
HAL Id: hal-01585055
https://hal.science/hal-01585055v1

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal isolation of hard real-time applications on
many-core processors

Quentin Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat,
Benoît Triquet

To cite this version:
Quentin Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat, et al.. Tempo-
ral isolation of hard real-time applications on many-core processors. RTAS 2016 - IEEE Real-
Time Embedded Technology & Applications Symposium, Apr 2016, Vienne, Austria. pp. 1-11,
�10.1109/RTAS.2016.7461363�. �hal-01585055�

https://hal.science/hal-01585055v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16888

The contribution was presented at RTAS 2016 :
http://2016.rtas.org/

To cite this version : Perret, Quentin and Maurere, Pascal and Noulard, Eric and
Pagetti, Claire and Sainrat, Pascal and Triquet, Benoît Temporal isolation of
hard real-time applications on many-core processors. (2016) In: IEEE Real-
Time Embedded Technology & Applications Symposium (RTAS 2016), 11
April 2016 - 14 April 2016 (Vienne, Austria).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Temporal isolation of hard real-time applications on

many-core processors

Quentin Perret∗†, Pascal Maurère∗, Éric Noulard†, Claire Pagetti†, Pascal Sainrat‡, Benoı̂t Triquet∗

∗Airbus Operations SAS, Toulouse, France. firstname.lastname@airbus.com
†DTIM, UFT-MiP, ONERA, Toulouse, France. firstname.lastname@onera.fr
‡IRIT, UFT-MiP, Université Paul Sabatier, Toulouse, France. sainrat@irit.fr

Abstract—Many-core processors offer massively parallel com-
putation power representing a good opportunity for the design
of highly integrated avionics systems. Such designs must face
several challenges among which 1) temporal isolation must be
ensured between applications and 2) bounds of WCET must
be computed for real-time safety critical applications. In order
to partially address those issues, we propose an appropriate
execution model, that restricts the applications behaviours, which
has been implemented on the KALRAY MPPA

R©-256. We tested the
correctness of the approach through a series of benchmarks and
the implementation of a case study.

I. INTRODUCTION

In the aerospace industry, an effort for reducing the number

of embedded computers has already been made with the intro-

duction of IMA (Integrated Modular Avionic) platforms [1].

On such architectures, multiple applications of different sys-

tems have to cohabit on the same hardware target. However,

the sharing of resources between applications remains limited

and the number of computers is still large in real aircrafts.

Many-core processors are an emerging technology in the

COTS market that offers a good opportunity for greater

integration of avionics systems. However, such processors can

host multiple applications of different systems only as long as

they fulfill at least the two following requirements:

• industrial practice imposes the principle of temporally

isolated partitions to contain failures but also to be com-

pliant with incremental certification processes. Indeed,

for costs reasons, each system, including its software

part, must be certified independently and must remain

insensitive to the modifications made on other systems;

• the implementation of real-time safety critical applica-

tions necessitates computing the WCET [2]. Because of

the architecture of many-core chips, computing WCET

requires to be able to bound safely the interference delays

on shared resources [3].

In this paper, we propose an approach to implement real-

time safety-critical applications in such a way that strict

temporal guarantees are ensured whatever the behaviour of

other applications sharing the resources.

A. Approach

Our approach relies both on a development work-flow and

the use of an execution model [4], [5], that is a set of rules to

be followed by the designer and implemented by the run-time

in order to enforce specific behaviours.

Executable.elf

CompileBM lib.c1

Hypervisor.c

Tile 1.h
Archi.h

Allocate Exec. Model

Part 1.dat
Archi.dat

Compile

Archi.xml

Describe

BudgetPart 1.c

m

m

n
n

n

n

Fig. 1: Work-flow

Figure 1 summarizes the work-flow and details where the

usual practices in the aerospace industry are impacted:

• development phase: each application is implemented as

a partition and is provided with a resource budget which

consists of hardware capacities description (e.g. number

of cores, number of memory banks, . . .). We assume that

all budgets are expressed in a common way and are com-

patible with the processor architecture. The budgets are

defined independently and no other knowledge about the

resources utilizations by others applications is required.

The budget definition is done in the Budget phase in

Figure 1. Moreover, note that no assumption is made on

the type of application (e.g. control-command, data-flow,

high performance . . .).

1Bare-metal library

• integration phase: the integrator must map (Allocate

phase in Figure 1) all the applications on the target taking

into account application budgets and the hardware capa-

bilities. At this step, we produce some target-dependent

static and dynamic configurations ensuring the desired

temporal isolation during execution.

• run-time (or hypervisor) implementation: must ensure

the respect of the budgets given to the applications, even

in case of faulty execution by one or several applications.

More precisely, the real-time hypervisor is in charge of

applying the pre-computed hardware configurations and

restraining on-line the execution of the applications to fit

into their budget.

Once an application has been implemented following the

work-flow, it is predictable in the sense that it behaves

temporally exactly the same whether it runs alone on the

platform or with other applications. There is no variability

due to competitors on the execution time of a task for a given

sequence of inputs.

B. Contributions

Because of the diversity of processor architectures, execu-

tion models depend greatly on the target. In our case, we

consider the KALRAY MPPA
R©-256 [6] for which we give an

overview in section II.

This paper presents the first and original execution model

for time-critical application on the MPPA. Section III describes

this execution model along with a formal definition of the

notion of application resource budget.

The other contribution of this paper, given in section IV, is

the implementation of the execution model which relies on an

original hypervisor architecture. To highlight the correctness

of the approach, we developed several validation scenarios

showing that the temporal isolation is satisfied (see section V).

We moreover illustrate the use of the complete work-flow on

the ROSACE case study.

The Allocate phase has been implemented using a constraint

programming approach as proposed in [7] with the solver IBM

ILOG CPLEX CP Optimizer [8]. Using such techniques for

many-core processors restricted with an execution model has

been applied in [9]. In this paper, we present a solution to en-

sure temporally isolated execution of concurrent applications.

The full description of the Allocate phase that precedes the

execution is thus out of scope and will be presented in future

publications. We examine related works in section VI.

II. PLATFORM DESCRIPTION

Even if an execution model should rely only on very

high level architecture-independent concepts, implementations

largely depend on the target, due to significant heterogeneity

in the architectures of COTS processors. This is the reason

why our approach focuses on a specific platform, namely the

KALRAY MPPA
R©-256 [6]. The selection of the MPPA

R©-256

was based on the good temporal properties2 of the cores and

2In the context of the CERTAINTY [10] project, AbsInt [11] demonstrated
the property of full timing compositionality of the Kalray k1 VLIW core [12].

low power consumption making it an interesting candidate for

the implementation of future avionics systems.

A. General overview

The KALRAY MPPA
R©-256 integrates 288 cores distributed

over 16 Compute tiles and 4 I/O tiles (also denoted as the

compute and I/O clusters in KALRAY’s terminology) intercon-

nected by a dual Network on Chip (or NoC). Figure 2 shows an

overview of the MPPA
R©-256 architecture. The Compute tiles

(Ci) are dedicated to execute user code and the I/O tiles are

in charge of managing external peripherals such as the DDR-

SDRAM memory. All cores are identical VLIW processors

with a private Memory Management Unit (or MMU) enabling

virtual addressing and hardware memory protection.

South IO Tile

North IO Tile

W
es

t
I/

O
T

il
e

E
a

st
I/O

T
ile

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

R
n
0

R
n
1

R
n
2

R
n
3

R
s
0

R
s
1

R
s
2

R
s
3

R
w
0

R
w
1

R
w
2

R
w
3

R
e
0

R
e
1

R
e
2

R
e
3

Fig. 2: MPPA
R©-256 architecture overview

B. Compute and I/O tiles

Each Compute tile, drawn in Figure 3, is composed of

16 cores (named PEs), 1 specific core used for resource

management (RM), 2MiB of Static Random Access Memory

(or SRAM) exclusively accessible by the elements of the tile

and 1 DMA engine to transfer data between tiles over the NoC.

In the following sections, we will refer to the SRAM memory

of the tiles (named SMEM in Kalray’s terminology) as the

local memory in contrast with the external DDRx-SDRAM

that is only accessible through the I/O tiles. The local SRAM

is divided into 16 banks each of which has a private arbiter

in case of concurrent accesses. Parallel accesses to different

banks can be issued concurrently without interference.

Each I/O tile has 4 RM cores, 4 DMA engines and some

local memory. Moreover, the I/O tiles have access to the

external peripherals such as the DDRx-SDRAM or Ethernet

controllers. Their main role is to serve the requests from

Compute tiles to the external peripherals.

Fig. 3: MPPA
R©-256 Compute tile overview [12]

C. Network on Chip

All the tiles of the MPPA
R©-256 are interconnected by two

NoCs, one for data transfer (D-NoC), and the other for short

control messages (C-NoC). Both NoCs are shaped on the

same 2-D torus topology as shown in Figure 2. The user can

explicitly choose the route followed by any packet. The D-

NoC is based on wormhole switching and offers guaranteed

bounds on Worst-Case Traversal Time (or WCTT) in specific

configurations (e.g. no deadlock route, flow limitation by

the source node, . . .). This guarantee has been shown using

Network Calculus [12].

D. Sources of temporal perturbations

In order to define an adapted execution model, we have

to identify any interferences on the target that could violate

the temporal isolation of an application. The resources shared

between partitions are the memories and the NoC. More

precisely,

• local SRAM: an application accessing one local SRAM

bank may suffer from a concurrent access to the same

bank initiated by a different core running another partition

or from a DMA access.

• NoC: several flows sharing some NoC resources will

interfere and experience delays. Moreover, in such worm-

hole switched NoC, a bad path allocation may result in

a deadlock [13] that is obviously unacceptable.

• DDRx-SDRAM: the calculation of tight and safe tim-

ing bounds on the external memory strongly depends

on the access history. Moreover, an approach based on

bandwidth reservation between competitors requires a

fine grained analysis of the memory access protocol and

possibly strong assumptions on the system model to avoid

excessive pessimism.

A more detailed analysis of the aforementioned sources of

interference is provided in [14].

III. EXECUTION MODEL

Taking into account the identified interferences, we define

an execution model composed of 4 rules.

Rule 1 (Spatial partitioning in compute tiles). In a compute

tile, each local SRAM bank and each core can be reserved by

at most one partition.

This rule ensures that a partition executing on a PE will

never suffer from local SRAM interferences caused by other

partitions. Thanks to that rule, the only potential interferences

for one PE accessing a local SRAM bank come either from (1)

another PE executing the same partition (which is permitted),

(2) the DMA engine or (3) the RM. Any DMA transfer on a

bank reserved by a partition only results from that partition’s

requests. Therefore, those transfers do not break the temporal

isolation. In the same way, the RM, which hosts the hypervisor,

only generates traffic linked to the partition.

Rule 2 (TDM scheduling of the NoC). NoC accesses are time-

driven and are performed during strictly periodic slots defined

off-line. Overlapping between two NoC paths from two distinct

partitions is not allowed.

Time-driven scheduling on the NoC enables an easy, ef-

ficient and independent evaluation of the WCTT of packets.

In that case, the delay of a message transfer will exhibit no

variability regardless of other participants.

Rule 3 (Static buffers). All the buffers transferred during the

strictly periodic NoC slots must be defined off-line.

In the rest of the paper, we will refer to the pre-defined

memory areas used by the DMAs to send and receive data as

the static buffers. This rule applies whether the static buffer

contains code or data. In particular, applications which do not

fit inside one compute cluster will have to load their code in

this way. Although this rule is not mandatory to fulfill the

requirements, it greatly simplifies the implementation of the

execution model. The rule also has two orthogonal qualities:

(1) it reduces the combinatorial explosion of WCET estimation

when using static analysis; (2) it eases the measurement-based

validations because the memory coverage is easy to obtain.

Rule 4 (Concurrency at DDR-SDRAM level). A bank of the

external DDRx-SDRAM can be shared by several partitions if

and only if these partitions never access the DDRx-SDRAM

simultaneously.

The rule 4 eliminates inter-partitions interferences at the

external memory bank level. This not only gives performance

isolation between the partitions accessing the external memory

concurrently and eases the estimation of tight bounds on the

memory access delay but it can also improve the overall

memory throughput because the memory controller will be

able to fulfil concurrent accesses mostly with inexpensive

memory cycles that do not change pages inside banks.

We can now define precisely the notion of partition resource

budget. This is the interface between application designers

and the integrator. The application designer must detail to the

integrator the amount of resources needed by its software. In

the current version, the budget is close to the hardware detailed

capacity. This will be leveraged in future work.

Definition 1. A Partition Node (or PN) represents the need

of processing resource and memory of an application inside

one tile. Any application distributed over several tiles must

thus include several PNs in its budget. A PN is defined as a

tuple 〈Nc, Nb〉 where Nc and Nb respectively are the number

of cores and the number of local memory banks required.

Definition 2. An I/O Node (or I/ON) represents an access

point to the external memory. It is materialized as a processor

located on an I/O tile.

Definition 3. A Partition Communication (or PC) represents

a need of communication between two PNs located on two

different tiles (or a PN and an I/ON) in the form of a directed

strictly periodic NoC access slot. A PC is defined as the tuple

〈src, dest, 〈T,C〉〉 where:

• src (resp. dest) is the source (destination) of the commu-

nication. It can be either a PN or an I/ON.

• 〈T,C〉 is the strictly periodic slot with period T and

duration C 3.

Definition 4. The resource budget of a partition is defined as

the tuple 〈N , I, C,B〉 where N is a finite set of PNs, I is

a finite set of I/ONs, C is a finite set of PCs with src (resp.

dest) ∈ N ∪I and B represents a required number of external

DDRx-SDRAM banks.

Example 1. Let us consider two applications appA and appB
whose budgets are:

• budgetA = 〈 {PNA
1

= 〈3, 4〉, PNA
2

= 〈1, 2〉}, {I/ONA
1
},

{PCA
1

= 〈PNA
1
, PNA

2
, 〈6, 2〉〉, PCA

2
= 〈PNA

2
,PNA

1
,

〈18, 4〉〉,PCA
3
= 〈PNA

2
, I/ONA

1
, 〈12, 4〉〉, }, 2〉

• budgetB = 〈 {PNB
1
= 〈2, 1〉}, {I/ONB

1
}, {PCB

1
= 〈PNB

1
,

I/ONB
1
, 〈12, 3〉〉}, 3〉.

The Allocate phase of Fig. 1 is in charge of statically

mapping (1) the PNs and I/ONs on specific cores; (2) the

banks in specific memory areas; (3) the PCs on precise routes

and schedules.

IV. IMPLEMENTATION

We implemented the hypervisor and execution model on the

KALRAY MPPA
R©-256 in a bare-metal environment to achieve

a fine-grained configuration of the platform. As depicted in

Figure 1, the .elf file to be executed embeds both static

configuration header files and a hypervisor.

A. Hypervisor

The hypervisor code runs in privileged mode on the RM of

each tile and is in charge of applying the correct configurations

to the PEs and DMA engines; and of ensuring the respect of

3The offset of the strictly periodic slot is calculated during the Allocate

phase and will be discussed in Section IV-C.

the time-driven NoC schedules. In our implementation, the

hypervisor has its own private bank in the local SRAM. This

ensures that there is no interference between the hypervisor

and applications when accessing the local memory.

1) Synchronization: The time-driven NoC schedule can be

implemented only if a global notion of time exists. Fortunately,

most many-core processors, including the MPPA
R©-256, have a

common clock ensuring no drift between tiles. Yet, the cores

are started independently and the local hardware timestamp

counters, even though they do not drift, have unpredictable

offsets. We have developed a synchronization algorithm, run

at startup, based on round-trip time with I/O tiles and compute

tiles to synchronize the hypervisor. Once the synchronization

has been completed, no additional communications are re-

quired for this purpose any-more.

2) Global tick: In the current implementation, we defined

a global tick (denoted as the Systick) of period Tsys activating

periodically the hypervisors of all tiles simultaneously. As

explained further in Section IV-C, the NoC communications

are evaluated at each hypervisor activation. So, we express

the NoC slot durations as a number of Systicks rather than

as cycle counts. The value of Tsys should be as small as

possible to avoid too coarse roundings of the DMA transfers

durations. The low limitation on Tsys is the WCET of the

hypervisor as it must have completed before the next Systick.

The WCET of the hypervisor occurs when its work load is at

the maximum level that is when one single Systick matches

at the same time the end of an emission slot, the beginning

of the next emission slot, the end of a reception slot and the

beginning of the next one. In this case, the hypervisor must

notify the emitting partition whose slot is ending, set up the

next DMA transfer and notify the receiving partitions of the

end and beginning of their respective slots.

In our current implementation, we bound this WCET with

a simple measurement-based approach allowing us to reach

Tsys = 5µs. The design of a real avionic computer would

however probably require a safer WCET estimation. We argue

that it can be simply and efficiently achieved (with static

analysis for example) since the RM only accesses private

memory areas which ensures an execution of the hypervisor

that is completely free of external interferences. In this case,

the problem is reduced to the WCET estimation of a fully

timing-compositional mono-core processor accessing a private

SRAM.

B. Rule 1 - Spatial partitioning in compute tiles

This rule states that a static spatial mapping must be applied.

The mapping is computed off-line during the Allocate phase

of Figure 1. For example 1, PNA
1

of appA is mapped on the

PE1, PE2 and PE3 of compute tile 1 and PNB
1

of appB on the

PE5 and PE6 of compute tile 1. The static mapping is applied

on the target thanks to a dedicated boot procedure that works

as follows:

1) the RM first loads the configuration files which contain

the list of local PNs together with their attributes (the list

of cores, the list of local SRAM banks).

PCA
1

PCB
1

State PCA
1

PCB
1

PCA
1

PCA
1

PCB
1

PCA
1

PCA
1

PCB
1

PCA
1

BA

BB

BC

BD

DMA BA BD BB BC BD BA BB BD BC

TH TH TH

Fig. 4: Example of the NoC time-driven schedule of compute tile 1

2) the local SRAM addressing is configured to the blocked

mode by the RM in order to restrict the memory accesses

of each application to a pre-defined subset of local banks.

Indeed, the interleaved mode allows the traffic to be

spread evenly over the banks and thus to maximize the

memory throughput, but generates unpredictable interfer-

ences.

3) a static MMU configuration is associated to each PE

at startup to enable virtual addressing and memory

protection. This ensures the allocation of private local

memory spaces to partitions and prevents the access to

the memory-mapped registers of resources such as the

DMA. To achieve this, at startup only, the PEs boot in

privileged mode and configure their local MMU before

going into user mode and start running the application

code. The boot code of the PEs is fixed and cannot be

modified by application developers.

We force the execution of user applications (i.e., all ex-

cept the hypervisor) in user mode to avoid on-line re-

configurations. The Rule 1 avoids local SRAM interferences

between different partitions and thus offers temporal isolation

within compute tiles. The WCET of applications are thus

independent and can be safely bounded thanks to the full

timing compositionality property of the KALRAY MPPA
R©-256

cores demonstrated during the CERTAINTY project [10].

C. Rule 2 - TDM scheduling of the NoC

This rule states that routes on the NoC must be computed

off-line and that the schedule must ensure that there is no

overlapping of slots on the same link. The schedule is com-

puted off-line during the Allocate of Figure 1. More formally,

the Allocate phase computes an explicit route and an offset

for each PC. Thus each PC, defined as 〈src, dest, {T,C}〉
(see definition 3) is enriched with an offset O and an ex-

plicit route R. We over-load the definition of PC as PCi =
〈srci, desti, 〈Ti, Ci, Oi〉, Ri〉.

So, for any tile where n PCs [PC1 . . . PCn] must be sent,

the hypervisor will initiate the corresponding DMA transfers

cyclically with a hyperperiod of length:

TH = lcm(Ti), ∀i ∈ N, 0 < i ≤ n

where lcm(a, b) is the least common multiple of a and b. The

scheduling table is stored in memory as an array containing the

succession of PCs and idle states during one hyperperiod with

the associated durations. There are always two configuration

tables: one for emissions and another for receptions. The two

tables are independent since the emission and reception of data

is full-duplex on the MPPA
R©-256’ s NoC. For example, table I

represents the output configuration of the compute tile 1 with

PCA
1

and PCB
1

of example 1 where TH = lcm(12, 6) = 12.

TABLE I: Scheduling table of PCA
1

and PCB
1

Occupant (of the NoC interface) PCA
1

Idle PCB
1

PCA
1

Idle

Duration (in Systicks) 2 1 3 2 4

At each activation, the hypervisor can start some DMA

transfers when entering in a new state of the scheduling table

or do nothing if the state remains the same or is idle.

Remark 1 (Efficiency of the data structure). The memory

footprint of the scheduling tables depends on the number

of transfers during one hyperperiod. The total number of

transfers during one hyperperiod is:

Nt =
n∑

i=1

TH

Ti

Additionally, there can be at most Nt idle states when there

are no consecutive PCs. So, the number of elements in the

array Na is bounded by Na ≤ Nt × 2. We consider that

each element of the array has a size of b bytes. Thus, the

memory footprint fp = Na × b of the scheduling table is

bounded by fp ≤ 2 × Nt × b. The memory efficiency of a

specific configuration can be measured with the indicator M =
Na/n. In the most efficient case, M = 1 and so the number

of elements in the array is exactly equal to the number of

PCs. This can happen only when all the PCs have the same

period and when the utilization of the DMA U =
∑

Ci/Ti = 1
meaning that the DMA is never idle. In all other cases, M > 1.

D. Rule 3 - Static buffers

For each PC, The hypervisor knows the list of associated

static buffers which must be sent or received via the network

slots. Each buffer is defined by:

Bx = 〈Lx, Rx, Sx〉

with

• Lx is the address in the src’s virtual address space. If

the buffer must be sent (rather than received) from the

tile, then src is the partition and Lx is the address to be

read in the local partition’s virtual address space. If the

buffer must be received, there are two cases: src can be

an I/ON or a remote PN. If src is an I/ON , then Lx is the

address to be read in the DDRx-SDRAM. Otherwise, Lx

is the address to be read in the remote partition’s virtual

address space;

• Rx is the address in the dst’s virtual address space. The

same reasoning as for Lx applies;

• Sx is the size of the buffer in bytes.

The hypervisor is in charge of selecting a correct buffer

at the beginning of a slot and of configuring the DMA

engine accordingly to send (resp. receive) it. In our current

implementation, the hypervisor sends (or receives) exactly one

buffer per slot (but this could be implemented differently). So,

when n different buffers must be sent (or received), it will take

n slots.

Example 2. We use the budgets defined in the Example 1.

PCA
1

is associated with three static buffers BA, BB and BC

and PCB
1

is associated with only one static buffer BD. Figure

4 depicts the transfer of those buffers from compute tile 1. We

can see BA, BB and BC are transferred by the DMA every

three activations of PCA
1

while BD is sent at each activation

of PCB
1

.

E. Rule 4 - Concurrency at DDR-SDRAM level

We rely on the time-triggered NoC schedule to avoid the

interferences at the external memory level by construction.

Indeed, the NoC schedule is computed not only with a non-

overlapping constraint for PCs sharing some NoC resources

but also with DDR-related constraints. Thereby, we ensure

that no PCs belonging to partitions sharing a bank in DDR

can target simultaneously I/ONs linked with the same memory

controller.

V. VALIDATION

In order to validate the correctness of our approach, we

show experimentally the property of strong temporal isolation

between partitions. For that purpose, the validation procedure

is organized as follows:

• a reference application has been developed with the work-

flow. The execution times of this application are measured

with hardware counters and logged for post processing.

• several concurrent applications in other partitions are

executed in parallel. We run several scenarios where the

configurations of the competitors vary widely.

We observe that the execution times of the reference appli-

cation are always equivalent and do not depend on the test

scenario. This highlights the insensitivity of the reference

application to the behaviour of the competitors. Such an

approach based on benchmarking is standard: even though it

is not possible to prove complete coverage, the works of [15],

[16] give means to improve the stressing benchmarks tracking.

engine

elevator
aircraft dynamics

Vz control

Va control

h filter

az filter

Vz filter

q filter

Va filter

altitude hold

Va c

h c

Environment
simulation

Controller

10 Hz

10 Hz

50 Hz

50 Hz 50 Hz 100 Hz

100 Hz

100 Hz

100 Hz

100 Hz

200 Hz

200 Hz

200 Hz

δthc

Vzc

δec
hf h

azf az

Vzf Vz

qf q

Vaf Va

T

δe

Fig. 5: Controller architecture

A. Reference application : the ROSACE case study

As reference application, we use the longitudinal flight

controller of the Research Open-Source Avionics and Control

Engineering (or ROSACE) case study [17]. Although of modest

size, the ROSACE controller is representative of real avionics

applications and introduces complex multi-periodic execution

patterns.

PE1 engine h filter Va control

PE2 elevator a/c dynamics az filter altitude hold Vz control

PE3 q filter

PE4 Va filter

PE5 Vz filter

Fig. 6: Scheduling of the ROSACE controller

1) Architecture of the application: As shown in Figure 5,

the application is composed of the following parts:

• The simulation environment is the discretized model of

the aircraft composed of three blocks (engine, elevator

and aircraft dynamics).

• The controller is composed of three sub-controllers

(Va control, Vz control and altitude hold) and 5 filters.

• The simulated scenarios consist in sending different pilot

instructions to change the flight level.

2) Implementation choices: We placed the whole ROSACE

application inside one PN as it can easily fit in one compute

tile. We leveraged the relative independence of some basic

blocks (meaning that they are not subject to precedence

constraints) to produce the parallel schedule depicted in Figure

6. This schedule uses 5 PEs and the compiled executable can

fit into 3 local SRAM banks.

However, in order to have a multi-tile application (that is

more interesting for our experiments), we added a Set Point

Generator (or SPG). The SPG produces on-line the pilot

commands (hc, Vzc and Vac
) used by the controller to execute

the scenarios. We place the SPG in a second PN. As shown in

Figure 7, we define three PCs. The first PC provides the SPG

commands to the controller at a 10Hz frequency. The second

PC transfers the output values (Vz , Va, h, az and q) from the

controller to the SPG. And the third sends the output values

from the SPG to the DDR memory at a 200Hz frequency. We

measure on-line the execution times of the basic blocks of

ROSACE thanks to the PEs hardware cycle counters and we

log them for post-processing. The log procedure is detailed in

Section V-C3. The PNs and PCs of the ROSACE partition are

detailed in the tables II and III.

SPG ROSACE

C0 C2

IO1

DDRx-SDRAM

PC2 / 200Hz

PC1 / 10Hz

P
C
3

/
2
0
0
H

z

Fig. 7: Example of implementation of the ROSACE case study

TABLE II: PNs of the ROSACE partition

Name Number of PEs Local SRAM banks

ROSACE 5 3

SPG 1 1

TABLE III: PCs of the ROSACE partition

Name srci desti Ti (in Systicks) Ci (in Systicks)

PC1 SPG ROSACE 20000 1

PC2 ROSACE SPG 1000 1

PC3 SPG IO1 1000 1

B. Concurrent application

The concurrent application is based on a simple image

inversion algorithm. This choice is motivated by the following

reasons:

• the parallelization of this algorithm over several PEs is

simple and configurable;

• the memory utilization is manageable by choosing pic-

tures of appropriate sizes;

• the NoC budgets can easily be adjusted to deal with pic-

tures of different sizes and various periods of execution;

• and the implementation is rather simple.

1) Architecture of the application: The application is exe-

cuted cyclically at a configurable period. It has in memory 3

buffers of equal size. At the beginning of each cycle, one or

several cores run the image inversion algorithm on a picture

stored in one of the 3 buffers. Meanwhile, another picture is

being received in one of the two remaining buffers, and the

third buffer is being sent by the DMA. At the next cycle,

the cores will apply the algorithm on the previously received

image. The previously computed image is sent and another

image is received in the third buffer.

2) Implementation choices: We consider 8 bit grey-scale

pictures of fixed size (512x512 or 256x256 or 128x128

configurable off-line). The algorithm can be configured to be

executed by 16, 8, 4 or 2 PEs. Each instance of the application

is placed into 1 PN. Each PN sends and receives pictures

through two PCs (an incoming one and an outgoing one).

The length of the PCs are fixed by the pictures sizes. Several

identical (same number of PEs, same picture size, same PCs

lengths and periods) instances can cohabit in one partition and

exchange data (the outgoing PC of one PN is the receiving PC

of another).

C. Means of observation

Overall, the tight observation of a COTS-based system is

challenging. Indeed, intrusive observation through JTAG for

example can introduce unmanaged delays causing deadline

misses. Thus, this problematic should be taken into account

early in the development phase to include the means of

observation into the applications themselves. For example, one

may provide some PCs dedicated to logging or over-provision

the resource budget to account for the observation-related

delays. We present 3 additional observation and validation

means that helped us in our experiments.

1) Post-processing of the memory footprints: The develop-

ment environment of the MPPA
R©-256 allows dumping of both

local and external memories after the end of an execution.

Hence, the final real memory footprints of the applications

can be compared with the expected ones in order to look

for differences. If none are spotted, there are no proof of the

correct execution but it is certainly encouraging. Otherwise,

the differences are usually very helpful for investigation. We

used this method to verify the functional behaviour of ROSACE

by checking that the output values, written in the external

memory, match the outputs of the implementation proposed

in [17].

2) Non-intrusive on-line observation of the memory ac-

cesses: We used a DDR-SDRAM protocol analyzer which

significantly helped the validation of both the applications and

the execution model. Indeed, such hardware is able to sniff

the commands going from the DDR-SDRAM controller to

the memory modules thanks to a physical interposer placed

between the modules and the slots. Although physical equip-

ment is required, the memory accesses do not suffer from

additional delays and the on-line observation is completely

non-intrusive. The captured data contains the logs of the

commands (read, write, activate, precharge, refresh, ...) with

the corresponding addresses and a cycle accurate timestamp

and possibly the value of the data depending on the analyzer.

As long as the memory spaces of partitions do not overlap (this

is not mandatory to fulfill the requirements of the execution

model but it is useful for this specific setup), the address

of any command can be associated easily to its initiating

partition. So, we checked temporal properties on the traces

of memory accesses of each partition in order to: 1) validate

the behaviour of an application by checking that it is doing the

right memory transaction at the expected time; and 2) validate

the execution model compliance, and especially the Rule 4, by

checking the non-overlapping of memory transactions coming

from partitions sharing a DDR-SDRAM bank.

3) The log server: The C-NoC of the MPPA
R©-256 offers

the possibility of sending small asynchronous messages. We

used it to implement a simple log feature. We reserved one of

the compute tiles to execute a specific application denoted as

the Log Server which simply waits for the reception of C-NoC

messages and writes them back into its local SRAM. A PC

from the Log Server to an I/ON is reserved to periodically

flush the received data into the external memory. Hence,

any application can log information data asynchronously by

sending them to the Log Server. Yet, the log procedure has two

main drawbacks. Firstly, it can loose packets. On the MPPA
R©-

256, the C-NoC reception queues can store only one message

at a time. So, any untreated message can be lost during the

reception of a new message. The quantity of lost packets can

nonetheless be retrieved from the hardware packet counters

and can be used to determine whether a specific log trace can

be trusted as it is or not. And secondly, it is intrusive. Sending

C-NoC packets takes time. This must be carefully taken into

account in a time-triggered environment.

In practice, we used the Log Server to get the execution

times of the basic blocs of ROSACE as explained in Sec-

tion V-A2.

D. Experimental results

Scenario 1: no interference: At first, we execute ROSACE

with no competitors on the MPPA
R©-256 in order to define the

reference values that must be respected by the other scenarios

introducing interferences. Figure 7 depicts the mapping of

ROSACE on the MPPA
R©-256 provided automatically by our

mapping algorithm mentioned in Section I. The SPG is placed

on the compute tile 0, ROSACE is placed on compute tile 2

and the access to the external memory is provided by the north

I/O tile. This configuration for ROSACE will be similar in all

the following scenarios. We provide in Figure 8 a candlestick

chart representing the execution times in machine cycles of the

basic blocs of ROSACE. The lines represent the minimum and

maximum values and the boxes the standard deviations. The

values are obtained after at least 10,000 executions of each

basic bloc. The execution times of the aircraft dynamics bloc

have an average of 59895 clock cycles so we do not plot them

for clarity.

Scenario 2: NoC interferences: The concurrent application

is composed of two instances I1 and I2 of the image inversion

300

350

400

450

500

550

600

650

700

750

en
g
in

e

el
ev

at
o
r

V
z

co
n
tr

o
l

V
a

co
n
tr

o
l

al
ti

tu
d
e

h
o
ld

h
fi

lt
er

V
z

fi
lt

er

q
fi

lt
er

V
a

fi
lt

er

az
fi

lt
er

C
lo

ck
cy

cl
es

Fig. 8: Execution times of ROSACE

algorithm with 512x512 pictures processed by 8 PEs. Each

instance is placed in a PN requiring 8 cores and 7 local SRAM

banks (exactly 6 banks for the image buffers and 1 bank for

the code and other data). The 2 PNs are linked by two PCs of

arbitrary period Ti = 2ms and length Ci = 300µs (deduced

from the NoC bandwidth and the image sizes). We forced the

mapping algorithm to place I1 and I2 respectively on compute

tiles 3 and 4 and to provide partially common NoC paths

between the two partitions. The configuration of ROSACE

remains the same. In this context, the measured execution

times of the basic blocs of ROSACE are very close to those

observed during the Scenario 1:

• the best and worst measured times were the same in the

two cases;

• the averages of the two vectors differ by less than 1%.

Moreover, we modified the hypervisor of tile 2 to log the

current date when receiving a NoC packet. We observed that

100% of the packets received by tile 2 arrived during the in-

tended reception slots. This exhibits the good synchronization

between the tiles and that the data sent by the SPG were never

delayed by the packets of the concurrent application.

Scenario 3: DDRx-SDRAM interferences: The concurrent

application is composed of only one instance of the image

processing algorithm with a PN configuration similar to that

of Scenario 2. The PN receives/sends data from/to the external

DDRx-SDRAM with 2 PCs configured as in Scenario 2. The

PN is placed on tile 1 and the image buffers in DDR are

located on a shared bank with ROSACE. Once again, the

execution times of the basic blocs of ROSACE are very close

to those observed during Scenario 1 (in the same proportions

as those of Scenario 2). We modified the hypervisor of tile

1 to log the reception dates of NoC packets as we did in

Scenario 2 and we observed that all the packets arrived within

the appropriate slots despite the shared DDR-SDRAM bank.

VI. RELATED WORK

A. Execution models

Several execution models have been proposed for multi-

core platforms, most of them based on time triggered steps.

The main ideas are:

• assume a TDMA access on the internal bus (e.g. [18]),

• modify the application architecture and decompose it into

several phases such as pure execution or access to data

which are not in the caches. Then schedule the different

phases so as to calculate statically all the conflicts (e.g.

[4], [19]–[21]).

The case of many-core has been less studied in the literature.

We reused common ideas with former execution models:

(1) applications are spatially mapped off-line (the maximum

sections are stored in the local memory, thanks to the local

memory architecture); (2) accesses on the shared resources are

made in a time-driven manner; (3) all mappings, schedules and

network routes are computed off-line. The novelties concerns

the tight management of the network and of the overall

complexity of the MPPA
R©-256.

B. Run-time ensuring temporal isolation

Another approach instead of modifying the applications is

to force them to access on the bus or memory at specific time

or with a given bandwidth. To do that, a specific run-time must

be developed such as MEMGUARD [22], the run-time of [23]

or MARTHY [24].

Our approach mixed the notion of execution model and the

development of a hypervisor which forces the applications to

comply with the rules. Our hypervisor is close to MARTHY in

the sense that the DMA (instead of the MMU) is modified reg-

ularly to constrain the behaviour. In [25], Girbal et al. provide a

detailed comparison of both the existing execution models and

run-times restricting the accesses of applications to the shared

resources of multi-cores in order to master the interferences.

However, none of the approaches consider NoC-based many-

core processors with fully explicit communications and are

thus not applicable the to KALRAY MPPA
R©-256.

C. Work-flow

In [26], the authors present a work-flow for mapping real-

time tasks on NoC-based many-core processors. Similarly to

us, the authors took into account the low level hardware

particularities of their target to build efficient scheduling tables

that are not directly applicable to the KALRAY MPPA
R©-256.

Moreover, the authors do not aim at providing temporally

isolated partitions and do not consider applications of different

criticality levels. In [27], the authors presented a problem

of computing time-triggered communications scheduling on a

TTEthernet network and solved it with Satisfiability Modulo

Theories (SMT). The problem is similar to our mapping

time-triggered communications on the NoC, but we manage

in addition independent routes and memory mappings. An

empirical study on the scalability of constraint solving for off-

line real-time scheduling can be found in [28].

D. Temporally guaranteed services on the NoC

In our approach, we consider a time-triggered NoC schedule

enabling an easy evaluation of the WCTT of packets. Such

schedules have already been deployed in the industry with the

FlexRay [29] and TTEthernet [30] standards to interconnect

real-time systems. However, most of the available NoC-based

many-core COTS processors such as the KALRAY MPPA
R©-256

or the EZCHIP TILE GX* [31] and TILE MX* [32] families

do not have native hardware support for TDM scheduling.

So, many contributions in the literature consider asynchronous

sources and highlight the benefit of such a more flexible model.

In a hard real-time context, the authors often use Network

Calculus [33], [34] and Real-Time Calculus [35] to provide

temporally guaranteed services. The application of such the-

ories has been proven to be applicable for NoCs in [36]

and successfully applied on the KALRAY MPPA
R©-256 in [12]

and [37]. In general, these techniques are based on the property

of Timing Compositionality in the sense that the temporal

behaviour of the NoC can be inferred from the contribution

of all participants [38]. By using a time-triggered schedule,

we aim at the property of Timing Composability (also defined

in [38]) that is orthogonal to timing compositionality but

better suited to ensure a strict temporal isolation, including

the need of separated verifications of the timing behaviours of

the partitions.

Some academic initiatives are based on TDM scheduled

NoCs such as T-CREST with the Argo NoC [39] or CompSOC

with Aethereal [40]. In our case, the TDM schedule is com-

pletely enforced by software by leveraging the global clock

available in the KALRAY MPPA
R©-256 to reach easily a global

notion of time. In this direction, the closest contribution to

our work is the one presented in [41]. However, the authors

only consider bus-based or crossbar-based interconnects while

our approach takes benefit from the degree of parallelism

exploitable from a NoC-based platform.

E. Predictable accesses to DDRx-SDRAM

The DDRx-SDRAM access protocol described in the

JEDEC standard [42] is complex and highly depends on

the state of the hardware. The problem of achieving pre-

dictable memory transactions is addressed in three ways in

the literature. The first solution is based on the utilization

of custom memory controllers designed for real-time such

as AMC [43], PREDATOR [44], PRET [45] or ROC [46].

Although custom controllers surely offer the most elegant

solution, COTS controllers are preferable in the industry since

they allow to reduce both the non-recurring costs and the time-

to-market.

A second solution, applicable to COTS, relies on an ac-

curate analysis of the DDRx-SDRAM access protocol. The

calculation of tight bounds on the memory access time within

the specific context of multi-core COTS processors is still an

active research topic [47]–[50]. To the best of our knowledge,

no contribution considers many-core processors where the

memory transactions are not due to cache refills or evictions

but to DMA transfers that are more likely to be large and are

explicitly initiated by software.

A third solution is based on software approaches where the

scheduler or the OS is memory-aware and orders the accesses

to avoid interferences [22], [51]. In the idea, the closest

contribution to our work for the DDRx-SDRAM management

is the TDMA-based memory-centric scheduling of Yao et al.

in [52].

VII. CONCLUSION

In this paper, we presented an execution model allowing

the mapping of temporally isolated partitions on the KALRAY

MPPA
R©-256. We detailed its dual implementation composed

of: 1) pre-computed static hardware configurations providing

an intra-tile temporally isolated environment to partitions; 2) a

real-time hypervisor limiting the behaviours of the applications

on-line, especially to ensure the respect of the time-triggered

NoC schedule. We implemented an academic case study and

we have shown the effective temporal isolation between parti-

tions with several experimental validation scenarios involving

sharing at the NoC and DDRx-SDRAM levels.

In the future, we will introduce new features to the hypervi-

sor such as the online management of best-effort NoC traffic

to fill the partially unused slots. We are also considering the

problem of the automatic budgeting of partitions that seems

feasible for many types of applications having an intrinsically

cyclic architecture (e.g., control-command). Finally, we will

evaluate the capability of our approach to deal with problems

of industrial size by implementing a real avionic application

from Airbus.

REFERENCES

[1] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE), DO-297:

Software, Electronic, Integrated Modular Avionics (IMA) Development

Guidance and Certification Considerations, Std.

[2] ——, DO-178C: Software Considerations in Airborne Systems and

Equipment Certification, Std., 2011.

[3] R. Wilhelm and J. Reineke, “Embedded systems: Many cores - many
problems,” in 7th IEEE International Symposium on Industrial Embed-

ded Systems (SIES’12), 2012, pp. 176–180.

[4] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha, “Real-Time
I/O Management System with COTS Peripherals,” IEEE Transactions

on Computers, vol. 62, no. 1, pp. 45–58, 2013.

[5] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Ja-
cobs, A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm, “ Impact
of Resource Sharing on Performance and Performance Prediction: A
Survey ,” in 24th International Conference on Concurrency Theory

(CONCUR’13), 2013, pp. 25–43.

[6] Kalray, The MPPA hardware architecture, 2012.

[7] C. Ekelin, “An Optimization Framework for Scheduling of Embedded
Real-Time Systems,” Ph.D. dissertation, Chalmers University of Tech-
nology, 2004.

[8] IBM ILOG, “CPLEX Optimization Studio,” 2014,
http://www.ibm.com/software/integration/optimization/cplex-
optimization-studio/.

[9] W. Puffitsch, É. Noulard, and C. Pagetti, “Off-line mapping of multi-
rate dependent task sets to many-core platforms,” Real-Time Systems,
vol. 51, no. 5, pp. 526–565, 2015.

[10] “FP7 Certification of Real-Time Applications Designed for Mixed-
Criticality (CERTAINTY),” http://www.certainty-project.eu/.

[11] AbsInt Angewandte Informatik GmbH, http://www.absint.com.

[12] B. De Dinechin, D. van Amstel, M. Poulhies, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
18th Design, Automation & Test in Europe Conference and Exhibition

(DATE’14), 2014, pp. 1–6.

[13] É. Fleury and P. Fraigniaud, “A General Theory for Deadlock Avoidance
in Wormhole-Routed Networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 9, no. 7, pp. 626–638, 1998.

[14] Q. Perret, P. Maurère, É. Noulard, C. Pagetti, P. Sainrat, and B. Triquet,
“Predictable composition of memory accesses on many-core processors,”
in 8th Conference on Embedded Real Time Software and Systems

(ERTS’16), 2016.

[15] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing
architectures in avionics,” in 9th European Dependable Computing

Conference (EDCC’12), 2012, pp. 132–143.

[16] J. Bin, S. Girbal, D. Gracia Prez, A. Grasset, and A. Merigot, “Studying
co-running avionic real-time applications on multi-core COTS architec-
tures,” in 7th Conference on Embedded Real Time Software and Systems

(ERTS’14), 2014.

[17] C. Pagetti, D. Saussie, R. Gratia, É. Noulard, and P. Siron, “The
ROSACE case study: From simulink specification to multi/many-core
execution,” in 20th Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS’14), 2014, pp. 309–318.

[18] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared
cache and bus in multi-cores for timing analysis,” in 13th International

Workshop on Software Compilers for Embedded Systems (SCOPES’10),
2010, pp. 1–10.

[19] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A Predictable Execution Model for COTS-based Embedded
Systems,” in 17th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS’11), 2011, pp. 269–279.

[20] F. Boniol, H. Cassé, É. Noulard, and C. Pagetti, “Deterministic Execu-
tion Model on COTS Hardware,” in 25th International Conference on

Architecture of Computing Systems (ARCS’12), 2012, pp. 98–110.

[21] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and
W. Puffitsch, “Predictable Flight Management System Implementation
on a Multicore Processor,” in 7th Conference on Embedded Real Time

Software and Systems (ERTS’14), 2014.

[22] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
Guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms,” in 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS’13), 2013, pp. 55–64.

[23] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis leverag-
ing runtime resource capacity enforcement,” in 26th Euromicro Confer-

ence on Real-Time Systems (ECRTS’14), 2014, pp. 109–118.

[24] X. Jean, D. Faura, M. Gatti, L. Pautet, and T. Robert, “Ensuring robust
partitioning in multicore platforms for IMA systems,” in 31st IEEE/AIAA

Digital Avionics Systems Conference (DASC’12), 2012, pp. 7A4–1–
7A4–9.

[25] S. Girbal, X. Jean, J. le Rhun, D. G. Prez, and M. Gatti, “Deterministic
Platform Software for Hard Real-Time systems using multi-core COTS,”
in 34th Digital Avionics Systems Conference (DASC’15), 2015.

[26] T. Carle, M. Djemal, D. Potop-Butucaru, and R. De Simone, “Static
mapping of real-time applications onto massively parallel processor
arrays,” in 14th International Conference on Application of Concurrency

to System Design (ACSD’14), 2014, pp. 112–121.

[27] S. S. Craciunas and R. S. Oliver, “SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems,”
in 22nd International Conference on Real-Time Networks and Systems

(RTNS’14), 2014, pp. 45:45–45:54.

[28] R. Gorcitz, E. Kofman, T. Carle, D. Potop-Butucaru, and R. De Simone,
“On the Scalability of Constraint Solving for Static/Off-Line Real-Time
Scheduling,” in 13th International Conference on Formal Modeling and

Analysis of Timed Systems (FORMATS’15), 2015, pp. 108–123.

[29] International Organization for Standardization (ISO), ISO 17458, Road

vehicles – FlexRay communications system, Std.

[30] SAE International, AS6802: Time-Triggered Ethernet, Std.

[31] EZchip, TILE-Gx72 Processor - Product Brief.

[32] Bob Doud, “Accelerating the Data Plane With the TILE-Mx Manycore
Processor,” February 2015, Linley Data Center Conference.

[33] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[34] R. Cruz, “A calculus for network delay. I. network elements in isolation,”

IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 114–131,
1991.

[35] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 International Symposium

on Circuits and Systems (ISCAS’00), vol. 4, 2000, pp. 101–104.
[36] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for

on-chip packet-switching networks,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 29, no. 5, pp.
802–815, 2010.

[37] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D.
de Dinechin, “Mixed-criticality scheduling on cluster-based manycores
with shared communication and storage resources,” Real-Time Systems,
pp. 1–51, 2015.

[38] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in
execution time analysis: Definition and challenges,” SIGBED Review,
vol. 12, no. 1, pp. 28–36, 2015.

[39] E. Kasapaki and J. Spars, “Argo: A Time-Elastic Time-Division-
Multiplexed NOC Using Asynchronous Routers,” in 20th IEEE Interna-

tional Symposium on Asynchronous Circuits and Systems (ASYNC’14),
2014, pp. 45–52.

[40] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on
chip: concepts, architectures, and implementations,” IEEE Design & Test

of Computers, vol. 22, no. 5, pp. 414–421, 2005.
[41] M. Ziccardi, A. Cornaglia, E. Mezzetti, and T. Vardanega, “Software-

enforced Interconnect Arbitration for COTS Multicores,” in 15th Inter-

national Workshop on Worst-Case Execution Time Analysis (WCET’15),
vol. 47, 2015, pp. 11–20.

[42] JEDEC, “DDR3 SDRAM STANDARD,” 2012.
[43] M. Paolieri, E. Quiones, F. Cazorla, and M. Valero, “An Analyzable

Memory Controller for Hard Real-Time CMPs,” IEEE Embedded Sys-

tems Letters, vol. 1, no. 4, pp. 86–90, 2009.
[44] B. Akesson, K. Goossens, and M. Ringhofer, “PREDATOR: A Pre-

dictable SDRAM Memory Controller,” in 5th IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS’07), 2007, pp. 251–256.
[45] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM

Controller: Bank Privatization for Predictability and Temporal Isolation,”
in 7th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS’11), 2011, pp. 99–108.
[46] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A Rank-Switching,

Open-Row DRAM Controller for Time-Predictable Systems,” in 26th

Euromicro Conference on Real-Time Systems (ECRTS’14), 2014, pp.
27–38.

[47] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R. Rajku-
mar, “Bounding memory interference delay in COTS-based multi-core
systems,” in 20th Real-Time and Embedded Technology and Applications

Symposium (RTAS’14), 2014, pp. 145–154.
[48] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-Aware Memory

Interference Delay Analysis for COTS Multicore Systems ,” in 27th

Euromicro Conference on Real-Time Systems (ECRTS’15), 2015, pp.
184–195.

[49] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst Case Analysis of
DRAM Latency in Multi-requestor Systems,” in 34th Real-Time Systems

Symposium (RTSS’13), 2013, pp. 372–383.
[50] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,

“Worst case delay analysis for memory interference in multicore sys-
tems,” in 13th Design, Automation & Test in Europe Conference and

Exhibition (DATE’10), 2010, pp. 741–746.
[51] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo, “Global

Real-Time Memory-Centric Scheduling for Multicore Systems,” IEEE

Transactions on Computers, (accepted, to appear).
[52] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-

centric Scheduling for Multicore Hard Real-time Systems,” Real-Time

Systems, vol. 48, no. 6, pp. 681–715, 2012.

