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Abstract. In this paper, we investigate the properties of operators in the continuous-in-time model
which is designed to be used for the finances of public institutions. These operators are involved in the
inverse problem of this model. We discuss this inverse problem in Schwartz space that we prove the
uniqueness theorem.
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1 Introduction
Linear inverse problems arise whenever throughout engineering and the mathematical sciences. In

most applications, these problems are ill-conditioned or underdetermined. Consequently, over the last
two decades, the theory and practice of inverse problems is rapidly growing, if not exploding in many
scientific domains. The fundamental reason is that solutions to inverse problems describe important
properties of solution in this theory and the development of sophisticated numerical techniques for its
treating on a level of high complexity. We mention the paper [9] introduced by Hadamard in the field of
ill-posed problems.

We built in previous work [5, 3] the continuous-in-time model which is designed to be used for the
finances of public institutions. This model uses measures over time interval to describe loan scheme,
reimbursement scheme and interest payment scheme. Algebraic Spending Measure σ̃ and Loan measure
κ̃E are financial variables involved in the model. Measure σ̃ is defined such that the difference between
spendings and incomes required to satisfy the current needs. Assuming that measures σ̃ and κ̃E are
absolutely continuous with respect to the Lebesgue measure dt. This means that they read σ(t)dt and
κE(t)dt, where t is the variable in R. We call that σ and κE are time densities.

Let F and G be normed spaces. Throughout this paper, L : F → G is a continuous linear application
(in short, an operator). We say that the following problem:

Given σ ∈ G, find κE ∈ F such that σ = L[κE ],

is well-posed if L is invertible and its inverse L−1 : G → F is continuous. In other words, the problem
is said to be well-posed if

∀σ ∈ G,∃!κE ∈ F : σ = L[κE ]; (1)

the solution κE depends continuously on σ. (2)

Existence and uniqueness of a solution for all g ∈ G (condition (1)) is equivalent to surjectivity and
injectivity of L, respectively. Stability of the solution (condition (2)) amounts to continuity of L−1.
Conditions (1) and (2) are referred to as the Hadamard conditions. A problem which is not well-posed
is said to be ill-posed. Operator L links between Algebraic Spending Density σ and Loan Desnity κE .
If this operator is not invertible, solutions of the posed inversion problem can be brought.
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In the recent papers [4, 5], we study the inverse problem stability of the continuous-in-time model.
We discuss this study with determining Loan Measure κ̃E from Algebraic Spending Measure σ̃ in Radon
measure space, i.e. F = M([tI,Θmax − Θγ ]), G = M([tI,Θmax]), and in Hilbert space, i.e. F =
L2([tI,Θmax − Θγ ]), G = L2([tI,Θmax]) when they are density measures. For this inverse problem we
prove the uniqueness theorem in [4], we obtain a procedure for constructing the solution and provide
necessary and sufficient conditions for the solvability of the inverse problem.

We are motivated by a recently developed nonlinear inverse scale in Schwartz space. We refer the
reader to [1, 10], for applications of fast inversion formulas to inverse problems. Frank Bauer & Mark A.
Lukas inverstigate in [1] some different frameworks for regularization of linear inverse problems when error
is expected to be decreased at infinity. In the paper [10], P. C. Hansen investigates the approximation
properties of regularized solutions to discrete ill-posed associated with the average decay to zero faster
than the generalized singular values.

We show in this paper some results of this inverse problem in Schwartz space. We sketch the theo-
retical results that justify the mathematical well-posedness under some assumptions. The main result of
this paper is to study the existence and uniqueness of solutions. We give an overview of properties for
operator L, describing the computation of its image.

The rest of this paper is arranged as follows. In section 2 we introduce the definition of operator L and
others, and the mathematical properties of these operators is shown. We treat in section 3 the spectrum
of some operators involved in the model by determining the inverse of operator under some hypothesis.
It is followed by enrichment of the model of variable rate in section 4. In section 5, we examine the
concept of ill-posedness in Schwartz space in order to obtain interesting and useful solutions.

2 Properties of operators
This section is devoted to explore mathematical properties of some operators involved in the model.

Those properties will be useful for some aspects of the model implementation to come in the following.
These operators are acting on measures over R. For that, we will also consider that M([tI,Θmax]) is
the set of Radon Measures over R, supported in [tI,Θmax]. In the sequel, we consider the case when all
measures are density measures. The purpose is to compute the adjoint of these operators. We will be
able to use some specific mathematical tools as inner product.

We proceed by denoting L2([tI,Θmax]) the space of square-integrable functions over R having their
support in [tI,Θmax]. We state the Repayment Pattern Density γ as follows:

γ ∈ L2([0,Θγ ]), (3)

where Θγ is a positive number such that:

Θγ < Θmax − tI. (4)

We recall that we have shown the balanced equation given by equality (14) in [5]. This equality consists
in writing Loan Density κE as a sum of Algebraic Spending Density σ and densities associated with
quantities that have to be repaid or paid. This equality yields with convolution equality defined by (9)
in [5] to express density σ:

σ(t) = κE(t)− (κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s)ds − α
∫ Θmax

t

ρI
K(s)ds − ρI

K(t). (5)

From this, linear term of density σ is defined by linear operator L acting on Loan Density κE ∈
L2([tI,Θmax −Θγ ]) given by:

L[κE ](t) = κE(t)− (κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s) ds. (6)
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The aim here is to compute operator L∗. For that, we will compute inner product
〈
L[κE ], κF

〉
for any

densities κE and κF in respectively spaces L2([tI,Θmax −Θγ ]) and L2([tI,Θmax]) defined by:

〈
L[κE ], κF

〉
=
∫ Θmax

tI

L[κE ](x)κF (x) dx,

=
∫ Θmax

tI

κE(x)κF (x) dx−
∫ Θmax

tI

(κE ? γ)(x)κF (x) dx

− α
∫ Θmax

tI

(∫ x

tI

κE(y) dy
)
κF (x) dx+ α

∫ Θmax

tI

(∫ x

tI

κE ? γ(y) dy
)
κF (x) dx.

(7)

We will simplify inner product
〈
L[κE ], κF

〉
given by relation (7) in function of four terms. Since first

term
∫ Θmax

tI

κE(x)κF (x) dx is already simplified, we simplify the second one as follows:

∫ Θmax

tI

(κE ? γ)(x)κF (x) dx =
∫ Θmax

tI

(∫ x

tI

γ(x− y)κE(y) dy
)
κF (x) dx,

=
∫ Θmax

tI

(∫ Θmax

tI

γ(x− y)κE(y)1{y≤x} dy
)
κF (x) dx,

=
∫ Θmax

tI

κE(y)
(∫ Θmax

y

γ(x− y)κF (x) dx
)
dy.

(8)

Next, we simplify the third one as follows:

∫ Θmax

tI

(∫ x

tI

κE(y) dy
)
κF (x) dx =

∫ Θmax

tI

(∫ Θmax

tI

κE(y)1{y≤x} dy
)
κF (x) dx,

=
∫ Θmax

tI

κE(y)
(∫ Θmax

y

κF (x) dx
)
dy.

(9)

The last one is simplified as follows:

∫ Θmax

tI

(∫ x

tI

κE ? γ(y) dy
)
κF (x) dx =

∫ Θmax

tI

(∫ x

tI

(∫ y

tI

γ(y − t)κE(t) dt
)
dy

)
κF (x) dx,

=
∫ Θmax

tI

(∫ Θmax

tI

1{y≤x}

(∫ Θmax

tI

γ(y − t)κE(t)1{t≤y} dt
)
dy

)
κF (x) dx,

=
∫ Θmax

tI

(∫ Θmax

tI

κE(t)1{t≤x}

(∫ Θmax

tI

γ(y − t)1{t≤y≤x} dy
)
dt

)
κF (x) dx,

=
∫ Θmax

tI

(∫ Θmax

tI

κF (x)1{t≤x}

(∫ Θmax

tI

γ(y − t)1{t≤y≤x} dy
)
dx

)
κE(t) dt.

(10)

According to relations (8), (9) and (10), expression (7) of inner product
〈
L[κE ], κF

〉
reads

〈
L[κE ], κF

〉
=
∫ Θmax

tI

κE(y)
(
κF (y)−

∫ Θmax

y

γ(x− y)κF (x) dx− α
∫ Θmax

y

κF (x) dx

+ α

∫ Θmax

y

κF (x)
(∫ x

y

γ(z − y) dz
)
dx

)
dy.

(11)
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Since operator L∗ is one such that

∀κE ∈ L2([tI,Θmax −Θγ ]),∀κF ∈ L2([tI,Θmax]),
〈
L[κE ], κF

〉
=
〈
κE ,L∗[κF ]

〉
, (12)

and according to relation (11), operator L∗ is defined by:

L∗[κF ](y) = κF (y)−
∫ Θmax

y

γ(x− y)κF (x) dx− α
∫ Θmax

y

κF (x) dx+ α

∫ Θmax

y

κF (x)
(∫ x

y

γ(z − y) dz
)
dx,

= κF (y)−
∫ Θmax

y

κF (x)
(
γ(x− y) + α− α

∫ x

y

γ(z − y) dz
)
dx.

(13)

Defining linear operator D acting on Initial Debt Repayment Density ρI
K ∈ L2([tI,Θmax]) as:

D[ρI
K](t) = −α

∫ Θmax

t

ρI
K(s) ds− ρI

K(t). (14)

The integration by parts states that inner product
〈
D[ρI

K], κF
〉

is computed for any densities ρI
K and

κF in L2([tI,Θmax]) as follows:

〈
D[ρI

K], κF
〉

=
∫ Θmax

tI

D[ρI
K](x)κF (x) dx,

= −α
∫ Θmax

tI

(∫ Θmax

x

ρI
K(y) dy

)
κF (x) dx−

∫ Θmax

tI

ρI
K(x)κF (x) dx,

= α

∫ Θmax

tI

ρI
K(x)

(∫ Θmax

x

κF (y) dy
)
dx+ α

(∫ Θmax

tI

ρI
K(y) dy

)(∫ Θmax

tI

κF (y) dy
)

−
∫ Θmax

tI

ρI
K(x)κF (x) dx,

=
∫ Θmax

tI

ρI
K(x)

(
α

∫ Θmax

x

κF (y) dy + α

∫ Θmax

tI

κF (y) dy − κF (x)
)
dx.

(15)

From this, operator D∗ is defined by:

D∗[κF ](x) = α

∫ Θmax

x

κF (y) dy + α

∫ Θmax

tI

κF (y) dy − κF (x). (16)

Operator L we set out in relation (6) considered a constant rate. Nevertheless, if we consider in it
a function α that depends on t, the model becomes a financial model with variable rate. The only
modification to make is to enrich (6) and (14) by writing:

L[κE ](t) = κE(t)− (κE ? γ)(t)− α(t)
∫ t

tI

(κE − κE ? γ)(s) ds. (17)

D[ρI
K](t) = −α(t)

∫ Θmax

t

ρI
K(s) ds− ρI

K(t). (18)
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Once this enrichment is done, by using a variable rate makes operator D∗ be expressed in terms of
densities α and γ:

L∗[κF ](y) = κF (y)−
∫ Θmax

y

κF (x)
(
γ(x− y) + α(x)− α(x)

∫ x

y

γ(z − y) dz
)
dx. (19)

By definition α(x) is the rate at time x. Operator D∗ given by relation (16) can be rewritten adding this
enrichment:

D∗[κF ](x) = α(x)
∫ Θmax

x

κF (y) dy + α(x)
∫ Θmax

tI

κF (y) dy − κF (x). (20)

Lemma 2.1. The image of operator L is such that:

Im(L)⊥ = {0}. (21)

Proof. In order to show equality (21), we will show that the kernel of operator L∗ is reduced to null set
because of following property:

Im(L)⊥ = Ker(L∗). (22)

According to (13), if density κF is in Ker(L∗), then, we get the following equation:

κF (y)−
∫ Θmax

y

κF (x)
(
γ(x− y) + α− α

∫ x

y

γ(z − y) dz
)
dx = 0. (23)

Derivating, we get the ODE that the solution κF is expressed as follows:

κ′F (y)− (α+ γ(0))κF (y) = 0. (24)

The general solution to (24) is given by:

κF (y) = κF (tI)e−(α+γ(0))(y−tI), (25)

where initial condition κF (tI) stands for the value of density κF at initial time tI. On the other hand,
equation (23) is equivalent to:

κF (y)− (α+ γ(0))
∫ Θmax

y

κF (x) dx︸ ︷︷ ︸
First term I1

+
∫ Θmax

y

(
− γ(x− y) + γ(0) + α

∫ x

y

γ(z − y) dz
)
dx︸ ︷︷ ︸

Second term I2

= 0. (26)

Conversely, we will show that density κF is zero. In the first place, replacing density κF given by (25)
in first term I1 of equation (26), we get:

κF (y)− (α+ γ(0))
∫ Θmax

y

κF (x) dx = −ακF (tI)
α+ γ(0) e−(α+γ(0))(Θmax−tI). (27)

Secondly, the second term I2 is a constant function due to its derivative which equals zero:
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(∫ Θmax

y

(
− γ(x− y) + γ(0) + α

∫ x

y

γ(z − y) dz
)
dx

)′
= 0−

(
− γ(0) + γ(0) + α

∫ y

y

γ(z − y) dz
)
,

= 0.
(28)

Consequently, the second term I2 is equal to a real constant C to be determined:

∫ Θmax

y

(
− γ(x− y) + γ(0) + α

∫ x

y

γ(z − y) dz
)
dx = C. (29)

The initial condition is obtained from integral equation defined by (29) with replacing y by Θmax, which
implies that constant C is zero. It is concluded that:

∀y ∈ [tI,Θmax],
∫ Θmax

y

(
− γ(x− y) + γ(0) + α

∫ x

y

γ(z − y) dz
)
dx = 0. (30)

Then, relations (26), (27) and (30) yield the following equality:

−ακF (tI)
α+ γ(0) e−(α+γ(0))(Θmax−tI) = 0. (31)

From this, initial density κF (tI) or loan rate α is zero since exponential function is positive. It follows
that if κF (tI) is zero, then, density κF is zero, which is obtained from relation (25). In this case:

Ker(L∗) = {0}. (32)

If loan rate α is zero, then, according to (23), we obtain following integral equation:

κF (y)−
∫ Θmax

y

κF (x)γ(x− y) dx = 0, (33)

where expression of density κF is determined from equality (25) as:

κF (y) = κF (tI)e−γ(0)(y−tI). (34)

If density κF given by (34) is coupled with (33), then, κF (tI) is zero allowing that density κF is zero in
this case. We showed that density κF is zero in both cases. From this, we can deduce that (32) is true,
proving the lemma.

3 Spectrum of operators
It is well known that the integral operators [11, 2] possess a very rich structure theory, such that

these operators played an important role in the study of operators on Hilbert Spaces. The paper [6] and
book [7] by M.I. Gil’ deal with the spectra of a class of linear non-selfadjoint operators containing the
Volterra operators. Since this operator is involved in the model, we use it in order to study the spectrum
of some operators. It is shown in [8] that the spectrum of Volterra composition operator is consisting of
zero only.
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This section is devoted to explore the spectrum of some operators involving the spectrum of Volterra.
Defining linear operator Ṽ : L2([tI,Θmax−Θγ ])→ L2([tI,Θmax]) by operator that acting on Loan Density
κE

Ṽ[κE ](t) = κE ? γ(t) + α

∫ t

tI

(κE − κE ? γ)(s) ds. (35)

The canonical injection IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax]) is defined from L2([tI,Θmax−Θγ ]) to L2([tI,Θmax])
as:

IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])[κE ](t) = [κE ](t). (36)

which is decomposed as a sum of operators L and Ṽ given by relations (6) and (35), respectively:

L[κE ] + Ṽ[κE ] = IdL2([tI,Θmax−Θγ ]→L2([tI,Θmax]). (37)

Theorem 3.1. If density γ has upper bound M − 2|α| over its support:

sup
z∈[0,Θγ ]

{
|γ(z)|

}
= M − 2|α|, (38)

where M is a positive real satisfying:

2|α| < M <
1

Θmax − tI
, (39)

then, operator L is invertible, where its inverse L−1 is given by:

L−1[κE ](x) = J ◦

(∑
k≥0

(Ṽ ◦ J)(k)

)
[κE ](x), (40)

where J is an operator defined by:

J : L2([tI,Θmax]) → L2([tI,Θmax −Θγ ])
κE 7→ κE

(41)

Proof. Since operator Ṽ is defined from L2([tI,Θmax − Θγ ]) to L2([tI,Θmax]), and by using definition
(41) of operator J , we get:

Ṽ ◦ J(L2([tI,Θmax])) ⊂ L2([tI,Θmax]). (42)

From this, we get:

∀k ∈ N, (Ṽ ◦ J)(k)(L2([tI,Θmax])) ⊂ L2([tI,Θmax]), (43)

which implies that:

J ◦

(∑
k≥0

(Ṽ ◦ J)(k)

)
(L2([tI,Θmax])) ⊂ L2([tI,Θmax −Θγ ]). (44)
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Relation (44) shows that equality (40) is consistent due to the inverse of operator L is in L2([tI,Θmax −
Θγ ]). Next, we can show that operator Ṽ ◦ J can be written in the form:

Ṽ ◦ J [κE ](x) =
∫ x

tI

k(x, y)κE(y) dy, (45)

where kernel k is defined as:

k(x, y) = γ(x− y) + α− α
∫ x

y

γ(t− y) dt. (46)

Following equality

{(y, t) ∈ R2/tI ≤ y ≤ t, tI ≤ t ≤ x} = {(y, t) ∈ R2/tI ≤ y ≤ x, y ≤ t ≤ x}, (47)

yields with Fubini-Tonelli theorem to obtain:

(Ṽ ◦ J)(2)[κE ](x) =
∫ x

tI

k(x, t)(Ṽ ◦ J)[κE ](t) dt,

=
∫ x

tI

k(x, t)
(∫ t

tI

k(t, y)κE(y) dy
)
dt,

=
∫ x

tI

(∫ x

y

k(x, t)k(t, y) dt
)
κE(y) dy.

(48)

Consequently, operator (Ṽ ◦ J)(2) is written in following form:

(Ṽ ◦ J)(2)[κE ](x) =
∫ x

tI

k2(x, y)κE(y) dy, (49)

where

k2(x, y) =
∫ x

y

k(x, t)k(t, y) dt. (50)

We can verify by induction for n ≥ 2 that the recurrence expresses each operator (Ṽ ◦J)(n) as an integral
operator which is written in following form:

(Ṽ ◦ J)(n)[κE ](x) =
∫ x

tI

kn(x, y)κE(y) dy, (51)

where kernel kn is given as:

kn(x, y) =
∫ x

y

k(x, t)kn−1(t, y) dt. (52)

Now, we will show that M is a maximum of kernel k over [tI,Θmax]× [tI,Θmax−Θγ ] with using equality
(38):

|k(x, y)| ≤ |γ(x− y)|+ |α|

∣∣∣∣∣
∫ Θγ

0
γ(z) dt

∣∣∣∣∣+ |α|,

≤M − 2|α|+ |α|+ |α|,
≤M.

(53)
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By a recurrence starting with initial state n = 1 is true, it is easy to prove that:

|kn(x, y)| ≤Mn (x− y)n−1

(n− 1)! . (54)

If n = 1, inequality (54) is true because M is the maximum of the kernel k over [tI,Θmax]×[tI,Θmax−Θγ ].
Assuming that inequality (54) is true for a case n, and showing a case n+ 1. According to (52), we get:

|kn+1(x, y)| ≤
∫ x

y

|k(x, t)||kn(t, y)| dt,

≤M × Mn

(n− 1)!

∫ x

y

(t− y)n−1 dt,

≤M × Mn

(n− 1)! ×
(x− y)n

n
,

≤Mn+1 (x− y)n

n! .

(55)

Since x− y ∈ [0,Θγ ], we use inequality (54) to get:

|kn(x, y)| ≤Mn
Θn−1
γ

(n− 1)! . (56)

Applying Cauchy-Schwarz inequality at (Ṽ ◦ J)(n) defined by (51), we get following equality:

|(Ṽ ◦ J)(n)[κE ](x)|2 ≤
(∫ x

tI

|kn(x, y)|2 dy
)
‖κE‖2L2([tI,Θmax−Θγ ]). (57)

From this and using inequality (56), we get:

|(Ṽ ◦ J)(n)[κE ](x)|2 ≤
(

Mn

(n− 1)!

)2(∫ x

tI

(x− y)2(n−1) dy

)
‖κE‖2L2([tI,Θmax−Θγ ]),

≤

(
Mn

(n− 1)!

)2

× (x− tI)2n−1

2n− 1 ‖κE‖2L2([tI,Θmax−Θγ ]).

(58)

By integration each terms of (59) over interval [tI,Θmax], we get:

‖(Ṽ ◦ J)(n)[κE ]‖2L2([tI,Θmax]) ≤

(
Mn

(n− 1)!

)2

× (Θmax − tI)2n

2n(2n− 1) ‖κE‖
2
L2([tI,Θmax−Θγ ]). (59)

Consequently,

‖(Ṽ ◦ J)(n)‖L2([tI,Θmax]) ≤

(
Mn

(n− 1)!

)
× (Θmax − tI)n√

2n
. (60)

Inequality (60) gives:

‖(Ṽ ◦ J)(n)‖
1
n

L2([tI,Θmax]) ≤M(Θmax − tI)×
(
√

2n(n− 1)!
)− 1

n

. (61)
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Since, the series
∑
k≥1

ak of defined terms

ak = (M(Θmax − tI))k√
2k(k − 1)!

, (62)

is convergent, then quantity
∑
k≥0

(Ṽ ◦ J)(k) converges absolutely in L2([tI,Θmax]). Consequently,
∑
k≥0

(Ṽ ◦ J)(k)

exists, and is finite in L2([tI,Θmax]). We recall that we have:

(
IdL2([tI,Θmax]) − Ṽ ◦ J

)
◦

(
N∑
k=0

(Ṽ ◦ J)(k)

)
[κE ](x) =

N∑
k=0

(Ṽ ◦ J)(k)[κE ](x)−
N∑
k=0

(Ṽ ◦ J)(k+1)[κE ](x),

= IdL2([tI,Θmax])[κE ](x)− Ṽ(N+1)[κE ](x).
(63)

Since we have
√
n ≤ (n− 1)! for all integer n ≥ 2, inequality (60) implies that:

‖(Ṽ ◦ J)(n)‖L2([tI,Θmax]) ≤

(
(M(Θmax − tI))n√

2n

)
. (64)

Coupling inequality (63) with the fact that ‖(Ṽ ◦ J)(n)‖L2([tI,Θmax]) converges to 0 due to (39), we get:

(
IdL2([tI,Θmax]) − Ṽ ◦ J

)
◦

(∑
k≥0

(Ṽ ◦ J)(k)

)
[κE ](x) = IdL2([tI,Θmax])[κE ](x). (65)

Composing operators defined by (37) with operator J , we get:

L ◦ J [κE ](x) = IdL2([tI,Θmax−Θγ ]→L2([tI,Θmax]) ◦ J [κE ](x)− Ṽ ◦ J [κE ](x),
= IdL2([tI,Θmax])[κE ](x)− Ṽ ◦ J [κE ](x).

(66)

According to (65) and (66), we get:

(L ◦ J) ◦
(∑
k≥0

(Ṽ ◦ J)(k)

)
[κE ](x) = IdL2([tI,Θmax])[κE ](x). (67)

That is,

L ◦

(
J ◦

(∑
k≥0

(Ṽ ◦ J)(k)

))
[κE ](x) = IdL2([tI,Θmax])[κE ](x), (68)

achieving equality (40) of the lemma.

Let us characterize under assumption of theorem 3.1 a spectrum set Sp(Ṽ ◦ J) of operator Ṽ ◦ J .
Defining spectrum Sp(Ṽ ◦ J) as a set of reals µ such that Ṽ ◦ J − µIdL2([tI,Θmax]) is not invertible.
Formally:

Sp(Ṽ ◦ J) = {µ ∈ R : Ṽ ◦ J − µIdL2([tI,Θmax]) is not invertible}. (69)
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Defining spectral radius ρ(Ṽ ◦ J) of operator Ṽ ◦ J as:

ρ(Ṽ ◦ J) = {|λ| : λ ∈ Sp(Ṽ ◦ J)}. (70)

Noticing that spectrum Sp(Ṽ ◦ J) is included in a disk of center 0 and radius ‖Ṽ ◦ J‖L2([tI,Θmax]). That
is to say:

ρ(Ṽ ◦ J) ≤ ‖Ṽ ◦ J‖L2([tI,Θmax]). (71)

Now we will compute spectral radius ρ(Ṽ ◦ J) of operator Ṽ ◦ J with using following equality:

ρ(Ṽ ◦ J) = lim
n→+∞

‖(Ṽ ◦ J)(n)‖
1
n

L2([tI,Θmax]). (72)

Since we have shown that ‖(Ṽ ◦J)(n)‖
1
n

L2([tI,Θmax]) converges to 0, equality (72) shows that spectral radius
ρ(Ṽ ◦ J) is zero:

ρ(Ṽ ◦ J) = 0. (73)

Consequently, spectrum Sp(Ṽ ◦ J) is reduced to null set:

Sp(Ṽ ◦ J) = {0}. (74)

4 Extensions in the model of variable rate
We built in [5] the financial models that are used on simplified problems in order to show how they

can be used in reality. This section is devoted to enrich the model in order to account for this reality.
In particularly, we will express the algebraic Spending density σI in the model with variable rate. The
mathematical consistency of this density σI is analyzed.

The Current Debt Field KRD is related to Loan Measure κ̃E and Repayment Measure ρ̃K by the
following Ordinary Differential Equation:

dKRD
dt

= κE(t)− ρK(t)− ρI
K(t). (75)

The solution of this ODE is expressed:

KRD(t) = KRD(tI) +
∫ t

tI

κE(s)ds −
∫ t

tI

ρK(s)ds −
∫ t

tI

ρI
K(s)ds ,

=
∫ t

tI

κE(s)ds −
∫ t

tI

ρI
K(s)ds +

∫ Θmax

t

ρI
K(s)ds .

(76)

Since the Interest Payment Density ρI is related to the Current Debt Field by a proportionality relation:

ρI(t) = α(t)KRD(t), (77)

the Interest Payment Density ρI can be expressed in terms of Loan Density κE :

ρI(t) = α(t)
∫ t

tI

κE(s)ds − α(t)
∫ t

tI

(κE ? γ)(s)ds + α(t)
∫ Θmax

t

ρI
K(s)ds . (78)

Since Density σ reads:
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σ(t) = L[κE ](t) +D[ρI
K](t), (79)

where operators L and D are defined in relations (17) and (18), respectively, we get equality (5). From
this, we get the following Ordinary Differential Equation:

σ(t) = dKRD(t)
dt

− ρI(t). (80)

Defining kRD(t, s) the Current Debt at time t which is associated to the amount borrowed at time s. kRD
is related to Loan Density κE using Repayment Pattern Density γ by the following Ordinary Differential
Equation:

dkRD(t, s)
dt

= −γ(t− s)κE(s), (81)

with initial condition kRD(s, s) = κE(s) that expresses that The Current Debt at time s which is related
to the borrowed amount at time s is the borrowed amount at time s. The solution of this differential
equation is expressed as:

kRD(t, s) = κE(s)−
∫ t

s

γ(y − s)κE(s) dy. (82)

We will use the expression (80) of density σ in order to express Algebraic Spending Density σI in the
model with variable rate. Quantity σI(t, s) is defined such that the difference between spendings and
income at time t which is associated to the amount borrowed at time s. It is a time density with respect
to both variables s and t. Relation (80) yields

σI(t, s) = dkRD(t, s)
dt

+ dkRD(s, s)
ds

− rI
K(t, s)− rI(t, s), (83)

where rI is the Interest Payment Density at time t which is associated with the borrowed amount at time
s, and where rI

K is a repayment scheme at time t which is associated with the borrowed amount at time s.

In what to follows, we will show that the definition of Algebraic Spending Density σI is consistent
with the definition of Algebraic Spending σ which is given in relation (5). Indeed, Algebraic Spending
Density σ can be expressed in terms of σI . By integration over variable s (which describes the borrowed
time), from σI(t, s), Algebraic Spending Density σ can be defined as follows:

σ(t) =
∫ t

tI

σI(t, s) ds+ σI(t), (84)

where density σI is to be determined, which is Algebraic Spending Density associated to KRD(tI) the
known Current Debt at initial time tI.

σ(t) = −
∫ t

tI

γ(t− s)κE(s) ds+
∫ t

tI

dκE −
∫ t

tI

rI
K(t, s) ds−

∫ t

tI

rI(t, s) ds+ σI(t). (85)

Replacing first term in relation (85) by −κE ? γ and using the fact that the Interest Payment Density
ρI is expressed in [5] as follows:

rI(t, s) = α(s)κE(s)− α(s)
∫ t

s

γ(y − s)κE(s) dy, (86)
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we get:

σ(t) = κE(t)− κE ? γ(t)− κE(tI)−
∫ t

tI

rI
K(t, s) ds−

∫ t

tI

α(s)κE(s) ds

+
∫ t

tI

α(s)
(∫ t

s

γ(y − s)κE(s) dy
)
ds+ σI(t).

(87)

The integration of Density rI
K over variable s gives:

ρI
K(t) =

∫ t

tI

rI
K(t, s) ds+ ρI

K(tI). (88)

Expression (87) and consequently definition of Borrowed Time Related Algebraic Spending Density σI
are consistent with the expression of Algebraic Spending Density σ given in relation (5). Indeed, if the
rate α(t) is fixed with worth α, (87) writes

σ(t) = κE(t)− κE ? γ(t)− κE(tI)−
∫ t

tI

rI
K(t, s) ds− α

∫ t

tI

κE(s) ds

+ α

∫ t

tI

(∫ t

s

γ(y − s)κE(s) dy
)
ds+ σI(t),

= κE(t)− κE ? γ(t)− ρI
K(t)− α

∫ t

tI

(
κE(s)−

∫ y

tI

γ(y − s)κE(s) ds
)
dy

− κE(tI) + ρI
K(tI) + σI(t),

= κE(t)− κE ? γ(t)− α
∫ t

tI

(κE − κE ? γ)(s) ds− ρI
K(t)− κE(tI) + ρI

K(tI) + σI(t),

(89)

where density σI can be expressed as follows:

σI(t) = κE(tI)− ρI
K(tI)− α

∫ Θmax

t

ρI
K(s) ds. (90)

We will justify the expression (90) of density σI as follows. Indeed, replacing time t by initial time tI in
expressions (5) and (90) of Density σ, we obtain the same expression σ(tI) defined by:

σ(tI) = κE(tI)− κE ? γ(tI)− ρI
K(tI)− α

∫ Θmax

tI

ρI
K(s) ds. (91)

5 Inverse problem of the model in S(R+)
Denoting S(R+) the Schwartz space consists of smooth functions whose derivatives (including the

function itself) decay at positive infinity faster than any power. We say, for short, that Schwartz functions
are rapidly decreasing. We state the Repayment Pattern Density γ as follows:

γ ∈ S(R+). (92)

We use the Fourier Transform which are operators acting on densities over R. Operators F stands for
the Fourier Transform, and F−1 stands for the Inverse Fourier Transform.
Lemma 5.1. If function κE is in S(R+) and if γ satisfies relation (92), then we have the following
equality:

(1−F(γ))F(κE) = F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds
)
. (93)
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Proof. Integrating by parts states that:∫ t

tI

(∫ s

tI

(κE − κE ? γ)(y) dy
)
× α(t)eα(t−s) ds

=
∫ t

tI

(κE − κE ? γ)(s)× eα(t−s) ds−
∫ t

tI

(κE − κE ? γ)(s) ds. (94)

From this, we get the following equality:∫ t

tI

(κE − κE ? γ)(s) ds =
∫ t

tI

(
(κE − κE ? γ)(s)− α(t)

∫ s

tI

(κE − κE ? γ)(y) dy
)
× eα(t)(t−s) ds. (95)

Using definition (17) of operator L, equality in (95) is multiplied by density α(t) to give:

α(t)
∫ t

tI

(κE − κE ? γ)(s) ds = α(t)
∫ t

tI

L[κE ](s)eα(t−s) ds. (96)

Replacing α(t)
∫ t
tI

(κE − κE ? γ)(s) ds in relation (96) by (κE − κE ? γ)(t) − L[κE ](t) which is possible
because of (17), we obtain the following equality:

κE(t)− κE ? γ(t) = L[κE ](t) + α(t)
∫ t

tI

L[κE ](s)eα(•−s) ds. (97)

Applying Fourier Transform to each terms of equality (97), we obtain equality (93), proving the lemma.

Lemma 5.2. Assuming (92), that implies:∫ +∞

0
yγ(y) dy 6= 0, (98)

is achieved and if function L[κE ] given by relation (6) satisfies:∫ +∞

0

(
L[κE ](y) + α

∫ y

0
L[κE ](s)eα(y−s) ds

)
dy = 0, (99)

and for a negative rate α

t 7→
∫ t

0
L[κE ](s) ds ∈ S(R+), (100)

then, F(κE) ∈ L∞(R) and is such that

lim
ξ→0
F(κE)(ξ) = − 2

Θ2
γ

∫ +∞

0
y ×

(
L[κE ](y) + α

∫ y

0
L[κE ](s)eα(y−s) ds

)
dy. (101)

If L[κE ] does not satisfy the equality in relation (99), then, F(κE) has an infinite limit in 0.

Proof. As L[κE ] ∈ S(R+) and the fact that S(R+) ⊂ L1(R+), we get:

L[κE ] + α

∫ •
0
L[κE ](s)eα(•−s) ds ∈ L1(R+). (102)

Indeed, under assumption (100) the product of a bounded function t 7→ eα(t−s) due to the negative rate
α by a function in L1(R+) is a function in L1(R+). Then, using an order 1 Taylor expansion of e−iyξ,
we obtain the following expansion of function F(L[κE ] + α

∫ •
0 L[κE ](s)eα(•−s) ds):

F
(
L[κE ] + α

∫ •
0
L[κE ](s)eα(•−s) ds

)
(ξ) =

∫ +∞

0

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy

−iξ
∫ +∞

0
y ×

(
L[κE ](y) + α

∫ y

0
L[κE ](s)eα(y−s) ds

)
dy +O(ξ2).

(103)
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Since operator L satisfies equality in relation (99), relation (103) gives:

F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds

)
(ξ)

= −iξ
∫ +∞

0
y ×

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy +O(ξ2). (104)

According to (92), function 1−F(γ) is Taylor expanded in 0 until the order 1 to obtain:

1−F(γ)(ξ) = iξ

∫ +∞

0
yγ(y) dy +O(ξ2). (105)

According to relations (93), (104) and (105), we get equality (101). Moreover, according to relation (93),
F(κE) is a finite quantity outside of 0. Hence, it is concluded that F(κE) is in L∞(R). On other hand,
if equality in relation (99) is not satisfied, then, according to relations (93), (103) and (105), F(κE) has
an infinite limit at 0. From this, the proof of the lemma is achieved.

Theorem 5.3. If Repayment Pattern Density γ satisfies relation (92) such that:

|F(γ)| < 1. (106)

And if Initial Debt Repayment Density ρI
K is in S(R+), then for any Algebraic Spending Density σ in

S(R+) is satisfying the following equality:∫ +∞

0

(
σ(y)−D[ρI

K](y) + α

∫ y

0
(σ(s)−D[ρI

K](s))eα(y−s) ds

)
dy = 0, (107)

there exists an unique Loan Density κE in S(R+) which is given in terms of σ by:

κE = F−1

(F(σ −D[ρI
K] + α

∫ •
0

(σ(s)−D[ρI
K](s)) eα(•−s) ds

)
1−F(γ)

)
. (108)

Proof. According to relation (106), we get:

1
1−F(γ) =

∑
k≥0
Fk(γ). (109)

In the first place, we will show that the left term given by (109) is in S(R+). Indeed, since S(R+) is
stable by Fourier Transform, assumption (92) states that F(γ) is in S(R+). From this, quantity 1

1−F(γ)
is in S(R+) due to its stability under power and infinite sum. Secondly, we will show that density
σ −D[ρI

K] + αF is in S(R+), where density F is defined by:

F (t) =
∫ t

0
(σ(s)−D[ρI

K](s)) eα(t−s) ds. (110)

Because of densities σ and D[ρI
K] are in S(R+), density σ − D[ρI

K] is rapidly decreasing. Thus, for an
integer N ′ there exists a positive constant CN ′ such that:

∀s ∈ R+, σ(s)−D[ρI
K](s) ≤ CN ′

(1 + s)N ′ . (111)

Since the derivative of density F is equal to σ −D[ρI
K], inequality (111) gives:
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∀s ∈ R+, F
′(s) ≤ CN ′

(1 + s)N ′ . (112)

Integrating inequality (112) over [0, t] to get:

∀t ∈ R+, F (t) ≤ CN ′

N ′ − 1

(
1− 1

(1 + t)N ′−1

)
. (113)

Consequently, for an integer N there exists a positive constant CN such that:

∀t ∈ R+, F (t) ≤ CN
(1 + t)N . (114)

Inequality (114) states that F is rapidly decreasing. Furthermore, since the (l + 1) − nd derivative of
density F is equal to the l − nd derivative of density σ −D[ρI

K],

∀l ∈ N,∀t ∈ R+, F
(l+1)(t) = (σ −D[ρI

K])(l)(t), (115)

and the fact that space S(R+) is stable under the operation of derivation, for any integer l function F (l+1)

is rapidly decreasing. Consequently, F is in S(R+), achieving the second point of proof. We conclude
that:

F
(
σ −D[ρI

K] + α

∫ •
0

(σ(s)−D[ρI
K](s)) eα(•−s) ds

)
1−F(γ) ∈ S(R+), (116)

because it is the product of two functions in S(R+).
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