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MODERATE DEVIATIONS FOR CRITICAL CURIE-WEISS MODEL

VAN HAO CAN AND VIET-HUNG PHAM

Abstract. In this paper we study the moderate deviations for the magnetization of
critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-
critical model by using Stein method. By direct and simple arguments based on Laplace
method, we provide an explicit formula of the error and deduce a Cramér-type result.

1. Introduction

Moderate deviations have been investigated for a long time with numerous results. This
kind of phenomenon was first introduced by Cramér as a refinement of the classic Central
limit theorems for sum of i.i.d random variables. Let (Xi) be a sequence of i.i.d. random
variables satisfying EXi = 0, Var(Xi) = 1 and E(eαXi) < ∞, for some α > 0. Then the
normalized sum Wn = (X1 + . . .+Xn)/

√
n satisfies

P (σ : Wn > x)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n

for 0 ≤ x ≤ n1/6, with Φ the standard normal distribution function. It means that while
the classic CLT ensures that for a fixed real number x, the tail distribution P (σ : Wn >
x) tends to 1 − Φ(x), this Cramér-type moderate deviation result provides the rate of
convergence of the ratio P (σ : Wn > x)/ (1− Φ(x)) to 1 for a regime of variable x. For
the proof of this result, we refer to the book [16].

Later on, many authors managed to generalize this result in many directions like as:
sum of independent but not idencically distributed [6], and then sum of dependent random
variables such as stationary process [1, 20], linear process [15], and process with stationary
increments [19].

In general, many authors considered the general objects such as: random sums [7],
self-normalized sums [4, 18], functionals of Markov chain [11], functionals of geometric
systems [8], determinant of random matrices [12], spectral measures of random matrices
[10], L-statistics [13], ...; and also general corresponding limit distribution (maybe non-
Gaussian): chi-squared distribution [14], sub-Gaussian or exponential distribution [2].
They also provided many powerful tools to study the problem: Laplace method [16],
Lindeberg method [7] and Stein method [2, 3].

In applications, moderate deviations have been proved for various models, such as non-
critical Curie-Weiss model, anti voter model, dynamical Curie Weiss model, see [3, 5].

In this paper, we are interested in the Curie-Weiss model. Let us first recall some defini-
tions and existing results. For n ∈ N, let Ωn = {±1}n be the space of spin configurations.
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The configuration probability is given by Boltzman-Gibbs distribution: for any σ ∈ Ωn,

µn(σ) = Z−1
n exp

(

β

n

∑

1≤i<j≤n

σiσj + βh

n
∑

i=1

σi

)

,

where Zn is the normalizing factor, β > 0 and h ∈ R are inverse temperature and external
field respectively. The asymptotic behavior of the total spin (also called magnetization)
Sn = σ1 + . . .+ σn is characterized by the solution of the following fixed-point equation

(1) m = tanh(β(m+ h)).

Then the limit distribution of Sn is considered in three following cases. The first two ones
are called non-critial and the last one is called critical.

Case 1. 0 < β < 1, h ∈ R or β ≥ 1, h 6= 0 (non-critical case). The equation (1) has a
unique solution m0 such that m0h ≥ 0. In this case, S/n is concentrated around m0 and
has a Gaussian limit under proper standardization, see [9]. Moreover, in [3] the authors
prove moderate deviations for the magnetization.

Theorem 1.1. [3, Proposition 4.3] In case 1, let us define

Wn =
Sn − nm0

vn
,

where

vn =

√

n(1−m2
0)

1− (1−m2
0)β

.

Then we have

µn(σ : Wn > x)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n

for 0 ≤ x ≤ n1/6.

Case 2. β > 1, h = 0 (non-critical case). The equation (1) has two nonzero solutions
m1 < 0 < m2, where m1 = −m2. In this case, one has the conditional central limit
theorems as follows: conditioned on Sn < 0 (resp. Sn > 0), S/n is concentrated around
m1 (resp. m2) and has a Gaussian limit after proper scaling, see [9]. Similarly to case 1,
a moderate deviation result has been also proved.

Theorem 1.2. [3, Proposition 4.4] In case 2, define

W1,n =
Sn − nm1

v1,n
and W2,n =

Sn − nm2

v2,n
,

where

v1,n =

√

n(1−m2
1)

1− (1−m2
1)β

and v2,n =

√

n(1 −m2
2)

1− (1−m2
2)β

.

Then we have

µn(σ : W1,n > x | Sn < 0)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n

and

µn(σ : W2,n > x | Sn > 0)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n



MODERATE DEVIATIONS FOR CRITICAL CURIE-WEISS MODEL 3

for 0 ≤ x ≤ n1/6.

Case 3. β = 1 and h = 0 (critical case). The equation (1) has a unique solution 0
and S/n is concentrated around 0. In this case, Sn/n

3/4 converges to a non-Gaussian
distribution, see [9]. In [2], Chatterjee and Shao gave an upper bound for the rate of this
convergence.

Theorem 1.3. [2, Theorem 2.1] In the case 3, define

Wn =
Sn

n3/4
.

Then there exists a positive constant C, such that for all x

(2) lim sup
n→∞

√
n
∣

∣

∣
µn (σ : Wn ≤ x)− F (x)

∣

∣

∣
≤ C,

where

F (x) =

∫ x

−∞ e−t4/12dt
∫∞
−∞ e−t4/12dt

.

However from Theorem 1.3, one could not say much about the ratio µn (σ : Wn > x) /(1−
F (x)) as in Theorems 1.1 and 1.2.

In this paper, we will fill this gap by proving the moderate deviations for Sn in the
critical case. Our main result is the following theorem.

Theorem 1.4. For the critical case, when β = 1 and h = 0, define

Wn =
Sn

n3/4
.

Then there exists a positive constant C, such that for all n large enough and 0 ≤ x ≤ n1/12,

∣

∣

µn(σ : Wn > x)

1− F (x)
− 1− G(x)√

n

∣

∣ ≤ C(x12 + n1/3)

n
,(3)

where

F (x) =

∫ x

∞ p1(t)dt
∫∞
−∞ p1(t)dt

,

and

G(x) =

(

∫∞
x

p2(t)dt
∫∞
x

p1(t)dt
−
∫∞
−∞ p2(t)dt
∫∞
−∞ p1(t)dt

)

with

p1(t) = e−
t4

12 and p2(t) =

(

t2

2
− t6

30

)

e−
t4

12 .

It is worth to mention that Theorem 1.4 gives exact formula of the error term of order
n−1/2, while moderate deviation results in Theorems 1.1 and 1.2 only give asymptotic
estimates of the error terms. The range of estimate n1/6 is replaced by n1/12 due to the
change of scaling and limiting distribution. The proof of Theorem 1.4 is simple and direct,
based on Laplace method-like arguments.

We have a direct corollary.
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Corollary 1.5. For 0 ≤ x ≤ n1/12, we have

µn(σ : Wn > x)

1− F (x)
= 1 +O(1)(1 + x6)/

√
n.

Moreover, for any fixed real number x,

lim
n→∞

√
n
(

µn (σ : Wn ≤ x)− F (x)
)

= (F (x)− 1)G(x).

The first part of this corollary is a Cramér-type moderate deviation result in classic
form, whereas the second part is an improvement of Theorem 1.3.

We fix here some notation. If f and g are two real functions, we write f = O(g) if there
exists a constant C > 0, such that f(x) ≤ Cg(x) for all x; f = Ω(g) if g = O(f); and
f = Θ(g) if f = O(g) and g = O(f).

2. Proof of Theorem 1.4

For any σ ∈ Ωn, we define

σ+ = {i : σi = 1}.
Observe that if |σ+| = k, then

1

n

∑

i≤j

σiσj = 1 +
1

n

∑

i<j

σiσj = 1 +
1

2n





(

∑

1≤i≤n

σi

)2

− n





=
(2k − n)2

2n
+

1

2
.(4)

Hence,

Zn =
∑

σ∈Ωn

exp

(

1

n

∑

i≤j

σiσj

)

=

n
∑

k=0

∑

σ∈Ωn
|σ+|=k

exp

(

1

n

∑

i≤j

σiσj

)

=

n
∑

k=0

(

n

k

)

e
(2k−n)2

2n
+ 1

2 .

Let us define

xk,n =

(

n

k

)

e
(2k−n)2

2n
+ 1

2 .

Then

Zn =
n
∑

k=0

xk,n,(5)

and

(6) µn(σ : |σ+| = k) =
xk,n

Zn
.

Let us define for x ∈ R

Fn(x) = µn(σ : Wn ≤ x).
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Then by (6),

1− Fn(x) = µn(σ : σ1 + . . .+ σn > n3/4x)

= µn(σ : 2|σ+| − n > n3/4x) = µn

(

σ : |σ+| >
n + n3/4x

2

)

=
1

Zn

n
∑

k=0

xk,nI

(

k >
n+ n3/4x

2

)

,(7)

where I(.) stands for the indicator function.
To understand xk,n, we need to study the binomial coefficient. Let us recall a version

of Stirling’s approximation (see [17]): for all n ≥ 1,

log(
√
2πn) + n log n− n+

1

12n+ 1
≤ log(n!) ≤ log(

√
2πn) + n logn− n+

1

12n
.

Using this approximation, we can easily prove that
(

n

k

)

≤ enI(k/n), for all k = 0, . . . , n,(8)

and
(

n

k

)

= (1− O(n−1))

√

n

2πk(n− k)
× enI(k/n), for |k − (n/2)| < n/4,(9)

where for t ∈ (0, 1),
I(t) = (t− 1) log(1− t)− t log t.

Using (8) and (9), we obtain

xk,n ≤ enJ(k/n)+1/2, for all k = 0, . . . , n,(10)

and

xk,n = (1−O(n−1))

√

n

2πk(n− k)
× enJ(k/n)+1/2, for |k − (n/2)| < n/4,(11)

where

J(t) = I(t) +
(2t− 1)2

2
.

We have a lemma on the behavior of J(t).

Lemma 2.1. We have

(i) J ′(1/2) = J ′′(1/2) = J ′′′(1/2) = J (5)(1/2) = J (7)(1/2) = 0, and for all t 6= 1/2

J ′′(t) < 0.

(ii) J (4)(1/2) = −32, J (6)(1/2) = −1536, and for all 1/4 ≤ t ≤ 3/4

−225 < J (8)(t) < 0.

Proof. We have

J ′(t) = log

(

1− t

t

)

+ (4t− 2).

Hence

J ′′(t) = −
[

t−1 + (1− t)−1
]

+ 4, J ′′′(t) =
[

t−2 − (1− t)−2
]

, J (4)(t) = −2
[

t−3 + (1− t)−3
]

,

J (5)(t) = 6
[

t−4 − (1− t)−4
]

, J (6)(t) = −24
[

t−5 + (1− t)−5
]

, J (7)(t) = 120
[

t−6 − (1− t)−6
]

,
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and

J (8)(t) = −720
[

t−7 + (1− t)−7
]

.

Using these equations, we can easily prove desired results. �

By Lemma 2.1, we see that J(t) attains the maximum at a unique point 1/2. This fact
suggest that the value of Zn (the sum of (xk,n)) is concentrated at the middle terms. Let
us define

yn =

√

2

πn
× enJ(1/2)+1/2,

which is asymptotic to x[n/2],n. Using (10) and (11), we have the comparisons between
xk,n and yn

xk,n

yn
≤

√

πn

2
× en

[

J(k/n)−J(1/2)
]

, for all k = 0, . . . , n,(12)

and

xk,n

yn
= (1− O(n−1))

√

n2

4k(n− k)
× en

[

J(k/n)−J(1/2)
]

for |k − (n/2)| < n/4.(13)

Combining (5) and (7), we have

1− Fn(x) =
1

n
∑

k=0

yk,n

×
n
∑

k=0

yk,nI

(

k >
n+ n3/4x

2

)

,(14)

where

yk,n =
xk,n

yn
.

In the sequel, we consider two cases: x > 10 and x ≤ 10. The choice of number 10 is
flexible. We just need the fact that the functions p1(.), p2(.) and r(.) defined in (19) are
decreasing on some intervals (c,∞) for a positive constant c (see Lemma 2.3).

2.1. Case x > 10. We define

An =
n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ ≥ n

4

)

, Bn =
n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ <
n

4

)

Ân =
n
∑

k=0

yk,nI
(

k − n

2
≥ n

4

)

, Bn,x =
n
∑

k=0

yk,nI

(

n

4
> k − n

2
>

n3/4x

2

)

.

Then

(15) 1− Fn(x) =
Ân +Bn,x

An +Bn
.

2.1.1. Estimates of An and Ân.

Lemma 2.2. There exists a positive constant c, such that for n large enough,

Ân ≤ An ≤ e−cn.
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Proof. Since J(t) attains the maximum at a unique point 1/2,

max
|x−0.5|≥0.25

J(x) = max{J(0.75), J(0.25)} = J(0.25).

Hence for all |k − (n/2)| ≥ n/4,

J(k/n)− J(1/2) ≤ J(0.25)− J(0.5) < −0.005.

Thus for all |k − (n/2)| ≥ n/4,

(16) n
(

J(k/n)− J(1/2)
)

< −0.005n.

It follows from (12) and (16) that for |k − (n/2)| ≥ n/4,

yk,n ≤
√
2n exp (−0.005n) .

Thus
Ân ≤ An ≤ n

√
2n exp (−0.005n) < exp (−0.004n) ,

for all n large enough. �

2.1.2. Estimates of Bn and Bn,x. By using Lemma 2.1 and Taylor expansion, we get

J

(

k

n

)

− J

(

1

2

)

=
1

4!
J (4)(1/2)

(

k

n
− 1

2

)4

+
1

6!
J (6)(1/2)

(

k

n
− 1

2

)6

+
1

8!
J (8)(ξk,n)

(

k

n
− 1

2

)8

,

with some ξk,n between k/n and 1/2. Then using again Lemma 2.1,

J

(

k

n

)

− J

(

1

2

)

≤ −(2k − n)4

12n4
− (2k − n)6

30n6
.

and

J

(

k

n

)

− J

(

1

2

)

≥ −(2k − n)4

12n4
− (2k − n)6

30n6
− 217(2k − n)8

n88!
.

Thus

n(J(k/n)− J(1/2)) ≤ −(2k − n)4

12n3
− (2k − n)6

30n5

and

n(J(k/n)− J(1/2)) ≥ −(2k − n)4

12n3
− (2k − n)6

30n5
− 217(2k − n)8

n78!
.

Hence, using the inequality that 1− x ≤ e−x ≤ 1− x+ x2/2 for all x ≥ 0,

en
[

J(k/n)−J(1/2)
]

≤ exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5
+

(2k − n)12

1800n10

)

,

and

en
[

J(k/n)−J(1/2)
]

≥ exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5

)(

1− 217(2k − n)8

n78!

)

.

In conclusion,

en
[

J(k/n)−J(1/2)
]

= exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5
+O(1)Xk,n

)

,(17)

where

Xk,n =
(2k − n)8

n7
+

(2k − n)12

n10
+

(2k − n)14

n12
.
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On the other hand for |k − (n/2)| < n/4,
√

n2

4k(n− k)
= 1 +

(2k − n)2

2n2
+O

(

(2k − n)4

n4

)

.(18)

Combining (13), (17) and (18), we have for |k − (n/2)| < n/4,

yk,n =

(

1 +
(2k − n)2

2n2
− (2k − n)6

30n5
+O(1)Rk,n

)

exp

(

−(2k − n)4

12n3

)

,

where

Rk,n =
1

n
+

(2k − n)4

n4
+

(2k − n)8

n7
+

(2k − n)12

n10
+

(2k − n)14

n12
.

By letting ℓ = 2k − n,

Bn =
∑

n/4<k<3n/4

yk,n

=
∑

|ℓ|<n/2
2|(ℓ+n)

e−
ℓ4

12n3

(

1 +
ℓ2

2n2
− ℓ6

30n5
+O

(

1

n
+

ℓ4

n4
+

ℓ8

n7
+

ℓ12

n10
+

ℓ14

n12

))

=
∑

|ℓ|<n/2
2|(ℓ+n)

e
−
(

ℓ

n3/4

)4
/12

(

1 +
1√
n

(

1

2

(

ℓ

n3/4

)2

− 1

30

(

ℓ

n3/4

)6
)

+
O(1)

n

(

1 +

(

ℓ

n3/4

)4

+

(

ℓ

n3/4

)8

+

(

ℓ

n3/4

)12

+
1√
n

(

ℓ

n3/4

)14
))

=
∑

|ℓ|<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

+
1√
n

∑

|ℓ|<n/2
2|(ℓ+n)

p2

(

ℓ

n3/4

)

+
O(1)

n

∑

|ℓ|<n/2
2|(ℓ+n)

r

(

ℓ

n3/4

)

,(19)

where

p1(t) = e−
t4

12

p2(t) =

(

t2

2
− t6

30

)

e−
t4

12

r(t) = (1 + t4 + t8 + t12 + t14/
√
n)e−

t4

12 .

Similarly,

Bn,x =
∑

yk,n1

(

n

4
> k − n

2
>

n3/4x

2

)

=
∑

n3/4x<ℓ<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

+
1√
n

∑

n3/4x<ℓ<n/2
2|(ℓ+n)

p2

(

ℓ

n3/4

)

+
O(1)

n

∑

n3/4x<ℓ<n/2
2|(ℓ+n)

r

(

ℓ

n3/4

)

,(20)

We have the following lemmas.

Lemma 2.3. These functions p1(t), p2(t) and r(t) are decreasing in (9,∞).
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Lemma 2.4. Let m, q, p be positive real numbers. If f(t) is a decreasing function in

[(m− 1)/p, (q + 1)/p], then
∣

∣

∣

∣

∣

∣

∣

∣

∑

m<ℓ<n
2|ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

f

(

m

p

)∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

q

p

)∣

∣

∣

∣

,

and
∣

∣

∣

∣

∣

∣

∣

∣

∑

m<ℓ<q
2∤ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

f

(

m

p

)∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

q

p

)∣

∣

∣

∣

.

The proof of Lemmas 2.3 and 2.4 is simple, so we safely leave it to the reader. Applying
these lemmas to the sums in (20), we have

Bn,x =
n3/4

2

∫ n1/4/2

x

p1(t)dt+
n1/4

2

∫ n1/4/2

x

p2(t)dt

+O(1)

(

1

n1/4

∫ n1/4/2

x

r(t)dt+ p1(x) +
p2(x)√

n
+

r(x)

n
+ p1(n

1/4/2) +
p2(n

1/4/2)√
n

+
r(n1/4/2)√

n

)

.

It is not difficult to see that

p1(n
1/4/2), p2(n

1/4/2), r(n1/4/2),

∫ ∞

n1/4/2

p1(t)dt,

∫ ∞

n1/4/2

p2(t)dt,

∫ ∞

n1/4/2

r(t)dt = e−Ω(n).

Therefore

Bn,x =
n3/4

2
P̂1(x) +

n1/4

2
P̂2(x) +O(1)

(

R̂(x)

n1/4
+ p1(x) +

p2(x)√
n

+
r(x)

n

)

+ e−Ω(n),(21)

where

P̂1(x) =

∫ ∞

x

p1(t)dt

P̂2(x) =

∫ ∞

x

p2(t)dt

R̂(x) =

∫ ∞

x

r(t)dt.

Similarly, using (19) and Lemmas 2.3 and 2.4 we have

Bn =
n3/4

2
P̂1(−∞) +

n1/4

2
P̂2(−∞) +

O(1)

n1/4
+ e−Ω(n).(22)

2.1.3. Conclusion. Combining Lemma 2.2 and (15), (22), (21), we have

1− Fn(x) =
n3/4P̂1(x) + n1/4P̂2(x) +O(1)

(

R̂(x)n−1/4 + p1(x) + p2(x)n
−1/2 + r(x)n−1

)

n3/4P̂1(−∞) + n1/4P̂2(−∞) +O(n−1/4)

=
P̂1(x) + n−1/2P̂2(x) +O(1)

(

R̂(x)n−1 + p1(x)n
−3/4 + p2(x)n

−5/4 + r(x)n−7/4
)

P̂1(−∞) + n−1/2P̂2(−∞) +O(n−1)
.
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Notice that 1− F (x) = P̂1(x)/P̂1(−∞). Therefore

−1 +
1− Fn(x)

1− F (x)
= −1 + (1− Fn(x))

P̂1(−∞)

P̂1(x)

= −1 +
P̂1(−∞) + P̂1(−∞)√

n
P̂2(x)

P̂1(x)
+O(1)

(

n−1 R̂(x)

P̂1(x)
+ n−3/4 p1(x)

P̂1(x)
+ n−5/4 p2(x)

P̂1(x)
+ n−7/4 r(x)

P̂1(x)

)

P̂1(−∞) + n−1/2P̂2(−∞) +O(n−1)

=
1√
n

(

P̂2(x)

P̂1(x)
− P̂2(−∞)

P̂1(−∞)

)

+O(1)

(

x12

n
+ n−3/4

)

,

where for the last line we have used that

R̂(x)

P̂1(x)
= Θ(x12),

p1(x)

P̂1(x)
= Θ(1),

p2(x)

P̂1(x)
= Θ(x6),

r(x)

P̂1(x)
= Θ(x12).

In conclusion,
1− Fn(x)

1− F (x)
= 1 +

G(x)√
n

+O(1)

(

x12

n
+ n−3/4

)

,

with G(x) as in Theorem 1.4.

2.2. Case x ≤ 10. We define

Un =

n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ ≥ n5/6
)

, Vn =

n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ < n5/6
)

Ûn =

n
∑

k=0

yk,nI
(

k − n

2
≥ n5/6

)

, Vn,x =

n
∑

k=0

yk,nI

(

n5/6 > k − n

2
>

n3/4x

2

)

.

Then

(23) 1− Fn(x) =
Ûn + Vn,x

Un + Vn
.

2.2.1. Estimates of Un and Ûn.

Lemma 2.5. We have

Ûn ≤ Un ≤ n−4.

Proof. Since J(t) attains the maximum at a unique point 1/2,

max
|x−0.5|≥n−1/6

J(x) = max{J(0.5± n−1/6)}.

Using Lemma 2.1 and Taylor expansion,

J(0.5± n−1/6)− J(0.5) =
−4n−2/3

3
+ o(n−2/3).

Hence for all n large enough and |k − (n/2)| ≥ n5/6,

(24) n
(

J(k/n)− J(1/2)
)

< −n1/3.

It follows from (12) and (24) that for |k − (n/2)| ≥ n5/6,

yk,n ≤
√
2n exp

(

−n1/3
)

.

Thus
Ûn ≤ Un ≤ n

√
2n exp

(

−n1/3
)

< n−4,
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for all n large enough. �

2.2.2. Estimates of Vn and Vn,x. We can easily prove that there exists a positive constant
K, such that

(25) sup
t∈R

|p1(t)|+ |p2(t)|+ |r(t)|+ |p′1(t)|+ |p′2(t)|+ |r′(t)| ≤ K.

Lemma 2.6. Let K be a positive constant, and f be a differentiable function satisfying

|f(t)|+ |f ′(t)| ≤ K for all t ≥ 0. Let m, q, p be positive real numbers. Then

∣

∣

∣

∑

m<ℓ<q
2|ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤ K(q −m)

p
+ 2K,

and

∣

∣

∣

∑

m<ℓ<q
2∤ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤ K(q −m)

p
+ 2K.

Proof. For any ℓ, by using the mean value theorem,

∣

∣

∣
f

(

ℓ

p

)

− p

2

∫ ℓ+2
p

ℓ
p

f(t)dt
∣

∣

∣
≤ pK

2

∫ ℓ+2
p

ℓ
p

(

t− ℓ

p

)

dt =
K

p
.

Therefore, by summing over ℓ we get desired results. �

Using the same arguments for (21) and (22) (here (25) and Lemma 2.6 play the same
role of Lemmas 2.3 and 2.4), we can prove that

Bn,x =
n3/4

2
P̂1(x) +

n1/4

2
P̂2(x) +O(n1/12),(26)

and

Bn =
n3/4

2
P̂1(−∞) +

n1/4

2
P̂2(−∞) +O(n1/12).(27)

Notice that the term O(n1/12) comes from the estimate of Lemma 2.6 with (q−m) = 2n5/6

and p = n3/4.

2.2.3. Conclusion. Now, using Lemma 2.5 and (23), (26), (27), and similar arguments as
in the case x > 10, we can prove that

1− Fn(x)

1− F (x)
= 1 +

G(x)√
n

+O(n−2/3),

here the term O(n−2/3) comes from the quotient O(n1/12)/n3/4.

We remark that in the proof of case x ≤ 10, we can change the exponent 5/6 by any
constant in (3/4, 1). Thus the error term n−2/3 can be improved to n−3/4+ε for any ε > 0.
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