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The flow over an open cavity is an example of supercritical Hopf bifurcation leading to

periodic limit cycle oscillations. One of its distinctive features is the existence of strong

higher harmonics, which results in the time-averaged mean flow being strongly linearly

unstable. For this class of flows, a simplified formalism capable of unraveling how exactly

the instability grows and saturates is lacking. This study builds on previous work by

Mantič-Lugo et al. (Phys. Rev. Lett. 113:084501, 2014) to fill in the gap using a parame-

terized approximation of the instantaneous mean flow, coupled in a quasi-static manner

to multiple linear harmonic disturbances interacting nonlinearly with one another and

feeding back on the mean flow via their Reynolds stresses. This provides a self-consistent

modeling of the mean flow/fluctuation interaction, in the sense that all perturbation

structures are those whose Reynolds stresses force the mean flow in a way such that the

mean flow generates exactly the aforementionned perturbations. The first harmonic is

sought as the superposition of two components, a linear component generated by the

instability and aligned along the leading eigenmode of the mean flow, and a nonlinear

orthogonal component generated by the higher harmonics, that progressively distorts
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the linear growth rate and eigenfrequency of the eigenmode. Saturation occurs when the

growth rate of the first harmonic is zero, at which point the stabilizing effect of the second

harmonic balances exactly the linear instability of the eigenmode. The model does not

require any input from numerical or experimental data, and accurately predicts the tran-

sient development and the saturation of the instability, as established from comparison

to time and ensemble-averages of direct numerical simulation data.

1. Introduction

For flows whose unsteadiness proceeds from an intrinsic instability mechanism, lin-

ear and weakly nonlinear stability analysis provide a rigorous mathematical foundation

to explain the initial growth of disturbances of a certain scale and frequency, and the

leading-order nonlinear effects associated to small-amplitude disturbances. The quality of

the prediction however deteriorates rapidly with increasing distance from the instability

threshold, as the perturbative nature of these approaches imposes to build the fluctuation

as successive-order corrections to the leading eigenmode of the base flow (i.e., the steady

state sustaining the instability), whose spatial structure can differ considerably from that

of the nonlinearly saturated oscillation (Dušek, Le Gal & Fraunié 1994; Noack, Afanasiev,

Morzynski, Tadmor & Thiele 2003). As an illustration, the vortex street of shed vortices

that form the wake of a circular cylinder sets in at Reynolds number Re = 47, but the

inaccuracy on the frequency computed by linear stability analysis is already by 30% at

values of Re as low as 80 (Barkley 2006), while that on the weakly nonlinear oscillation

amplitude exceeds 100% (Mantič-Lugo, Arratia & Gallaire 2014).

It is the time-averaged mean flow, not the base flow, that is key in understanding

the growth of disturbances while encompassing the nonlinearity of the system (Maurel,
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Pagneux & Wesfreid 1995; Zielinska, Goujon-Durand, Dušek & Wesfreid 1997; Noack

et al. 2003). A simplified model for the saturation of the cylinder flow has been proposed

recently by Mantič-Lugo et al. (2014) using a so-called self-consistent approach coupling

the mean flow and its leading eigenmode via formation of Reynolds stresses. The authors

show that saturation occurs when the eigenmode has zero linear growth rate, wherein

the model predicts accurately the mean flow, Reynolds stresses, frequency, amplitude and

structure of the fluctuation obtained by direct numerical simulation (DNS). The model

is also relevant to describe the transient development of the instability (Mantič-Lugo,

Arratia & Gallaire 2015), which formalizes the intuitive picture invoked to describe the

growth and saturation of disturbances, dating back to Malkus (1956) and Stuart (1971):

perturbations feed on the unstable base flow and grow first according to the linear theory.

When they reach a size large enough for nonlinearities to set in, they feed back via their

Reynolds stresses, and distort the base flow into an increasingly stable mean flow, up

to the point where the mean flow is linearly marginally stable and perturbations stop

growing and saturate. It also rationalizes the fact that the mean flow eigenfrequency

agrees well with the exact oscillation frequency, as early noticed in cylinder flows and

related bluff-body wakes (Hammond & Redekopp 1997; Pier 2002; Barkley 2006).

The above scenario anticipates a linearly marginally stable mean flow because it re-

duces the consequences of the nonlinearity to mean flow distortions, and neglects another

important mechanism that may alter the predictions of the linear theory: the generation

of harmonics. The model of Mantič-Lugo et al. (2014) relies on the same simplifying as-

sumption. It is thus relevant to the cylinder case, whose mean flow is linearly marginally

stable (Barkley 2006) only because vortex-shedding is almost monochromatic (Dušek

et al. 1994). For flows whose nonlinearity unveils strong higher harmonics, e.g., open cav-

ity flows (Sipp & Lebedev 2007), turbulent wakes (Meliga, Sipp & Chomaz 2009b; Meliga,
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Pujals & Serre 2012; Meliga, Cadot & Serre 2016b), or certain regimes of thermosolu-

tal convection flows (Turton, Tuckerman & Barkley 2015), the mean flow is generally

strongly linearly unstable and a simplified formulation capable of similarly accurately

unraveling the mechanics of saturation is lacking. This research intends to fill in the gap

using augmented self-consistent models coupling the mean flow to multiple harmonic lin-

ear disturbances interacting nonlinearly with one another and feeding back on the mean

flow via formation of Reynolds stresses. Such an approach is applied to the flow over a

square cavity, for which we show that only the second harmonic needs to be retained.

The paper is organized as follows : the configuration is described in § 2, and the

unsteady cavity flow is characterized in § 3 using DNS and classical linear stability anal-

ysis. The second-order self-consistent model is derived in § 4, and its ability to describe

the mechanics of saturation is assessed in § 5 from exhaustive comparison to time and

ensemble-averages of DNS data. Connection with weakly nonlinear analysis is addressed

in § 6, where we also evidence the ability of the method to encompass the effect of

higher-order harmonics, and discuss how to anticipate an appropriate truncation order.

2. Flow configuration

We consider the two-dimensional, incompressible flow over the open square cavity

described in details by Sipp & Lebedev (2007). Suffice it to say here that a uniform

velocity field is imposed at the inlet boundary and that a laminar boundary layer starts

to develop between the inlet and the upstream edge of the cavity, the exact position

being adjustable via an appropriate choice of boundary conditions; see figure 1(a). The

free-stream velocity and cavity length (or height) are used to make all quantities non-

dimensional. We denote by u = (u, v) the velocity field of components u and v in the
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stream-wise x and cross-stream y directions and by p the pressure. The flow is governed

by the Navier–Stokes equations (NSE) written in compact form as

∂tu+N(u) = 0 , (2.1)

where

N(u) = u · ∇u+∇p− Re−1
∇

2
u , (2.2)

is the Navier–Stokes operator, whose dependency on p is omitted to ease the notation.

Because of incompressibility, it is understood that all velocity fields are divergence free,

therefore we will not write this condition explicitly.

All calculations are performed on the same computational domain made of 194, 447

triangles, equipped with the L2 inner product ( · | · ) and related norm || · ||. We perform

direct numerical simulations (DNS) of equations (2.1) with the finite-elements solver pre-

sented in Meliga, Boujo, Pujals & Gallaire (2014). Time integration is achieved using a

second-order accurate Crank–Nicholson scheme with time step ∆t = 10−2. Unless speci-

fied otherwise, all time-averaged quantities (as denoted by · ) are obtained by averaging

on-the-fly over 200 time units after the flow has settled down to a periodic regime, which

represents ∼ 300 cycles depending on the Reynolds number. We also use the Newton

method to compute the base cavity flow ub, i.e., the solution to the steady NSE

N(ub) = 0 , (2.3)

whose stability is analyzed using the Arnoldi method. In the following, we denote by û10b

the leading eigenmode of linear growth rate σ0b and eigenfrequency ω0b, hence solution

to the eigenvalue problem

(σ
0b + iω

0b)û10b + L(ub)û10b = 0 , (2.4)
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Figure 1. (a) Iso-contours of vorticity showing the periodic ejection of vortices from the up-

stream edge of the cavity - Re = 6000. The stream-wise velocity spectrum in figure 3 is measured

at the position (x, y) = (0.7, 0) of the grey symbol, and the boundary layer develops from the

position (x, y) = (−0.4, 0) of the yellow symbol. (b) Oscillation frequency ωnl against Re.

where

L(ub)û = ub · ∇û+ û · ∇ub +∇p̂− Re−1
∇

2
û , (2.5)

is the linearized Navier–Stokes operator (LNS). We also determine the linear stability of

the time-averaged mean flow u, whose leading eigenmode û10m of linear growth rate σ0m

and eigenfrequency ω0m is solution to the eigenvalue problem

(σ0m + iω0m)û10m + L(u)û10m = 0 . (2.6)

3. Direct numerical simulation and eigenmode analysis

Figure 1(a) shows a snapshot of vorticity at Re = 6000. The shear layer rolls-up into

large-scale vortices that ultimately impact the downstream edge of the cavity. A pres-

sure wave forms, travels upstream via the recirculating flow in the cavity, and excites

the shear layer at the upstream edge. This causes new perturbations to grow again into

large-scale vortices via Kelvin-Helmholtz instability. This feedback loop leads to a linear

global instability, and the flow settles on a periodic limit cycle (Åkervik, Ehrenstein,

Gallaire & Henningson 2008; Barbagallo, Sipp & Schmid 2009). The curve of the oscil-

lation frequency against Re shown in figure 1(b) presents a discontinuity at Re = 4400,
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Figure 2. (a) Linear growth rate against Re. The value σ0m (resp. σ0b) obtained by linear

stability analysis of the time-averaged mean flow (resp. of the base flow) is shown by the grey

line (resp. the dash-dotted grey line). (b) Same as (a) for the eigenfrequency ω0. The nonlinear

frequency ωnl extracted from the DNS is shown by the black line.

which is because the base flow undergoes successive Hopf bifurcations at Rec1 = 4114 (in

good agreement with the threshold value 4140 reported by Sipp & Lebedev 2007) and

Rec2 = 4348. Both eigenmodes exchange dominance at Re = 4567, after which the mode

selection follows the ‘largest growth rate’ criterion. This bifurcation sequence is robust

in the sense that, while small changes in the set-up (especially the position at which the

boundary layer starts to develop) yield small variations in the instability thresholds, the

flow oscillations systematically end up being driven by the second eigenmode at suffi-

ciently high Reynolds numbers (not shown here). The focus in the sequel is thus on the

range Re > 4400, with default value set to Re = 6000.

The mean cavity flow fails to comply with the linear marginal stability criterion

of Mantič-Lugo et al. (2014), as evidenced by the large, positive growth rate σ0m = 0.117

of the leading eigenmode at Re = 6000. Figure 2(a) unveils a similar behavior regardless

of the Reynolds number, which is because the nonlinearity generates strong higher har-

monics, as evidenced in figure 3 by the spectrum of the stream-wise velocity measured

in the shear layer at (x, y) = (0.7, 0), almost midway between both edges of the cav-

ity: beyond the peak at the fundamental frequency ωnl = 11.19, we notice a substantial
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Figure 3. Spectrum of the stream-wise shear-layer velocity at (x, y) = (0.7, 0) - Re = 6000.

All results normalized for the fundamental to peak at unity.

second harmonic at 2ωnl, and even third and fourth harmonics (although the peaks at

3ωnl and 4ωnl are of much smaller magnitudes). Interestingly, the eigenfrequency of the

mean flow ω0m = 11.22 does predict well the nonlinear oscillation frequency (unlike that

ω0b = 10.69 of the base flow; see also figure 2(b)), which is a little surprising because,

according to Sipp & Lebedev (2007), the mean flow eigenfrequency is expected to miss on

the exact frequency in the presence of strong higher harmonics. Such an interpretation

however issues from an asymptotic analysis valid only close to the instability threshold,

while linearly unstable mean flows whose eigenfrequency somehow manages to do well

on the frequency prediction have been documented in the context of strongly nonlinear

turbulent wakes (Meliga et al. 2009b, 2012, 2016b). It is part of the objectives of this

research to show that the nonlinearity induced by the higher-order harmonics can help

straighten out this apparent contradiction.

4. Self-consistent model

4.1. Theoretical formalism

The self-consistent theory is meant to describe the development and saturation of the

instability based on a parameterized approximation of the mean flow/fluctuation inter-

action. The first step is to apply Reynolds decomposition and to split the instantaneous
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solution into u = 〈u〉 + u
′, where 〈·〉 denotes the ensemble average, 〈u〉 is the instanta-

neous mean flow, and u
′ is the zero-mean fluctuation. Substituting in the NSE yields

∂t〈u〉+N(〈u〉) = −〈ζ(u′)〉 , (4.1a)

∂tu
′ + L(〈u〉)u′ = −ζ(u′) + 〈ζ(u′)〉 , (4.1b)

where we denote by ζ(u) = u · ∇u the nonlinear advection operator. The second step

is to approximate the fluctuation by a Fourier series expansion. We elaborate further on

this matter in § 6.2, but we settle here for a second-order expansion, as we anticipate

from figure 3 that the effect of the higher-order harmonics will be of a much smaller

magnitude. This yields

u
′(t) = A(t)u1(t)e

iωt + A2(t)u2(t)e
2iωt + c.c. , (4.2)

where ω is the fundamental oscillation frequency, u1 is the structure of the first harmonic,

parameterized by its (real) amplitude A, u2 is the structure of the second harmonic,

coming (with no loss of generality) with amplitude A2, and we allow both the amplitude

and the structure of the harmonics to vary in time to reflect the distortions of the

fluctuation throughout the development of the instability.

As explained in Mantič-Lugo et al. (2015), the premise of the self-consistent theory

is that there exists a separation of scales between the fast time scale on which the flow

oscillates, and the slow time scale on which the oscillations grow in amplitude (similar

to that assumption made in weakly nonlinear analysis to compute the amplitude of the

unstable eigenmode from an amplitude equation). For the cavity flow, the relevance of

this assumption is supported by the results documented in § 5.2, therefore we invoke

a quasi-static approximation to slave the mean flow 〈u〉 and the harmonics u1 and u2

to their forcing by the self-interaction of the fluctuation, as described by the right-hand

sides (RHSs) of system (4.1). In practice, this amounts to assuming at each time instant a
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steady mean flow 〈u〉 and purely oscillating harmonics u1 and u2, for which the ensemble

average is equivalent to a temporal average over a period. Substituting in (4.1) and

neglecting all higher interactions yields

N(〈u〉) = −A2ψ(u1)−A4ψ(u2) , (4.3a)

(σ + iω)u1 + L(〈u〉)u1 = −A2φ(u∗
1,u2) , (4.3b)

2(σ + iω)u2 + L(〈u〉)u2 = −ζ(u1) , (4.3c)

where φ(u,v) = u ·∇v+u ·∇v is the linearized advection operator, ∗ indicates complex

conjugation, and we note ψ(u) = φ(u,u∗). In equation (4.3b), σ is the growth rate of

the first harmonic (assumed to be relative neither to a particular point in space, nor to a

particular component of the solution), and we take the second harmonic to grow at the

same rate 2σ as the source term ζ(u1) in (4.3c), hence

∂t(Au1) = σAu1 , and ∂t(A
2
u2) = 2σA2

u2 . (4.4)

Equation (4.3a) now defines the mean flow as a solution to the steady NSE forced by the

Reynolds stresses of the fluctuation, while equations (4.3b)-(4.3c) conversely define the

harmonics as forced solutions to the NSE linearized about the mean flow, with the RHS

of equation (4.3b) (resp. the RHS of equation (4.3c)) accounting for the self-interaction

of the fluctuation at frequency ω, that feeds back on the first harmonic (resp. the self-

interaction at frequency 2ω, that generates the second harmonic).

System (4.3) does provide a self-consistent description of the mean flow/fluctuation in-

teraction, in the sense that all perturbation structures are those whose Reynolds stresses

force the mean flow in a manner such that the mean flow generates exactly the afore-

mentionned perturbations. However, it cannot be solved as is because both σ and ω are

part of the unknowns. Therefore, we further decompose the first harmonic into

u1 = û10 + u1⊥ , (4.5)
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where û10 is the leading eigenmode of the mean flow, of linear growth rate σ0 and

eigenfrequency ω0, hence solution to the eigenvalue problem

(σ0 + iω0)û10 + L(〈u〉)û10 = 0 , (4.6)

and u1⊥ is the projection on the hyperplane spanned by the remaining eigenmodes. It

is worth insisting that equation (4.6) reflects by no means the time-dependency of the

eigenmode. The model takes both û10 and u1⊥ to have the same growth rate σ and

frequency ω as the first harmonic, as we shall clarify that those precisely differ from the

values σ0 and ω0 obtained by linear stability analysis on behalf of the resonance between

the first harmonic and its nonlinear interaction with the second harmonic. In the follow-

ing, we term u1⊥ the orthogonal component of the first harmonic, which is a small misuse

of language because, owing to the non-normality of the LNS operator (Chomaz 2005),

u1⊥ is orthogonal not to the leading eigenmode, but to the adjoint leading eigenmode of

the mean flow, i.e., the solution û
†
10

to the eigenvalue problem

(σ0 − iω0)û
†
10

+ L
†(〈u〉)û†

10
= 0 , (4.7)

where

L
†(〈u〉)û = −〈u〉 · ∇û+ û · ∇〈u〉T +∇p̂− Re−1

∇
2
û , (4.8)

is the adjoint of the LNS operator. The governing equation for u1⊥ is obtained subtract-

ing (4.6) from (4.3b), hence

(σ0 + iω0)u1⊥ + L(〈u〉)u1⊥ = −A2φ(u∗
1
,u2)− γu1 , (4.9)

where the detuning parameter

γ = γr + iγi = (σ − σ0) + i(ω − ω0) = −A2
(û†

10
|φ(u∗

1,u2))

(û†
10

| û10)
, (4.10)

is made explicit taking the inner product of (4.9) with û
†
10

and integrating by parts.
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We can now recast (4.3) into the alternative, closed system

N(〈u〉) = −A2ψ(û10 + u1⊥)−A4ψ(u2) , (4.11a)

(σ0 + iω0)û10 + L(〈u〉)û10 = 0 , (4.11b)

(σ0 − iω0)û
†
10

+ L
†(〈u〉)û†

10
= 0 , (4.11c)

(σ0 + iω0)u1⊥ + L(〈u〉)u1⊥ = −A2φ(û∗
10

+ u
∗
1⊥,u2)− γ(û10 + u1⊥) , (4.11d)

2(σ0 + iω0 + γ)u2 + L(〈u〉)u2 = −ζ(û10 + u1⊥) , (4.11e)

γ = −A2
(û†

10
|φ(û∗

10
+ u

∗
1⊥,u2))

(û†
10

| û10)
, (4.11f)

for 〈u〉, {û10, σ0, ω0}, u1⊥, u2, û
†
10

and γ. Those are the equations of our second-order self-

consistent model, whose sole free parameter for given Reynolds number is the amplitude

A of the first harmonic (of course, if u2 = 0, then γ and u1⊥ are trivially zero and

the model consistently reduces to the first-order model of Mantič-Lugo et al. 2014). As

further developed in the following, solving the model equations for increasing values of the

amplitude shapes an implicit relationship, e.g., σ0 = σ0(A), ω0 = ω0(A), γ = γ(A), etc.,

that links the obtained family of solutions to the development in time of the instability.

4.2. Numerical resolution

System (4.11) can be solved using a simple nested-loop scheme: assuming relevant guesses

are at hand for all quantities of interest, an outer loop solves iteratively 〈u〉 to a precision

of 10−12 (in L2 norm) with the Newton method, then updates σ0, ω0, û10 and û
†
10

with the

Arnoldi method and normalizes the eigenmodes using ||û10|| = 1 and (û†
10

| û10) = 1. This

is done using the first-order, self-consistent solver presented in Meliga, Boujo & Gallaire

(2016a). An inner loop then solves iteratively u1⊥ and u2, also with the Newton method,

only the inner convergence threshold starts from an O(1) value and decreases down to

10−12 (also in L2 norm) following a geometric-progression series. After the first five to

ten outer passes, this was found to allow converging u1⊥ and u2 to the desired precision
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Figure 4. Mean oscillation amplitude of the leading eigenmode e10 = A||û10||, of the orthogonal

component e1⊥ = A||u1⊥||, of the first harmonic e1 = A||û10 + u1⊥|| and of the second har-

monic e2 = A2||u2||. All amplitudes are measured by the root-mean-square of the corresponding

fluctuating energy, and obtained solving the self-consistent system (4.11) for increasing values

of the amplitude A - Re = 6000.

within one single iteration of the inner Newton and thereby to speed-up considerably

the resolution process. At each inner iteration, γ is updated using the compatibility

condition (4.11f), which is mandatory to ensure that equation (4.11d) admits a solution,

as (σ0 + iω0)I+ L is otherwise non-invertible. The orthogonality between u1⊥ with û
†
10

is ultimately enforced retaining the contribution (û†
10

|u1⊥) û10 − u1⊥ of the obtained

numerical solution (u1⊥ can be obtained in one go by moving the γu1⊥ term in the LHS of

equation (4.11d), as (σ+ iω)I+L is generally invertible, but the computational cost then

soars because a different operator must be inverted at each inner iteration). Provided the

corrections made at each outer iteration are under-relaxed, the present scheme achieves

robust convergence within 40 outer iterations at Re = 4500 (using relaxation factors of

∼ 0.9), up to 400 iterations at Re = 7000 (using relaxation factors of ∼ 0.15). This

dramatic increase in the numerical cost is due to the fact that strong nonlinearities

considerably slow down the convergence rate of iterative methods. Mantič-Lugo et al.

(2015) also report difficulties in solving their first-order model for values of Re beyond

120, while Fornberg (1980) discusses similar issues computing steady solutions to the

NSE at increasingly large Reynolds numbers.
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Figure 5. (a) Linear growth rate σ0 of the leading eigenmode and growth rate σ of the first

harmonic, as obtained solving the self-consistent system (4.11) for increasing values of the am-

plitude A. (b) Same as (a) for the eigenfrequency ω0 of the leading eigenmode and the oscillation

frequency ω of the first harmonic - Re = 6000.

Typical results obtained solving system (4.11) at Re = 6000 for increasing values of

the amplitude are reported in figures 4 and 5. The amplitude of a given component

is conveniently measured by the root-mean-square of its fluctuation energy, e.g., e1 =

√
2A||u1|| for the first harmonic, e2 =

√
2A2||u2|| for the second harmonic, etc. For A = 0,

the mean flow reduces to the unstable base flow ub and the structure of the first harmonic

is given by the eigenmode û10b, whose growth rate σ0b = 0.55 and eigenfrequency ω0b =

10.69 are those predicted by the linear theory. When A increases, the leading eigenmode

and the orthogonal component grow steadily (with e10 > e1⊥; see figure 4), and the

harmonics follow suit (with e1 > e2, i.e., the first harmonic dominates even though e
1
<

e10, which stems from the non-orthogonality of û10 and u1⊥). The growth rates σ0 and

σ concurrently decrease while departing increasingly from each other (with σ < σ0; see

figure 5), meaning that the base flow is progressively distorted into an increasingly stable

mean flow. Meanwhile, ω0 and ω increase but remain close to each other (with ω . ω0).

For A = 2.87 × 10−2, σ is exactly zero and the fluctuation (4.2) is purely harmonic,

just like the zero-mean, saturated fluctuation of the DNS. The underlying mean flow is

strongly linearly unstable with σ0 = 0.124, a value close to that σ0m = 0.117 obtained
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by linear stability analysis of the time-averaged mean flow. The frequency ω = 11.21 of

the first harmonic is very close to that ωnl = 11.19 extracted from the DNS, but so is

the leading eigenfrequency of the mean flow ω0 = 11.23, as further discussed in § 6.1.

The following picture comes out: in the linear regime, the first harmonic is parallel

to the leading eigenmode û10. When nonlinearities set in, the self-interaction of û10

generates a second harmonic u2 whose nonlinear interaction with the eigenmode feeds

back and forces the growth of an orthogonal component u1⊥. The latter distorts û10

into an increasingly modified first harmonic u1, while turning its linear growth rate σ0

and eigenfrequency ω0 into σ and ω. Both u1 and u2 feed back on the mean flow via

their Reynolds stresses, and the growth rate of the first harmonic decreases, up to the

point where it becomes exactly zero. At this stage, the base flow has been distorted into

a strongly linearly unstable mean flow (σ0 > 0), but perturbations stop growing and

saturate because their linear growth is nonlinearly balanced by the stabilizing effect of

the second harmonic. It is thus the distorted growth rate σ = σ0 + γr, not just the

linear growth rate σ0, that is relevant to the mechanics of saturation. The oscillation

frequency is similarly given by the distorted frequency ω = ω0 + γi, meaning that the

eigenfrequency ω0 alone is not expected to be predictive, consistently with the argument

of Sipp & Lebedev (2007).

5. Comparison with DNS results

5.1. Saturated regime

In the saturated regime, the ensemble average is equivalent to the time-average over

a period of the oscillation, therefore the model predictions can be compared to time-

averaged data from a single DNS. The total, self-consistent oscillation amplitude

e =
√

e2
1
+ e2

2
, (5.1)
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Figure 6. Mean oscillation amplitude e in the saturated regime against Re: self-consistent

(blue symbols) vs. DNS (black line).

is shown in figure 6 to be almost identical to its DNS counterpart ||u′||21/2. Similarly,

the linear growth rate σ0 of the leading eigenmode and the oscillation frequency ω fall

onto the values σ0m and ωnl extracted from the time-averaged mean flow; see figure 7.

The self-consistent mean flow 〈u〉 reproduces remarkably well the time-averaged mean

flow u; see figures 8(a)-(b), and the same striking agreement is observed in figures 8(e)-(f)

for the Reynolds stress divergence, calculated either from the model as

A2ψ(û10 + u1⊥) +A4ψ(u2) , (5.2)

or from the DNS as ζ(u′). We also compare in figures 8(e)-(h) the self-consistent approx-

imations of u1 and u2 to those harmonics obtained performing a fast Fourier transform

(FFT) of the instantaneous velocity at each point of the computational grid and retaining

the terms at frequencies ωnl and 2ωnl. For the first harmonic, the agreement is excellent,

both in terms of magnitude and spatial distribution. At first sight, the structure resembles

that of the leading eigenmode, whose self-consistent approximation Aû10 is documented

in figure 8(i). There exist subtle differences, however, as the first harmonic precisely

differs from the eigenmode by the orthogonal component Au1⊥ shown in figure 8(j), oth-

erwise the cavity flow would comply with the linear marginal stability criterion. Locally,

the magnitude of the orthogonal component can reach up to 50% of that of the leading

eigenmode, but its structure is more concentrated in the vicinity of the downstream edge,
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Figure 7. Same as figure 6 for the (a) linear growth rate of the leading eigenmode and (b) the

oscillation frequency. The results obtained by linear stability analysis of the time-averaged mean

flow (resp. of the base flow) are shown by the grey line (resp. the dash-dotted grey line).

hence a ratio e1⊥/e10 ∼ 25% of the mean oscillation amplitudes, consistently with the

results of figure 4. The spatial distribution of the second harmonic is also well predicted,

but we notice a small discrepancy in magnitude, found to be slightly higher using the

model. A possible explanation is that the FFT is performed over a time-span of 100

time units to avoid tremendous computational costs. This can alter the estimation of the

higher Fourier coefficients, which is supported by the fact that the oscillation amplitude

reconstructed from the first six FFT modes is lower by 6% than the value documented

in figure 6, obtained averaging the DNS solution over 200 time units.

5.2. Transient regime

We compare now the self-consistent predictions to nonlinear data extracted from a stack

of DNS, whose initial condition is made up of the base flow ub and its unit-norm, leading

eigenmode û10b with controlled amplitude A0 = 5× 10−6 but arbitrary phase φ0, i.e.,

u(t = 0, φ0) = ub +A0(û10beiφ0 + c.c.) . (5.3)

At each time instant, ensemble-averaged quantities are obtained averaging over 8 values

of φ0 uniformly distributed in [0; 2π[. This suffice to converge meaningful averages since

it has been checked that identical results are obtained using up to 16 values. It is easy
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Figure 8. (a)-(b) Mean vorticity of the saturated cavity flow, as obtained (a) solving the

self-consistent system (4.11) and (b) averaging in time the instantaneous DNS solution. (c)-(d)

Same as (a)-(b) for the x-component of the Reynolds stress divergence. (e)-(f) Same as (a)-(b)

for the first harmonic Au1. (g)-(h) Same as (e)-(f) for the second harmonic A2
u2. The fields

in (f)-(h) have been obtained by fast Fourier transform of the DNS solution and retaining the

terms at frequencies ωnl and 2ωnl. (i)-(j) Vorticity of the self-consistent (i) leading eigenmode

Aû10, and (j) orthogonal component Au1⊥ - Re = 6000. Only the real part of a complex field

is shown.



A second-order self-consistent model of saturation in the open cavity flow 19

t
0 100 200

0

0.02

0.04

DNS

SC

t

e

0 100 200 300
0

0.02

0.04

0.06

DNS

SC

(a) (b)

Figure 9. Transient evolution of the mean oscillation amplitude, as obtained solving the self-

-consistent system (4.11) for various amplitudes and integrating equations (5.4) in time (blue

line) and ensemble averaging the instantaneous DNS solution over the phase of the initial pertur-

bation (black line). The light grey shade marks the transient domain defined as the time-interval

for which the amplitude is less than 99% of its saturated value. The grey dash-dotted line cor-

responds to the linear prediction of exponential growth at rate σ0b. (a) Re = 6000. The yellow

symbol marks the time t = 15.8 for which figure 10 compares the model and exact mean flows.

(b) Re = 5000, together with a close-up on the overshoot region.

to verify that the mean oscillation amplitudes e1 and e2 grow in time at rates σ and 2σ,

respectively. The quasi-static evolution of the self-consistent amplitude is thus determined

marching in time equations

dte1 = σe1 , and dte2 = 2σe2 , (5.4)

from the knowledge of σ(A), e1(A) and e2(A), following which (5.1) is used to recover the

total amplitude. For the results to be comparable, we start from initial condition A(t =

0) =
√
2A0, and proceed with a fourth-order Runge–Kutta scheme, using polynomial

interpolation at each time step to calculate σ from the three closest neighbours.

Figure 9(a), shows that the obtained self-consistent amplitude matches remarkably

well the exact DNS value 〈||u′||2〉1/2, up to t = 20 where the amplitude has reached

99% of its saturation value. This defines the length of the transient, as indicated by the

light grey shade in figure 9(a), and completes proof that the model properly captures the
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Figure 10. (a)-(b) Mean vorticity of the saturated cavity flow, as obtained (a) solving the

self-consistent system (4.11) for A = 2 × 10−2, and (b) ensemble averaging the instantaneous

DNS solution at the corresponding time t = 15.8.

main mechanisms responsible for the transient growth and saturation of the instability.

During the transient, the flow achieves almost 30 flow oscillations (not shown here), which

reasonably advocates the decoupling of scales assumption underlying the derivation of

the model. The nonlinearity becomes apparent midterm, at t ∼ 10, whereupon the self-

consistent and DNS data deviate from the linear prediction of exponential growth at rate

σ0b (grey dash-dotted line). Interestingly, there exist subtle differences in the dynamical

paths taken by both solutions. For instance, we show in figure 10 that the self-consistent

mean flow obtained for the amplitude A = 2 × 10−2 (that differs from the saturated

solution by a lower magnitude of vorticity in the recirculating flow, and a thinner vorticity

sheet close to the downstream edge) resembles a lot the DNS mean flow ensemble averaged

at the corresponding time instant t = 15.8. The model however slightly overestimates

the inner vorticity, which appears mandatory to better approximate the structure of the

oscillation from the first two harmonics only.

Note, for 20 < t < 30, the DNS data exhibits an overshoot that the self-consistent

model fails to reproduce (probably because the quasi-static assumption is somehow

faulted), whereupon the amplitude decreases while slowly oscillating towards its sat-

urated value, reached at t ∼ 200. Such oscillations may reflect the destabilization of
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additional eigenmodes, as the base cavity flow undergoes a third Hopf bifurcation at

Rec3 = 5698, but similar oscillations show up at Re = 5000, albeit with an amplitude so

small that they are barely visible in figure 9(b). Another possibility is that the system

amplifies the energy of the initial condition by non-normal mechanisms (Chomaz 2005;

Schmid 2007), which may cause transient, yet significant mean flow distortions (Pralits,

Bottaro & Cherubini 2015). Either ways, the present model is meant to describe the

growth of the sole bifurcating eigenmode, and is by construction unable to capture the

mode interactions involved in these scenarii.

6. Discussion

6.1. Connection with weakly nonlinear analysis

There are several similarities (and also key differences) between the present approach

and weakly nonlinear analyses meant to figure out the leading-order nonlinear effects

associated to small-amplitude disturbances from the canonical Stuart–Landau amplitude

dtA = λ∆A− (µ0 + µ2)A|A|2 , (6.1)

where A is now the (complex) amplitude of the bifurcating eigenmode, ∆ = Re−1

c −

Re−1 measures the departure from the instability threshold, λ is the (complex) linear

growth rate such that the leading eigenvalue is linearly approximated by iω0b(Rec) +

λ∆, and µ0 (resp. µ2) is the (complex) Landau coefficient determined by the nonlinear

interaction of the eigenmode with the mean flow distortion induced by its Reynolds

stresses (resp. with the second harmonic). All coefficients can be determined numerically

applying multiple time-scale analysis (Sipp & Lebedev 2007; Meliga, Chomaz & Sipp

2009a) at the second threshold of instability threshold Rec2 = 4348 (since we recall that
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the first two eigenmodes to bifurcate exchange dominance at Re = 4567). This yields

λ = 7689 + 4645i, µ0 = 583.0− 129.8i and µ2 = 228.8 + 98.98i.

Weakly nonlinear analysis also invokes a scale separation argument (fast time scale

for the flow oscillations vs. slow time scale for the growth of the oscillation amplitude)

to derive (6.1) from a hierarchy of equations at various orders in a small parameter,

physically representing the order of magnitude of the flow disturbances. However, the

mean oscillation amplitude computed from the (real) limit cycle amplitude

|A| =
√

λr∆

µ0r + µ2r
, (6.2)

departs rapidly from the self-consistent and DNS data for Re & 4600. This is because the

structure of the weakly nonlinear first harmonic is fundamentally flawed far from thresh-

old, as it reduces to the leading eigenmode û10b(Rec) of the marginally stable base flow.

This pans out only if the growth rate of unstable disturbances is small enough (i.e., if

the Reynolds number is close enough from threshold), otherwise the above results stress

the necessity of encompassing the distortion of the leading eigenmode by the orthogo-

nal component, as it is the flow response to this distortion that ultimately selects the

oscillation amplitude and frequency. Another glitch concerns the fact that the Reynolds

stresses of the weakly nonlinear second harmonic are discarded by virtue of their am-

plitude being two orders smaller than those of the leading eigenmode in the asymptotic

expansion. There is no such hierarchy in self-consistent modeling, where the fluctuation

is built as successive-order corrections to the leading eigenmode of the mean flow, and

all effects are encompass rigorously regardless of their orders of magnitude, hence the

ability to support an arbitrary level of supercriticality.

Valuable insights can still be gained from weakly nonlinear analysis. For instance, the

above values of µ0r and µ2r indicate that both the mean flow distortion induced by

the Reynolds stresses of the leading eigenmode and the second harmonic are stabilizing
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Figure 11. (a) Mean oscillation amplitude in the saturated regime against Re: second-order

self-consistent (blue symbols) vs. first-order self-consistent (green symbols) vs. DNS (black line)

vs. weakly nonlinear analysis (grey dashed line). (b) Same as (a) for the oscillation frequency.

The second-order self-consistent results feature both the nonlinear oscillation frequency ω (blue

symbols), and the mean flow eigenfrequency ω0 (smaller orange symbols). The value obtained

by linear stability analysis of the base flow is shown as the grey dash-dotted line.

(µ0r > 0 and µ2r > 0), and it can be inferred that both mechanisms contribute to saturate

the instability since µ2r/µ0r = O(1). This is true also of the present self-consistent results:

in the absence of a second harmonic, the stabilizing effect of the Reynolds stresses is

evidenced by the mean flow becoming increasingly linearly stable when solving the self-

consistent system of Mantič-Lugo et al. (2014) for increasing values of the amplitude

Asc1 (not shown here). As for the stabilizing effect of the second harmonic, it shows in

figure 11(b) through the fact that the amplitude Asc2 obtained with the present model is

systematically smaller than Asc1, just like the amplitude (6.2) is systematically smaller

than that |A0| =
√

λr∆/µ0r obtained retaining only the mean flow distortion.

The weakly nonlinear limit-cycle frequency is given by

ωwnl − ω0b = − µ0i + µ2i

µ0r + µ2r
λr∆ = −µ0i|A0|2

︸ ︷︷ ︸

(i)

−µ0i(|A|2 − |A0|2)
︸ ︷︷ ︸

(ii)

−µ2i|A|2
︸ ︷︷ ︸

(iii)

, (6.3)

where the nonlinear frequency correction in the RHS brings out three contributions: a

first one (i) due to the mean flow distortions induced by the Reynolds stresses of the

leading eigenmode, a second one (ii) due to the second harmonic changing the amplitude
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of the Reynolds stresses from |A0|2 to |A|2, and a third one (iii) due to the nonlinear

interaction between the second harmonic and the leading eigenmode. The above values

of µ0i and µ2i suggest that the mean flow distortion increases the frequency (µ0i < 0),

while the stabilizing effect of the second harmonic tends to decrease it (|A| < |A0|),

and the nonlinear interaction between harmonics yields additional frequency reduction

(µ2i > 0). Quite fortuitously, all three effects balance almost exactly each other because

|µ0i + µ2i|/|µ0r + µ2r| ≪ 1, hence the weakly nonlinear frequency is almost identical to

the leading eigenfrequency of the base flow ω0b, as can be seen comparing the grey dashed

and dash-dotted lines in figure 11(b) (we insist that the nonlinearity itself is significant,

otherwise the weakly nonlinear frequency would fall onto the self-consistent and DNS

data regardless of the value of Re). These interpretations essentially carry over to the

strongly nonlinear regime provided the self-consistent frequency ωsc2 is recast into

ωsc2 − ω
0b = (ω

0sc2 − ω
0sc1) + (ω

0sc1 − ω
0b) + γi , (6.4)

where ω
0sc1 = ωsc1 is the mean flow eigenfrequency predicted by the first-order model

of Mantič-Lugo et al. (2014). The mean flow distorsion induced by the Reynolds stresses

of the leading eigenmode is seen in figure 11(b) to increase the oscillation frequency

(ω0sc1 > ω
0b). The modification of the Reynolds stresses induced by the second harmonic

conversely decreases it (ω
0sc1 > ω

0sc2), which is similar to the interpretation of the

Landau coefficients, although we reiterate that the physics captured by weakly nonlinear

analysis on this is very limited. Finally, the nonlinear interaction of the harmonics with

the leading eigenmode yields additional frequency reduction for Re < 6500 (ωsc2 . ω0sc2)

but conversely an additional frequency increase for Re > 6500 (ωsc2 & ω
0sc2). This is

barely visible in figure 11(b) because of the smallness of the frequency detuning γi,

that explains why the mean flow eigenfrequency ends up doing well on the frequency

prediction. Anyhow, this is likely to be fortuitous, as Turton et al. (2015) report specific
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regimes of thermosolutal convection in which the eigenfrequency is not predictive, which

we infer is because the related value of γi is O(1).

The nonlinearity at play in given flow can be identified from the linear stability prop-

erties of the time-averaged mean flow: a strongly linearly unstable leading eigenmode

or one whose eigenfrequency approximates poorly the nonlinear frequency reflects both

mean flow distortions and generation of higher-order harmonics. The main features of

the related oscillation are best predicted using a multi-oder model to encompass the O(1)

value of the underlying detuning parameter. A leading eigenmode close to marginal linear

stability and whose eigenfrequency approximates well the nonlinear frequency conversely

reflects pure mean flow distortions, in which case relevant predictions can be obtained

with the model of Mantič-Lugo et al. (2014) because the detuning parameter is close to

zero. Both conditions are required, as the present cavity flow serves as a reminder that

the mean flow eigenfrequency can quite fortuitously predicts the nonlinear frequency

(if γi ≪ 1) even though the nonlinearity does not restrict to mean flow distortion (if

γr = O(1)). This generalizes the distinction introduced by Sipp & Lebedev (2007) from

their analysis of the amplitude equation, the weakly nonlinear equivalent of the present

model being an amplitude equation with |µ2|/|µ0| = O(1), while that of the model

of Mantič-Lugo et al. (2014) is an amplitude equation with |µ2|/|µ0| ≪ 1.

6.2. Effect of the truncation order

Caution should be used in generalizing the present results to other cases involving signif-

icant generation of higher harmonics. If the flow is not within the scope of the first-order

model, then we expect a valuable (albeit incomplete) description of the main nonlinear

mechanisms at play to be obtained from a second-order model. Still, it may be necessary

to resort to a higher-order of Fourier expansion of the fluctuation to obtain more accu-

rate, quantitative predictions, which requires to augment the model with linear equations
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Figure 12. (a) Amplitude ej of the first six harmonics, , as obtained by fast Fourier transform

of the DNS solution. (b) Contribution γj of each mode to the detuning parameter, as defined by

equation (6.5) - Re = 6000. All results normalized for the second harmonic to peak at unity.

for the higher harmonics forced by relevant nonlinear terms describing the interactions

of the lower harmonics. In this eventuality, an interesting point to discuss is whether or

not it is possible to anticipate the proper number of harmonics to be retained. Spectra

can be useful to unravel the existence (or the absence) of harmonics, but they are not

very insightful for the intended purpose because they give only a local, partial vision of

the nonlinearity. For instance velocity spectra measured in the recirculating flow unveil

essentially a single peak at the fundamental frequency (not shown here), which merely

reflects the low magnitude of the second harmonic in this specific flow region; see figure 8.

While a more global perspective is achieved resorting to FFT to extract the structure

of the various harmonics (as has been done for the first and second harmonics in § 5.1)

it may not be relevant to rest on the sole oscillation amplitude ej = ||uj ||, as we show

in figure 12(a) that the amplitude of the third (and even the fourth) mode of the cavity

is not necessarily obviously negligible. This is because the nonlinear correction induced

by the higher-order harmonic via the detuning parameter γ depends not only on the

structure of the harmonics, but also on their recombination via the advection operator

(that yields the forcing terms acting at each frequency) and on the orientation of these

forces with respect to the adjoint eigenmode. Assuming that n harmonics are available
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from the FFT, the definition (4.11f) of the detuning parameter generalizes easily to

γ =
n∑

j=2

γj , with γj = −
(û†

10
|φ(u∗

j−1
,uj))

(û†
10

|u1)
, (6.5)

where each individual detuning γj accounts for additional distortions to the linear growth

rate and eigenfrequency of the leading eigenmode induced by the jth harmonic. We have

computed the individual detuning coefficients of the first six FFT modes, using the

leading adjoint eigenmode of the time-averaged mean flow to evaluate numerically all

inner products. The results shown in figure 12(b) clearly stress that only the contribution

γ2 of the second harmonic needs to be retained, with marginal correction of the third

harmonic, and no effect of the higher-order harmonics. This is as close as one can get to

identify a relevant order of truncation without any input from the self-consistent model.

As a proof of feasibility (and also as an attempt to assess the relevance of the above

criterion), we show in figure 13 that all values obtained solving the third-order self-

consistent model are almost identical to those presented hereinabove, hence confirming

that the second-order results come with little to no truncation effect. Of course, the

computational cost increases with the order of the model because an inner loop needs

to be added in the iterative algorithm for the computation of each additional harmonics

(hence three nested loops for the third-order model, and so on). For our case, converging

the third harmonic to the same precision yields an increase in the number of iterations

by roughly 30%. Finding ways to improve the numerical resolution of the self-consistent

equations in the foreseeable future is thus a major stake, as increasing the number of

harmonics may be a much needed step towards extending the scope of the method to

more complex turbulent regimes.
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Figure 13. (a) Mean oscillation amplitude in the saturated regime against Re: second-order

self-consistent (blue symbols) vs. third-order self-consistent (red symbols) vs. DNS (black line).

(b)-(c) Same as (a) for (b) the linear growth rate of the leading eigenmode and (c) the oscil-

lation frequency. The grey line in (b) is the value obtained by linear stability analysis of the

time-averaged mean flow.

6.3. Concluding remarks

The present model provides a consistent picture of the saturation process in unsteady

flows whose nonlinearity involves not only mean flow distortions but also production of

higher harmonics. Saturation occurs when the growth rate of the first harmonic is zero,

at which point the second harmonic balances exactly the non-zero linear growth rate

of the leading eigenmode. This rationalizes the existence of strongly linearly unstable

mean flows, and paves the way for new analysis techniques of such flows, including model

reduction and flow control, just like the model of Mantič-Lugo et al. (2014) did for

systems whose mean flow is linearly marginally stable (Meliga et al. 2016a). It is worth

noticing that the relevance of this type of models, in which perturbation equations are

linearized around a mean flow determined simultaneously from the Reynolds stress of the

perturbations, goes well beyond limit cycles. In particular, we may hope that the method

could be generalized to address extrinsic unsteady dynamics, for which a first step has

been taken by Mantič-Lugo & Gallaire (2016) using their first-order model. Also, several

papers in the recent literature have used similar coupled models retaining the Reynolds
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stresses of transiently unstable linear and weakly nonlinear disturbances to explain the

emergence of coherent structure in otherwise linearly stable, parallel shear flows (Farrell

& Ioannou 2012; Pralits et al. 2015; Beaume, Chini, Julien & Knobloch 2015; Farrell,

Ioannou, Jiménez, Constantinou, Lozano-Durán & Nikolaidis 2016).
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grant (ANR-11-IDEX-0001-02) and the LABEX MEC project (ANR-11-LABX-0092).

REFERENCES

Åkervik, E., Ehrenstein, U., Gallaire, F. & Henningson, D.S. 2008 Global two-

dimensional stability measures of the flat plate boundary-layer flow. Eur. J. Mech. B-Fluid

27 (5), 501–513.

Barbagallo, A., Sipp, D. & Schmid, P.J. 2009 Closed-loop control of an open cavity flow

using reduced-order models. J. Fluid Mech. 641, 1–50.

Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750–756.

Beaume, C., Chini, G.P., Julien, K. & Knobloch, E. 2015 Reduced description of exact

coherent states in parallel shear flows. Phys. Rev. E 91, 1–18.

Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: Non-normality and non-

linearity. Annu. Rev. Fluid Mech. 37, 357–392.

Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first

Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 59–80.

Farrell, B.F. & Ioannou, P.J. 2012 Dynamics of streamwise rolls and streaks in turbulent

wall-bounded shear flow. J. Fluid Mech. 708, 149–196.

Farrell, B.F., Ioannou, P.J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A.

& Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and

mechanism of large-scale motions in plane poiseuille ?ow. J. Fluid Mech. 809, 1–26.

Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid

Mech. 98, 819–855.



30 P. Meliga

Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric

wakes. J. Fluid Mech. 331, 231–260.

Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521–539.

Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description

of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett.

113, 084501.

Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2015 A self-consistent model for the satura-

tion dynamics of the vortex shedding around the mean flow in the unstable cylinder wake.

Phys. Fluids 27, 074103.

Mantič-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism

of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793,

777–797.

Maurel, A., Pagneux, V. & Wesfreid, J.E. 1995 Mean-flow correction as non-linear satu-

ration mechanism. Europhys. Lett. 32, 217–222.

Meliga, P., Boujo, E. & Gallaire, F. 2016a A self-consistent formulation for the sensitivity

analysis of finite amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 800, 327–

357.

Meliga, P., Boujo, E., Pujals, G. & Gallaire, F. 2014 Sensitivity of aerodynamic forces

in laminar and turbulent flow past a square cylinder. Phys. Fluids 26, 104101.

Meliga, P., Cadot, O. & Serre, E. 2016b Experimental and theoretical sensitivity analysis

of turbulent flow past a square cylinder. Flow Turbul. Combust. 97, 987–1015.

Meliga, P., Chomaz, J.-M. & Sipp, D. 2009a Global mode interaction and pattern selection

in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.

Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped

cylinder using global stability. Phys. Fluids 24, 061701.

Meliga, P., Sipp, D. & Chomaz, J.-M. 2009b Elephant modes and low frequency unsteadiness

in a high Reynolds number, transonic afterbody wake. Phys. Fluids 21, 054105.

Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy



A second-order self-consistent model of saturation in the open cavity flow 31

of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech.

497, 335–363.

Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder

wake. J. Fluid Mech. 458, 407–417.

Pralits, J.O., Bottaro, A. & Cherubini, S. 2015 Weakly nonlinear optimal perturbations.

J. Fluid Mech. 785, 135–151.

Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.

Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and

its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.

Stuart, J.T. 1971 Non-linear stability theory. Annu. Rev. Fluid Mech. 3, 347–370.

Turton, S.E., Tuckerman, L.S. & Barkley, D. 2015 Prediction of frequencies in ther-

mosolutal convection from mean flows. Phys. Rev. E 91, 043009.

Zielinska, B.J.A., Goujon-Durand, S., Dušek, J. & Wesfreid, J.E. 1997 Strongly non-

linear effect in unstable wakes. Phys. Rev. Lett. 79, 3893–3896.


