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Abstract

The zero-in�ated binomial (ZIB) regression model was recently proposed to account for ex-
cess zeros in binomial regression. Since then, the model has been applied in various domains,
such as dental epidemiology and health economics. In practice, it often arises that some co-
variates involved in ZIB regression have missing values. Assuming that the missingness
probability can be estimated parametrically, we propose an inverse-probability-weighted es-
timator of the parameters of a ZIB model with missing-at-random covariates. Consistency
and asymptotic normality of the proposed estimator are established. A consistent estimator
of the asymptotic variance-covariance matrix is also provided. The �nite-sample behavior of
the estimator is assessed via simulations.

Keywords: Asymptotics, count data, excess of zeros, inverse-probability-weighting

1. Introduction

Count data with excess zeros arise in many disciplines, such as agriculture, economics,
epidemiology, industry, insurance, terrorism study, tra�c safety research. . . Excess of zeros
refers to the situation where the number of observed zeros is larger than predicted by stan-
dard models for count data. Zero-in�ated regression models, which are obtained by mixing
a degenerate distribution at zero with a standard count regression model (such as Poisson,
negative binomial or binomial) have been developed to analyze such data. For example, the
zero-in�ated Poisson (ZIP) regression model was proposed by Lambert (1992) and further
developed by Dietz and Böhning (2000), Lim et al. (2014) and Monod (2014), among many
others. Recent variants of ZIP regression include random-e�ects ZIP models (Hall, 2000;
Min and Agresti, 2005), semi-varying coe�cient ZIP models (Zhao et al., 2015) and semi-
parametric ZIP models (Lam et al., 2006; Feng and Zhu, 2011). The zero-in�ated negative
binomial (ZINB) regression model was proposed by Ridout et al. (2001), see also Moghim-
beigi et al. (2008), Mwalili et al. (2008), Garay et al. (2011). When counts have an upper
bound, ZIP and ZINB regression models are no longer appropriate. Hall (2000) and Vieira et
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al. (2000) thus introduced the zero-in�ated binomial (ZIB) regression model, see also Diop et

al. (2016). ZIB regression was recently used in dental caries epidemiology (Gilthorpe et al.,
2009; Matranga et al., 2013) and in health economics (Diallo et al., 2017a). A zero-in�ated
model for multinomial counts (or ZIM model) was recently proposed by Diallo et al. (2017b).

In addition, missing data arise in a wide variety of disciplines. In the past decades, there
has been an enormous literature on estimation in regression models with missing covariates,
including missing covariates in linear models, generalized linear models, generalized linear
mixed models, survival models. . . Despite this interest, only a few papers have focused on
missing covariates in zero-in�ated regression models. Chen and Fu (2011) develop a model
selection criterion for zero-in�ated regression models with missing covariates. Lukusa et al.

(2016) consider estimation in ZIP regression with missing-at-random covariates. Motivated
by this work, we investigate estimation in ZIB regression when some covariate values are
missing for some of the sample individuals.

One simple approach to estimation with missing data is the so-called complete-case
method, which consists in removing all incomplete cases from the statistical analysis. How-
ever, this method usually produces asymptotically biased estimators (unless data are miss-
ing completely at random, which is rarely the case in practice). Therefore, in this paper,
we propose to rely on the alternative and more sophisticated inverse-probability-weighted
approach, which has not been investigated yet in ZIB regression with missing covariates.
Inverse-probability-weighting (IPW) is a general estimation method under missing data. It
was originally proposed by Horvitz and Thompson (1952) and further developed by Zhao
and Lipsitz (1992). The basic idea of IPW is to correct for missing data by giving extra
weight to subjects with fully observed data. This idea has already proved useful in a variety
of models, such as the logistic regression model (Hsieh et al., 2010), proportional hazards
regression model (Qi et al., 2005) and single-index model (Li and Hu, 2016), for example.

The rest of the paper is organized as follows. In Section 2, we provide a brief review of ZIB
regression, including model formulation and maximum likelihood estimation without missing
data. Then, we introduce a IPW estimator of the parameters of a ZIB regression model
with missing-at-random covariates. In Section 3, we establish consistency and asymptotic
normality of the proposed estimator. A consistent estimator of its asymptotic variance-
covariance matrix is provided. Section 4 reports results of a simulation study. A discussion
and some perspectives are provided in Section 5.

2. ZIB regression with missing covariates

We �rst provide a brief review of ZIB regression and maximum likelihood estimation in
ZIB model with complete data.

2.1. A brief review of ZIB regression

Let Zi denote the random count of interest for individual i, i = 1, . . . , n. Individuals are
assumed to be independent. The ZIB distribution is a mixture of a degenerate distribution
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at zero and a binomial distribution. It is given as follows:

Zi ∼
{

0 with probability pi,
B(mi, πi) with probability 1− pi,

(2.1)

where pi is a mixing probability for the accommodation of extra zeros and B(m,π) denotes
the binomial distribution with size m and event probability π. The ZIB distribution reduces
to a standard binomial distribution when pi = 0.

In ZIB regression, the mixing probabilities pi and event probabilities πi are usually
modeled via logistic regressions: logit(pi) = γ>Wi and logit(πi) = β>Xi, where Xi =
(1, Xi2, . . . , Xip)

> and Wi = (1,Wi2, . . . ,Wiq)
> are random vectors of predictors or covari-

ates (both categorical and continuous covariates are allowed) and > denotes the transpose
operator. Vectors Xi and Wi may either have some common components or be distinct
(note that some caution is required in the special case where mi = 1 for all i = 1, . . . , n, see
Diop et al., 2011). Here, β and γ are respectively p and q-dimensional vectors of unknown
regression parameters to be estimated.

Let {(Zi,Xi,Wi), i = 1, . . . , n} be a sample of independent observations and ψ =
(β>, γ>)> denote the whole unknown k-dimensional (k := p + q) parameter. The log-
likelihood function ``n(ψ) based on the observed sample is:

``n(ψ) =
n∑
i=1

{
Ji log

(
eγ
>Wi + (1 + eβ

>Xi)−mi

)
− log

(
1 + eγ

>Wi

)
+(1− Ji)

[
Ziβ

>Xi −mi log
(

1 + eβ
>Xi

)]}
,

:=
n∑
i=1

`i(ψ),

where Ji := 1{Zi=0} (see Hall, 2000). The maximum likelihood estimator (MLE) ψ̂n :=

(β̂>n , γ̂
>
n )> of ψ is obtained by solving the score equation Un(ψ) = 0, where

Un(ψ) =
1√
n

∂``n(ψ)

∂ψ
=

1√
n

n∑
i=1

∂`i(ψ)

∂ψ
=

1√
n

n∑
i=1

˙̀
i(ψ). (2.2)

This estimating equation can be solved by using the expectation-maximization (EM) algo-
rithm (Hall, 2000) or by a direct maximization of ``n(ψ) (Diallo et al., 2017a). The MLE ψ̂n
is a consistent and asymptotically normal estimator of the true ψ, see Diallo et al. (2017a).

The next section describes the problem and the proposed estimator.

2.2. ZIB regression with missing covariates: the proposed estimator

In this work, we assume that some components ofXi may be missing for some individuals.
Decompose Xi as Xi = (X

(obs),>
i ,X

(miss),>
i )>, where X

(obs)
i and X

(miss)
i contain the observed

and missing components of Xi respectively (we assume that the same components of Xi may
be missing for all individuals). Let δi be a dummy variable indicating whether Xi is fully
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observed (δi = 1) or not (δi = 0). Finally, let Si := (Zi,X
(obs),>
i ,W>

i )> denote the vector of

variables that are always observed on each individual. Then {Zi,Xi,Wi} = {Si,X(miss)
i }.

Let d denote the dimension of Si.
We assume that X

(miss)
i is missing at random (MAR, see Rubin, 1976): the probability

that some components of Xi are missing depends only on the observed variables. The
MAR assumption can be expressed in terms of the missingness (or selection) probability

P(δi = 1|Si,X(miss)
i ), as:

P(δi = 1|Si,X(miss)
i ) = P(δi = 1|Si).

Under missing data, we propose to estimate ψ in ZIB model (2.1) by using the IPW method.
Originally proposed by Horvitz and Thompson (1952), IPW has recently been used for
estimating various regression models with missing or mismeasured covariates. Basic idea
is to inversely weight the observed data by the selection probability P(δi = 1|Si), so as to
reduce the bias due to incomplete cases deletion.

Recall that without missing data, ψ in model (2.1) can be estimated by solving the
score equation (2.2). Under missing data, we propose to estimate ψ by solving the following
estimating equation, derived from (2.2) by weighting individuals with fully observed data by
the inverse of their selection probability:

1√
n

n∑
i=1

δi
P(δi = 1|Si)

˙̀
i(ψ) = 0. (2.3)

In practice, selection probabilities P(δi = 1|Si) are usually unknown and need to be es-
timated. Several estimation procedures can be used. In this work, we consider the case
where the P(δi = 1|Si), i = 1, . . . , n, can be estimated parametrically. In this case, logistic
regression is the most frequently used option. Let ri(α) := P(δi = 1|Si) be de�ned as:

ri(α) =
exp(α>Si)

1 + exp(α>Si)
, (2.4)

where α is a d-dimensional vector of unknown regression parameters. We need to estimate
α before solving the weighted score equation (2.3). Maximum likelihood estimation can be
used for that purpose. The MLE α̂n = arg maxα

∏n
i=1{ri(α)δi(1− ri(α))1−δi} in model (2.4)

is known to be consistent and asymptotically Gaussian (Gouriéroux and Monfort, 1981).
Once α̂n is available, one can estimate ψ by solving the estimated weighted score equation
Uw,n(ψ, α̂n) = 0, where

Uw,n(ψ, α̂n) =
1√
n

n∑
i=1

δi
ri(α̂n)

˙̀
i(ψ) = 0. (2.5)

In what follows, the resulting estimator of ψ will be denoted by ψ̂n. Asymptotic properties
of this estimator are established in Section 3. First, we need to introduce some further
notations.
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2.3. Some further notations

De�ne �rst the (k × d), (k × k) and (d× d) matrices

B(ψ, α) = lim
n→∞

(
− 1

n

n∑
i=1

E
[
δi

1− ri(α)

ri(α)
˙̀
i(ψ)S>i

])
,

J(ψ, α) = lim
n→∞

(
1

n

n∑
i=1

E

[
δi

˙̀
i(ψ) ˙̀

i(ψ)>

r2i (α)

])
,

and

Σ(α) = E
[
SiS

>
i ri(α)(1− ri(α))

]
. (2.6)

For every i = 1, . . . , n, let Ui = (Ui1, . . . , Uik)
> denote the k-dimensional column vector

Ui := B(ψ0, α0)Σ(α0)
−1Si. Then, de�ne the (p× n) , (q × n) and (k × n) matrices

X =


1 1 · · · 1
X12 X22 · · · Xn2
...

...
. . .

...
X1p X2p · · · Xnp

 , W =


1 1 · · · 1
W12 W22 · · · Wn2
...

...
. . .

...
W1q W2q · · · Wnq

 ,

and

U =


U11 U21 · · · Un1
U12 U22 · · · Un2
...

...
. . .

...
U1k U2k · · · Unk

 =

[
U1

U2

]
,

where U1 is the (p × n) sub-matrix of U consisting of the �rst p rows of U and U2 is the
(q×n) sub-matrix of U consisting of the last q rows of U. Let V be the (k×3n) block-matrix
de�ned as

V =

[
X 0p,n U1

0q,n W U2

]
,

and C(ψ, α) = (Cj(ψ, α))1≤j≤3n be the 3n-dimensional column vector de�ned by

C(ψ, α) =

(
δ1

r1(α)
A1(ψ), . . . ,

δn
rn(α)

An(ψ),
δ1

r1(α)
B1(ψ), . . . ,

δn
rn(α)

Bn(ψ), δ1 − r1(α), . . . , δn − rn(α)

)>
,

where 0a,b denotes the (a× b) matrix whose components are all equal to zero and for every
i = 1, . . . , n,

Ai(ψ) = −Ji
mie

β>Xi

eγ>Wi(hi(β))mi+1 + hi(β)
+ (1− Ji)

(
Zi −

mie
β>Xi

hi(β)

)
(2.7)
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and

Bi(ψ) =
Jie

γ>Wi(hi(β))mi

eγ>Wi(hi(β))mi + 1
− eγ

>Wi

1 + eγ>Wi
, (2.8)

with hi(β) := 1 + eβ
>Xi .

If A = (Aij)1≤i≤a,1≤j≤b is a (a× b) matrix, A•j will denote its j-th column (j = 1, . . . , b)
that is, A•j = (A1j, . . . , Aaj)

>.
Finally, under model (2.4), it is known that the MLE α̂n veri�es

√
n(α̂n − α0) = Σ(α0)

−1Mn(α0) + oP(1), (2.9)

where Σ(α0) is given by (2.6) and Mn(α) = n−1/2
∑n

i=1 Si(δi − ri(α)).
In the next section, we establish rigorously the consistency and asymptotic normality of

the proposed IPW-MLE ψ̂n.

3. Asymptotic results

We �rst state some regularity conditions that will be needed for proving our asymptotic
results.

3.1. Regularity conditions and consistency

C1 Covariates are bounded, that is, there exists a �nite positive constant c1 such that
|Xij| ≤ c1 and |Wi`| ≤ c1 for every i = 1, . . . , n, j = 2, . . . , p and ` = 2, . . . , q. For
every i = 1, . . . , n, j = 2, . . . , p and ` = 2, . . . , q, var[Xij] > 0 and var[Wi`] > 0.
For every i = 1, . . . , n, the Xij (j = 1, . . . , p) are linearly independent and the Wi`

(` = 1, . . . , q) are linearly independent.

C2 The true parameter value ψ0 := (β>0 , γ
>
0 )> lies in the interior of some known compact

set of Rp × Rq. The true α0 belongs to the interior of some known compact set of Rd.

C3 As n→∞, n−1
∑n

i=1 E
[

δi
ri(α0)

∂2`i(ψ)
∂ψ∂ψ>

]
converges to some invertible matrix A(ψ, α0) and

the smallest eigenvalue λn of VV> tends to +∞.

C4 For every i = 1, . . . , n, we have mi ∈ {2, . . . ,M} for some �nite integer value M .

In what follows, the space Rk of k-dimensional (column) vectors will be provided with the
Euclidean norm ‖ · ‖2 and the space of (k× k) real matrices will be provided with the norm
|||A|||2 := max‖x‖2=1 ‖Ax‖2 (for notations simplicity, we will use ‖ · ‖ for both norms).

We �rst prove consistency of ψ̂n:

Theorem 3.1. Assume that conditions C1-C4 hold. Then, as n → ∞, ψ̂n converges in

probability to ψ0.
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Proof of Theorem 3.1. To prove consistency of ψ̂n, we verify the conditions of the inverse
function theorem of Foutz (1977). These conditions are proved in a series of technical lemmas.

Lemma 3.2. ∂Uw,n(ψ, α̂n)/∂ψ> exists and is continuous in an open neighborhood of ψ0.

Proof of Lemma 3.2. The `i(ψ), i = 1, . . . , n are twice di�erentiable with respect to ψ.

Continuity of ∂2`i(ψ)
∂ψ∂ψ>

is straightforward and is omitted. �

Lemma 3.3. As n→∞, n−1/2Uw,n(ψ0, α̂n) converges in probability to 0.

Proof of Lemma 3.3. Decompose n−1/2Uw,n(ψ0, α̂n) as:

n−1/2Uw,n(ψ0, α̂n) =
(
n−1/2Uw,n(ψ0, α̂n)− n−1/2Uw,n(ψ0, α0)

)
+ n−1/2Uw,n(ψ0, α0), (3.10)

and consider the �rst term on the right-hand side of this decomposition. We have:

n−1/2Uw,n(ψ0, α̂n)− n−1/2Uw,n(ψ0, α0) =
1

n

n∑
i=1

δi

(
1

ri(α̂n)
− 1

ri(α0)

)
˙̀
i(ψ0),

=
1

n

n∑
i=1

δi

(
1

eα̂>n Si
− 1

eα
>
0 Si

)
˙̀
i(ψ0).

By a Taylor expansion of 1/eα̂
>
n Si around α0,

n−1/2Uw,n(ψ0, α̂n)− n−1/2Uw,n(ψ0, α0) =
1

n

n∑
i=1

δi(α0 − α̂n)>Si
1

eα>∗ Si

˙̀
i(ψ0),

where α∗ is on the line segment between α̂n and α0. Then, we have:

‖n−1/2Uw,n(ψ0, α̂n)− n−1/2Uw,n(ψ0, α0)‖ ≤
1

n

n∑
i=1

∥∥∥∥δi(α0 − α̂n)>Si
1

eα>∗ Si

˙̀
i(ψ0)

∥∥∥∥ ,
≤ 1

n

n∑
i=1

∣∣∣∣δi(α0 − α̂n)>Si
1

eα>∗ Si

∣∣∣∣ ∥∥∥ ˙̀
i(ψ0)

∥∥∥ ,
≤ 1

n

n∑
i=1

‖α0 − α̂n‖ ‖Si‖
1

eα>∗ Si

∥∥∥ ˙̀
i(ψ0)

∥∥∥ ,
where the second to third line comes from Cauchy-Schwarz inequality. Now, straightforward
calculations show that

˙̀
i(ψ0) = (X>i , 0

>
q )> · Ai(ψ0) + (0>p ,W

>
i )> ·Bi(ψ0),

where 0p := 0p,1 is the p-dimensional column vector having all its components equal to 0 and
Ai(ψ0), Bi(ψ0) are given by (2.7) and (2.8) respectively. Thus we have:

‖ ˙̀
i(ψ0)‖ ≤ ‖(X>i , 0>q )>‖ · |Ai(ψ0)|+ ‖(0>p ,W>

i )>‖ · |Bi(ψ0)|.
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Under conditions C1, C2 and C4, it is easy to see that |Ai(ψ0)| and |Bi(ψ0)| are bounded
above. Thus, there exists a �nite constant c2 such that n−1

∑n
i=1 ‖ ˙̀

i(ψ0)‖ ≤ c2. Note that

‖Si‖ and 1/eα
>
∗ Si are also bounded, by conditions C1 and C2. Therefore, there exists some

�nite constant c3 such that ‖n−1/2Uw,n(ψ0, α̂n)− n−1/2Uw,n(ψ0, α0)‖ ≤ c3‖α0 − α̂n‖. Finally,
the convergence of α̂n to α0 imply that ‖n−1/2Uw,n(ψ0, α̂n)−n−1/2Uw,n(ψ0, α0)‖ converges in
probability to 0 as n→∞.
Next, consider the term n−1/2Uw,n(ψ0, α0) in decomposition (3.10). Some simple algebra
yields:

n−1/2Uw,n(ψ0, α0) =



1
n

∑n
i=1

δi
ri(α0)

Xi1Ai(ψ0)
...

1
n

∑n
i=1

δi
ri(α0)

XipAi(ψ0)
1
n

∑n
i=1

δi
ri(α0)

Wi1Bi(ψ0)
...

1
n

∑n
i=1

δi
ri(α0)

WiqBi(ψ0)


.

We prove that n−1/2Uw,n(ψ0, α0) converges in probability to 0 as n → ∞. To see this, note
�rst that for every i = 1, . . . , n and ` = 1, . . . , q:

E
[

δi
ri(α0)

Wi`Bi(ψ0)

]
= E

[
E
[

δi
ri(α0)

Wi`Bi(ψ0)

∣∣∣∣Si]] ,
= E

[
1

ri(α0)
Wi`E [δiBi(ψ0)|Si]

]
.

Given Si, Bi(ψ0) is a function of X
(miss)
i only. Thus, by the MAR assumption, Bi(ψ0) and

δi are independent given Si. It follows that:

E
[

δi
ri(α0)

Wi`Bi(ψ0)

]
= E

[
1

ri(α0)
Wi`E [δi|Si]E [Bi(ψ0)|Si]

]
,

= E [Wi`E [Bi(ψ0)|Si]] ,
= E [Wi`Bi(ψ0)] .

Diallo et al. (2017a) proved that E [Wi`Bi(ψ0)] = 0 for every i = 1, . . . , n and ` = 1, . . . , q.

Thus, E
[

δi
ri(α0)

Wi`Bi(ψ0)
]

= 0 for every i = 1, . . . , n and ` = 1, . . . , q. Similarly, for every

i = 1, . . . , n and j = 1, . . . , p, we have:

E
[

δi
ri(α0)

XijAi(ψ0)

]
= E

[
E
[

δi
ri(α0)

XijAi(ψ0)

∣∣∣∣Si]] .
Two cases should be considered, namely: i) Xij is a component of X

(miss)
i and ii) Xij is a

component of X
(obs)
i . In case i), we have:

E
[
E
[

δi
ri(α0)

XijAi(ψ0)

∣∣∣∣Si]] = E
[

1

ri(α0)
E [δiXijAi(ψ0)|Si]

]
.
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Given Si, XijAi(ψ0) is a function of X
(miss)
i only. Thus, by the MAR assumption,

E
[

1

ri(α0)
E [δiXijAi(ψ0)|Si]

]
= E

[
1

ri(α0)
E [δi|Si]E [XijAi(ψ0)|Si]

]
,

= E [XijAi(ψ0)] .

Diallo et al. (2017a) proved that E [XijAi(ψ0)] = 0 for every i = 1, . . . , n and j = 1, . . . , p.

Therefore, E
[

δi
ri(α0)

XijAi(ψ0)
]

= 0. In case ii),

E
[
E
[

δi
ri(α0)

XijAi(ψ0)

∣∣∣∣Si]] = E
[

1

ri(α0)
XijE [δiAi(ψ0)|Si]

]
,

= E
[

1

ri(α0)
XijE [δi|Si]E [Ai(ψ0)|Si]

]
,

= E [XijAi(ψ0)] ,

= 0,

where the �rst to second line comes from the fact that under MAR, Ai(ψ0) and δi are

independent given Si. Finally, in case ii), we also have: E
[

δi
ri(α0)

XijAi(ψ0)
]

= 0.

Now, for every i = 1, . . . , n and ` = 1, . . . , q, we have:

var

(
δi

ri(α0)
Wi`Bi(ψ0)

)
≤ E

[
δi

r2i (α0)
W 2
i`B

2
i (ψ0)

]
.

By C1, C2, C4, there exists �nite constants c4 and c5 such that 1/r2i (α0) ≤ c4 and B
2
i (ψ0) ≤ c5

for every i = 1, . . . , n. Therefore,

var

(
δi

ri(α0)
Wi`Bi(ψ0)

)
≤ c6 := c21c4c5.

It follows that

∞∑
i=1

var
(

δi
ri(α0)

Wi`Bi(ψ0)
)

i2
≤ c6

∞∑
i=1

1

i2
<∞.

One can easily show that a similar result holds for var
(

δi
ri(α0)

XijAi(ψ0)
)
. By Kolmogorov's

law of large numbers (see for example Jiang (2010), Theorem 6.7),

1

n

n∑
i=1

{
δi

ri(α0)
Wi`Bi(ψ0)− E

[
δi

ri(α0)
Wi`Bi(ψ0)

]}
=

1

n

n∑
i=1

δi
ri(α0)

Wi`Bi(ψ0), ` = 1, . . . , q

and

1

n

n∑
i=1

{
δi

ri(α0)
XijAi(ψ0)− E

[
δi

ri(α0)
XijAi(ψ0)

]}
=

1

n

n∑
i=1

δi
ri(α0)

XijAi(ψ0), j = 1, . . . , p

converge in probability to 0 as n→∞ and thus, n−1/2Uw,n(ψ0, α0) converges in probability
to 0. This implies that n−1/2Uw,n(ψ0, α̂n) converges to 0, which concludes the proof. �
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Lemma 3.4. As n→∞, n−1/2∂Uw,n(ψ, α̂n)/∂ψ> converges in probability to a �xed function

A(ψ, α0), uniformly in an open neighborhood of ψ0.

Proof of Lemma 3.4. Let Ũw,n(ψ, α) := n−1/2∂Uw,n(ψ, α)/∂ψ> and Vψ0 be an open neigh-
borhood of ψ0. Let ψ ∈ Vψ0 . Using similar arguments as in proof of Lemma 3.3, we have:

‖Ũw,n(ψ, α̂n)− Ũw,n(ψ, α0)‖ ≤
1

n

n∑
i=1

‖α0 − α̂n‖ ‖Si‖
1

eα>∗ Si

∥∥∥῭
i(ψ)

∥∥∥ ,
where α∗ is on the line segment between α̂n and α0. From this, one easily proves that
‖Ũw,n(ψ, α̂n) − Ũw,n(ψ, α0)‖ converges in probability to 0 as n → ∞. Details are omitted.

Now, consider the (`, j)-th element of Ũw,n(ψ, α0), namely:(
Ũw,n(ψ, α0)

)
(`,j)

=
1

n

n∑
i=1

{
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

}
.

We have:(
Ũw,n(ψ, α0)

)
(`,j)

=
1

n

n∑
i=1

{
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj
− E

[
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

]}
+

1

n

n∑
i=1

E
[

δi
ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

]
.

Now,

var

(
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

)
≤ E

(
δi

r2i (α0)

{
∂2`i(ψ)

∂ψ`∂ψj

}2
)
,

≤ c4E

({
∂2`i(ψ)

∂ψ`∂ψj

}2
)
.

We prove that var
(

δi
ri(α0)

∂2`i(ψ)
∂ψ`∂ψj

)
is bounded. Some tedious albeit easy calculations show

that ∂2`i(ψ)
∂ψ`∂ψj

is the (`, j)-th element of the (k × k) matrix (−ViUi(ψ)V>i ), where Vi is the

(k × 2) matrix de�ned as

Vi =

(
Xi 0p
0q Wi

)
and

Ui(ψ) =

(
Ui,1(ψ) Ui,2(ψ)
Ui,2(ψ) Ui,3(ψ)

)
is the (2× 2) symmetric matrix de�ned by

Ui,1(ψ) =
Jimie

β>Xi

(ki(ψ))2

(
ki(ψ)− eβ>Xi

[
eγ
>Wi(mi + 1)(hi(β))mi + 1

])
+
mi(1− Ji)eβ

>Xi

(hi(β))2
,

Ui,2(ψ) = −Jimie
β>Xi+γ

>Wi(hi(β))mi+1

(ki(ψ))2
,

Ui,3(ψ) =
Jie

γ>Wi(hi(β))mi+1

(ki(ψ))2

(
eγ
>Wi(hi(β))mi+1 − ki(ψ)

)
+

eγ
>Wi(

1 + eγ>Wi
)2 ,

10



with ki(ψ) := eγ
>Wi(hi(β))mi+1 + hi(β), i = 1, . . . , n. Using these notations, it is easy to see

that

∂2`i(ψ)

∂ψ`∂ψj
= −

(
Vi,(`,1)Ui,1(ψ) + Vi,(`,2)Ui,2(ψ)

)
Vi,(j,1)

−
(
Vi,(`,1)Ui,2(ψ) + Vi,(`,2)Ui,3(ψ)

)
Vi,(j,2), (3.11)

where Vi,(a,b) denotes the (a, b)-th element of matrix Vi. For a given row ` (` = 1, . . . , k),
exactly one of Vi,(`,1) and Vi,(`,2) must be equal to 0 (this is straightforward from the expres-
sion of Vi). Suppose for example that Vi,(`,1) = 0 and Vi,(j,2) = 0 (other combinations of null
and non-null values among (Vi,(`,1),Vi,(`,2)) and (Vi,(j,1),Vi,(j,2)) can be treated similarly).
Then (3.11) reduces to:

∂2`i(ψ)

∂ψ`∂ψj
= −Vi,(`,2)Ui,2(ψ)Vi,(j,1).

Let MX := maxβ,X e
β>X and MW := maxγ,W eγ

>W. Under conditions C1, C2 and C4, we
have:

|Ui,2(ψ)| ≤M∗ := M ·MX ·MW · (1 +MX)M+1 <∞,
which implies

E

({
∂2`i(ψ)

∂ψ`∂ψj

}2
)
≤ c41M

∗2,

and �nally,

var

(
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

)
≤ c4c

4
1M

∗2 <∞.

It follows that

∞∑
i=1

var
(

δi
ri(α0)

∂2`i(ψ)
∂ψ`∂ψj

)
i2

≤ c4c
4
1M

∗2
∞∑
i=1

1

i2
<∞.

Therefore, Kolmogorov's law of large numbers implies that

1

n

n∑
i=1

{
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj
− E

[
δi

ri(α0)

∂2`i(ψ)

∂ψ`∂ψj

]}
converges in probability to 0 as n→∞ and by condition C3, (Ũw,n(ψ, α0))(`,j) converges in

probability to the (`, j)-th element of the matrix A(ψ, α0). Finally, Ũw,n(ψ, α̂n) converges in

probability to A(ψ, α0). Under conditions C1, C2 and C4, the derivative of Ũw,n(ψ, α̂n) with

respect to ψ is bounded, for every n. Therefore, the sequence (Ũw,n(ψ, α̂n))n is equicontinu-

ous. It follows that the convergence of Ũw,n(ψ, α̂n) to A(ψ, α0) is uniform on Vψ0 . �

Having now veri�ed the conditions of Foutz (1977) inverse function theorem, we conclude
that ψ̂n converges in probability to ψ0. �
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3.2. Asymptotic normality

Our second main result asserts that the IPW-MLE ψ̂n is asymptotically Gaussian.

Theorem 3.5. Assume that conditions C1-C4 hold. Then
√
n(ψ̂n − ψ0) is asymptotically

normally distributed with mean zero and covariance matrix ∆, where

∆ := A(ψ0, α0)
−1{J(ψ0, α0)−B(ψ0, α0)Σ(α0)

−1B(ψ0, α0)
>}
[
A(ψ0, α0)

−1]> .
Proof of Theorem 3.5. A Taylor series expansion of Uw,n(ψ̂n, α̂n) at (ψ0, α0) yields

0 = Uw,n(ψ̂n, α̂n) = Uw,n(ψ0, α0) +
∂Uw,n(ψ0, α0)

∂ψ>
(ψ̂n − ψ0) +

∂Uw,n(ψ0, α0)

∂α>
(α̂n − α0) + oP(1).

Let Ǔw,n(ψ, α) := n−1/2∂Uw,n(ψ, α)/∂α>. Then we have:

0 = Uw,n(ψ0, α0) + Ũw,n(ψ0, α0)
√
n(ψ̂n − ψ0) + Ǔw,n(ψ0, α0)

√
n(α̂n − α0) + oP(1). (3.12)

Now, straightforward calculations yield

Ǔw,n(ψ, α) = − 1

n

n∑
i=1

δi
1− ri(α)

ri(α)
˙̀
i(ψ)S>i ,

and it can be proved that Ǔw,n(ψ0, α0) converges in probability to B(ψ0, α0) (arguments are
similar to those in proof of Lemma 3.4 and are thus omitted). Combining this with (2.9),
we can re-express (3.12) as:

0 = Uw,n(ψ0, α0) + Ũw,n(ψ0, α0)
√
n(ψ̂n − ψ0) +B(ψ0, α0)Σ(α0)

−1Mn(α0) + oP(1),

and it follows that:
√
n(ψ̂n − ψ0) = −Ũw,n(ψ0, α0)

−1 (Uw,n(ψ0, α0) +B(ψ0, α0)Σ(α0)
−1Mn(α0)

)
+ oP(1).

Using notations introduced in Section 2.3, we �nally obtain:
√
n(ψ̂n − ψ0) = −Ũw,n(ψ0, α0)

−1n−1/2VC(ψ0, α0) + oP(1),

= −Ũw,n(ψ0, α0)
−1

3n∑
j=1

V•jCj,n(ψ0, α0) + oP(1),

where Cj,n(ψ0, α0) = n−1/2Cj(ψ0, α0). Let C2
n = var (Uw,n(ψ0, α0) +B(ψ0, α0)Σ(α0)

−1Mn(α0)).
Then, by Eicker (1966), the random linear form C−1n

∑3n
j=1V•jCj,n(ψ0, α0) converges in dis-

tribution to the k-dimensional standard Gaussian distribution if the following conditions are
satis�ed: a) max

1≤j≤3n
V>•j(VV>)−1V•j → 0 as n→∞, b) sup

1≤j≤3n
E[C2

j,n(ψ0, α0)1{|Cj,n(ψ0,α0)|>c}]→

0 as c→∞, c) inf
1≤j≤3n

E[C2
j,n(ψ0, α0)] > 0. Note �rst that

0 < max
1≤j≤3n

V>•j(VV>)−1V•j ≤ max
1≤j≤3n

‖V•j‖2‖(VV>)−1‖ = max
1≤j≤3n

‖V•j‖2/λn.
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Since ‖V•j‖ is bounded, condition C3 implies that condition a) is satis�ed. Condition b)
follows by noting that Cj,n(ψ0, α0) (for j = 1, . . . , 3n) are bounded under C1, C2, C4. Finally,
under C1, C2 and C4, we have E[C2

j,n(ψ0, α0)] > 0 for every j = 1, . . . , 3n.
Moreover,

C2
n = var (Uw,n(ψ0, α0)) + var

(
B(ψ0, α0)Σ(α0)

−1Mn(α0)
)

+2cov
(
Uw,n(ψ0, α0), B(ψ0, α0)Σ(α0)

−1Mn(α0)
)
.

Straightforward calculations yield: var (Uw,n(ψ0, α0)) = 1
n

∑n
i=1 E

[
δi

˙̀
i(ψ0) ˙̀i(ψ0)>

r2i (α0)

]
, var (Mn(α0)) =

Σ(α0) and

cov
(
Uw,n(ψ0, α0), B(ψ0, α0)Σ(α0)

−1Mn(α0)
)

=
1

n

n∑
i=1

E
[

˙̀
i(ψ0)δi

(1− ri(α0))

ri(α0)
S>i

]
Σ(α0)

−1B(ψ0, α0)
>.

Hence, C2
n converges to J(ψ0, α0)−B(ψ0, α0)Σ(α0)

−1B(ψ0, α0)
>. It follows that

∑3n
j=1V•jCj,n(ψ0, α0)

converges in distribution to a k-dimensional Gaussian vector with mean zero and variance
J(ψ0, α0)−B(ψ0, α0)Σ(α0)

−1B(ψ0, α0)
>. Finally, using Lemma 3.4, condition C3 and Slut-

sky's theorem,
√
n(ψ̂n − ψ0) converges in distribution to a mean-zero Gaussian vector with

variance ∆, where ∆ is de�ned in Theorem 3.5. �

Remark. A consistent estimator of ∆ is given by

∆̂n := An(ψ̂n, α̂n)−1{Jn(ψ̂n, α̂n)−Bn(ψ̂n, α̂n)Σn(α̂n)−1Bn(ψ̂n, α̂n)>}
[
An(ψ̂n, α̂n)−1

]>
(3.13)

where

An(ψ, α) =
1

n

n∑
i=1

δi
ri(α)

∂2`i(ψ)

∂ψ∂ψ>
,

Bn(ψ, α) = − 1

n

n∑
i=1

δi
1− ri(α)

ri(α)
˙̀
i(ψ)S>i ,

Jn(ψ, α) =
1

n

n∑
i=1

δi
˙̀
i(ψ) ˙̀

i(ψ)>

r2i (α)
,

Σn(α) =
1

n

n∑
i=1

SiS
>
i ri(α)(1− ri(α)).

The proof proceeds along the same lines as proof of Lemma 3.4 and is therefore omitted.

4. Simulation study

In this section, we investigate the �nite-sample performances of the IPW estimator under
various conditions.
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4.1. Simulation design

The following ZIB regression model is used to simulate data:

logit(πi) = β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + β6Xi6

and

logit(pi) = γ1Wi1 + γ2Wi2 + γ3Wi3 + γ4Wi4,

where Xi1 = Wi1 = 1 and the Xi2, . . . , Xi6 and Wi4 are independently drawn from normal
N (0, 1), uniform U(2, 5), normal N (1, 1.5), exponential E(1), binomial B(1, 0.3) and normal
N (−1, 1) distributions respectively. Linear predictors in logit(πi) and logit(pi) are allowed
to share common terms by letting Wi2 = Xi2 and Wi3 = Xi6. The regression parameter β is
chosen as β = (−0.3, 1.2, 0.5,−0.75,−1, 0.8)>. The regression parameter γ is chosen as:

� case 1: γ = (−0.55,−0.7,−1, 0.45)>

� case 2: γ = (0.25,−0.4, 0.8, 0.45)>

We consider the following sample sizes, n = 500, 1000. The numbers mi are allowed to vary
across subjects, with mi ∈ {4, 8, 10, 15}. Let nj = card{i : mi = j}, for j = 4, 8, 10, 15.
For n = 500, we let (n4, n8, n10, n15) = (125, 125, 125, 125) and for n = 1000, we let
(n4, n8, n10, n15) = (250, 250, 250, 250).
Using these values, in case 1 (respectively case 2), the average percentage of zero-in�ation
in the simulated data sets is 25% (respectively 50%). Missingness indicators δi are simu-
lated from a logistic regression model with selection probability ri(α) := P(δi = 1|Si) =
logit−1(α>Si), with Si := (1, Zi, Xi2,Wi4). The regression parameter α is chosen to yield
average missingness proportions in the simulated samples successively equal to 0.2 and 0.4.
Finally, for each combination of the simulation design parameters (sample size, proportions
of zero-in�ation and missing data), we simulate N = 1000 samples and we calculate the IPW
estimate ψ̂n. Simulations are carried out using the statistical software R. We use the package
maxLik (Henningsen and Toomet, 2011) to solve the estimating equation (2.5).

4.2. Results

For each con�guration [sample size × zero-inflation proportion × proportion of

missing data] of the simulation parameters, we calculate the average absolute relative bias
(as a percentage) of the estimates β̂j,n and γ̂k,n over the N simulated samples (for example,

the absolute relative bias of β̂j,n is obtained as N−1
∑N

t=1 |(β̂
(t)
j,n − βj)/βj| × 100, where β̂

(t)
j,n

denotes the IPW estimate of βj in the t-th simulated sample). We also obtain the average
standard error SE (calculated from (3.13)), empirical standard deviation (SD) and root mean
square error (RMSE) for each estimator β̂j,n (j = 1, . . . , 6) and γ̂k,n (k = 1, . . . , 4). Finally,
we provide the empirical coverage probability (CP) of 95%-level con�dence intervals for the
βj and γk. Results are given in Table 1 (case 1, n = 500), Table 2 (case 1, n = 1000),
Table 3 (case 2, n = 500), Table 4 (case 2, n = 1000). For purpose of comparison, we also
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provide results for the MLE that would be obtained if there were no missing covariates. This
estimator solves the score equation Un(ψ) = 0 given by (2.2) (in what follows, we refer this
estimator to as the "full data" - or FD - estimator). The complete-case estimator of ψ can
be obtained by solving the score equation (2.2), based on complete-cases only. However, this
estimator is generally highly biased. For example, in our simulations, its relative biais can
reach up to 200%, resulting in very low coverage probabilities. Therefore, we do not provide
results for this estimate.

From these results, we observe, as expected, that the bias, SE, SD and RMSE of the
IPW estimator decrease as the sample size increases and the proportion of individuals with
missing covariates decreases. Moreover, the bias of the IPW estimator stays moderate and
its empirical coverage probabilities are close to the nominal con�dence level, even when the
sample size is moderate (n = 500). As may also be expected, for a given proportion of missing
data, we observe that the IPW estimator of the βjs (respectively γks) performs better when
the zero-in�ation proportion decreases (respectively increases). The FD estimator obviously
performs better than the IPW estimator, but FD analysis cannot be performed when missing
data are present. Overall, these numerical results indicate the good performance of the IPW
method for estimating a ZIB regression model under missing data.

Finally, in order to assess the quality of the Gaussian approximation stated in Theorem
3.5, we provide normal Q-Q plots of the estimates. See �gures 1 and 2 for n = 500 in case
2 and a fraction of missing data equal to 0.4 and �gures 3 and 4 for n = 1000 in case 2
and a fraction of missing data equal to 0.2 (plots for the other simulated scenarios yield
similar observations and are thus omitted). From these �gures, it appears that the Gaussian
approximation of the distribution of the IPW estimator is reasonably satis�ed, even when
the sample size is moderate and the proportion of individuals with missing covariates is as
high as 0.4.
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β̂n γ̂n
average fraction

of missing data β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n

FD
rel. bias 3.4726 0.2880 0.1150 0.3161 0.5336 0.8380 1.8986 0.9012 1.9091 1.5690
SD 0.1944 0.0611 0.0519 0.0361 0.0575 0.0964 0.1785 0.1509 0.3360 0.1361
SE 0.1979 0.0591 0.0536 0.0370 0.0592 0.0981 0.1854 0.1513 0.3264 0.1372
RMSE 0.2775 0.0850 0.0746 0.0517 0.0827 0.1376 0.2575 0.2138 0.4687 0.1933
CP 0.9629 0.9459 0.9569 0.9609 0.9619 0.9559 0.9609 0.9559 0.9429 0.9599

IPW 0.2
rel. bias 2.7202 0.4861 0.0590 0.4251 0.6387 0.6311 3.6159 0.9854 4.0350 2.9869
SD 0.2103 0.0649 0.0554 0.0386 0.0643 0.1047 0.2135 0.1965 0.4653 0.1865
SE 0.2150 0.0640 0.0582 0.0408 0.0666 0.1057 0.2167 0.1925 0.4466 0.1799
RMSE 0.3008 0.0913 0.0804 0.0563 0.0927 0.1488 0.3048 0.2751 0.6460 0.2594
CP 0.9620 0.9550 0.9610 0.9650 0.9610 0.9570 0.9700 0.9560 0.9520 0.9490

IPW 0.4
rel. bias 0.4867 0.3730 0.7212 0.6061 0.7341 0.8895 3.4735 2.5081 5.9316 3.5603
SD 0.2491 0.0817 0.0664 0.0462 0.0759 0.1234 0.2453 0.2391 0.5275 0.2178
SE 0.2537 0.0802 0.0684 0.0476 0.0760 0.1261 0.2569 0.2450 0.5602 0.2249
RMSE 0.3555 0.1146 0.0954 0.0665 0.1077 0.1765 0.3556 0.3427 0.7716 0.3134
CP 0.9479 0.9550 0.9530 0.9550 0.9479 0.9550 0.9690 0.9700 0.9690 0.9670

Table 1: Simulation results (case 1, n = 500). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean
square error. CP: empirical coverage probability of 95%-level con�dence intervals.
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β̂n γ̂n
average fraction

of missing data β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n

FD
rel. bias 0.6276 0.0786 0.1061 0.2259 0.0748 0.4154 1.1894 0.2426 0.7370 0.2883
SD 0.1346 0.0416 0.0370 0.0242 0.0423 0.0708 0.1279 0.1040 0.2341 0.0954
SE 0.1389 0.0415 0.0376 0.0260 0.0414 0.0690 0.1300 0.1057 0.2270 0.0958
RMSE 0.1933 0.0588 0.0528 0.0356 0.0592 0.0989 0.1824 0.1482 0.3261 0.1352
CP 0.9570 0.9510 0.9570 0.9640 0.9449 0.9479 0.9560 0.9499 0.9540 0.9560

IPW 0.2
rel. bias 0.2160 0.1263 0.1224 0.2970 0.0850 0.3158 1.4117 0.6978 2.5321 0.7454
SD 0.1460 0.0446 0.0399 0.0259 0.0465 0.0771 0.1472 0.1323 0.3032 0.1267
SE 0.1505 0.0448 0.0408 0.0284 0.0475 0.0748 0.1511 0.1357 0.3050 0.1269
RMSE 0.2096 0.0632 0.0570 0.0385 0.0665 0.1074 0.2110 0.1895 0.4308 0.1794
CP 0.9590 0.9450 0.9540 0.9670 0.9500 0.9500 0.9610 0.9600 0.9590 0.9550

IPW 0.4
rel. bias 0.7322 0.3466 0.2252 0.2982 0.5650 0.2990 0.7791 0.9170 3.8227 2.8852
SD 0.1712 0.0537 0.0462 0.0330 0.0512 0.0868 0.1665 0.1647 0.3638 0.1514
SE 0.1774 0.0556 0.0480 0.0334 0.0532 0.0875 0.1728 0.1625 0.3537 0.1490
RMSE 0.2465 0.0774 0.0666 0.0470 0.0741 0.1233 0.2400 0.2314 0.5087 0.2128
CP 0.9620 0.9560 0.9600 0.9520 0.9610 0.9580 0.9590 0.9500 0.9540 0.9440

Table 2: Simulation results (case 1, n = 1000). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean
square error. CP: empirical coverage probability of 95%-level con�dence intervals.
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β̂n γ̂n
average fraction

of missing data β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n

FD
rel. bias 0.8028 0.7069 0.5104 0.7715 0.9714 0.0022 0.0209 0.0103 0.2573 0.6092
SD 0.2427 0.0749 0.0677 0.0461 0.0736 0.1352 0.1711 0.1162 0.2346 0.1118
SE 0.2475 0.0738 0.0675 0.0469 0.0759 0.1410 0.1669 0.1164 0.2293 0.1110
RMSE 0.3466 0.1054 0.0957 0.0660 0.1061 0.1953 0.2389 0.1645 0.3280 0.1575
CP 0.9559 0.9349 0.9529 0.9529 0.9499 0.9549 0.9499 0.9529 0.9449 0.9439

IPW 0.2
rel. bias 1.0135 0.7771 0.5658 0.8772 1.0211 0.1457 1.2474 0.3254 0.2989 0.8908
SD 0.2524 0.0787 0.0705 0.0477 0.0754 0.1386 0.1833 0.1277 0.2522 0.1204
SE 0.2563 0.0771 0.0698 0.0487 0.0788 0.1453 0.1833 0.1289 0.2551 0.1207
RMSE 0.3596 0.1106 0.0992 0.0684 0.1095 0.2007 0.2592 0.1814 0.3586 0.1705
CP 0.9500 0.9310 0.9510 0.9450 0.9550 0.9580 0.9440 0.9600 0.9550 0.9530

IPW 0.4
rel. bias 1.3807 0.9649 0.5492 1.0489 0.9995 0.5640 1.6315 4.0769 2.0604 5.0802
SD 0.2771 0.0872 0.0773 0.0545 0.0938 0.1549 0.2181 0.1845 0.3650 0.1812
SE 0.2888 0.0854 0.0789 0.0559 0.0928 0.1631 0.2182 0.1805 0.3557 0.1778
RMSE 0.4001 0.1226 0.1105 0.0784 0.1323 0.2249 0.3085 0.2586 0.5099 0.2548
CP 0.9640 0.9460 0.9590 0.9550 0.9460 0.9610 0.9510 0.9470 0.9440 0.9540

Table 3: Simulation results (case 2, n = 500). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean
square error. CP: empirical coverage probability of 95%-level con�dence intervals.
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β̂n γ̂n
average fraction

of missing data β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n

FD
rel. bias 0.8391 0.1674 0.0338 0.4053 0.1128 0.0499 1.9813 1.7535 1.1359 0.9103
SD 0.1688 0.0518 0.0461 0.0316 0.0552 0.0969 0.1194 0.0837 0.1668 0.0801
SE 0.1731 0.0514 0.0472 0.0328 0.0528 0.0985 0.1175 0.0818 0.1615 0.0780
RMSE 0.2417 0.0730 0.0660 0.0456 0.0764 0.1382 0.1676 0.1172 0.2323 0.1119
CP 0.9549 0.9529 0.9599 0.9619 0.9379 0.9579 0.9449 0.9339 0.9409 0.9409

IPW 0.2
rel. bias 0.7979 0.1926 0.0279 0.4838 0.1741 0.1785 1.2374 1.6033 1.6918 0.9563
SD 0.1738 0.0534 0.0474 0.0322 0.0566 0.1004 0.1272 0.0911 0.1811 0.0866
SE 0.1814 0.0552 0.0495 0.0343 0.0556 0.1031 0.1272 0.0893 0.1823 0.0858
RMSE 0.2512 0.0768 0.0686 0.0472 0.0793 0.1439 0.1799 0.1277 0.2572 0.1220
CP 0.9570 0.9520 0.9570 0.9630 0.9540 0.9640 0.9550 0.9440 0.9520 0.9490

IPW 0.4
rel. bias 2.6218 0.2938 0.2344 0.5926 0.1376 0.4597 4.6748 3.3595 0.6924 3.6510
SD 0.1964 0.0584 0.0537 0.0374 0.0666 0.1105 0.1536 0.1246 0.2435 0.1308
SE 0.2005 0.0596 0.0547 0.0391 0.0647 0.1133 0.1516 0.1251 0.2482 0.1262
RMSE 0.2807 0.0835 0.0766 0.0542 0.0928 0.1583 0.2161 0.1770 0.3476 0.1824
CP 0.9540 0.9480 0.9570 0.9600 0.9470 0.9560 0.9500 0.9480 0.9540 0.9420

Table 4: Simulation results (case 2, n = 1000). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean
square error. CP: empirical coverage probability of 95%-level con�dence intervals.
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Figure 1: Normal Q-Q plots for β̂1,n, . . . , β̂6,n with n = 500 (case 2) and a fraction of missing data equal to
0.4.

5. Discussion

Zero-in�ated binomial (ZIB) regression is now commonly used for investigating count
data with excess of zeros; see, for example, Gilthorpe et al. (2009), Matranga et al. (2013),
Diallo et al. (2017a). In this paper, we extend the scope of ZIB regression by considering
the situation where some covariates are missing at random. In this setting, we propose an
inverse-probability-weighted-type estimator by assuming that the missingness probabilities
can be modeled parametrically. Consistency and asymptotic normality of the proposed
estimator are established and a consistant variance estimator is constructed. Our simulation
study suggests that the IPW estimator performs well under a wide range of conditions.
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Now, several issues deserve attention. First, the proposed estimator is valid if the para-
metric model for missingness probabilities P(δi = 1|Si) is correctly speci�ed. Misspecifying
this model may lead to a biased IPW estimator. Several solutions to this issue might be inves-
tigated. For example, one may consider semi- or nonparametric estimation of the missingness
probabilities. An alternative approach relies on the so-called augmented IPW method, which
is robust to a misspeci�cation of the selection probabilities. Some additional work is now
needed to investigate the relative merits of these approaches.

Robustness of these various estimation methods to a violation of the MAR assumption
also constitutes a topic of great interest in view of applications.

Another stimulating topic for future work is as follows. In this paper, we consider missing
covariates in the basic ZIB regression model (2.1). The same issue could be investigated in
various generalizations of ZIB regression (such as the random-e�ects ZIB model proposed by
Hall (2000), or semi-parametric ZIB models).

As a conclusion, the present work constitutes a promising �rst step towards the analysis
of zero-in�ated binomial counts with missing data. Further research is now needed to ex-
tend this contribution to more complex ZIB models and to more sophisticated and robust
estimation methods.
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Figure 2: Normal Q-Q plots for γ̂1,n, . . . , γ̂4,n with n = 500 (case 2) and a fraction of missing data equal to
0.4.
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Figure 3: Normal Q-Q plots for β̂1,n, . . . , β̂6,n with n = 1000 (case 2) and a fraction of missing data equal
to 0.2.
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Figure 4: Normal Q-Q plots for γ̂1,n, . . . , γ̂4,n with n = 1000 (case 2) and a fraction of missing data equal to
0.2.
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