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A MATHEMATICAL MODEL FOR THE WEAK

INTERACTIONS IN A BACKGROUND OF A UNIFORM

MAGNETIC FIELD.I.THE INVERSE β DECAY.

JEAN-CLAUDE GUILLOT

In memory of Raymond Stora

Abstract. In this paper we consider a mathematical model for the in-
verse β decay in a uniform magnetic field. With this model we associate
a Hamiltonian with cutoffs in an appropriate Fock space. No infrared
regularization is assumed. The Hamiltonian is self-adjoint and has a
unique ground state. We study the essential spectrum and determine
the spectrum. The coupling constant is supposed sufficiently small.
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1. Introduction.

A supernova is initiated by the collapse of a stellar core which leads to the
formation of a protoneutron star which may be formed with strong magnetic
fields typically of order 1016 Gauss. It turns out that the protoneutron
star leads to the formation of a neutron star in a very short time during
which almost all the gravitational binding energy of the protoneutron star
is emmitted in neutrinos and antineutrinos of each type. Neutron stars have
strong magnetic fields of order 1012 Gauss. Thus neutrinos interactions are
of great importance because of their capacity to serve as mediators for the
transport and loss of energy and the following processes, the so-called ”Urca”
ones or inverse β decays in Physics,

(1.1) νe + n⇋ e− + p

(1.2) νe + p⇋ e+ + n

play an essential role in those phenomena and they are associated with the
β decay

(1.3) n→ p+ e+ + νe

Here e−( resp. e+) is an electron ( resp. a positron ). p is a proton and n
a neutron. νe and νe are the neutrino and the antineutrino associated with
the electron.

See [10], [11], [14], [17] and references therein.
We only consider here high-energy neutrinos and antineutrinos which are

indeed ultrarelativistic particles whose mass is zero or in anyway negligible.
Due to the large magnetic field strengths involved, it is quite fundamental

to study the processes (1.1) and (1.2) in the presence of magnetic fields.
These realistic fields may be very complicated in their structure but we

assume these fields to be locally uniform which is a very good hypothesis
because the range of the weak interactions is very short. Our aim is to study
the processes (1.1) and (1.2) in a background of a uniform magnetic field.

Throughout this work we restrict ourselves to the study of processes (1.1),
the study of processes (1.2) and (1.3) would be quite similar.

The advantage of a uniform magnetic field is that, in presence of this field,
Dirac equation can be exactly solved. We can then quantize the correspond-
ing field by using the canonical formalism and use the Fermi’s Hamiltonian
for the β decay in order to study the processes (1.1).

Throughout this paper we choose the units such that c = ~ = 1.
In this paper we consider a mathematical model for the process (1.1)

in a uniform magnetic field based on a Fock space for electrons, protons,
neutrons and neutrinos and on a Hamiltonian with cutoffs suggested by the
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Fermi’s Hamiltonian for the β decay. The Fock space will also involve the
antiparticles of the electrons and of the protons . No infrared regularization
is assumed. We neglect the anomalous magnetic moments of the particles.
Due to the cutoffs the relativistic invariance is broken.

We study the essential spectrum of the Hamiltonian and we prove the
existence of a unique ground state . The spectrum of the Hamiltonian is
identical to its essential spectrum. Every result is obtained for a sufficiently
small coupling constant.We adapt to our case the proofs given in [4] and [7].

In an another paper we shall study the scattering theory and the abso-
lutely continuous spectrum of the Hamiltonian.

The paper is organized as follows. In the next two sections we quantize
the Dirac fields for electrons, protons and their antiparticles in a uniform
magnetic field. In the third section we quantize the Dirac fields for free
neutrons, neutrinos and their antiparticles in helicity formalism. The self-
adjoint Hamiltonian of the model is defined in the fourth section. We then
study the essential spectrum and prove the existence of a unique ground
state.

2. The quantization of the Dirac fields for the electrons and

the protons in a uniform magnetic field.

In this paper we assume that the uniform classical background magnetic
field in R

3 is along the x3-direction of the coordinate axis. There are several
choices of gauge vector potential giving rise to a magnetic field of magnitude
B > 0 along the x3-direction. In this paper we choose the following vector
potential A(x) = (Aµ(x), µ = 0, 1, 2, 3, where

(2.1) A0(x) = A2(x) = A3(x) = 0, A1(x) = −x2B

Here x = (x1, x2, x3) in R
3.

We recall that we neglect the anomalous magnetic moments of the parti-
cles of spin 1

2 .

The Dirac equation for a particle of spin 1
2 with mass m > 0 and charge

e in a uniform magnetic field of magnitude B > 0 along the x3-direction
with the choice of the gauge (2.1) and by neglecting its anomalous magnetic
moment is given by

(2.2) HD(e) = α · (1
i
∇− eA) + βm,

acting in the Hilbert space L2(R3,C4).
The scalar product in L2(R3,C4) is given by

(f, g) =
4∑

j=1

∫

R3

f(x)g(x)d3x

We refer to [27] for a discussion of the Dirac operator.
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Here α = (α1, α2, α3), β are the Dirac matrices in the standard form:

β =

(
I 0
0 −I

)
, αi =

(
0 σi
σi 0

)
, i = 1, 2, 3,

where σi are the usual Pauli matrices.
By [27, thm 4.3] HD(e) is essentially self-adjoint on C∞

0 (R3,C4). The
spectrum of HD(e) is equal to

(2.3) spec(HD(e)) = (−∞,−m] ∪ [m,∞]

The spectrum of HD(e) is absolutely continuous and its multiplicity is not
uniform. There is a countable set of thresholds, denoted by S, where

(2.4) S =
(
− sn, sn;n ∈ N

)

with sn =
√
m2 + 2n|e|B. See [19].

We consider a spectral representation of HD(e) based on a complete set
of generalized eigenfunctions of the continuous spectrum of HD(e). Those
generalized eigenfunctions are well known. See [22]. In view of (2.1) we use
the computation of the generalized eigenfunctions given by [21] and [9]. See
also [17] and references therein.

Let (p1, p3) be the conjugate variables of (x1, x3). By the Fourier trans-
form in R

2 we easily get

(2.5) L2(R3,C4) ≃
∫ ⊕

R2

L2(R,C4)dp1dp3.

and

(2.6) HD(e) ≃
∫ ⊕

R2

HD(e; p
1, p3)dp1dp3.

where

HD(e; p
1, p3) =

(
mσ0, σ1(p

1 − ex2B)− iσ2
d

dx2 + p3σ3
σ1(p

1 − ex2B)− iσ2
d

dx2 + p3σ3, −mσ0

)
(2.7)

Here σ0 is the 2× 2 unit matrix.
HD(e; p

1, p3) is the reduced Dirac operator associated to (e; p1, p3).
HD(e; p

1, p3) is essentially self-adjoint on C∞
0 (R,C4) and has a pure point

spectrum which is symmetrical with respect to the origin.
Set

(2.8) En(p
3)2 = m2 + (p3)2 + 2n|e|B, n ≥ 0

The positive spectrum of HD(e; p
1, p3) is the set of eigenvalues(

En(p
3)
)
n≥0

and the negative spectrum is the set of eigenvalues(
− En(p

3)
)
n≥0

. E0(p
3) and −E0(p

3) are simple eigenvalues and the multi-

plicity of En(p
3) and −En(p

3) is equal to 2 for n ≥ 1.
Through out this work e will be the positive unit of charge taken to be

equal to the proton charge.
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We now give the eigenfunctions of HD(e; p
1, p3) both for the electrons and

for the protons. The eigenfunctions are labelled by n ∈ N, (p1, p2) ∈ R
2 and

s = ±1. n ∈ N labels the nth Landau level. s = ±1 are the eigenvalues of
σ3. The electrons and the protons in all Landau levels with n ≥ 1 can have
different spin polarizations s = ±1. However in the lowest Landau state
n = 0 the electrons can only have the spin orientation given by s = −1 and
the protons can only have the spin orientation given by s = 1.

2.1. Eigenfunctions of the reduced Dirac operator for the electrons.

We now compute the eigenfunctions of HD(−e; p1, p3) withm = me where
me is the mass of the electron.

E
(e)
n (p3) and −E(e)

n (p3) will denote the eigenvalues of HD(−e; p1, p3) for

the electrons. We have E
(e)
n (p3)2 = m2

e + (p3)2 + 2neB, n ≥ 0.

2.1.1. Eigenfunctions of the electrons for positive eigenvalues.

For n ≥ 1 E
(e)
n (p3) is of multiplicity two corresponding to s = ±1 and

E
(e)
0 (p3) is multiplicity one corresponding to s = −1.

Let U
(e)
±1 (x

2, n, p1, p3) denote the eigenfunctions associated to s = ±1.
For s = 1 and n ≥ 1 we have

(2.9) U
(e)
+1 (x

2, n, p1, p3) =

(
E

(e)
n (p3) +me

2E
(e)
n (p3)

) 1
2




In−1(ξ)
0

p3

E
(e)
n (p3)+me

In−1(ξ)

−
√
2neB

E
(e)
n (p3)+me

In(ξ)




where

ξ =
√
eB(x2 − p1

eB
)

In(ξ) =

( √
eB

n!2n
√
π

) 1
2

exp(−ξ2/2)Hn(ξ).

(2.10)

Here Hn(ξ) is the Hermite polynomial of order n and we define

(2.11) I−1(ξ) = 0

For n = 0 and s = 1 we set

U
(e)
+1 (x

2, 0, p1, p3) = 0

For s = −1 and n ≥ 0 we have

(2.12) U
(e)
−1 (x

2, n, p1, p3) =

(
E

(e)
n (p3) +me

2E
(e)
n (p3)

) 1
2




0
In(ξ)

−
√
2neB

E
(e)
n (p3)+me

In−1(ξ)

− p3

E
(e)
n (p3)+me

In(ξ)
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Note that

(2.13)

∫
dx2U (e)

s (x2, n, p1, p3)†U (e)
s′ (x2, n, p1, p3) = δss′

where † is the adjoint in C
4.

2.1.2. Eigenfunctions of the electrons for negative eigenvalues.

For n ≥ 1 −E(e)
n (p3) is of multiplicity two corresponding to s = ±1 and

−E(e)
0 (p3) is multiplicity one corresponding to s = −1.

Let V
(e)
±1 (x

2, n, p1, p3) denote the eigenfunctions associated with the eigen-

value −E(ap)
n (p3) and with s = ±1.

For s = 1 and n ≥ 1 we have

(2.14) V
(e)
+1 (x

2, n, p1, p3) =

(
E

(e)
n (p3) +me

2E
(e)
n (p3)

) 1
2




− p3

E
(e)
n (p3)+me

In−1(ξ)
√
2neB

E
(e)
n (p3)+me

In(ξ)

In−1(ξ)
0




and for n = 0 we set

V
(e)
+1 (x

2, 0, p1, p3) = 0

For s = −1 and n ≥ 0 we have

(2.15) V
(e)
−1 (x

2, n, p1, p3) =

(
E

(e)
n (p3) +me

2E
(e)
n (p3)

) 1
2




√
2neB

E
(e)
n (p3)+me

In−1(ξ)

p3

E
(e)
n (p3)+me

In(ξ)

0
In(ξ)




Note that

(2.16)

∫
dx2V (e)

s (x2, n, p1, p3)†V (e)
s′ (x2, n, p1, p3) = δss′

where † is the adjoint in C
4.

The sets
(
U

(e)
±1 (., n, p

1, p3)
)
(n,p1,p3)

and
(
V

(e)
±1 (., n, p

1, p3)
)
(n,p1,p3)

of vectors in

L2(R,C4) are a orthonormal basis of L2(R,C4).
This yields for Ψ(x) in L2(R3,C4)

Ψ(x) =
1

2π

∑

s=±1

L.i.m

(
∑

n≥0

∫

R2

dp1dp3e(p
1x1+p3x3)

(
c(e)s (n, p1, p3)U (e)

s (x2, n, p1, p3) + d(e)s (n, p1, p3)V (e)
s (x2, n, p1, p3)

))
.

(2.17)
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where c
(e)
+1(0, p

1, p3) = d
(e)
+1(0, p

1, p3) = 0

Let Ψ̂(x2; p1, p3) be the Fourier transform of Ψ(.) with respect to x1 and
x3:

Ψ̂(x2; p1, p3) = L.i.m
1

2π

∫

R2

e−(p1x1+p3x3)Ψ(x1, x2, x3)dx1dx3

We have

c(e)s (n, p1, p3) =

∫

R

U (e)
s (x2, n, p1, p3)†Ψ̂(x2; p1, p3)dx2

d(e)s (n, p1, p3) =

∫

R

V (e)
s (x2, n, p1, p3)†Ψ̂(x2; p1, p3)dx2.

(2.18)

The complex coefficients c
(e)
s (n, p1, p3) and d

(e)
s (n, p1, p3) satisfy

‖Ψ(.)‖2L2(R3,C4) =

∑

s=±1

∑

n≥0

∫ (
|c(e)s (n, p1, p3)|2 + |d(e)s (n, p1, p3)|2

)
dp1dp3 <∞.

(2.19)

2.2. Eigenfunctions of the reduced Dirac operator for the protons.

We now compute the eigenfunctions of HD(e; p
1, p3) with m = mp.

E
(p)
n (p3) and −E(p)

n (p3) denote the eigenvalues of HD(e; p
1, p3) for the

proton. We have E
(p)
n (p3)2 = m2

p + (p3)2 + 2neB, n ≥ 0.

2.2.1. Eigenfunctions of the proton for positive eigenvalues.

For n ≥ 1 E
(p)
n (p3) is of multiplicity two corresponding to s = ±1 and

E
(p)
0 (p3) is multiplicity one corresponding to s = 1.

Let U
(p)
±1 (x

2, n, p1, p3) denote the eigenfunctions associated with the eigen-

value E
(p)
n (p3) and with s = ±1.

For s = 1 and n ≥ 0 we have

(2.20) U
(p)
+1 (x

2, n, p1, p3) =

(
E

(p)
n (p3) +mp

2E
(p)
n (p3)

)1
2




In(ξ̃)
0

p3

E
(p)
n (p3)+mp

In(ξ̃)
√
2neB

E
(p)
n (p3)+mp

In−1(ξ̃)




where

ξ̃ =
√
eB(x2 +

p1

eB
)

I−1(ξ̃) = 0.

(2.21)

For s = −1 and n ≥ 1 we have
7



(2.22) U
(p)
−1 (x

2, n, p1, p3) =

(
E

(p)
n (p3) +mp

2E
(p)
n (p3)

) 1
2




0

In−1(ξ̃)√
2neB

E
(p)
n (p3)+mp

In(ξ̃)

− p3

E
(p)
n (p3)+mp

In−1(ξ̃)




For n = 0 and s = −1 we set

U
(p)
−1 (x

2, 0, p1, p3) = 0.

Note that ∫
dx2U (p)

s (x2, n, p1, p3)†U (p)
s′ (x2, n, p1, p3) = δss′

where † is the adjoint in C
4.

2.2.2. Eigenfunctions of the proton for negative eigenvalues.

For n ≥ 1 −E(p)
n (p3) is of multiplicity two corresponding to s = ±1 and

−E(p)
0 (p3) is multiplicity one corresponding to s = 1.

Let V
(p)
±1 (x

2, n, p1, p3) denote the eigenfunctions associated with the eigen-

value −E(p)
n (p3) and with s = ±1.

For s = 1 and n ≥ 0 we have

(2.23) V
(p)
+1 (x

2, n, p1, p3) =

(
E

(p)
n (p3) +mp

2E
(p)
n (p3)

) 1
2




− p3

E
(p)
n (p3)+mp

In−1(ξ̃)

−
√
2neB

E
(p)
n (p3)+mp

In−1(ξ̃)

In(ξ̃)
0




For s = −1 and n ≥ 1 we have

(2.24) V
(p)
−1 (x

2, n, p1, p3) =

(
E

(p)
n (p3) +mp

2E
(p)
n (p3)

) 1
2




−
√
2neB

E
(p)
n (p3)+mp

In(ξ̃)

p3

E
(p)
n (p3)+mp

In−1(ξ̃)

0

In−1(ξ̃)




and for n = 0 and s = −1 we set

V
(p)
−1 (x

2, 0, p1, p3) = 0

Note that

(2.25)

∫
dx2V (p)

s (x2, n, p1, p3)†V (p)
s′ (x2, n, p1, p3) = δss′

where † is the adjoint in C
4.
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The sets
(
U

(p)
±1 (., n, p

1, p3)
)
(n,p1,p3)

and
(
V

(p)
±1 (., n, p

1, p3)
)
(n,p1,p3)

of vectors

in L2(R,C4) are a orthonormal basis of L2(R,C4).
This yields for Ψ(x) in L2(R3,C4)

Ψ(x) =
1

2π

∑

s=±1

L.i.m

(
∑

n≥0

∫

R2

dp1dp3e(p
1x1+p3x3)

(
c(p)s (n, p1, p3)U (p)

s (x2, n, p1, p3) + d(p)s (n, p1, p3)V (p)
s (x2, n, p1, p3)

))
.

(2.26)

where c
(p)
−1(0, p

1, p3) = d
(p)
−1(0, p

1, p3) = 0

The complex coefficients c
(p)
s (n, p1, p3) and d

(p)
s (n, p1, p3) satisfy

‖Ψ(.)‖2L2(R3,C4) =

∑

s=±1

∑

n≥0

∫ (
(|c(p)s (n, p1, p3)|2 + |d(p)s (n, p1, p3)|2)dp1dp3

)
<∞.

(2.27)

We have

c(p)s (n, p1, p3) =

∫

R

U (p)
s (x2, n, p1, p3)†Ψ̂(x2; p1, p3)dx2

d(p)s (n, p1, p3) =

∫

R

V (p)
s (x2, n, p1, p3)†Ψ̂(x2; p1, p3)dx2.

(2.28)

2.2.3. Eigenfunctions of the positron for positive eigenvalues.
The generalized eigenfunctions for the positron, denoted by

U
(−e)
±1 (x2, n, p1, p3), are obtained from U

(p)
±1 (x

2, n, p1, p3) by substituting the
mass of the electron me for mp. The associated eigenvalues are denoted by

E
−e)
n (p3) with E

(−e)
n (p3)2 = m2

e + (p3)2 + 2neB, n ≥ 0.

2.2.4. Eigenfunctions of the positron for negative eigenvalues.
The generalized eigenfunctions for the positron,associated with the eigen-

values −E(−e)
n (p3) and denoted by V

(−e)
±1 (x2, n, p1, p3), are obtained from

V
(p)
±1 (x

2, n, p1, p3) by substituting the mass of the electron me for mp.

2.2.5. Eigenfunctions of the antiproton for positive eigenvalues.
The generalized eigenfunctions for the antiproton, denoted by

U
(−p)
±1 (x2, n, p1, p3), are obtained from U

(e)
±1 (x

2, n, p1, p3) by substituting the
mass of the proton mp for me. The associated eigenvalues are denoted by

E
−p)
n (p3) with E

(−p)
n (p3)2 = m2

p + (p3)2 + 2neB, n ≥ 0.
9



2.2.6. Eigenfunctions of the antiproton for negative eigenvalues.
The generalized eigenfunctions for the antiproton,associated with the eigen-

values −E(−p)
n (p3) and denoted by V

(−p)
±1 (x2, n, p1, p3), are obtained from

V
(e)
±1 (x

2, n, p1, p3) by substituting the mass of the proton mp for me.

2.3. Fock spaces for electrons, positrons, protons and antiprotons

in a uniform magnetic field.

It follows from section 2.1 and 2.2 that (s, n, p1, p3) are quantum variables
for the electrons, the positrons, the protons and the antiprotons in a uniform
magnetic field.

Let ξ1 = (s, n, p1e, p
3
e) be the quantum variables of a electron and of a

positron and let ξ2 = (s, n, p1p, p
3
p) be the quantum variables of a proton and

of an antiproton.
We set Γ1 = {−1, 1} × N × R

2 for the configuration space for both the
electrons, the positrons, the protons and the antiprotons. L2(Γ1) is the
Hilbert space associated to each species of fermions.

We have,by (2.17), (2.18), (2.19), (2.26), (2.27) and (2.28),

(2.29) L2(Γ1) = l2(L2(R2))⊕ l2(L2(R2)

Let F(e) and F(−e) denote the Fock spaces for the electrons and the
positrons respectively and let F(p) and F(−p) denote the Fock spaces for
the protons and the antiprotons respectively.

We have

(2.30) F(e) = F(−e) = F(p) = F(−p) =

∞⊕

n=0

n⊗

a

L2(Γ1)

⊗n
a L

2(Γ1) is the antisymmetric n-th tensor power of L2(Γ1).
Ω(α) = (1, 0, 0, 0, ...) is the vacuum state in F(α) for α = e,−e, p,−p.
We shall use the notations∫

Γ1

dξ1 =
∑

s=±1

∑

n≥0

∫

R2

dp1edp
3
e

∫

Γ1

dξ2 =
∑

s=±1

∑

n≥0

∫

R2

dp1pdp
3
p.

(2.31)

Set ǫ = ±.
bǫ(ξj) (resp.b

∗
ǫ(ξj)) are the annihilation (resp.creation)operators for the elec-

tron when j = 1 and for the proton when j = 2 if ǫ = +.
bǫ(ξj) (resp.b∗ǫ(ξj)) are the annihilation (resp.creation)operators for the

positron when j = 1 and for the antiproton when j = 2 if ǫ = −.
The operators bǫ(ξj) and b

∗
ǫ (ξj) fulfil the usual anticommutation relations

(CAR)(see [28]).
In addition, following the convention described in [28, Section 4.1] and

[28, Section 4.2], we assume that the fermionic creation and annihilation
10



operators of different species of particles anticommute ( see [6] arXiv for
explicit definitions). In our case this property will be verified by the creation
and annihilation operators for the electrons, the protons, the neutrons, the
neutrinos and their respective antiparticles.

Therefore the following anticommutation relations hold for j = 1, 2

{bǫ(ξj), b∗ǫ′(ξ′j)} = δǫǫ′δ(ξj − ξ′j) ,

{b♯ǫ(ξ1), b♯ǫ′(ξ2)} = 0.
(2.32)

where {b, b′} = bb′ + b′b and b♯ = b or b∗.
Recall that for ϕ ∈ L2(Γ1), the operators

bj,ǫ(ϕ) =

∫

Γ1

bǫ(ξj)ϕ(ξj)dξj.

b∗j,ǫ(ϕ) =
∫

Γ1

b∗ǫ(ξj)ϕ(ξj)dξj.
(2.33)

are bounded operators on F(e) and F(−e) for j = 1 and on F(p) and F(−p) for
j = 2 respectively satisfying

(2.34) ‖b♯j,ǫ(ϕ)‖ = ‖ϕ‖L2 ,

2.4. Quantized Dirac fields for the electrons and the protons in a

uniform magnetic field.

We now consider the canonical quantization of the two classical fields
(2.17) and (2.26).

Recall that the charge conjugation operator C is given, for every Ψ(x),
by

(2.35) C




Ψ1(x)
Ψ2(x)
Ψ3(x)
Ψ4(x)


 =




−Ψ∗
4(x)

Ψ∗
3(x)

Ψ∗
2(x)

−Ψ∗
1(x)




Here ∗ is the complex conjugation.
Let Ψ(.) be locally in the domain of HD(e). We have

(2.36) HD(−e)CΨ = ECΨ if HD(e)Ψ = −EΨ

By (2.35) and (2.36) we obtain
(
CV

(e)
+1

)
(x2, n, p1, p3) = U

(−e)
−1 (x2, n,−p1,−p3) for n ≥ 1.

(
CV

(e)
−1

)
(x2, n, p1, p3) = −U (−e)

+1 (x2, n,−p1,−p3) for n ≥ 0.
(
CV

(p)
+1

)
(x2, n, p1, p3) = U

(−p)
−1 (x2, n,−p1,−p3) for n ≥ 0.

(
CV

(p)
−1

)
(x2, n, p1, p3) = −U (−p)

+1 (x2, n,−p1,−p3) for n ≥ 1.

(2.37)

11



By (2.37) we set

U (e)(x2, ξ1) = U (e)
s (x2, n, p1e, p

3
e) for ξ1 = (s, n, p1e, p

3
e), n ≥ 0.

W (e)(x2, ξ1) = V
(e)
−1 (x

2, n,−p1e,−p3e) for ξ1 = (1, n, p1e, p
3
e), n ≥ 0.

W (e)(x2, ξ1) = V
(e)
+1 (x

2, n,−p1e,−p3e) for ξ1 = (−1, n, p1e, p
3
e), n ≥ 1.

W (e)(x2, ξ1) = 0 for ξ1 = (−1, 0, p1e , p
3
e).

(2.38)

By using (2.37) and (2.38) the symmetric of charge canonical quantization
of the classical field (2.17) gives the following formal operator associated with
the electron and denoted by Ψ(e)(x):

Ψ(e)(x) =
1

2π

∫
dξ1

(
ei(p

1
ex

1+p3ex
3)U (e)(x2, ξ1)b+(ξ1)

+ e−i(p1ex
1+p3ex

3)W (e)(x2, ξ1)b
∗
−(ξ1)

)
.

(2.39)

For a rigourous approach of the quantization see [13].
We further note that

(2.40) {Ψ(e)(x),Ψ(e)(x
′)†} = δ(x,x′)

See [9].
By (2.37) we now set

U (p)(x2, ξ2) = U (p)
s (x2, n, p1p, p

3
p)for ξ2 = (s, n,−p1p,−p3p), n ≥ 0.

W (p)(x2, ξ2) = V
(p)
+1 (x

2, n,−p1p,−p3p)for ξ2 = (−1, n, p1p, p
3
p), n ≥ 0.

W (p)(x2, ξ2) = V
(p)
−1 (x

2, n,−p1p,−p3p)for ξ2 = (1, n, p1p, p
3
p), n ≥ 1.

W (p)(x2, ξ2) = 0 when ξ2 = (1, 0, p1p, p
3
p).

(2.41)

By using (2.37) and (2.41) the symmetric of charge canonical quantization
of the classical field (2.26) gives the following formal operator associated to
the proton and denoted by Ψ(p)(x):

Ψ(p)(x) =
1

2π

∫
dξ2

(
ei(p

1
px

1+p3px
3)U (p)(x2, ξ2)b+(ξ2)

+ e−i(p1px
1+p3px

3)W (p)(x2, ξ2)b
∗
−(ξ2)

)
.

(2.42)

We further note that

(2.43) {Ψ(p)(x),Ψ(p)(x
′)†} = δ(x − x′)

See [9].
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3. The quantization of the Dirac fields for the neutrons and

the neutrinos in helicity formalism.

As stated in the introduction we neglect the magnetic moment of the
neutrons. Therefore neutrons and neutrinos are purely neutral particles
without any electromagnetic interaction. We suppose that the neutrinos
and antineutrinos are massless as in the Standard Model.

The quantized Dirac fields for free massive and massless particles of spin1
2

are well-known.
In this work we use the helicity formalism, for free particles. See, for

example,[27],[23] and [18].
The helicity formalism for particles is associated with a spectral rep-

resentation of the set of commuting self adjoint operators (P,H3). P =
(P1,P2,P3) are the generators of space-translations and H3 is the helicity

operator 1
2
P.Σ
|P| where |P| =

(√∑3
i=1(P

i)2
)
and Σ = (Σ1,Σ2,Σ3) with for

j = 1, 2, 3

(3.1) Σj =

(
σj 0
0 σj

)

3.1. The quantization of the Dirac field for the neutron in helicity

formalism.

The Dirac equation for the neutron of mass mn is given by

(3.2) HD = α · 1
i
∇+ βmn,

acting in the Hilbert space L2(R3,C4).
It follows from the Fourier transform that

L2(R3,C4) ≃
∫ ⊕

R3

C
4d3p.

HD ≃
∫ ⊕

R3

HD(p)d
3p.

(3.3)

where

(3.4) HD(p) =

(
mnσ0, σ.p
σ.p, −mnσ0

)

Here σ0 is the 2 × 2 unit matrix, σ = (σ1, σ2, σ3) and p = (p1, p2, p3) with

σ.p =
∑3

j=1 σjp
j .

HD(p) has two eigenvalues E
(n)(p) and−E(n)(p) whereE(n)(p) =

√
|p)|2 +m2

n.
The helicity, denoted by H3(p), is given by

(3.5) H3(p) =
1

2

(
σ.p
|p| 0

0 σ.p
|p|

)

13



H3(p) commutes with HD(p) and has two eigenvalues 1
2 and −1

2 .

Set (see [27, Appendix.1.F.] and [23])for |p| 6= p3

(3.6) h+(p) =
1√

2|p|(|p| − p3)

(
p1 − ip2

|p| − p3

)

and

(3.7) h−(p) =
1√

2|p|(|p| − p3)

(
p3 − |p|
p1 + ip2

)

For |p| = p3 we set

h+(p) =

(
1
0

)

and

h−(p) =

(
0
1

)

We have (σ.p)h±(p) = ±|p|h±(p).
Let

(3.8) a±(p) =
1√
2

(
1± mn

E(n)(p)

) 1
2

The two eigenfunctions of the eigenvalue E(n)(p) associated with helicities
1
2 and −1

2 are denoted by U (n)(p,±1
2 ) and are given by

(3.9) U (n)(p,±1

2
) =

(
a+(p)h±(p)
±a−(p)h±(p)

)

We now turn to the eigenfunctions for the eigenvalue −E(n)(p).

The two eigenfunctions associated with the eigenvalue −E(n)(p) and with

helicities 1
2 and −1

2 are denoted by V (n)(p,±1
2 ) and are given by

(3.10) V (n)(p,±1

2
) =

(
∓a−(p)h±(p)
a+(p)h±(p)

)

The four vectors U (n)(p,±1
2 ) and V (n)(p,±1

2 ) are an orthonormal basis

of C4 .
U (n)(p,±1

2 )e
i(p.x) and V (n)(p,±1

2 )e
i(p.x) is a complete set of generalized

eigenfunctions of (3.2) with positive and negative eigenvalues ±E(n)(p).
This yields for Ψ(x) in L2(R3,C4)

Ψ(x) =(
1

2π
)
3
2

∑

λ=± 1
2

L.i.m.

(∫

R3

d3pei(p.x)

(
U (n)(p, λ)a(p, λ) + V (n)(p, λ)c(p, λ)

))
.

(3.11)

with
14



‖Ψ(.)‖2L2(R3,C4) =

∑

λ=± 1
2

∫

R3

d3p
(
|a(p, λ)|2 + |c(p, λ)|2

)
<∞.(3.12)

3.1.1. Fock space for the neutrons. We recall that the neutron is not
its own antiparticle.

Let ξ3 = (p, λ) be the quantum variables of a neutron and an antineutron
where p ∈ R

3 is the momentum and λ ∈ {−1
2 ,

1
2} is the helicity. We set Γ2 =

R
3×{−1

2 ,
1
2} for the configuration space of the neutron and the antineutron.

Let F(n) and F(n̄) denote the Fock spaces for the neutrons and the an-
tineutrons respectively.

We have

(3.13) F(n) = F(n̄) =
∞⊕

n=0

n⊗

a

L2(Γ2)

⊗n
a L

2(Γ2) is the antisymmetric n-th tensor power of L2(Γ2).
Ω(β) = (1, 0, 0, 0, ...) is the vacuum state in F(β) for β = n, n̄.
In the sequel we shall use the notations

(3.14)

∫

Γ2

dξ3 =
∑

λ=± 1
2

∫

R3

d3p

bǫ(ξ3) (resp.b
∗
ǫ(ξ3)) is the annihilation (resp.creation)operator for the neu-

tron if ǫ = + and for the antineutron if ǫ = − .
The operators bǫ(ξ3) and b

∗
ǫ (ξ3) fulfil the usual anticommutation relations

(CAR) and they anticommute with b♯ǫ(ξj) for j = 1, 2 according to the con-
vention described in [28, Section 4.1]. See [6] arXiv for explicit definitions.

Therefore the following anticommutation relations hold for j = 1, 2

{bǫ(ξ3), b∗ǫ′(ξ′3)} = δǫǫ′δ(ξ3 − ξ′3) ,

{b♯ǫ(ξ3), b♯ǫ′(ξj)} = 0.
(3.15)

Recall that for ϕ ∈ L2(Γ2), the operators

b3,ǫ(ϕ) =

∫

Γ2

bǫ(ξ3)ϕ(ξ3)dξ3.

b∗3,ǫ(ϕ) =
∫

Γ2

b∗ǫ(ξ3)ϕ(ξ3)dξ3.
(3.16)

are bounded operators on F(n) and F(n̄) satisfying

(3.17) ‖b♯3,ǫ(ϕ)‖ = ‖ϕ‖L2 .
15



3.1.2. Quantized Dirac Field for the neutron in helicity formalism.

By (2.35) we get

C
(
V (n)(p,

1

2
)
)
=
(
− p1 + ip2

|p1 + ip2|
)
U (n)(−p,

1

2
)

C
(
V (n)(p,−1

2
)
)
=
(
− p1 − ip2

|p1 + ip2|
)
U (n)(−p,−1

2
)

(3.18)

Setting

U (n)(ξ3) = U (n)(p, λ)

W (n)(ξ3) = V (n)(−p, λ).
(3.19)

and applying the canonical quantization we obtain the following quantized
Dirac field for the neutron:
(3.20)

Ψ(n)(x) =
( 1

2π

) 3
2

∫
dξ3

(
ei(p.x)U (n)(ξ3)b+(ξ3) + e−i(p.x)W (n)(ξ3)b

∗
−(ξ3)

)
.

3.2. The quantization of the Dirac field for the neutrino.

Throughout this work we suppose that the neutrinos we consider are those
associated with the electrons.

The Dirac equation for the neutrino is given by

(3.21) HD = α · 1
i
∇,

acting in the Hilbert space L2(R3,C4).
By (3.3) it follows from the Fourier transform that

(3.22) HD ≃
∫ ⊕

R3

HD(p)d
3p.

where

(3.23) HD(p) =

(
0, σ.p
σ.p, 0

)

HD(p) has two eigenvalues E(ν)(p) and −E(ν)(p) where E(ν)(p) = |p|.
The helicity given by

1

2
γ5 =

1

2

(
0 I
I 0

)

commutes with HD(p) and has two eigenvalues 1
2 and −1

2 .

The two eigenfunctions of the eigenvalue E(ν)(p) associated with helici-

ties 1
2 and −1

2 are denoted by U (ν)(p,±1
2 ). The two eigenfunctions of the
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eigenvalue −E(ν)(p) associated with helicities 1
2 and −1

2 are denoted by

V (ν)(p,±1
2 ). They are given by

(3.24)

U (ν)(p,±1
2 ) =

1√
2

(
h±(p)
±h±(p)

)

V (ν)(p,±1
2) =

1√
2

(
∓h±(p)
h±(p)

)

The four vectors U (ν)(p,±1
2 ) and V (ν)(p,±1

2 ) are an orthonormal basis

in C
4 .

Turning now to the theory of neutrinos and antineutrinos (see [16])a neu-
trino has a helicity equal to −1

2 and a antineutrino a helicity equal to 1
2 .

Neutrinos are left-handed and antineutrinos are right-handed. U (ν)(p,−1
2 )

is the eigenfunction of a neutrino with a momentum p and an energy |p|.
CV (ν)(−p, 12) is the eigenfunction of an antineutrino with a momentum p

and an energy |p|.
Thus the classical field, denoted by Φ(x) and associated with the neutrino

and the antineutrino, is given by

Φ(x) =(
1

2π
)
3
2L.i.m.

(∫

R3

d3p

(
ei(p.x)U (ν)(p,−1

2
)a(p,−1

2
) + e−i(p.x)V (ν)(−p,

1

2
)c(p,

1

2
)
))
.

(3.25)

with

‖Φ(.)‖2L2(R3,C4) =

∫

R3

d3p
(
|a(p,−1

2
)|2 + |c(p, 1

2
)|2
)
<∞.

3.2.1. Fock space for the neutrinos and the antineutrinos.

Let ξ4 = (p,−1
2 ) be the quantum variables of a neutrino where p ∈ R

3

is the momentum and −1
2 is the helicity. In the case of the antineutrino we

set ξ̃4 = (p, 12) where p ∈ R
3 and 1

2 is the helicity.

L2(R3) is the Hilbert space of the states of the neutrinos and of the
antineutrinos.

Let F(ν) and F(ν) denote the Fock spaces for the neutrinos and the an-
tineutrinos respectively.

We have

(3.26) F(ν) = F(ν) =
∞⊕

n=0

n⊗

a

L2(R3)

⊗n
a L

2(R3) is the antisymmetric n-th tensor power of L2(R3).
Ω(δ) = (1, 0, 0, 0, ...) is the vacuum state in F(δ) for δ = ν, ν.
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In the sequel we shall use the notations
∫

R3

dξ4 =

∫

R3

d3p

∫

R3

dξ̃4 =

∫

R3

d3p

(3.27)

b+(ξ4) (resp.b∗+(ξ4)) is the annihilation (resp.creation)operator for the

neutrino and b−(ξ̃4) (resp.b∗−(ξ̃4)) is the annihilation (resp.creation)operator
for the antineutrino .

The operators b+(ξ4) , b
∗
+(ξ4), b−(ξ̃4) and b

∗
−(ξ̃4) fulfil the usual anticom-

mutation relations (CAR) and they anticommute with b♯ǫ(ξj) for j = 1, 2, 3
according the convention described in [28, Section 4.1].See [6] arXiv for ex-
plicit definitions.

Therefore the following anticommutation relations hold for j = 1, 2, 3

{b+(ξ4), b∗+(ξ′4)} = δ(ξ4 − ξ′4) ,

{b−(ξ̃4), b∗−(ξ̃′4)} = δ(ξ̃4 − ξ̃′4) ,

{b♯+(ξ4), b♯−(ξ̃′4)} = 0 ,

{b♯+(ξ4), b♯ǫ(ξj)} = {b♯−(ξ̃4), b♯ǫ(ξj)} = 0.

(3.28)

Recall that for ϕ ∈ L2(R3), the operators

b4,+(ϕ) =

∫

R3

b+(ξ4)ϕ(ξ4)dξ4.

b4,−(ϕ) =
∫

R3

b−(ξ̃4)ϕ(ξ̃4)dξ̃4.

b∗4,+(ϕ) =
∫

R3

b∗+(ξ4)ϕ(ξ4)dξ4.

b∗4,−(ϕ) =
∫

R3

b∗+(ξ̃4)ϕ(ξ̃4)dξ̃4.

(3.29)

are bounded operators on F(ν) and F(ν) respectively satisfying

(3.30) ‖b♯4,ǫ(ϕ)‖ = ‖ϕ‖L2 .

where ǫ = ±.

3.2.2. Quantized Dirac Field for the neutrino.
ei(p.x)U (ν)(pν ,−1

2) and e
i(p.x)V (ν)(p, 12) are generalized eigenfunctions of

(3.21) with positive and negative eigenvalues ±E(ν)(p) respectively.
By (2.35) we get

C
(
V (ν)(p,

1

2
)
)
=
(
− p1 + ip2

|p1 + ip2|
)
U (ν)(−p,

1

2
)(3.31)

18



Setting

U (ν)(p,−1

2
) = U (ν)(ξ4)

V (ν)(−p,
1

2
) =W (ν)(ξ̃4).

(3.32)

and applying the canonical quantization we obtain the following quantized
Dirac field for the neutrino:

Ψ(ν)(x) =(
1

2π
)
3
2

(∫
dξ4e

i(p.x)U (ν)(ξ4)b+(ξ4)

+

∫
dξ̃4e

−i(p.x)W (ν)(ξ̃4)b
∗
−(ξ̃4)

)
.

(3.33)

4. The Hamiltonian of the Model.

The processes (1.1) and (1.2) are associated with the β decay of the
neutron (see [14],[16],[17] and [29]).

The β decay process can be described by the well known four-fermion
effective Hamiltonian for the interaction in the Schrdinger representation:

Hint =

G̃√
2

∫
d3x
(
Ψ(p)(x)γ

α(1− gAγ5)Ψ(n)(x)
)(
Ψ(e)(x)γα(1− γ5)Ψ(ν)(x)

)

+
G̃√
2

∫
d3x
(
Ψ(ν)(x)γα(1− γ5)Ψ(e)(x)

)(
Ψ(n)(x)γ

α(1− gAγ5)Ψ(p)(x)
)

(4.1)

Here γα, α = 0, 1, 2, 3 and γ5 are the Dirac matrices in the standard repre-
sentation. Ψ(.)(x) and Ψ(.)(x) are the quantized Dirac fields for p, n, e and

ν. Ψ(.)(x) = Ψ(.)(x)
†γ0. G̃ = GF cos θc, where GF is the Fermi coupling

constant with GF ≃ 1.16639(2) × 10−5GeV −2 and θc is the Cabbibo angle
with cos θc ≃ 0.9751. Moreover gA ≃ 1.27. See [8].

The neutrino ν is the neutrino associated to the electron and usually
denoted by νe in Physics.

From now on we restrict ourselves to the study of processes (1.1).
We recall that me < mp < mp .

4.1. The free Hamiltonian.
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We set

F(e) = F(e) ⊗ F(−e).

F(p) = F(p) ⊗ F(−p).

F(n) = F(n)

F(ν) = F(ν).

F = F(e) ⊗ F(p) ⊗ F(n) ⊗ F(ν).

(4.2)

We set

ω(ξ1) = E(e)
n (p3) for ξ1 = (s, n, p1, p3)

ω(ξ2) = E(p)
n (p3) for ξ2 = (s, n, p1, p3)

ω(ξ3) =
√

|p|2 +m2
n for ξ3 = (p, λ)

ω(ξ4) = |p| for ξ4 = (p,−1

2
).

(4.3)

Let H
(e)
D

(
resp.H

(p)
D ,H

(n)
D and H

(ν)
D

)
be the Dirac Hamiltonian for the

electron
(
resp.the proton, the neutron and the neutrino

)
.

The quantization of H
(e)
D , denoted by H

(e)
0,D and acting on F(e), is given by

(4.4) H
(e)
0,D =

∑

ǫ=±

∫
ω(ξ1)b

∗
ǫ (ξ1)bǫ(ξ1)dξ1

Likewise the quantization of H
(p)
D ,H

(n)
D and H

(ν)
D , denoted by H

(p)
0,D, H

(n)
0,D

and H
(ν)
0,D respectively,acting on F(p), F(n) and F(ν) respectively, is given by

H
(p)
0,D =

∑

ǫ=±

∫
ω(ξ2)b

∗
ǫ (ξ2)bǫ(ξ2)dξ2

H
(n)
0,D =

∫
ω(ξ3)b

∗
+(ξ3)b+(ξ3)dξ3

H
(ν)
0,D =

∫
ω(ξ4)b

∗
+(ξ4)b+(ξ4)dξ4.

(4.5)

For each Fock space F(.), let D(.) denote the set of vectors Φ ∈ F(.) for
which each component Φ(r) is smooth and has a compact support and Φ(r) =

0 for all but finitely many (r). Then H
(.)
0,D is well-defined on the dense subset

D(.) and it is essentially self-adjoint on D(.) . The self-adjoint extension will

be denoted by the same symbol H
(.)
0,D with domain D(H

(.)
0,D)).

The spectrum of H
(e)
0,D ∈ F(e) is given by

(4.6) spec(H
(e)
0,D) = {0} ∪ [me,∞)
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{0} is a simple eigenvalue whose the associated eigenvector is the vacuum

in F(e) denoted by Ω(e). [me,∞) is the absolutely continuous spectrum of

H
(e)
0,D.

Likewise the spectra of H
(p)
0,D,H

(n)
0,D and H

(ν)
0,D are given by

spec(H
(p)
0,D) = {0} ∪ [mp,∞)

spec(H
(n)
0,D) = {0} ∪ [mn,∞)

spec(H
(ν)
0,D) = [0,∞).

(4.7)

Ω(p), Ω(n) and Ω(ν) are the associated vacua in F(p), F(n) and F(ν) respectively

and are the associated eigenvectors of H
(p)
0,D,H

(ne)
0,D and H

(ν)
0,D respectively for

the eigenvalue {0}.
The vacuum in F, denoted by Ω, is then given by

(4.8) Ω = Ω(e) ⊗ Ω(p) ⊗ Ω(n) ⊗ Ω(ν)

The free Hamiltonian for the model,denoted by H0 and acting on F, is
now given by

H0 = H
(e)
0,D ⊗ 1⊗ 1⊗ 1+ 1⊗H

(p)
0,D ⊗ 1⊗ 1

+ 1⊗ 1⊗H
(n)
0,D ⊗ 1+ 1⊗ 1⊗ 1⊗H

(ν)
0,D.

(4.9)

H0 is essentially self-adjoint on D = D(e)⊗̂D(p)⊗̂D(n)⊗̂D(ν).
Here ⊗̂ is the algebraic tensor product.
spec(H0) = [0,∞) and Ω is the eigenvector associated with the simple

eigenvalue {0} of H0.

Let S(e) be the set of the thresholds of H
(e)
0,D:

S(e) =
(
s(e)n ;n ∈ N

)

with s
(e)
n =

√
m2

e + 2neB.

Likewise let S(p) be the set of the thresholds of H
(p)
0,D:

S(p) =
(
s(p)n ;n ∈ N

)

with s
(p)
n =

√
m2

p + 2neB.

Let S(n) be the set of the thresholds of H
(n)
0,D:

S(n) =
(
nmn; n ∈ N, such thatn ≥ 1

)

Then

(4.10) S = S(e) ∪ S(p) ∪ S(n)

is the set of the thresholds of H0.
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4.2. The Interaction.

By (4.1) let us now write down the formal interaction,denoted by VI ,
involving the protons, the neutrons, the electrons and the neutrinos together
with antiparticles in the Schrödinger representation for the process (1.1). We
have

(4.11) VI = V
(1)
I + V

(2)
I + V

(3)
I + V

(2)
I

Set

q = pe + pp

r = pn + pν .
(4.12)

After the integration with respect to
(
x1, x3

)
VI is given by

V
(1)
I =

∫
dx2

∫
dξ1dξ2dξ3dξ4 e

ix2r2

(
U (p)(x2, ξ2)γ

α(1− gAγ5)U
(n)(ξ3)

)(
U (e)(x2, ξ1)γα(1− γ5)U

(ν)(ξ4)
)

δ(q1 − r1)δ(q3 − r3)b∗+(ξ1)b
∗
+(ξ2)b+(ξ3)b+(ξ4).

(4.13)

V
(2)
I =

∫
dx2

∫
dξ1dξ2dξ3dξ4 e

−ix2r2

(
U (ν)(ξ4)γα(1− γ5)U

(e)(x2, ξ1)
)(
U (n)(ξ3)γ

α(1− gAγ5)U
(p)(x2, ξ2)

)

δ(q1 − r1)δ(q3 − r3)b∗+(ξ4)b
∗
+(ξ3)b+(ξ2)b+(ξ1).

(4.14)

V
(3)
I =

∫
dx2

∫
dξ1dξ2dξ3dξ4 e

−ix2r2

(
U (ν)(ξ4)γα(1− γ5)W

(e)(x2, ξ1)
)(
U (n)(ξ3)γ

α(1− gAγ5)W
(p)(x2, ξ2)

)

δ(q1 + r1)δ(q3 + r3)b∗+(ξ4)b
∗
+(ξ3)b

∗
−(ξ2)b

∗
−(ξ1).

(4.15)

V
(4)
I =

∫
dx2

∫
dξ1dξ2dξ3dξ4 e

ix2r2

(
W (p)(x2, ξ2)γ

α(1− gAγ5)U
(n)(ξ3)

)(
W (e)(x2, ξ1)γα(1− γ5)U

(ν)(ξ2)
)

δ(q1 + r1)δ(q3 + r3)b+(ξ4)b+(ξ3)b−(ξ2)b−(ξ1).

(4.16)

V
(3)
I and V

(4)
I are responsible for the fact that the bare vacuum will not

be an eigenvector of the total Hamiltonian as expected in Physics.
VI is formally symmetric.
In the Fock space F the interaction VI is a highly singular operator due to

the δ-distributions that occur in the (V
(.)
I )′s and because of the ultraviolet

behaviour of the functions U (.) and W (.) .
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In order to get well defined operators in F we have to substitute smoother
kernels F (β)(ξ2, ξ3), G

(β)(ξ1, ξ4), where β = 1, 2, both for the δ-distributions
and the ultraviolet cutoffs .

We then obtain a new operator denoted by HI and defined as follows in
the Schrödinger representation.

(4.17) HI = H
(1)
I +H

(2)
I +H

(3)
I +H

(4)
I

with

H
(1)
I =

∫
dξ1dξ2dξ3dξ4

( ∫
dx2eix

2r2

(
U (p)(x2, ξ2)γ

α(1− gAγ5)U
(n)(ξ3)

)(
U (e)(x2, ξ1)γα(1− γ5)U

(ν)(ξ4)
))

F (1)(ξ2, ξ3)G
(1)(ξ1, ξ4)b

∗
+(ξ1)b

∗
+(ξ2)b+(ξ3)b+(ξ4).

(4.18)

H
(2)
I =

∫
dξ1dξ2dξ3dξ4

( ∫
dx2e−ix2r2

(
U (ν)(ξ4)γα(1− γ5)U

(e)(x2, ξ1)
)(
U (n)(ξ3)γ

α(1− gAγ5)U
(p)(x2, ξ2)

))

F (1)(ξ2, ξ3)G(1)(ξ1, ξ4)b
∗
+(ξ4)b

∗
+(ξ3)b+(ξ2)b+(ξ1).

(4.19)

H
(3)
I =

∫
dξ1dξ2dξ3dξ4

(∫
dx2e−ix2r2

(
U (ν)(ξ4)γα(1− γ5)W

(e)(x2, ξ1)
)(
U (n)(ξ3)γ

α(1− gAγ5)W
(p)(x2, ξ2)

))

F (2)(ξ2, ξ3)G
(2)(ξ1, ξ4)b

∗
+(ξ4)b

∗
+(ξ3)b

∗
−(ξ2)b

∗
−(ξ1).

(4.20)

H
(4)
I =

∫
dξ1dξ2dξ3dξ4

(∫
dx2eix

2r2

(
W (p)(x2, ξ2)γ

α(1− gAγ5)U
(n)(ξ3)

)(
W (e)(x2, ξ1)γα(1− γ5)U

(ν)(ξ4)
))

F (2)(ξ2, ξ3)G(2)(ξ1, ξ4)b+(ξ4)b+(ξ3)b−(ξ2)b−(ξ1).

(4.21)

Definition 4.1. The total Hamiltonian is

(4.22) H = H0 + gHI

where g is a non-negative coupling constant.

The assumption that g is non-negative is made for simplicity but all the
results below hold for g ∈ R with |g| small enough.
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We now give the hypothesis that the kernels F β(., .), G(β)(., .), β = 1, 2,
and the coupling constant g have to satisfy in order to associate with the
formal operator H a well defined self-adjoint operator in F.

Throughout this work we assume the following hypothesis

Hypothesis 4.2. For β = 1, 2 we assume

F (β)(ξ2, ξ3) ∈ L2(Γ1 × Γ2)

G(β)(ξ1, ξ4) ∈ L2(Γ1 × R
3)

(4.23)

Let 〈., .〉C4 be the scalar product in C
4. We have

U (p)(x2, ξ2)γ
α(1− gAγ5)U

(n)(ξ3) = 〈U (p)(x2, ξ2), γ
0γα(1− gAγ5)U

(n)(ξ3)〉C4

U (e)(x2, ξ1)γα(1− γ5)U
(ν)(ξ4) = 〈U (e)(x2, ξ1), γ

0γα(1− γ5)U
(ν)(ξ4)〉C4

U (ν)(ξ4)γα(1− γ5)W
(e)(x2, ξ1) = 〈U (ν)(ξ4), γ

0γα(1− γ5)W
(e)(x2, ξ1)〉C4

U (n)(ξ3)γ
α(1− gAγ5)W

(p)(x2, ξ2) = 〈U (n)(ξ3), γ
0γα(1− gAγ5)W

(p)(x2, ξ2)〉C4 .

(4.24)

Set

(4.25) C0 =
1

2
(
1

me
+

1

mn
)
(
‖γα(1− gAγ5)‖

)(
‖γα(1− γ5)‖

)

We then have

Proposition 4.3. For every Φ ∈ D(H0) we obtain

‖H(j)
I Φ‖ ≤ C0‖F (1)(., .)‖L2‖G(1)(., .)‖L2‖ (H0 +mn)Φ‖

for j=1,2.

‖H(j)
I Φ‖ ≤ C0‖F (2)(., .)‖L2‖G(2)(., .)‖L2‖ (H0 +mn)Φ‖

for j=3,4.

(4.26)

By (4.23),(4.24) and (4.25) the estimates (4.26) are examples of Nτ es-
timates(see [15]).The proof is similar to the one of [5, Proposition 3.7] and
details are omitted.

Let g0 > 0 be such that

(4.27) 2g0C0

( 2∑

β=1

‖F (β)(., .)‖L2‖G(β)(., .)‖L2‖
)
< 1

We now have

Theorem 4.4. For any g such that g ≤ g0, H is a self-adjoint operator in
F with domain D(H) = D(H0) and is bounded from below. H is essentially
self-adjoint on any core of H0. Setting

E = inf σ(H)

we have for every g ≤ g0

σ(H) = σess(H) = [E,∞)
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with E ≤ 0 .

Here σ(H) is the spectrum of H and σess(H) is the essential spectrum of
H.

Proof. By Proposition 4.2 and (4.27) the proof of the self-adjointness of H
follows from the Kato-Rellich theorem.

We turn now to the essential spectrum. The result about the essential
spectrum in the case of models involving bosons has been obtained by [12,
theorem 4.1] and [2]. In the case of models involving fermions the result
has been obtained by [26]. In our case involving only massive fermions and
massless neutrinos we use the proof given by [26].

Thus we have to construct a Weyl sequence for H and E + λ with λ > 0.
Let T be the self-adjoint multiplication operator in L2(R3) defined by

Tu(p4) = |p4|u(p4). T is the spectral representation of H
(ν)
D for the neutri-

nos of helicity −1
2 in the configuration space L2(R3). See (3.27).

Every λ > 0 belongs to the essential spectrum of T . Then there exists a
Weyl sequence (fn)n≥1 for T and λ > 0 such that

fn ∈ D(T ) for n ≥ 1.

‖fn‖ = 1 for n ≥ 1.

w − lim
n→∞

fn = 0.

lim
n→∞

(T − λ)fn = 0.

(4.28)

Let

fn(ξ4) = fn(p4)

b+,4(fn) =

∫
b+(ξ4)fn(ξ4)dξ4

b∗+,4(fn) =

∫
b∗+(ξ4)fn(ξ4)dξ4.

(4.29)

In the following we identify b♯+,4(fn) with its obvious extension to F.

An easy computation shows that, for every Ψ ∈ D(H),

[
H

(1)
I , b∗+,4(fn)

]
Ψ =

∫
dξ1dξ2dξ3

(∫
dx2e−ix2r2

(
U (p)(x2, ξ2)γα(1− gAγ5)U

(ne)(ξ3)
)
F (1)(ξ2, ξ3)

)

〈
U (e)(x2, ξ1), γ

0γα(1− γ5)
( ∫

fn(ξ4)G
(1)(ξ1, ξ4)U

(νe)(ξ4)dξ4
)〉

C4

)

b∗+(ξ1)b
∗
+(ξ2)b+(ξ3)Ψ.

(4.30)
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(4.31)
[
H

(1)
I , b+,4(fn)

]
Ψ = 0

[
H

(2)
I , b+,4(fn)

]
Ψ =

−
∫

dξ1dξ2dξ3

(∫
dx2e−ix2r2

(
U (ne)(ξ3)γ

α(1− gAγ5)U
(p)(x2, ξ2)

)
F (1)(ξ2, ξ3)

)

〈∫
fn(ξ4)G

(1)(ξ1, ξ4)U
(ν)(ξ4)dξ4, γ

0γα(1− γ5)U
(e)(x2, ξ1)

〉

C4

)

b∗+(ξ3)b+(ξ2)b+(ξ1)Ψ.

(4.32)

(4.33)
[
H

(2)
I , b∗+,4(fn)

]
Ψ = 0

[
H

(3)
I , b+,4(fn)

]
Ψ =

−
∫

dξ1dξ2dξ3

(∫
dx2e−ix2r2

(
U (ne)(ξ3)γ

α(1− gAγ5)W
(p)(x2, ξ2)

)
F (2)(ξ2, ξ3)

〈∫
fn(ξ4)G(2)(ξ1, ξ4)U

(ν)(ξ4)dξ4, γ0γα(1− γ5)W
(e)(x2, ξ1)

〉

C4

)

b∗+(ξ3)b
∗
−(ξ2)b

∗
−(ξ1)Ψ.

(4.34)

(4.35)
[
H

(3)
I , b∗+,4(fn)

]
Ψ = 0

[
H

(4)
I , b∗+,4(fn)

]
Ψ =

∫
dξ1dξ2dξ3

(∫
dx2e−ix2r2

(
W (p)(x2, ξ2)γα(1− gAγ5)U

(ne)(ξ3)
)
F (2)(ξ2, ξ3)

〈
W (e)(x2, ξ1), γ

0γα(1− γ5)
( ∫

fn(ξ4)G(2)(ξ1, ξ4)U
(ν)(ξ4)dξ4

)〉

C4

)

b+(ξ3)b−(ξ2)b−(ξ1)Ψ.

(4.36)

(4.37)
[
H

(4)
I , b+,4(fn)

]
Ψ = 0

Let PH(.) be the spectral measure of H. For any ǫ > 0 the orthogonal
projection PH([E,E + ǫ)) is different from zero because E belongs to σ(H).

Let Φǫ ∈ Ran(PH([E,E + ǫ)) such that ‖Φǫ‖ = 1. We set
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(4.38) Ψn,ǫ = (b+,4(fn) + b∗+,4(fn))Φǫ, n ≥ 1

Let us chow that there exists a subsequence of
(
Ψn,ǫ)n≥1,ǫ>o which is a

Weyl sequence for H and E + λ with λ > 0.
By Hypothesis 4.1,(4.30),(4.32),(4.34),(4.36) and the Nτ estimates we get

sup
(∥∥∥
[
H

(1)
I , b∗+,4(fn)

]
Ψ
∥∥∥ ,
∥∥∥
[
H

(2)
I , b+,4(fn)

]
Ψ
∥∥∥
)

≤ C0‖F (1)(., .)‖L2(Γ1×Γ2)

(∫ ∥∥∥∥
∫
fn(ξ4)G

(1)(ξ1, ξ4)U
(ν)(ξ4)dξ4

∥∥∥∥
2

C4

dξ1

) 1
2

‖ (H0 +mp)
1
2 Ψ‖.

sup
(∥∥∥
[
H

(3)
I , b+,4(fn)

]
Ψ
∥∥∥ ,
∥∥∥
[
H

(4)
I , b∗+,4(fn)

]
Ψ
∥∥∥
)

≤ C0‖F (2)(., .)‖L2(Γ1×Γ2)

(∫ ∥∥∥∥
∫
fn(ξ4)G(2)(ξ1, ξ4)U

(ν)(ξ4)dξ4

∥∥∥∥
2

C4

dξ1

) 1
2

‖ (H0 +mp)
1
2 Ψ‖.

(4.39)

Note that

(4.40) ‖Ψn,ǫ‖ = 1, n ≥ 1

We have for every Ψ ∈ D(H)

(
HΨ,Ψn,ǫ

)
=

(
Ψ, (b+,4(fn) + b∗+,4(fn))HΦǫ +

(
b∗+,4(Tfn)− (b+,4(Tfn)

)
Φǫ

+ g[HI , (b+,4(fn) + b∗+,4(fn))]Ψǫ

))
.

(4.41)

See [12].
This yields

HΨn,ǫ =(
(b+,4(fn) + b∗+,4(fn))HΦǫ +

(
b∗+,4(Tfn)− (b+,4(Tfn)

)
Φǫ

+ g[HI , (b+,4(fn) + b∗+,4(fn))]Ψǫ

)
.

(4.42)

and
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(H − E − λ)Ψn,ǫ =

(b+,4(fn) + b∗+,4(fn))(H − E)Ψǫ

+ (b+,4((T + λ)fn) + b∗+,4((T − λ)fn))Ψǫ

+ g[HI , (b+,4(fn) + b∗+,4(fn))]Ψǫ.

(4.43)

By (3.19) this yields for |g| ≤ g0

‖(H − E − λ)Ψn,ǫ‖ ≤
+ 2ǫ+ 2|λ|‖b+,4(fn)Ψǫ‖+ 2‖((T − λ)fn))‖
+ |g|‖[HI , b+,4(fn)]Ψǫ‖+ |g|‖[HI , b

∗
+,4(fn)]Ψǫ‖

(4.44)

Let {gk|k = 1, 2, 3, ....} be an orthonormal basis of L2(R3) and consider

(4.45) b∗+,4(gk1)b
∗
+,4(gk2)b

∗
+,4(gk3).......b

∗
+,4(gkm)Ων ∈ F(ν)

where the indices can be assumed ordered k1 < ...... < km. Fock space
vectors of this type form a basis of F(ν) (see [27]). By [26, Lemma 2.1] this
yields for every ǫ > 0

s− lim
n→∞

b+,4(fn)Ψǫ = 0,

w − lim
n→∞

b∗+,4(fn))Ψǫ = 0.
(4.46)

By (3.26) and Hypothesis 4.1 we have

lim
n→∞

(∫ ∥∥∥∥
∫
fn(ξ4)G

(1)(ξ1, ξ4)U
(ν)(ξ4)dξ4

∥∥∥∥
2

C4

dξ1

) 1
2
= 0

lim
n→∞

(∫ ∥∥∥∥
∫
fn(ξ4)G(2)(ξ1, ξ4)U

(ν)(ξ4)dξ4

∥∥∥∥
2

C4

dξ1

) 1
2
= 0.

(4.47)

It follows from (4.28), (4.38), (4.44), (4.46) and (4.47) that for every ǫ > 0

(4.48) lim sup
n→∞

‖(H − E − λ)Ψn,ǫ‖ ≤ 2ǫ

This yields

(4.49) lim
ǫ→0

lim sup
n→∞

‖(H − E − λ)Ψn,ǫ‖ = 0

In view of (4.49) there exists a subsequence
(
Ψnj ,ǫj

)
j≥1

such that

(4.50) lim
j→∞

‖(H − E − λ)Ψnj ,ǫj‖ = 0

Furthermore it follows from (4.46) that w − limj→∞Ψnj ,ǫj = 0.

The sequence
(
Ψnj ,ǫj

)
j≥1

is a Weyl sequence for H and E+λ with λ > 0
.

28



In order to show that E ≤ 0 we adapt the proof given in [4] and [7]. We
omit the details.

This concludes the proof of theorem 4.4.
�

5. Existence of a unique ground state for the Hamiltonian H.

Set

K(F,G) =
2∑

β=1

‖F (β)(., .)‖L2‖G(β)(., .)‖L2 .

C = 2C0.

B = 2mnC0.

(5.1)

By (4.26) and (5.1) we get for every ψ ∈ D(H)

(5.2) ‖HIψ‖ ≤ K(F,G) (C‖H0ψ‖+B‖ψ‖)
In order to prove the existence of a ground state for the Hamiltonian H we

shall make the following additional assumptions on the kernels G(β) (ξ1, ξ4),
β = 1, 2.

From now on p4 ∈ R
3 is the momentum of the neutrino with helicity −1

2 .

Hypothesis 5.1. There exists a constant K̃(G) > 0 such that for β = 1, 2
and σ > 0

(i)

∫

Γ1×R3

|G(β)(ξ1, ξ4)|2
|p4|2

dξ1dξ4 <∞ ,

(ii)

(∫

Γ1×{|p4|≤σ}
|G(β)(ξ1, ξ4)|2dξ1dξ4

) 1
2

≤ K̃(G)σ.

We have

Theorem 5.2. Assume that the kernels F (β)(., .) and G(β)(., .), β = 1, 2,
satisfy Hypothesis 4.1 and Hypothesis 5.1. Then there exists g1 ∈ (0, g0]
such that H has a unique ground state for g ≤ g1.

In order to prove theorem 5.2 we first prove the existence of a spectral
gap for some neutrino infrared cutoff Hamiltonians.

5.1. The neutrino infrared cutoff Hamiltonians and the existence

of a spectral gap.

Proof. Let us first define the neutrino infrared cutoff Hamiltonians.
For that purpose, let χ0(.) ∈ C∞(R, [0, 1]) with χ0 = 1 on (−∞, 1] and

χ0 = 0 on [2,∞]. For σ > 0 and p4 ∈ R
3, we set

χσ(p4) = χ0(|p4|/σ) ,
χ̃σ(p4) = 1− χσ(p4) .

(5.3)
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The operator HI,σ is the interaction given by (4.17) associated with the

kernels F (β)(ξ2, ξ3)χ̃
σ(p4)G

(β)(ξ1, ξ4) instead of F (β)(ξ2, ξ3)G
(β)(ξ1, ξ4).

We then set

(5.4) Hσ = H0 + gHI,σ .

We now introduce

Γ4,σ = R
3 ∩ {|p4| < σ} , Γσ

4 = R
3 ∩ {|p4| ≥ σ}

F4,σ = Fa(L
2(Γ4,σ)) , Fσ

4 = Fa(L
2(Γσ

4 )) .
(5.5)

F4,σ ⊗ Fσ
4 is the Fock space for the massless neutrino such that F(ν) ≃

F4,σ ⊗ Fσ
4 .

We set

Fσ = F(e) ⊗ F(p) ⊗ F(n) ⊗ Fσ
4 and Fσ = F4,σ(5.6)

We have

(5.7) F ≃ Fσ ⊗ Fσ .

We further set

(5.8) H4
0 =

∫
|p4|b∗+(ξ4)b+(ξ4)dξ4.

In the following we identify H4
0 with its obvious extension to F.

We let

H4,σ
0 =

∫

|p4|≥σ

|p4|b∗+(ξ4)b+(ξ4)dξ4 ,

H4
0,σ =

∫

|p4|<σ

|p4|b∗+(ξ4)b+(ξ4)dξ4 .
(5.9)

We identify H4,σ
0 and H4

0,σ with their obvious extension to Fσ and Fσ

respectively.
On Fσ ⊗ Fσ, we have

(5.10) H4
0 = H4,σ

0 ⊗ 1σ + 1σ ⊗H4
0,σ.

where 1σ (resp. 1σ) is the identity operator on Fσ (resp. Fσ).
Setting

(5.11) Hσ
0 = H0|F σ and Hσ = Hσ|Fσ .

we then get

Hσ
0 = H

(e)
0,D +H

(p)
0,D +H

(n)
0,D +H4,σ

0 on F σ .

Hσ = Hσ
0 + gHI,σ on F σ .

(5.12)

and

(5.13) Hσ = Hσ ⊗ 1σ + 1σ ⊗H4
0,σ. on F σ ⊗ Fσ .
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On the other hand, for δ ∈ R such that 0 < δ < m3, we define the
sequence (σn)n≥0 by

σ0 = 2me + 1 ,

σ1 = me −
δ

2
,

σn+1 = γσn for n ≥ 1 ,

(5.14)

where

(5.15) γ = 1− δ

2me − δ
.

For n ≥ 0, we now introduce the neutrino infrared cutoff Hamiltonians on
Fn = Fσn by stting

(5.16) Hn = Hσn , Hn
0 = Hσn

0 ,

We set, for n ≥ 0,

(5.17) En = inf σ(Hn).

We introduce the neutrino infrared cutoff Hamiltonians on F by setting

(5.18) Hn = Hσn , H0,n = H0,σn ,

We set, for n ≥ 0,

(5.19) En = inf σ(Hn).

Note that

(5.20) En = En

One easily shows that, for g ≤ g0,

(5.21) |En| = |En| ≤
gK(F,G)B

1− g0K(F,G)C

See [6, 4] for a proof.
We now let

(5.22) K̃(F,G) = 2



∑

β=1,2

‖F (β)(., .)‖L2(Γ1×Γ1)


 K̃(G)

where K̃(G) is the constant given in Hypothesis 5.2(ii).
We further set,

(5.23) C̃ =
C

(1− g0K(F,G)C)
,

(5.24) B̃ =
B

(1− g0K(F,G)C)2

and
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(5.25) D̃(F,G) = max

{
4(2m3 + 1)γ

2m3 − δ
, 2

}
K̃(F,G)

(
2m3C̃ + B̃)

)
.

Let g
(δ)
1 be such that

(5.26) 0 < g
(δ)
1 < min

{
1, g0,

γ − γ2

3D̃(F,G)

}
.

and let

(5.27) g3 =
1

2K(F,G)(2C +B)

Setting

g
(δ)
2 = inf{g3, g(δ)1 }

C(F,G) = 3
D̃(F,G)

γ
.

(5.28)

and applying the same method as the one used for proving proposition
4.1 in [4] we finally get the existence of a spectral gap for Hn. We omit the
details of the proof.

The proof of the following proposition is achieved.

Proposition 5.3. Suppose that the kernels F (β)(., .), G(β)(., .), β = 1, 2,

satisfy Hypothesis 4.1 and Hypothesis 5.1(ii) . Then, for g ≤ g
(δ)
2 , En is a

simple eigenvalue of Hn for n ≥ 1, and Hn does not have spectrum in the
interval (En, En + (1− gC(F,G)σn).

�

5.2. Proof of the existence of a ground state.

Proof. In order to prove the existence of a ground state for H we adapt the
proof of theorem 3.3 in [6]. By Proposition 5.3 Hn has a unique ground
state, denoted by φn, in Fn such that

(5.29) Hnφn = Enφn, φn ∈ D(Hn), ‖φn‖ = 1, n ≥ 1 .

Therefore Hn has a unique normalized ground state in F, given by φ̃n =
φn ⊗ Ωn, where Ωn is the vacuum state in Fn,

(5.30) Hnφ̃n = Enφ̃n, φ̃n ∈ D(Hn), ‖φ̃n‖ = 1, n ≥ 1 .

Let HI,n denote the interaction HI,σn . It follows from the pull-through
formula that
(5.31)

(H0+gHI,n)b+(ξ4)φ̃n = Enb+(ξ4)φ̃n−ω(ξ4)b+(ξ4)φ̃n−
(
gṼ 1

n (ξ4)+gṼ
2
n (ξ4)

)
φ̃n

where
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Ṽ (1)
n (ξ4) =

∫
dξ1dξ2dξ3

(∫
dx2e−ix2r2

(
U (νe)(ξ4)γα(1− γ5)U

(e)(x2, ξ1)
)(
U (ne)(ξ3)γ

α(1− gAγ5)U
(p)(x2, ξ2)

))

F (1)(ξ2, ξ3)G(1)(ξ1, ξ4)χ̃
σn(p4)b

∗
+(ξ3)b+(ξ2)b+(ξ1).

(5.32)

Ṽ (2)
n (ξ4) =

∫
dξ1dξ2dξ3

( ∫
dx2e−ix2r2

(
U (νe)(ξ4)γα(1− γ5)W

(e)(x2, ξ1)
)(
U (ne)(ξ3)γ

α(1− gAγ5)W
(p)(x2, ξ2)

))

F (2)(ξ2, ξ3)G
(2)(ξ1, ξ4)χ̃

σn(p4)b
∗
+(ξ3)b

∗
−(ξ2)b

∗
−(ξ1).

(5.33)

Hence, by (5.30), (5.31),(5.32) and (5.33), we get

(5.34) (Hn − En + ω(ξ4)) b+(ξ4)φ̃n = −g
(
Ṽ (1)
n (ξ4) + Ṽ (2)

n (ξ4)
)
φ̃n.

We further note that, for β = 1, 2,,

‖Ṽ (β)
n (ξ4)φ̃n‖ ≤ C̃0‖F (β)(., .)‖L2(Γ1×Γ1)‖G(β)(., ξ4)‖L2(Γ1)×

‖(H0 +mn)
1
2 φ̃n‖.

(5.35)

where

C̃0 = (
1

mn
)
1
2
(
‖γα(1− gAγ5)‖

)(
‖γα(1− γ5)‖

)

The estimates (5.35) are examples of Nτ estimates(see [15]).The proof is
similar to the one of [5, Proposition 3.7] and details are omitted.

Let us estimate ‖H0φ̃n‖. By (5.2) we get

(5.36) g‖HI,nφ̃n‖ ≤ gK(F,G)
(
C‖H0φ̃n‖+B

)

and

(5.37) ‖H0φ̃n‖ ≤ |En|+ |g|‖gHI,nφ̃n‖
By (5.21), we obtain

(5.38) ‖H0φ̃n‖ ≤ g0K(F,G)B

1− g0K(F,G)C

(
1 +

1

1− g0K(F,G)C

)
=M

By (5.38) ‖H0φ̃n‖ is bounded uniformly with respect to n and g ≤ g0 and
by (5.34),(5.35) and (5.38) we get
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(5.39) ‖b+(ξ4)φ̃n‖ ≤ gC̃0

|p4|
( 2∑

β=1

‖F (β)(., .)‖L2‖G(β)(., ξ4)‖L2‖
)(
M +mp

) 1
2

uniformly with respect to n.

By Hypothesis 5.1(i) and (5.39) there exists a constant C̃(F,G) > 0 such
that

(5.40)

∫
‖b+(ξ4)φ̃n‖2dξ4 ≤ C̃(F,G)g2

Since ‖φ̃n‖ = 1, there exists a subsequence (nk)k≥1, converging to ∞ such

that (φ̃nk
)k≥1 converges weakly to a state φ̃ ∈ F. By adapting the proof of

theorem 4.1 in [5, 1] it follows from (5.40) that there exists g2 such that

0 < g2 ≤ g
(δ)
2 and φ̃ 6= 0 for any g ≤ g2. Thus φ̃ is a ground state of H.

�

5.3. Uniqueness of a ground state of the Hamiltonian H.

Proof. The proof follows by adapting the one given in [7]. See also [3].
In view of theorem 4.3 E is an eigenvalue of H with a finite multiplicity.

Either E is a simple eigenvalue and the theorem is proved or its multiplicity
is equal to p ∈ N with p > 1. Let us consider the second case. We wish to
show by contradiction that E is a simple eigenvalue for g sufficiently small.

Let (φ1, φ2) be two vectors of the eigenspace of E. Each φj with j = 1, 2
is a ground state of H . φ1 and φ2 can be chosen such that

〈
φ1, φ2

〉
F
= 0

with ‖φj‖ = 1, j = 1, 2.
By (5.30) let φn be a unique normalized ground state of Hn.
We have

0 = |〈φ2, φ1〉|2 = lim
n→∞

|〈φ2, φn〉|2

= lim
n→∞

〈E{En}(Hn)φ2, φ2〉
= 1− lim

n→∞
〈(1F − E{En}(Hn))φ2, φ2〉.

(5.41)

where E{.}(.) is the spectral measure for the associated self-adjoint oper-
ator.

We have

(5.42) 1F − E{En}(Hn) = (1n − E{En}(H
n)⊗ PΩn + 1n ⊗ (1n − PΩn)

We have to estimate

(5.43) 〈φ2,
(
1n ⊗ (1n − PΩn)

)
φ2〉,

and

(5.44) 〈φ2,
(
(1n − E{En}(H

n))⊗ PΩn

)
φ2〉
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We first estimate (5.43).
By applying the same proof as the one used to get estimates (5.38), (5.39)

and (5.40) with φ2 instead of φ̃n we easily get

(5.45)

∫
‖b+(ξ4)φ2‖2dξ4 ≤ C̃(F,G)g2

This yields

(5.46)
〈
φ2,
(
1n ⊗ (1n − PΩn)φ2

〉
≤ C̃(F,G)g2

We now estimate (5.44)
Set

(5.47) 1n − E{En}(H
n) = E{En}(H

n)⊥

By proposition 5.3 we get

(5.48) (Hn − En)E{En}(H
n)⊥ ≥ (1− gC(F,G))σn)E{En}(H

n)⊥.

and

〈
φ2, E{En}(H

n)⊥ ⊗ PΩnφ2
〉

≤ 1

(1− gC(F,G))σn

〈
φ2, (H

n − En)⊗ PΩnφ2
〉

=
1

(1− gC(F,G))σn

〈
φ2, (Hn − En)(1

n ⊗ PΩn)φ2
〉

≤ 1

(1− gC(F,G))σn

〈
φ2, (Hn − En)φ2

〉
.

(5.49)

Note that

(5.50) E ≤ 〈φ̃n,Hφ̃n〉 = 〈φn,Hnφn〉 = En = En

In view of (5.49) and of(5.50) we get

〈
φ2, (Hn −En)φ2

〉

(1− gC(F,G))σn

=

〈
φ2, (E − En)φ2

〉

(1− gC(F,G))σn
+

〈
φ2, (Hn −H)φ2

〉

(1− gC(F,G))σn

≤
〈
φ2, (Hn −H)φ2

〉

(1− gC(F,G))σn
.

(5.51)

Hence

(5.52)
〈
φ2, E{En}(H

n)⊥ ⊗ PΩnφ2
〉
≤

〈
φj , (Hn −H)φ2

〉

(1− g
(δ)
2 C(F,G))σn

.
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Here g
(δ)
2 has been introduced in proposition 5.3

Estimate of ‖(Hn −H)φ̃‖. We have

(5.53) H −Hn = g(HI −HI,n)

H −Hn is associated with the kernels F (β)(ξ2, ξ3)χσn(p4)G
(β)(ξ1, ξ4) .

By adapting the proof of (5.2) to the estimate of (H −Hn) we finally get

(5.54) ‖(H −Hn)φ2‖ = g‖(HI −HI,n)φ2‖ ≤ gKn(F,G)
(
C‖H0φ2‖+B

)

where

(5.55) Kn(F,G) =
2∑

β=1

‖F (β)(., .)‖L2‖χσn(p4)G
(β)(., .)‖L2 .

Under Hypothesis 5.2(ii) we get

(5.56) Kn(F,G) ≤ 2
( 2∑

β=1

‖F (β)(., .)‖L2

)
K̃(G)σn.

This, together with (5.55) , yields

(5.57) |
〈
φ2, (H −Hn)φ2

〉
| ≤ gKσn.

where K = 2
(∑2

β=1 ‖F (β)(., .)‖L2

)
K̃(G)

(
C‖H0φ2‖+B

)
.

Combing (5.41),(5.42), (5.46), (5.52) and (5.57) we finally get

(5.58)
〈
φ2, (1F − E{En}(Hn))φ2

〉
≤ gK

′

Here K
′

= K

(1−g
(δ)
2 C(F,G))

.

K
′

is a positive constant independent of g and it follows from (5.41) that,
for g sufficiently small,

〈
φ1, φ2

〉
6= 0 . This is a contradiction and p = 1.

This concludes the proof of theorem 5.2.
�
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[13] J.Dereziński and C.Gérard. Mathematics of quantization and quantum fields. Cam-

bridge University Press.2013.
[14] H. Duan and Y.Z. Qian. Rates of neutrino absorption on neutrons and

the reverse processes in strong magnetic fields. Phys.Rev.D72.,(2005), 023005.
arXiv:astro-ph/0506033

[15] J. Glimm, A. Jaffe. Quantum Field Theory and Statistical Mechanics. Birkhäuser,
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