08] Marcus Denker. Sub-method Structural and Behav-
ioral Reflection. PhD thesis, University of Bern, May
2008.
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