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A QUANTIFIED APPROACH TO THE LAWS OF GRAVITATION IN A PLATONIC QUADRIDIMENSIONAL SPACE

The properties of the platonic quadridimensional space, the modeling of De Broglie waves and the resulting concept of mass (see hal-01165196, v1 ; hal-01207447, v1 ; hal-01213447, v1) seem to allow a quantum approach to the laws of gravitation by a postulate of quantified declination.

The main idea of this article is that the guiding angle  of the trajectory of a massive body C in gravitational interaction with others is modified by a quantum   , independent of the chosen observation frame, at each perception of an occurrence of the De Broglie waves generated by one of these other massive bodies. This elementary quantized hypothesis, associated with the conservation of three absolute physical quantities, leads surprisingly rapidly to the results expected by the classical laws of gravitation.

We propose here an introduction, restricted to the relatively simple case where the guiding angle of the observation frame is equal to 2  .

Résumé :

Les propriétés de l'espace quadridimensionnel platonicien, la modélisation de l'onde de phase et le concept de masse qui en découlent (cf. les documents hal-01081576, v1; hal-01205805, v1; hal-01213062, v1) semblent permettre une approche quantique des lois de la gravitation par un postulat de déclinaison quantifiée.

L'idée directrice de cet article est que l'angle directeur  de la trajectoire d'un corps massif C en interaction gravitationnelle avec d'autres est modifié d'un quantum   , indépendant du référentiel d'observation choisi, à chaque perception d'une occurrence de l'onde de phase de De Broglie générée par l'un de ces autres corps massifs. Cette hypothèse quantifiée élémentaire, associée à la conservation de trois quantités physiques absolues, conduit rapidement, de façon surprenante, aux résultats attendus par les lois classiques de la gravitation. Nous en proposons ici une introduction, restreinte au cas relativement simple où l'angle directeur du référentiel d'observation est égal à 2  .

The geometrical framework

This modeling is based on the Platonic space outlined in the following articles: « UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1).

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF RELATIVITY » (pre-publication hal-01165196, version 1).

 

, , , ,

O i j k h    
is a frame for the four-dimensional Euclidean space whose axes are denoted   OX ,   OY ,   OZ ,  

Ow ; the direction of the projection is that of the vector h  .

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic mass of a particle is described here as a result of its interaction with a stratification of the fourdimensional Platonic space by a sequence of hyperplanes () n H which are orthogonal to the direction of the projection h 

, regularly spaced by a distance 0 0 w  .

These concepts are detailed in the HAL articles below:

hal-01165196, v1 : A platonic (euclidean-projective) model for the special theory of relativity.

hal-01207447, v1 : Towards a modeling of De Broglie waves in a platonic quadridimensional space.

hal-01213447, v1 : An idea of the mass of a particle in a platonic quadridimensional space.

hal-01340134, v1 : One-dimensional elastic collisions in a platonic quadridimensional space.

hal-01378215, v1 : About time measurement in a platonic quadridimensional space.

Presentation of the object of this study

Observers of a reference frame R  study the movement of two bodies 1 ' C and We shall introduce a postulate of quantified declination of these angles (generated by the De Broglie's waves linked to their masses), which, by generating the mutual accelerations of these two bodies in the Platonic space, will show us that the elliptic trajectories of To simplify the calculations and the presentation of this quantum gravitational approach, the observation frame chosen is 

/2 R  , the orbits of 1 ' C and
/2 i    , /2 j   , /2 k   coincide with the guinding vectors i  , j  , k  of the axes   OX ,   OY ,   OZ .
The orbits chosen for We shall adopt the following assumption: in the Platonic space, the angular variation Thus, the body j C perceives the wavefront 1 F when the absolute duration T  verifies the equation:

1 j l C F     , i.e. 0 tan cos cos cos cos i i j i w T T            , i.e. :
0 sin 1 cos cos cos

i i i j w T       
(absolute period of the mass wave).

It follows that the absolute frequency

, ij f of this mass wave is given by: , 0

1 cos cos cos 1 sin ij ij ii f Tw        . [1 ter ]
With the equality   in the particular case studied in these first paragraphs, the absolute frequency

, ij f of this phase wave becomes:

, 0

1 cos cos sin ij ij ii f w      .
This result allows us to estimate the derivative with respect to the absolute time T of the direction angle j  of the trajectory followed by the body j C :

,, 3 2 2 2 2 0 1 cos cos sin sin cos sin cos cos

j i j i j i j i j i i i d Gh f dT c w                  . [2]

Absolute energy, absolute momentum and absolute angular momentum

Taking up and completing the definitions adopted in the articles cited in reference, we shall use here the following quantities: absolute velocity of a particle (without unit):

cos abs v   , (cf. note in § 9)
absolute mass of a particle (in kg):

0 sin abs h m cw   
, absolute energy of a particle (in J): .

For the choice of the following definitions, we shall also draw upon the well-known results of the two-body problem. Thus, by choosing for absolute potential energy of the system the quantity: 

hc hc G h k w w c w w             [3] *.
Similarly, by setting C and 2 '

C respectively assigned to the coefficients 1 abs m and 2 abs m , the conservation of the absolute angular momentum of the system leads to: 

1 2 2 01 1 02 2 sin sin tan tan hh k c w c w        [4] * with the relations 12     ; 2 01 1 1 1 2 01 1 02 2 sin sin sin abs abs abs mw m m w w            ; 1 02 2 2 1 2 01 1 02 2 sin sin sin abs abs abs m w m m w w           

Study of the movement

From the previous relations, we will be able to set up an iterative process to study the motion of the two bodies in interaction as a function of the absolute time T. 

                                                    
j i i j i j i i i d d d w w w w w dT dT dT d dT ww                               
Thus, the derivation of the relation [4] leads to:

1 1 1 2 2 2 1 2 1 1 2 2 cos cos tan 1 1 cos cos sin sin d d d d d dT dT dT dT dT                         [8].
The presence of the quantity tan , which is problematic for the current measure 2    , leads to seeking a simplified expression of the quantities

cos i d   that it
generates implicitly. The diagram below makes it easy to obtain this simplification:

We know that cos i  corresponds to the absolute velocity of the body i C .

After an absolute time dT , the latter has therefore traveled the distance ' cos 

i i i C C dT   . With 0 d  , the distance i C  has
                    
.

[10]  The initial value of  is the distance at the periapsis (to be indicated in cell G5).

 The eccentricity e of the elliptic trajectories is to be indicated in the cell G4.

 The initial values of the angles 1

 and 2  are estimated from the velocity These situations were first calculated using the classical laws of gravitation (the formulas used are given in Appendix 9); which gives in the Excel tables of paragraph 9 the quantities referred to as "theoretical". They were then simulated as indicated in this paragraph. Finally, the results of these simulations and the "theoretical" data were compared.

At the margins of errors due to the numerous iterations (here 20 000) and the software used (which only retains 15 significant digits for each calculation), this process allows us to find the main characteristics of each of the different orbits established according to the laws of classical mechanics.

By way of illustration, the maximum errors recorded for the Sun-Earth system are of the order of 0.008% for the speeds, 0.0017% for the distances and 0.00298% for the period of revolution.

When the exentricity e increases, the maximum errors on the velocities and distances remain low, but the error on the revolution period increases (it becomes close to 0.8% for e close to 0.2).

The "Excel" file corresponding to this iterative process is attached. We shall call this distance 0  the absolute wavelength of this signal.

For the observer O  , the perceived frequency f  of this signal is given by 

0 1 cos sin c f      . Indeed, if O  perceives the peak
R  is therefore   0 sin 1 cos t c    
, whence the conclusion, with

1 f t    .
The well-foundedness of this concept of absolute wavelength of an electromagnetic wave appears immediately, for example, through the relativistic Doppler effect. Indeed, if two referentials R  and R  observe an electromagnetic wave of absolute wavelength 0  , the corresponding proper frequencies f  and f  measured by these referentials are given by 0 1 cos sin

c f      and 0 1 cos sin c f      .
We thus obtain:

1 cos sin sin 1 cos f f        .
This leads, with sin 0 

  , sin 0   ,
      1 cos 1 cos 1 cos 1 cos f f        . Now, the relative velocity v of R  measured in R  is given by : cos cos 1 cos cos v c     
.

Consequently, we have: 

      1 1 cos 1 cos 1 cos 1 cos 1 v c v c       

Absolute energy of a photon and half-radius of Schwarzschild

The concept of absolute wavelength of an electromagnetic wave leads us to the relation From this notion, in the particular case of the interaction of a massive body 1 C and a photon, the relation [3] can be written, considering as the "relativistic mass" of the photon the quantity

0 abs h m c  : 2 1 2 0 01 1 0 01 1 sin sin hc hc G h k w c w          [3 bis ] ;
whose derivation with respect to the absolute time T leads to (considering that, in a gravitational field, the absolute wavelength 0  varies as a function of T ):

2 2 1 1 1 2 2 2 2 2 0 01 1 0 01 1 01 1 cos cos sin sin sin Gh hc d Gh d c w dT c w w dT                   2 0 2 2 2 0 01 1 0 0 sin d Gh hc c w dT            
. Now, the quantity

1 d dT
 is equal to zero. Indeed, the absence of mass of the photon (the concept of "relativistic mass" mentioned above is only an artifact used to introduce the formula chosen for the potential energy of the system) is equivalent to the fact that its displacement in the Platonic space does not generate a De Broglie mass wave and therefore does not modify the direction angle

1  of the massive body 1 C .
Therefore, we have:

22 0 2 2 2 2 2 0 01 1 0 01 1 0 0 sin sin d Gh d Gh hc c w dT c w dT                
, from where it comes:

  3 0 01 1 0 sin d d c w Gh dT Gh dT        .
We note that this quantity is equal to zero for: 

                        
, which is also equal to zero for: The observation frame R  is a reference frame linked to 1 C (i.e.

1 3 01 sin 0 Gh cw     , i.e.

  ).

We assume here that the mass of 2 C is very small in relation to that of 1 C and consequently that the change in the trajectory of 1 C generated by the gravitational field of 2 C is negligible for the absolute time intervals considered.

In order to preserve the notations used and the results obtained in the article hal-01207447, v1 and in the book " De l'Allégorie de la Caverne à la Relativité Restreinte (From the Allegory of the Cave to the Special Relativity)", it should be noted that the angles i  considered in this paragraph are measured differently from those considered in the preceding paragraphs.

So, we have here dn     .

  , i i id     
From the relations [1] and [1 bis ]:

  2 12 1,2 2 2 3 2 2 2 2 3 11 1,2 sin sin cos sin cos sin cos cos Gh Gh c cd              
and the fact that

0   ,
we obtain the following first result: 

Related documents

Calculation of the distance d1,2

The quantities used in this paragraph refer to the diagrams in paragraphs 2 and 3. Since the movements considered here are assumed to take place with a third constant coordinate (

0 ZZ  ) in the space   , , , , O i j k h    
, the velocity vector of the body 1 C is given, with 1  not multiple of  , by:

    1 1 1 1 cos cos cos sin 0 sin v                     (cf. note below). Let 1 C
H be the hyperplane associated with  

1 1 1 1 1 , , , C X Y Z W (hyperplane orthogonal to 1 v  passing through 1 C ) and let 2 H be the projection of 2 C onto 1 C H .
We thus have the equivalence:

  1 , , , C M X Y Z W H  if and only if         1 1 1 1 1 1 cos cos cos sin sin 0 X X Y W W                 . As   2 2 2 2 2 1 , , , C H X Y Z W H  , we have :         1 2 1 1 2 1 1 2 1 cos cos cos sin sin 0 X X Y Y W W                 , from which emerges:       1 2 1 2 1 2 1 1 cos cos sin sin W W X X Y Y                 .
On the other hand, by definition, we have: 

          2 2 2 2 2 2 1,2 2 1 2 1 2 1 2 1 d X X Y Y W W W W        

Formulas used to obtain theoretical reference data in simulations

The results of the simulations are compared to the theoretical elliptic trajectories of two bodies 1 ' C and 2 ' C in gravitational interaction. Given the velocities considered, which are low compared to the speed of light, the calculations are made from the laws of classical mechanics. The data used are: the distance at the periapsis From these elements, we obtain:

 the speeds of the two bodies at the periapsis:

    The results of the simulations and the comparisons between the reference results and the results of the simulations are carried out in the following paragraph. 9.3.5. Pulsar PSR B1913+16 (version A) These two systems have been simulated in order to show that the quantified modeling proposed in this article remains consistent with the classical gravitational laws for high velocities at the periapsis (close to 0.0015c for the body 2 ' C ).

The eccentricity is about 0.627 in version A (eccentricity close to that actually measured) and, artificially, 0.01 in the second. This second version emphasizes the influence of eccentricity on the margin of error associated with the period of revolution (approximately 2.58% for version A but only 0.0027% for version B). 9.3.6. Pulsar PSR B1913+16 (version B)

Conclusion

Surprisingly, the few absolute elementary principles on which this study is based offer, in the relativistic framework of the Platonic model, a fairly correct quantified approach to the classical laws of gravitation.

Initially, these results and their review can certainly be quickly refined using more efficient and more sophisticated computer tools than those used here.

As for them, the principles retained deserve to be enriched and deepened in order to propose, in a more general framework, a much richer and complete approach to a quantum theory of gravitation (available for any frame references, taking into account barycentric fluctuations in the case of higher absolute velocities of the interacting bodies, search for a coupling with the standard model of particle physics, etc.).

In any case, the original way proposed in this article seems, at the very least, to be able to favor the emergence of new and numerous questions, promising, in directions still unexplored.

  reference frame are ellipses (the absolute velocities considered being small with respect to the speed of light). See diagram above and the following diagrams (axes   /2 Oz  and   OZ are not shown).

3.

  Quantified declination postulate Referring to the diagram above, consider the De Broglie mass wave generated by the body i C and perceived by the body j C . Let us note ,

  see also paragraph 8) and has the following value:

  of the mass wave perceived by the body C j and variation of the angle j of its trajectory Referring to the diagram above, consider the mass wave generated by the body

k

  B. : to avoid factors tan i  , prefer [5 bis ] : are two constants).

  mass differences chosen are large and the speeds involved are small compared with the speed of light, the position of the barycenter  of the system does not vary very much (its fluctuations may initially be neglected relative to the distance considered in the examples in paragraph 9). Therefore, the results [2], [6], [7], [9] and [10] can already allow us to set up an iterative process to study the motion of two bodies in interaction as a function of the absolute time T. We will choose  as the origin of the reference frame. The masses of the bodies i C and j C are in a first approximation equal to the sums of the masses of the particles which constitute them. which make it possible to generate the occurrences of the mass waves corresponding to the accumulations of the occurrences generated by all of these particles. The masses of these bodies are to be indicated in cells C4 and E4.



  the situation of these bodies in the Platonic space, makes it possible to evaluate the proper durations In order for these tables to give usable results, the absolute time step dT of the cell J5 must be adjusted so that the measurement of the angle 1max  appearing in the cell I16 is close to 2 . This setting requires some successive tests (... and a little patience ...).The iterative process has been applied to the following situations (see paragraph 9):

7.A

  Case of an electromagnetic wave in a gravitational field, half-radius of Schwarzschild7.1 Absolute wave length of an electromagnetic wave and relativistic Doppler effectIn the plane   XOW , let us consider an observer O  of any arbitrary reference frame R  moving along the direction d  and an electromagnetic signal moving along the direction represent two consecutive peaks of this signal, separated by a distance 0  .

  moves in the direction d  , the source in the direction d  , S f denotes the frequency of the wave measured by the source and O f the frequency of the wave measured by the observer.

  of the energy of a photon in a reference frameR  .Consequently, the absolute concepts being obtained for

  photon is circular, in other words for which we have0 d dT   .

C

  of a body at rest in a gravity field The diagram above reproduces the notations and concepts developed in the document hal-1207447, v1 : Towards a modeling of De Broglie waves in a platonic quadridimensional space.In this diagram is a massive punctual body 2

.

  Note on the concept of velocity of a punctual object M in the Platonic space :given the definition of the absolute time T (in m), the norm of the speed vector of all the mobiles is equal to 1 and the velocity vector and        .



  the speeds of the two bodies at the apoapsis:

  

  

  

  

  

  

  

  

  

  

  

  

  

  The derivation of the relation [3], taking account of the relation [2], leads to the following relation [6]:

	d dT	1 cos sin 2 sin	2	2	sin cos	2	2	2	3 cos c	02 w Gh 2	2 cos sin 2 sin	1	1	2 sin cos	1	1	3 cos c	01 w Gh 2	 1 cos cos 12		cos .

  thus varied by a quantity cos cos

											d			dT			.
											ii
	Hence the relation	cos d   i		dT	cos		i	.
	And therefore the relation [8] leads to the relation [9] below, after the complementary
	simplification of	d  and	d  by	cos :
				1				2		
	 1 cos cos 12 32 c        2 22 2 2 2 11 0 sin cos sin cos cos ii ii ii i i i i Gh w            12 sin cos cos  d dT         	.
	Finally, the variation of the angle  is easy to estimate, starting from	cos ii d dT    
	(since	cos								
	We have thus, with the relation [5]:
	d	cos	w	sin			w	sin	w	sin	w	sin
		i		01		1			02		2	01	1	02	2
	dT					w		tan		w	tan
		i				01		1	02	2

i

 corresponds to the absolute velocity of the body i C ).
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Results of simulations and comparisons with reference results

The following screenshots were obtained from the attached Excel file. Only the data, final results, checks and calculation steps 0 and 1 are displayed here. The numbers in brackets ([10], [2], ...) on line 17 refer to the formulas used. The related comments are in paragraph 6. 9.3.1. Sun-Earth Sytem 9.3.2. Sun-Mercury System