
Ladda: SPARQL Queries in the Fog of Browsers

Arnaud Grall1, Pauline Folz1,2, Gabriela Montoya3, Hala Skaf-Molli1, Pascal Molli1, Miel
Vander Sande4, and Ruben Verborgh4

1 LS2N – Nantes University, France
{arnaud.grall@etu., firstname.lastname@}univ-nantes.fr

2 Nantes Métropole – Research, Innovation and Graduate Education Department, France
3 Department of Computer Science – Aalborg University, Denmark

gmontoya@cs.aau.dk
4 Ghent University – imec – IDLab, Belgium {miel.vandersande,ruben.verborgh}@ugent.be

Abstract. Clients of Triple Pattern Fragments (TPF) interfaces demonstrate how a
SPARQL query engine can run within a browser and re-balance the load from the
server to the clients. Imagine connecting these browsers using a browser-to-browser
connection, sharing bandwidth and CPU. This builds a fog of browsers where end-user
devices collaborate to process SPARQL queries over TPF servers. In this demo, we
present Ladda: a framework for query execution in a fog of browsers. Thanks to
client-side inter-query parallelism, Ladda reduces the makespan of the workload and
improves the overall throughput of the system.

1 Introduction

Clients of Triple Pattern Fragments (TPF) interfaces demonstrate how a SPARQL query
engine can run within a browser and re-balance the load from the server to the clients [4].

However, executing a workload composed of many queries with a single browser has
intrinsic limitations regarding CPU and bandwidth. These limitations are severe as TPF
potentially generates many calls and high network traffic.

Imagine connecting TPF clients using a browser-to-browser connection, sharing bandwith
andCPU. This realizes a fog of browsers [3] inwhich decentralized end-user devices cooperate
to process SPARQL queries.

In this demo, we present Ladda; a framework for query execution in a fog of browsers.
Ladda bypasses previous limitations and improves system throughput through the concurrent
execution on multiple processors. Such inter-query parallelism was traditionally realized
on the server-side. Ladda enables inter-query parallelism on the client-side, significantly
reduces the time to obtain all results (makespan) and improves the overall throughput.

2 Ladda: query delegation in the fog

Continuing previous work [1], we introduce the Ladda framework for query execution in
a fog of browsers. A federation of data consumers is connected through a Random Peer
Sampling (RPS) overlay network [5]. Such a network approximates a random graph where
each data consumer is connected to a fixed number of neighbors. It is resilient to churn, to
failures and communication with neighbors is a zero-hop.

In the context of browsers, basic communications rely on WebRTC5 to establish a
data-channel between browsers and SPRAY [2] to enable RPS on WebRTC. Each browser
maintains a set of neighbors K called a view that is a random subset of the whole network.
To keep its view random, a data consumer renews it periodically by shuffling its view with
the view of a random neighbor.

A browser executes an infinite stream of queries that arrive at any time. A data consumer
can execute its query or delegate it to a neighbor. Given a fog of browsers and a workload

5 https://webrtc.org/

https://webrtc.org/


2 A. Grall et al.

t0 t1 t2 t3 t4
Q1 → C1 ×

Q2 → C4 Q2 → C6 ×

Q3 → C6 ×

Q4 → C9 ×

Q5 Q5 → C1 ×

finished
failed finished

finished
finished

finished

Fig. 1: Execution of C1’s workload of five queries with three neighbors among ten clients.

of queries distributed in time across browsers, we aim to minimize the results time for
data consumers, where, ∆, is the time elapsed between query results time (Q.rt) and query
arrival time (Q.at). Ladda implements a load-balancing algorithm to balance the load among
neighbors by executing queries on free neighbors.

Consider a federation of ten data consumers C1 to C10, where each data consumer has
three neighbors, i.e., size(K) = 3. Consider the data consumer C1 has a workload of five
queries, C1.W = [Q1, ...,Q5] and the following neighbors: C4,C6 and C9.

Figure 1 illustrates how Ladda executes the workload of C1. At time t0, C1 allocates
its queries as follows: (Q1 → C1), (Q2 → C4), (Q3 → C6), and (Q4 → C9). Consequently,
C4,C6 and C9 belong to the list of busy neighbors of C1: C1.B = [C4,C6,C9].

– At time t1, C1 has finished the execution of Q1, C1 becomes free and it has only one
waiting query, C1.W = [Q5], therefore, C1 executes Q5: (Q5 → C1).

– At time t2, Q3 finished. As all queries are allocated, there is nothing to do.
– At time t3, Q2 delegation fails. C6 is no longer busy for C1, so we allocate Q2 to C6.
– At time t4, Q2,Q4 and Q5 are finishing.

3 Evaluation

We evaluated Ladda on a local TPF server providing the DBpedia 3.8 dataset with the
HDT back-end and four workers, a Web cache and different numbers of clients. NGINX is
configured as a Web cache with a size of 1GB. The TPF server, the Web cache, and all the
TPF clients run on the same machine: a HPC server with 40 processors, 130 GB of memory,
and Debian 7.8. From the DBpedia 3.8 query log, we extracted a full hour of queries from
50 clients (1,509 queries in total) on one day. We considered two setups as follows.

All loaded: 50 clients have their own query workload. This is considered as the worst
case for Ladda, because at the beginning all clients are busy, so the first delegations to
neighbors always fail.

One loaded: One client has the full workload. Since the client is the only one busy in the
federation, all delegations succeed.

Figure 2 shows how Ladda improves the makespan for the two configurations.

4 Online demo

The Ladda online demo is available at https://ladda-demo.herokuapp.com/, and the
source code is available at https://github.com/folkvir/ladda-demo.

When visiting https://ladda-demo.herokuapp.com/, the browser downloads and
starts Ladda locally. Ladda connects the browser with other browsers in order to build a set
of neighbors. Ladda needs to know at least one connected participant. A signaling service

https://ladda-demo.herokuapp.com/
https://github.com/folkvir/ladda-demo
https://ladda-demo.herokuapp.com/


Ladda: SPARQL Queries in the Fog of Browsers 3

252

582

196

1899

All loaded One loaded

Ladda No delegation Ladda No delegation
0

500

1000

1500

M
ak

es
pa

n 
in

 s
ec

on
ds

Fig. 2: Ladda delegation significantly decreases the makespan, both when each of the 50
clients has its own workload (worst case) and in the case where one client has the entire
workload (best case).

running on https://ladda-demo.herokuapp.com/ facilitates this process by keeping a
random subset of connected browsers.

The number of neighbors "#Neighbors" appears in the timeline panel (see Figure 3).
Thanks to SPRAY [2], this number is bounded to log(N)where N is the number of connected
browsers.

Once connected, a browser can delegate queries to neighbors. The query workload
appears in the "Queries" panel. Queries are executed against the TPF server defined in
the "Queries panel". The delegation number dn determines the number of simultaneous
delegation tentative. For instance, for a workload of 5 queries q1-q5, 3 neighbors and dn = 2,
Ladda executes locally q1, delegates q2 and q3 to random neighbors and terminates its
allocation process. A new allocation process takes place on the next event: receiving results,
delegation failed or timeout on a delegation.

The button "Execute" allows to launch the execution of the local workload. The "Timeline"
panel and the "Query" panel display in real-time the progression of the execution.

– The timeline allows to know in real-time when a participant executes a query. Each line
represents a participant including "me". On a participant c, a query q starts at time q.st
and terminates at time q.et. The timeline displays for each participant q.st and q.et.

– The "Query" panel displys the status of queries : waiting, done or delegated.

When the workload execution is terminated, Ladda computes the following statistics:

Global execution time is the makespan’s workload. We suppose all queries in the workload
arrive at the same time fixed when the user click on the "execute" button. So the global
execution time is the difference between the result time of the last executed query and
the arrival time.

Sequential execution time. For all Qi in the workload, the sequential execution time is∑
Qi

Qi .et −Qi .st.
Improvement ratio is the ratio for the global execution time to the sequential one. This

comparison is barely an approximation because we cannot ensure that queries execution
time would be the same if queries are executed sequentially.

Overhead is the total transfer time of queries and results between the browser and neighbors.

Once connected, it is also possible to receive delegated queries. The "Remote Queries"
link in the timeline allows to display received queries.

5 Ladda demo scenario

In the context of ESWC 2017, we would like to run a live experiment that any ESWC 2017
participant can join. We will start the replay of the DBpedia logs available in USEWOD 2016

https://ladda-demo.herokuapp.com/


4 A. Grall et al.

Fig. 3: Ladda interface after executing queries.

with TPF 6. DBpedia logs contain hundreds of thousands of queries that a single browser
can hardly execute. We will evaluate the throughput of a monitored TPF server according to
the number of participants. We expect to see that collaboration between participants allows
to increase the throughput of the system.

During the conference, we will tweet a link that anyone with a compatible browser
(Chrome and Firefox) can click on and join the experiment. Participants will be able to see
which queries they execute and observe in real-time the throughput of the system.

We aim to confirm that the number of participants positively impacts the throughput, i.e.,
great improvements on the throughput are observed when the number of users increases.

6 Conclusion and future work

In this paper, we presented Ladda, an approach to execute SPARQL queries in the fog
of browsers. Ladda enables inter-query parallelism on the client side. Ladda significantly
reduces the overall makespan and improves the throughput of the federation.

In this demo, we did not take into accounts latencies in the network, neighbors are chosen
randomly. A first perspective is to take into account network latencies to choose neighbors

Second, It is interesting to study how collaborative caching as provided by Cyclades [1]
and inter-query parallelism provided by Ladda contribute to performances improvements.

6 If compatible with the USEWOD usage agreement, otherwise, we will use synthetic queries.



Ladda: SPARQL Queries in the Fog of Browsers 5

Finally, in Ladda, we focused on inter-query parallelism. Another research direction is
to consider intra-query parallelism. Decomposition of SPARQL queries and delegation of
subqueries open interesting perspectives.

Acknowledgement

We thank Thibaud Courtoison, Maël Quémard and Sylvain Vuylsteke, students of the
Computer Science Department at the University of Nantes for implementing the interface of
Ladda.

References

1. P. Folz, H. Skaf-Molli, and P. Molli. CyCLaDEs: a decentralized cache for Linked Data Fragments.
In ESWC: Extended Semantic Web Conference, 2016.

2. B. Nédelec, P. Molli, and A. Mostefaoui. Crate: Writing stories together with our browsers. In
Proceedings of the 25th International Conference Companion on World Wide Web, pages 231–234.
International World Wide Web Conferences Steering Committee, 2016.

3. L. M. Vaquero and L. Rodero-Merino. Finding your way in the fog: Towards a comprehensive
definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5):27–32,
2014.

4. R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,
G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a low-cost knowledge graph interface
for the Web. Journal of Web Semantics, 37–38:184–206, Mar. 2016.

5. S. Voulgaris, D. Gavidia, and M. Van Steen. CYCLON: inexpensive membership management for
unstructured P2P overlays. Journal of Network and Systems Management, 13(2):197–217, 2005.


	Ladda: SPARQL Queries in the Fog of Browsers

