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The zero-inated binomial (ZIB) regression model was recently proposed to account for excess zeros in binomial regression. Since then, the model has been applied in various domains, such as dental epidemiology and health economics. In practice, it often arises that some covariates involved in ZIB regression have missing values. Assuming that the missingness probability can be estimated parametrically, we propose an inverse-probability-weighted estimator of the parameters of a ZIB model with missing-at-random covariates. Consistency and asymptotic normality of the proposed estimator are established. A consistent estimator of the asymptotic variance-covariance matrix is also provided. The nite-sample behavior of the estimator is assessed via simulations.

Introduction

Count data with excess zeros arise in many disciplines, such as agriculture, economics, epidemiology, industry, insurance, terrorism study, trac safety research. . . Excess of zeros refers to the situation where the number of observed zeros is larger than predicted by standard models for count data. Zero-inated regression models, which are obtained by mixing a degenerate distribution at zero with a standard count regression model (such as Poisson, negative binomial or binomial) have been developed to analyze such data. For example, the zero-inated Poisson (ZIP) regression model was proposed by [START_REF] Lambert | Zero-inated Poisson regression, with an application to defects in manufacturing[END_REF] and further developed by [START_REF] Dietz | On estimation of the Poisson parameter in zero-modied Poisson models[END_REF], Lim et al. (2014) and [START_REF] Monod | Random eects modeling and the zero-inated Poisson distribution[END_REF], among many others. Recent variants of ZIP regression include random-eects ZIP models [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF][START_REF] Min | Random eect models for repeated measures of zero-inated count data[END_REF], semi-varying coecient ZIP models [START_REF] Zhao | Semi varying coecient zero-inated generalized Poisson regression model[END_REF] and semiparametric ZIP models [START_REF] Lam | Semiparametric analysis of zero-inated count data[END_REF][START_REF] Feng | Semiparametric analysis of longitudinal zero-inated count data[END_REF]. The zero-inated negative binomial (ZINB) regression model was proposed by [START_REF] Ridout | A score test for testing a zero-inated Poisson regression model against zero-inated negative binomial alternatives[END_REF], see also [START_REF] Moghimbeigi | Multilevel zeroinated negative binomial regression modeling for over-dispersed count data with extra zeros[END_REF], [START_REF] Mwalili | The zero-inated negative binomial regression model with correction for misclassication: an example in caries research[END_REF], [START_REF] Garay | On estimation and inuence diagnostics for zero-inated negative binomial regression models[END_REF]. When counts have an upper bound, ZIP and ZINB regression models are no longer appropriate. [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF] and [START_REF] Vieira | Zero-inated proportion data models applied to a biological control assay[END_REF] thus introduced the zero-inated binomial (ZIB) regression model, see also [START_REF] Diop | Simulation-based inference in a zero-inated Bernoulli regression model[END_REF]. ZIB regression was recently used in dental caries epidemiology [START_REF] Gilthorpe | Modelling count data with excessive zeros: The need for class prediction in zero-inated models and the issue of data generation in choosing between zero-inated and generic mixture models for dental caries data[END_REF][START_REF] Matranga | Can bayesian models play a role in dental caries epidemiology? Evidence from an application to the BELCAP data set[END_REF] and in health economics (Diallo et al., 2017a). A zero-inated model for multinomial counts (or ZIM model) was recently proposed by [START_REF] Diallo | Analysis of multinomial counts with joint zero-ination, with an application to health economics[END_REF].

In addition, missing data arise in a wide variety of disciplines. In the past decades, there has been an enormous literature on estimation in regression models with missing covariates, including missing covariates in linear models, generalized linear models, generalized linear mixed models, survival models. . . Despite this interest, only a few papers have focused on missing covariates in zero-inated regression models. [START_REF] Chen | Model selection for zero-inated regression with missing covariates[END_REF] develop a model selection criterion for zero-inated regression models with missing covariates. [START_REF] Lukusa | Semiparametric estimation of a zero-inated Poisson regression model with missing covariates[END_REF] consider estimation in ZIP regression with missing-at-random covariates. Motivated by this work, we investigate estimation in ZIB regression when some covariate values are missing for some of the sample individuals.

One simple approach to estimation with missing data is the so-called complete-case method, which consists in removing all incomplete cases from the statistical analysis. However, this method usually produces asymptotically biased estimators (unless data are missing completely at random, which is rarely the case in practice). Therefore, in this paper, we propose to rely on the alternative and more sophisticated inverse-probability-weighted approach, which has not been investigated yet in ZIB regression with missing covariates. Inverse-probability-weighting (IPW) is a general estimation method under missing data. It was originally proposed by [START_REF] Horvitz | A generalization of sampling without replacement from a nite universe[END_REF] and further developed by [START_REF] Zhao | Designs and analysis of two-stage studies[END_REF]. The basic idea of IPW is to correct for missing data by giving extra weight to subjects with fully observed data. This idea has already proved useful in a variety of models, such as the logistic regression model [START_REF] Hsieh | Logistic regression analysis of randomized response data with missing covariates[END_REF], proportional hazards regression model [START_REF] Qi | Weighted estimators for proportional hazards regression with missing covariates[END_REF] and single-index model (Li and Hu, 2016), for example.

The rest of the paper is organized as follows. In Section 2, we provide a brief review of ZIB regression, including model formulation and maximum likelihood estimation without missing data. Then, we introduce a IPW estimator of the parameters of a ZIB regression model with missing-at-random covariates. In Section 3, we establish consistency and asymptotic normality of the proposed estimator. A consistent estimator of its asymptotic variancecovariance matrix is provided. Section 4 reports results of a simulation study. A discussion and some perspectives are provided in Section 5.

ZIB regression with missing covariates

We rst provide a brief review of ZIB regression and maximum likelihood estimation in ZIB model with complete data.

A brief review of ZIB regression

Let Z i denote the random count of interest for individual i, i = 1, . . . , n. Individuals are assumed to be independent. The ZIB distribution is a mixture of a degenerate distribution at zero and a binomial distribution. It is given as follows:

Z i ∼ 0
with probability p i , B(m i , π i ) with probability 1 -p i ,

(2.1)

where p i is a mixing probability for the accommodation of extra zeros and B(m, π) denotes the binomial distribution with size m and event probability π. The ZIB distribution reduces to a standard binomial distribution when p i = 0.

In ZIB regression, the mixing probabilities p i and event probabilities π i are usually modeled via logistic regressions: logit(p i ) = γ W i and logit(π i ) = β X i , where X i = (1, X i2 , . . . , X ip ) and W i = (1, W i2 , . . . , W iq ) are random vectors of predictors or covariates (both categorical and continuous covariates are allowed) and denotes the transpose operator. Vectors X i and W i may either have some common components or be distinct (note that some caution is required in the special case where m i = 1 for all i = 1, . . . , n, see [START_REF] Diop | Maximum likelihood estimation in the logistic regression model with a cure fraction[END_REF]. Here, β and γ are respectively p and q-dimensional vectors of unknown regression parameters to be estimated.

Let {(Z i , X i , W i ), i = 1, . . . , n} be a sample of independent observations and ψ = (β , γ ) denote the whole unknown k-dimensional (k := p + q) parameter. The loglikelihood function n (ψ) based on the observed sample is:

n (ψ) = n i=1 J i log e γ W i + (1 + e β X i ) -m i -log 1 + e γ W i +(1 -J i ) Z i β X i -m i log 1 + e β X i , := n i=1 i (ψ),
where J i := 1 {Z i =0} (see [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF]. The maximum likelihood estimator (MLE) ψn := ( β n , γ n ) of ψ is obtained by solving the score equation U n (ψ) = 0, where

U n (ψ) = 1 √ n ∂ n (ψ) ∂ψ = 1 √ n n i=1 ∂ i (ψ) ∂ψ = 1 √ n n i=1 ˙ i (ψ).
(2.2)

This estimating equation can be solved by using the expectation-maximization (EM) algorithm [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF] or by a direct maximization of n (ψ) (Diallo et al., 2017a). The MLE ψn is a consistent and asymptotically normal estimator of the true ψ, see Diallo et al. (2017a).

The next section describes the problem and the proposed estimator.

ZIB regression with missing covariates: the proposed estimator

In this work, we assume that some components of X i may be missing for some individuals. Decompose X i as X i = (X (obs), i , X (miss), i

) , where X (obs) i and X (miss) i contain the observed and missing components of X i respectively (we assume that the same components of X i may be missing for all individuals). Let δ i be a dummy variable indicating whether X i is fully observed (δ i = 1) or not (δ i = 0). Finally, let S i := (Z i , X (obs), i , W i ) denote the vector of variables that are always observed on each individual. Then {Z i , X i , W i } = {S i , X (miss) i }.

Let d denote the dimension of S i .

We assume that X (miss) i is missing at random (MAR, see [START_REF] Rubin | Inference and missing data[END_REF]: the probability that some components of X i are missing depends only on the observed variables. The MAR assumption can be expressed in terms of the missingness (or selection) probability

P(δ i = 1|S i , X (miss) i
), as:

P(δ i = 1|S i , X (miss) i ) = P(δ i = 1|S i ).
Under missing data, we propose to estimate ψ in ZIB model (2.1) by using the IPW method. Originally proposed by [START_REF] Horvitz | A generalization of sampling without replacement from a nite universe[END_REF], IPW has recently been used for estimating various regression models with missing or mismeasured covariates. Basic idea is to inversely weight the observed data by the selection probability P(δ i = 1|S i ), so as to reduce the bias due to incomplete cases deletion.

Recall that without missing data, ψ in model (2.1) can be estimated by solving the score equation (2.2). Under missing data, we propose to estimate ψ by solving the following estimating equation, derived from (2.2) by weighting individuals with fully observed data by the inverse of their selection probability:

1 √ n n i=1 δ i P(δ i = 1|S i ) ˙ i (ψ) = 0.
(2.3)

In practice, selection probabilities P(δ i = 1|S i ) are usually unknown and need to be estimated. Several estimation procedures can be used. In this work, we consider the case where the P(δ i = 1|S i ), i = 1, . . . , n, can be estimated parametrically. In this case, logistic regression is the most frequently used option. Let r i (α) := P(δ i = 1|S i ) be dened as:

r i (α) = exp(α S i ) 1 + exp(α S i ) ,
(2.4)

where α is a d-dimensional vector of unknown regression parameters. We need to estimate α before solving the weighted score equation (2.3). Maximum likelihood estimation can be used for that purpose. The MLE αn = arg max α n i=1 {r i (α) δ i (1 -r i (α)) 1-δ i } in model (2.4) is known to be consistent and asymptotically Gaussian [START_REF] Gouriéroux | Asymptotic properties of the maximum likelihood estimator in dichotomous logit models[END_REF]. Once αn is available, one can estimate ψ by solving the estimated weighted score equation U w,n (ψ, αn ) = 0, where

U w,n (ψ, αn ) = 1 √ n n i=1 δ i r i (α n ) ˙ i (ψ) = 0.
(2.5)

In what follows, the resulting estimator of ψ will be denoted by ψn . Asymptotic properties of this estimator are established in Section 3. First, we need to introduce some further notations.

Some further notations

Dene rst the (k × d), (k × k) and (d × d) matrices

B(ψ, α) = lim n→∞ - 1 n n i=1 E δ i 1 -r i (α) r i (α) ˙ i (ψ)S i , J(ψ, α) = lim n→∞ 1 n n i=1 E δ i ˙ i (ψ) ˙ i (ψ)
r 2 i (α)
, and

Σ(α) = E S i S i r i (α)(1 -r i (α)) .
(2.6)

For every i = 1, . . . , n, let U i = (U i1 , . . . , U ik ) denote the k-dimensional column vector

U i := B(ψ 0 , α 0 )Σ(α 0 ) -1 S i . Then, dene the (p × n) , (q × n) and (k × n) matrices X =      1 1 • • • 1 X 12 X 22 • • • X n2 . . . . . . . . . . . . X 1p X 2p • • • X np      , W =      1 1 • • • 1 W 12 W 22 • • • W n2 . . . . . . . . . . . . W 1q W 2q • • • W nq     
, and

U =      U 11 U 21 • • • U n1 U 12 U 22 • • • U n2 . . . . . . . . . . . . U 1k U 2k • • • U nk      = U 1 U 2 ,
where U 1 is the (p × n) sub-matrix of U consisting of the rst p rows of U and U 2 is the (q × n) sub-matrix of U consisting of the last q rows of U. Let V be the (k × 3n) block-matrix dened as

V = X 0 p,n U 1 0 q,n W U 2 ,
and C(ψ, α) = (C j (ψ, α)) 1≤j≤3n be the 3n-dimensional column vector dened by

C(ψ, α) = δ 1 r 1 (α) A 1 (ψ), . . . , δ n r n (α) A n (ψ), δ 1 r 1 (α) B 1 (ψ), . . . , δ n r n (α) B n (ψ), δ 1 -r 1 (α), . . . , δ n -r n (α) ,
where 0 a,b denotes the (a × b) matrix whose components are all equal to zero and for every

i = 1, . . . , n, A i (ψ) = -J i m i e β X i e γ W i (h i (β)) m i +1 + h i (β) + (1 -J i ) Z i - m i e β X i h i (β)
(2.7) and

B i (ψ) = J i e γ W i (h i (β)) m i e γ W i (h i (β)) m i + 1 - e γ W i 1 + e γ W i ,
(2.8)

with h i (β) := 1 + e β X i . If A = (A ij ) 1≤i≤a,1≤j≤b is a (a × b) matrix, A •j will denote its j-th column (j = 1, . . . , b) that is, A •j = (A 1j , . . . , A aj ) .
Finally, under model (2.4), it is known that the MLE αn veries

√ n(α n -α 0 ) = Σ(α 0 ) -1 M n (α 0 ) + o P (1),
(2.9)

where Σ(α 0 ) is given by (2.6) and

M n (α) = n -1/2 n i=1 S i (δ i -r i (α)).
In the next section, we establish rigorously the consistency and asymptotic normality of the proposed IPW-MLE ψn .

Asymptotic results

We rst state some regularity conditions that will be needed for proving our asymptotic results.

Regularity conditions and consistency

C1 Covariates are bounded, that is, there exists a nite positive constant c 1 such that |X ij | ≤ c 1 and |W i | ≤ c 1 for every i = 1, . . . , n, j = 2, . . . , p and = 2, . . . , q. For every i = 1, . . . , n, j = 2, . . . , p and = 2, . . . , q, var[X ij ] > 0 and var[W i ] > 0.

For every i = 1, . . . , n, the X ij (j = 1, . . . , p) are linearly independent and the W i ( = 1, . . . , q) are linearly independent.

C2 The true parameter value ψ 0 := (β 0 , γ 0 ) lies in the interior of some known compact set of R p × R q . The true α 0 belongs to the interior of some known compact set of

R d . C3 As n → ∞, n -1 n i=1 E δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ∂ψ
converges to some invertible matrix A(ψ, α 0 ) and the smallest eigenvalue λ n of VV tends to +∞.

C4 For every

i = 1, . . . , n, we have m i ∈ {2, . . . , M } for some nite integer value M .
In what follows, the space R k of k-dimensional (column) vectors will be provided with the Euclidean norm • 2 and the space of (k × k) real matrices will be provided with the norm |||A||| 2 := max x 2 =1 Ax 2 (for notations simplicity, we will use • for both norms). We rst prove consistency of ψn :

Proof of Theorem 3.1. To prove consistency of ψn , we verify the conditions of the inverse function theorem of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF]. These conditions are proved in a series of technical lemmas. Lemma 3.2. ∂U w,n (ψ, αn )/∂ψ exists and is continuous in an open neighborhood of ψ 0 .

Proof of Lemma 3.2. The i (ψ), i = 1, . . . , n are twice dierentiable with respect to ψ.

Continuity of

∂ 2 i (ψ)
∂ψ∂ψ is straightforward and is omitted.

Lemma 3.3. As n → ∞, n -1/2 U w,n (ψ 0 , αn ) converges in probability to 0.

Proof of Lemma 3.3. Decompose n -1/2 U w,n (ψ 0 , αn ) as:

n -1/2 U w,n (ψ 0 , αn ) = n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) + n -1/2 U w,n (ψ 0 , α 0 ), (3.10)
and consider the rst term on the right-hand side of this decomposition. We have:

n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) = 1 n n i=1 δ i 1 r i (α n ) - 1 r i (α 0 ) ˙ i (ψ 0 ), = 1 n n i=1 δ i 1 e α n S i - 1 e α 0 S i ˙ i (ψ 0 ).
By a Taylor expansion of 1/e α n S i around α 0 ,

n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) = 1 n n i=1 δ i (α 0 -αn ) S i 1 e α * S i ˙ i (ψ 0 ),
where α * is on the line segment between αn and α 0 . Then, we have:

n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) ≤ 1 n n i=1 δ i (α 0 -αn ) S i 1 e α * S i ˙ i (ψ 0 ) , ≤ 1 n n i=1 δ i (α 0 -αn ) S i 1 e α * S i ˙ i (ψ 0 ) , ≤ 1 n n i=1 α 0 -αn S i 1 e α * S i ˙ i (ψ 0 ) ,
where the second to third line comes from Cauchy-Schwarz inequality. Now, straightforward calculations show that

˙ i (ψ 0 ) = (X i , 0 q ) • A i (ψ 0 ) + (0 p , W i ) • B i (ψ 0 ),
where 0 p := 0 p,1 is the p-dimensional column vector having all its components equal to 0 and A i (ψ 0 ), B i (ψ 0 ) are given by (2.7) and (2.8) respectively. Thus we have:

˙ i (ψ 0 ) ≤ (X i , 0 q ) • |A i (ψ 0 )| + (0 p , W i ) • |B i (ψ 0 )|.
Under conditions C1, C2 and C4, it is easy to see that |A i (ψ 0 )| and |B i (ψ 0 )| are bounded above. Thus, there exists a nite constant c 2 such that n -1 n i=1 ˙ i (ψ 0 ) ≤ c 2 . Note that S i and 1/e α * S i are also bounded, by conditions C1 and C2. Therefore, there exists some nite constant c 3 such that n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) ≤ c 3 α 0 -αn . Finally, the convergence of αn to α 0 imply that n -1/2 U w,n (ψ 0 , αn ) -n -1/2 U w,n (ψ 0 , α 0 ) converges in probability to 0 as n → ∞. Next, consider the term n -1/2 U w,n (ψ 0 , α 0 ) in decomposition (3.10). Some simple algebra yields:

n -1/2 U w,n (ψ 0 , α 0 ) =           1 n n i=1 δ i r i (α 0 ) X i1 A i (ψ 0 ) . . . 1 n n i=1 δ i r i (α 0 ) X ip A i (ψ 0 ) 1 n n i=1 δ i r i (α 0 ) W i1 B i (ψ 0 ) . . . 1 n n i=1 δ i r i (α 0 ) W iq B i (ψ 0 )           .
We prove that n -1/2 U w,n (ψ 0 , α 0 ) converges in probability to 0 as n → ∞. To see this, note rst that for every i = 1, . . . , n and = 1, . . . , q:

E δ i r i (α 0 ) W i B i (ψ 0 ) = E E δ i r i (α 0 ) W i B i (ψ 0 ) S i , = E 1 r i (α 0 ) W i E [δ i B i (ψ 0 )| S i ] . Given S i , B i (ψ 0 ) is a function of X (miss) i
only. Thus, by the MAR assumption, B i (ψ 0 ) and δ i are independent given S i . It follows that:

E δ i r i (α 0 ) W i B i (ψ 0 ) = E 1 r i (α 0 ) W i E [δ i | S i ] E [B i (ψ 0 )| S i ] , = E [W i E [B i (ψ 0 )| S i ]] , = E [W i B i (ψ 0 )] . Diallo et al. (2017a) proved that E [W i B i (ψ 0 )] = 0 for every i = 1, . . . , n and = 1, . . . , q.
Thus, E δ i r i (α 0 ) W i B i (ψ 0 ) = 0 for every i = 1, . . . , n and = 1, . . . , q. Similarly, for every i = 1, . . . , n and j = 1, . . . , p, we have:

E δ i r i (α 0 ) X ij A i (ψ 0 ) = E E δ i r i (α 0 ) X ij A i (ψ 0 ) S i .
Two cases should be considered, namely:

i) X ij is a component of X (miss) i and ii) X ij is a component of X (obs) i
. In case i), we have: miss) i only. Thus, by the MAR assumption, et al. (2017a) proved that E [X ij A i (ψ 0 )] = 0 for every i = 1, . . . , n and j = 1, . . . , p.

E E δ i r i (α 0 ) X ij A i (ψ 0 ) S i = E 1 r i (α 0 ) E [δ i X ij A i (ψ 0 )| S i ] . Given S i , X ij A i (ψ 0 ) is a function of X (
E 1 r i (α 0 ) E [δ i X ij A i (ψ 0 )| S i ] = E 1 r i (α 0 ) E [ δ i | S i ] E [X ij A i (ψ 0 )| S i ] , = E [X ij A i (ψ 0 )] .
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Therefore,

E δ i r i (α 0 ) X ij A i (ψ 0 ) = 0. In case ii), E E δ i r i (α 0 ) X ij A i (ψ 0 ) S i = E 1 r i (α 0 ) X ij E [δ i A i (ψ 0 )| S i ] , = E 1 r i (α 0 ) X ij E [δ i | S i ] E [A i (ψ 0 )| S i ] , = E [X ij A i (ψ 0 )] , = 0,
where the rst to second line comes from the fact that under MAR, A i (ψ 0 ) and δ i are independent given S i . Finally, in case ii), we also have:

E δ i r i (α 0 ) X ij A i (ψ 0 ) = 0.
Now, for every i = 1, . . . , n and = 1, . . . , q, we have:

var δ i r i (α 0 ) W i B i (ψ 0 ) ≤ E δ i r 2 i (α 0 ) W 2 i B 2 i (ψ 0 ) .
By C1, C2, C4, there exists nite constants c 4 and

c 5 such that 1/r 2 i (α 0 ) ≤ c 4 and B 2 i (ψ 0 ) ≤ c 5
for every i = 1, . . . , n. Therefore, var

δ i r i (α 0 ) W i B i (ψ 0 ) ≤ c 6 := c 2 1 c 4 c 5 .
It follows that

∞ i=1 var δ i r i (α 0 ) W i B i (ψ 0 ) i 2 ≤ c 6 ∞ i=1 1 i 2 < ∞.
One can easily show that a similar result holds for var δ i r i (α 0 ) X ij A i (ψ 0 ) . By Kolmogorov's law of large numbers (see for example [START_REF] Jiang | Large Sample Techniques for Statistics[END_REF], Theorem 6.7),

1 n n i=1 δ i r i (α 0 ) W i B i (ψ 0 ) -E δ i r i (α 0 ) W i B i (ψ 0 ) = 1 n n i=1 δ i r i (α 0 ) W i B i (ψ 0 ), = 1, . . . , q and 1 n n i=1 δ i r i (α 0 ) X ij A i (ψ 0 ) -E δ i r i (α 0 ) X ij A i (ψ 0 ) = 1 n n i=1 δ i r i (α 0 ) X ij A i (ψ 0 ), j = 1, . . . , p
converge in probability to 0 as n → ∞ and thus, n -1/2 U w,n (ψ 0 , α 0 ) converges in probability to 0. This implies that n -1/2 U w,n (ψ 0 , αn ) converges to 0, which concludes the proof.

Lemma 3.4. As n → ∞, n -1/2 ∂U w,n (ψ, αn )/∂ψ converges in probability to a xed function A(ψ, α 0 ), uniformly in an open neighborhood of ψ 0 .

Proof of Lemma 3.4. Let U w,n (ψ, α) := n -1/2 ∂U w,n (ψ, α)/∂ψ and V ψ 0 be an open neighborhood of ψ 0 . Let ψ ∈ V ψ 0 . Using similar arguments as in proof of Lemma 3.3, we have:

U w,n (ψ, αn ) -U w,n (ψ, α 0 ) ≤ 1 n n i=1 α 0 -αn S i 1 e α * S i ¨ i (ψ) ,
where α * is on the line segment between αn and α 0 . From this, one easily proves that U w,n (ψ, αn ) -U w,n (ψ, α 0 ) converges in probability to 0 as n → ∞. Details are omitted. Now, consider the ( , j)-th element of U w,n (ψ, α 0 ), namely:

U w,n (ψ, α 0 ) ( ,j) = 1 n n i=1 δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j .
We have:

U w,n (ψ, α 0 ) ( ,j) = 1 n n i=1 δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j -E δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j + 1 n n i=1 E δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j . Now, var δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j ≤ E δ i r 2 i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j 2 , ≤ c 4 E ∂ 2 i (ψ) ∂ψ ∂ψ j 2 .
We prove that var δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j is bounded. Some tedious albeit easy calculations show that ∂ 2 i (ψ) ∂ψ ∂ψ j is the ( , j)-th element of the

(k × k) matrix (-V i U i (ψ)V i )
, where V i is the (k × 2) matrix dened as

V i = X i 0 p 0 q W i and U i (ψ) = U i,1 (ψ) U i,2 (ψ) U i,2 (ψ) U i,3 (ψ)
is the (2 × 2) symmetric matrix dened by

U i,1 (ψ) = J i m i e β X i (k i (ψ)) 2 k i (ψ) -e β X i e γ W i (m i + 1)(h i (β)) m i + 1 + m i (1 -J i )e β X i (h i (β)) 2 , U i,2 (ψ) = - J i m i e β X i +γ W i (h i (β)) m i +1 (k i (ψ)) 2 , U i,3 (ψ) = J i e γ W i (h i (β)) m i +1 (k i (ψ)) 2 e γ W i (h i (β)) m i +1 -k i (ψ) + e γ W i 1 + e γ W i 2 , with k i (ψ) := e γ W i (h i (β)) m i +1 + h i (β), i = 1, . . . , n.
Using these notations, it is easy to see that

∂ 2 i (ψ) ∂ψ ∂ψ j = -V i,( ,1) U i,1 (ψ) + V i,( ,2) U i,2 (ψ) V i,(j,1) -V i,( ,1) U i,2 (ψ) + V i,( ,2) U i,3 (ψ) V i,(j,2) ,
(3.11) where V i,(a,b) denotes the (a, b)-th element of matrix V i . For a given row ( = 1, . . . , k), exactly one of V i,( ,1) and V i,( ,2) must be equal to 0 (this is straightforward from the expression of V i ). Suppose for example that V i,( ,1) = 0 and V i,(j,2) = 0 (other combinations of null and non-null values among (V i,( ,1) , V i,( ,2) ) and (V i,(j,1) , V i,(j,2) ) can be treated similarly). Then (3.11) reduces to:

∂ 2 i (ψ) ∂ψ ∂ψ j = -V i,( ,2) U i,2 (ψ)V i,(j,1) .
Let M X := max β,X e β X and M W := max γ,W e γ W . Under conditions C1, C2 and C4, we have:

|U i,2 (ψ)| ≤ M * := M • M X • M W • (1 + M X ) M +1 < ∞, which implies E ∂ 2 i (ψ) ∂ψ ∂ψ j 2 ≤ c 4 1 M * 2 ,
and nally, var

δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j ≤ c 4 c 4 1 M * 2 < ∞.
It follows that

∞ i=1 var δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j i 2 ≤ c 4 c 4 1 M * 2 ∞ i=1 1 i 2 < ∞.
Therefore, Kolmogorov's law of large numbers implies that

1 n n i=1 δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j -E δ i r i (α 0 ) ∂ 2 i (ψ) ∂ψ ∂ψ j
converges in probability to 0 as n → ∞ and by condition C3, ( U w,n (ψ, α 0 )) ( ,j) converges in probability to the ( , j)-th element of the matrix A(ψ, α 0 ). Finally, U w,n (ψ, αn ) converges in probability to A(ψ, α 0 ). Under conditions C1, C2 and C4, the derivative of U w,n (ψ, αn ) with respect to ψ is bounded, for every n. Therefore, the sequence ( U w,n (ψ, αn )) n is equicontinuous. It follows that the convergence of U w,n (ψ, αn ) to A(ψ, α 0 ) is uniform on V ψ 0 .

Having now veried the conditions of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF] inverse function theorem, we conclude that ψn converges in probability to ψ 0 .

Asymptotic normality

Our second main result asserts that the IPW-MLE ψn is asymptotically Gaussian.

Theorem 3.5. Assume that conditions C1-C4 hold. Then √ n( ψn -ψ 0 ) is asymptotically normally distributed with mean zero and covariance matrix ∆, where

∆ := A(ψ 0 , α 0 ) -1 {J(ψ 0 , α 0 ) -B(ψ 0 , α 0 )Σ(α 0 ) -1 B(ψ 0 , α 0 ) } A(ψ 0 , α 0 ) -1 .
Proof of Theorem 3.5. A Taylor series expansion of U w,n ( ψn , αn ) at (ψ 0 , α 0 ) yields

0 = U w,n ( ψn , αn ) = U w,n (ψ 0 , α 0 ) + ∂U w,n (ψ 0 , α 0 ) ∂ψ ( ψn -ψ 0 ) + ∂U w,n (ψ 0 , α 0 ) ∂α (α n -α 0 ) + o P (1).
Let Ǔw,n (ψ, α) := n -1/2 ∂U w,n (ψ, α)/∂α . Then we have:

0 = U w,n (ψ 0 , α 0 ) + U w,n (ψ 0 , α 0 ) √ n( ψn -ψ 0 ) + Ǔw,n (ψ 0 , α 0 ) √ n(α n -α 0 ) + o P (1). (3.12)
Now, straightforward calculations yield

Ǔw,n (ψ, α) = - 1 n n i=1 δ i 1 -r i (α) r i (α) ˙ i (ψ)S i ,
and it can be proved that Ǔw,n (ψ 0 , α 0 ) converges in probability to B(ψ 0 , α 0 ) (arguments are similar to those in proof of Lemma 3.4 and are thus omitted). Combining this with (2.9), we can re-express (3.12) as:

and it follows that:

√ n( ψn -ψ 0 ) = -U w,n (ψ 0 , α 0 ) -1 U w,n (ψ 0 , α 0 ) + B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 ) + o P (1).
Using notations introduced in Section 2.3, we nally obtain:

√ n( ψn -ψ 0 ) = -U w,n (ψ 0 , α 0 ) -1 n -1/2 VC(ψ 0 , α 0 ) + o P (1), = -U w,n (ψ 0 , α 0 ) -1 3n j=1 V •j C j,n (ψ 0 , α 0 ) + o P (1), where C j,n (ψ 0 , α 0 ) = n -1/2 C j (ψ 0 , α 0 ). Let C 2 n = var (U w,n (ψ 0 , α 0 ) + B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 )).
Then, by [START_REF] Eicker | A multivariate central limit theorem for random linear vector forms[END_REF], the random linear form C -1 n 3n j=1 V •j C j,n (ψ 0 , α 0 ) converges in distribution to the k-dimensional standard Gaussian distribution if the following conditions are satised: a)

max 1≤j≤3n V •j (VV ) -1 V •j → 0 as n → ∞, b) sup 1≤j≤3n E[C 2 j,n (ψ 0 , α 0 )1 {|C j,n (ψ 0 ,α 0 )|>c} ] → 0 as c → ∞, c) inf 1≤j≤3n E[C 2 j,n (ψ 0 , α 0 )] > 0. Note rst that 0 < max 1≤j≤3n V •j (VV ) -1 V •j ≤ max 1≤j≤3n V •j 2 (VV ) -1 = max 1≤j≤3n V •j 2 /λ n .
Since V •j is bounded, condition C3 implies that condition a) is satised. Condition b) follows by noting that C j,n (ψ 0 , α 0 ) (for j = 1, . . . , 3n) are bounded under C1, C2, C4. Finally, under C1, C2 and C4, we have E[C 2 j,n (ψ 0 , α 0 )] > 0 for every j = 1, . . . , 3n. Moreover,

C 2 n = var (U w,n (ψ 0 , α 0 )) + var B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 ) +2cov U w,n (ψ 0 , α 0 ), B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 ) .

Straightforward calculations yield: var

(U w,n (ψ 0 , α 0 )) = 1 n n i=1 E δ i ˙ i (ψ 0 ) ˙ i (ψ 0 ) r 2 i (α 0 ) , var (M n (α 0 )) = Σ(α 0 ) and cov U w,n (ψ 0 , α 0 ), B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 ) = 1 n n i=1 E ˙ i (ψ 0 )δ i (1 -r i (α 0 )) r i (α 0 ) S i Σ(α 0 ) -1 B(ψ 0 , α 0 ) . Hence, C 2 n converges to J(ψ 0 , α 0 )-B(ψ 0 , α 0 )Σ(α 0 ) -1 B(ψ 0 , α 0 ) . It follows that 3n j=1 V •j C j,n (ψ 0 , α 0 )
converges in distribution to a k-dimensional Gaussian vector with mean zero and variance J(ψ 0 , α 0 ) -B(ψ 0 , α 0 )Σ(α 0 ) -1 B(ψ 0 , α 0 ) . Finally, using Lemma 3.4, condition C3 and Slutsky's theorem, √ n( ψn -ψ 0 ) converges in distribution to a mean-zero Gaussian vector with variance ∆, where ∆ is dened in Theorem 3.5.

Remark. A consistent estimator of ∆ is given by

∆n := A n ( ψn , αn ) -1 {J n ( ψn , αn ) -B n ( ψn , αn )Σ n (α n ) -1 B n ( ψn , αn ) } A n ( ψn , αn ) -1 (3.13)
where

A n (ψ, α) = 1 n n i=1 δ i r i (α) ∂ 2 i (ψ) ∂ψ∂ψ , B n (ψ, α) = - 1 n n i=1 δ i 1 -r i (α) r i (α) ˙ i (ψ)S i , J n (ψ, α) = 1 n n i=1 δ i ˙ i (ψ) ˙ i (ψ) r 2 i (α) , Σ n (α) = 1 n n i=1 S i S i r i (α)(1 -r i (α)).
The proof proceeds along the same lines as proof of Lemma 3.4 and is therefore omitted.

Simulation study

In this section, we investigate the nite-sample performances of the IPW estimator under various conditions.

Simulation design

The following ZIB regression model is used to simulate data:

logit(π i ) = β 1 X i1 + β 2 X i2 + β 3 X i3 + β 4 X i4 + β 5 X i5 + β 6 X i6 and logit(p i ) = γ 1 W i1 + γ 2 W i2 + γ 3 W i3 + γ 4 W i4 ,
where X i1 = W i1 = 1 and the X i2 , . . . , X i6 and W i4 are independently drawn from normal N (0, 1), uniform U(2, 5), normal N (1, 1.5), exponential E(1), binomial B(1, 0.3) and normal N (-1, 1) distributions respectively. Linear predictors in logit(π i ) and logit(p i ) are allowed to share common terms by letting W i2 = X i2 and W i3 = X i6 . The regression parameter β is chosen as β = (-0.3, 1.2, 0.5, -0.75, -1, 0.8) . The regression parameter γ is chosen as: case 1: γ = (-0.55, -0.7, -1, 0.45) case 2: γ = (0.25, -0.4, 0.8, 0.45)

We consider the following sample sizes, n = 500, 1000. The numbers m i are allowed to vary across subjects, with m i ∈ {4, 8, 10, 15}. Let n j = card{i : m i = j}, for j = 4, 8, 10, 15.

For n = 500, we let (n 4 , n 8 , n 10 , n 15 ) = (125,125,125,125) and for n = 1000, we let 250,250,250,250).

(n 4 , n 8 , n 10 , n 15 ) = (
Using these values, in case 1 (respectively case 2), the average percentage of zero-ination in the simulated data sets is 25% (respectively 50%). Missingness indicators δ i are simulated from a logistic regression model with selection probability r i (α) := P(δ i = 1|S i ) = logit -1 (α S i ), with S i := (1, Z i , X i2 , W i4 ). The regression parameter α is chosen to yield average missingness proportions in the simulated samples successively equal to 0.2 and 0.4. Finally, for each combination of the simulation design parameters (sample size, proportions of zero-ination and missing data), we simulate N = 1000 samples and we calculate the IPW estimate ψn . Simulations are carried out using the statistical software R. We use the package maxLik [START_REF] Henningsen | maxLik: A package for maximum likelihood estimation in R[END_REF] to solve the estimating equation (2.5).

Results

For each conguration [sample size × zero-inflation proportion × proportion of missing data] of the simulation parameters, we calculate the average absolute relative bias (as a percentage) of the estimates βj,n and γk,n over the N simulated samples (for example, the absolute relative bias of βj,n is obtained as

N -1 N t=1 |( β(t) j,n -β j )/β j | × 100, where β(t) j,n
denotes the IPW estimate of β j in the t-th simulated sample). We also obtain the average standard error SE (calculated from (3.13)), empirical standard deviation (SD) and root mean square error (RMSE) for each estimator βj,n (j = 1, . . . , 6) and γk,n (k = 1, . . . , 4). Finally, we provide the empirical coverage probability (CP) of 95%-level condence intervals for the β j and γ k . Results are given in Table 1 (case 1, n = 500), Table 2 (case 1, n = 1000), Table 3 (case 2, n = 500), Table 4 (case 2, n = 1000). For purpose of comparison, we also provide results for the MLE that would be obtained if there were no missing covariates. This estimator solves the score equation U n (ψ) = 0 given by (2.2) (in what follows, we refer this estimator to as the "full data" -or FD -estimator). The complete-case estimator of ψ can be obtained by solving the score equation (2.2), based on complete-cases only. However, this estimator is generally highly biased. For example, in our simulations, its relative biais can reach up to 200%, resulting in very low coverage probabilities. Therefore, we do not provide results for this estimate.

From these results, we observe, as expected, that the bias, SE, SD and RMSE of the IPW estimator decrease as the sample size increases and the proportion of individuals with missing covariates decreases. Moreover, the bias of the IPW estimator stays moderate and its empirical coverage probabilities are close to the nominal condence level, even when the sample size is moderate (n = 500). As may also be expected, for a given proportion of missing data, we observe that the IPW estimator of the β j s (respectively γ k s) performs better when the zero-ination proportion decreases (respectively increases). The FD estimator obviously performs better than the IPW estimator, but FD analysis cannot be performed when missing data are present. Overall, these numerical results indicate the good performance of the IPW method for estimating a ZIB regression model under missing data.
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Figure 1: Normal Q-Q plots for β1,n , . . . , β6,n with n = 500 (case 2) and a fraction of missing data equal to 0.4.

Discussion

Zero-inated binomial (ZIB) regression is now commonly used for investigating count data with excess of zeros; see, for example, [START_REF] Gilthorpe | Modelling count data with excessive zeros: The need for class prediction in zero-inated models and the issue of data generation in choosing between zero-inated and generic mixture models for dental caries data[END_REF], [START_REF] Matranga | Can bayesian models play a role in dental caries epidemiology? Evidence from an application to the BELCAP data set[END_REF], Diallo et al. (2017a). In this paper, we extend the scope of ZIB regression by considering the situation where some covariates are missing at random. In this setting, we propose an inverse-probability-weighted-type estimator by assuming that the missingness probabilities can be modeled parametrically. Consistency and asymptotic normality of the proposed estimator are established and a consistant variance estimator is constructed. Our simulation study suggests that the IPW estimator performs well under a wide range of conditions. Now, several issues deserve attention. First, the proposed estimator is valid if the parametric model for missingness probabilities P(δ i = 1|S i ) is correctly specied. Misspecifying this model may lead to a biased IPW estimator. Several solutions to this issue might be investigated. For example, one may consider semi-or nonparametric estimation of the missingness probabilities. An alternative approach relies on the so-called augmented IPW method, which is robust to a misspecication of the selection probabilities. Some additional work is now needed to investigate the relative merits of these approaches.

Robustness of these various estimation methods to a violation of the MAR assumption also constitutes a topic of great interest in view of applications.

Another stimulating topic for future work is as follows. In this paper, we consider missing covariates in the basic ZIB regression model (2.1). The same issue could be investigated in various generalizations of ZIB regression (such as the random-eects ZIB model proposed by [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF], or semi-parametric ZIB models).
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Figure 4 :

 4 Figure 4: Normal Q-Q plots for γ1,n , . . . , γ4,n with n = 1000 (case 2) and a fraction of missing data equal to 0.2.

Table 1 :

 1 Simulation results (case 1, n = 500). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean square error. CP: empirical coverage probability of 95%-level condence intervals.

	n

Table 2 :

 2 Simulation results (case 1, n = 1000). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean square error. CP: empirical coverage probability of 95%-level condence intervals.

	β n	γ n

Table 3 :

 3 Simulation results (case 2, n = 500). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean square error. CP: empirical coverage probability of 95%-level condence intervals.

	β n	γ n

Table 4 :

 4 Simulation results (case 2, n = 1000). SD: empirical standard deviation. SE: average standard error. RMSE: empirical root mean square error. CP: empirical coverage probability of 95%-level condence intervals.
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Theorem 3.1. Assume that conditions C1-C4 hold. Then, as n → ∞, ψn converges in probability to ψ 0 .

= U w,n (ψ 0 , α 0 ) + U w,n (ψ 0 , α 0 ) √ n( ψn -ψ 0 ) + B(ψ 0 , α 0 )Σ(α 0 ) -1 M n (α 0 ) + o P (1),
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