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Abstract

A domain decomposition algorithm is introduced to couple nonisothermal compositional gas
liquid Darcy and free gas flow and transport. At each time step, our algorithm solves iteratively
the nonlinear system coupling the nonisothermal compositional Darcy flow in the porous medium,
the RANS gas flow in the free-flow domain, and the transport of the species and of energy in
the free-flow domain. In order to speed up the convergence of the algorithm, the transmission
conditions at the interface are replaced by Robin type boundary conditions. The Robin coefficients
are obtained from a diagonal approximation of the Dirichlet to Neumann operator related to a
simplified model in the neighbouring subdomain. The efficiency of our domain decomposition
algorithm is assessed on several test cases focusing on the modeling of the mass and energy
exchanges at the interface between the geological formation and the ventilation galleries of
geological radioactive waste disposal.

1 Introduction
Modeling the exchange processes at the interface between a free flow and a flow in a porous medium
appears in a wide range of applications from food processing [1], wood or paper production [2],
salinization of agricultural land [3], prediction of convective heat and moisture transfer at exterior
building surfaces [4], to the study of the mass and energy exchanges at the interface between a nuclear
waste disposal and the ventilation galleries [5, 6]. This latter is the main focus of this paper in terms
of application.

To model such physical processes, one needs to account, in the porous medium, for the flow of
the liquid and gas phases including the vaporization of the water component in the gas phase and
the dissolution of the gaseous components in the liquid phase. In the free-flow region, only the gas
phase is considered assuming that the liquid phase is instantaneously vaporized at the interface.
The transport of vapor in the gas free flow plays a crucial role to account for the change of the
relative humidity which has a strong feedback on the evaporation rate at the interface. In such drying
processes, the energy conservation must be taken into account in both domains since the temperature
variations have a strong influence on the vaporization. These temperature variations are induced
by the vaporization of the liquid phase itself or by differences of temperatures between the porous
medium and the gas in the free-flow region. In our targeted application to deep geological disposal for
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radioactive wastes, it is essential to consider the coupling effect between thermal energy produced by
high level radioactive wastes and the porous medium desaturation.

A coupled model has been proposed in [7, 8] using matching conditions at the interface between
the porous-medium and the free-flow regions. These coupling conditions state the continuity of the
component molar and energy normal fluxes taking into account the instantaneous vaporization of the
liquid phase, the continuity of the gas molar fractions and of the temperature, the continuity of the
normal component of the normal stress, and the liquid gas thermodynamical equilibrium. In our case,
the Beavers-Joseph condition [9] used in [7, 8] will be replaced by a no slip condition due to the low
permeability of the porous medium.

In order to solve such coupled models, sequential algorithms based on Dirichlet-Neumann
transmission conditions at the interface are frequently used (see [10, 11] and the review [4]). As
mentioned in [10, 11], the stability of these sequential algorithms requires very small time steps at
the scale of the free flow leading to very large CPU times. To obtain an efficient algorithm, one needs
to be able to use time steps at the scale of the porous medium with a quasi-stationary computation
of the free flow at each time step. A time splitting algorithm with local time stepping in the free-flow
domain is investigated in [12] for a related but different problem coupling the Richards equation in
the porous medium and the Stokes equation for the liquid phase in the free-flow region.

Alternatively, fully coupled algorithms such as the ones developed in [8, 13, 14, 15] have been
introduced, but they lead to nonlinear and linear systems which are difficult and expensive to solve
since they do not take advantage of the different levels of coupling in the nonlinear system and
prevent the use of on-the-shelves preconditioners.

The algorithm proposed in [5] for isothermal models is based on a splitting between (i) the Darcy
model coupled with the transport in the free-flow region, and (ii) the flow in the free-flow region.
Its efficiency comes from the weak coupling between the Darcy model and the free-flow while the
coupling between the Darcy model and the transport in the free-flow region is strong.

Heterogeneous domain decomposition methods have been applied to couple different physical
models in different parts of the domain. A coupled problem related to our model and which has
been extensively addressed in the literature is the coupling of a single phase Darcy flow with a
Stokes or Navier-Stokes free flow. For this type of model, different domain decomposition methods
have been developed such as optimized Schwarz domain decomposition methods in [16], [17] or
iterative substructuring domain decomposition algorithms (see the review [18]). It is worth to mention
that our coupled model somehow includes the Darcy - Navier-Stokes coupling for the common gas
phase between the two regions. But, in our case, this is not the dominant coupling which is rather
between, on the one hand, the liquid pressure and the temperature in the porous medium governed
approximately by the Richards equation and the energy conservation, and on the other hand, the
vapor molar fraction and the temperature in the free-flow domain governed approximately by the
transport equations at fixed velocity and gas pressure.

The algorithm proposed in this work is based on optimized Schwarz methods. It solves iteratively
at each time step until convergence to the fully coupled solution: (i) the nonisothermal liquid gas
Darcy flow in the porous-medium domain using at the interface Robin boundary conditions as well
as an additional Dirichlet boundary condition for the gas pressure; (ii) the free-flow model for the
velocity and for the pressure in the free-flow domain with a Dirichlet boundary condition for the
velocity; (iii) the molar and energy transport in the free-flow domain with Robin boundary conditions.

The computation of the Robin coefficients of steps (i) and (iii) is crucial to guarantee the
efficiency and robustness of the algorithm. This computation will be based on low frequency diagonal
approximations of the Dirichlet to Neumann operators of simplified models defined respectively in
the free-flow and porous-medium domains.

The outline of the remaining of this paper is the following. The coupled model and its formulation
is detailed in section 2. The domain decomposition method used to solve the coupled nonlinear system
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at each time step, after Euler implicit time integration, is presented in section 3. The computation of
the Robin coefficients to speed up the convergence of the domain decomposition algorithm is explained
in section 4. The robustness and efficiency of our domain decomposition algorithm is assessed on four
two-dimensional test cases presented in section 5. The first three test cases are defined by Andra and
are related to the simulation of the mass and energy exchanges occurring at the interface between the
geological formation and the ventilated excavated galleries.

2 Formulation of the coupled model
Let us denote by Ωpm the porous-medium domain, by Ωff the free-flow domain and by Γ = ∂Ωpm∩∂Ωff

the interface.
Let P = {g, `} denote the set of gas and liquid phases assumed to be both defined by a mixture

of components i ∈ C among which the water component denoted by w which can vaporize in the gas
phase, and a set of gaseous components j ∈ C \ {w} which can dissolve in the liquid phase.

Both the gas and the liquid phases can be present in the porous-medium domain while only the
gas phase is assumed to be present in the free-flow domain. Each phase α ∈ P is defined by its
pressure pα, temperature T and molar fractions cα = (cαi )i∈C. For each phase, α ∈ P, ζα(pα, T, cα)
denotes its molar density, ρα(pα, T, cα) its mass density, µα(pα, T, cα) its viscosity, hα(pα, T, cα) its
molar enthalpy, and eα(pα, T, cα) = hα(pα, T, cα)− pα

ζα
its molar internal energy. For the gas phase,

the molar enthalpy is defined by

hg(pg, T, cg) =
∑
i∈C

cgih
g
i (p

g, T ),

where hgi (pg, T ) is the molar enthalpy of the component i in the gas phase. For i ∈ C and α ∈ P , we
also denote by fαi (pα, T, cα) the fugacity of the component i in the phase α.

We now turn to the definition of the model in each subdomain followed by the description of the
coupling conditions at the interface Γ.

2.1 Nonisothermal compositional Darcy flow in the porous medium

Although the domain decomposition algorithm of section 3 can be written whatever the choice of the
primary unknowns in the porous-medium domain, it is convenient to specify this choice to fix ideas.
Following [19, 20], our choice of the liquid gas Darcy flow formulation uses the pressures pg, p` of
both phases, the vector f = (fi)i∈C of the component fugacities and the temperature, denoted by Tpm

in the porous medium, as primary unknowns.
In this formulation, following [21], the molar fractions cα of each phase α ∈ P are defined as a

function of pα, f , Tpm, still denoted by cα(pα, Tpm, f), by inversion of the equations

fαi (pα, Tpm, c
α) = fi, i ∈ C, (1)

which means that the molar fractions of an absent phase is extended by the molar fractions at
equilibrium with the present phase. In addition, for each phase α ∈ P , the pressure pα is also extended
in the absence of the phase α in such a way that the closure law

∑
i∈C c

α
i = 1 is always imposed

(see [19, 20]). Using this extension of the phase pressures, the gas saturation sg(x, pg − p`) is defined
by the inverse of the monotone graph extension of the capillary pressure function and the liquid
saturation is given by s` = 1− sg.

Let us define, for each component i ∈ C, the total number of moles per unit pore volume by

ni =
∑
α∈P

ζαcαi s
α,
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and the energy per unit volume by

E = φ
∑
α∈P

ζαeαsα + (1− φ)ζrer,

where φ(x) is the porous-medium porosity, er(Tpm) is the rock molar internal energy, and ζr(Tpm) is
the rock molar density.

The Darcy velocities are defined by

uα = −k
α
r

µα
K(∇ pα − ραg), α ∈ P ,

where K(x) is the porous medium absolute permeability tensor, kαr (x, sα) is the phase α relative
permeability, and g is the gravitational acceleration vector.

The component molar flow rate is defined by

vi =
∑
α∈P

ζαcαi u
α − dαpm∇ cαi , i ∈ C,

where dαpm(x, sα) is the effective diffusion coefficient of the phase α ∈ P in the porous medium defined
as a function of the phase saturation. The energy flow rate is defined by

ve =
∑
α∈P

ζαhαuα − λpm∇Tpm

where λpm is the thermal conductivity of the rock fluid mixture.
For a final time tf , the model using the primary unknowns pg, p`, f and Tpm accounts for the

following mole and energy conservation equations

φ∂tni +∇·vi = 0, on Ωpm × (0, tf), i ∈ C,
∂tE +∇·ve = fe, on Ωpm × (0, tf),

(2)

coupled with the sum to 1 of the molar fractions for each phase given by∑
i∈C

cαi = 1, on Ωpm × (0, tf), α ∈ P , (3)

where fe is an additional heat source term defined on Ωpm.

2.2 Flow and transport model in the free-flow domain Ωff

To fix ideas, the primary unknowns in the free-flow domain are defined by the gas pressure denoted by
p, the gas velocity denoted by u, the gas molar fractions denoted by c = (ci)i∈C and the temperature
denoted by Tff . The gas flow and transport is described by a Reynolds Averaged Navier-Stokes
(RANS) compositional and nonisothermal model. It is assumed to be quasi-stationary at the time scale
of the porous medium and is governed by the following momentum conservation equation coupled
with the mass and energy conservation equations

∇·T = ρgg, on Ωff × (0, tf),

∇·wi = 0, on Ωff × (0, tf), i ∈ C,
∇·we = 0, on Ωff × (0, tf),

(4)

together with the closure law ∑
i∈C

ci = 1. (5)
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In (4), the following constitutive equations are used. The stress tensor is defined by

T = ρgu⊗ u− µt(∇u +∇t u) + pI, (6)

the component molar flow rate is defined by

wi = ζg(ciu− dt∇ ci),

and the energy flow rate by
we =

∑
i∈C

hgi (p, Tff)wi − λt∇Tff .

The turbulent viscosity µt is typically obtained using an algebraic turbulent model or a more
advanced k − ε model [15] from which is also deduced the turbulent diffusivity dt and the turbulent
thermal conductivity λt. Note that, in the following numerical experiments, the turbulent viscosity,
diffusivity and thermal conductivity will be computed from the stationary uncoupled gas flow. This
is motivated by the small perturbation of the free-flow velocity and pressure induced by the coupling
with the porous medium.

2.3 Transmission conditions at the interface

At the interface Γ between the free-flow and the porous-medium domains, the coupling conditions are
those stated in [7, 15, 5] where we have replaced the Beaver Joseph condition by the simpler no slip
condition due to the low permeability of the porous medium in our application.

Let npm and nff such that npm + nff = 0 be the unit normal vectors at the interface Γ oriented
respectively outward from the porous-medium and free-flow domains. The interface conditions state
the continuity of the gas molar fractions and of the molar normal flow rates, the continuity of the
temperature and of the energy normal flow rate as well as the gas no slip condition in the free-flow
domain and the continuity between the gas pressure in the porous-medium domain and the normal
component of the normal stress in the free-flow domain.

cgi = ci, vi · npm = −wi · nff , on Γ× (0, tf), i ∈ C,
Tpm = Tff , ve · npm = −we · nff , on Γ× (0, tf),

u ∧ nff = 0, pg = nff · Tnff , on Γ× (0, tf).

(7)

It is complemented by the sum to one of the liquid molar fractions in the porous-medium domain
and of the gas molar fractions both in the porous-medium and free-flow domains.∑

i∈C

cαi = 1, on Γ× (0, tf), α ∈ P ,∑
i∈C

ci = 1, on Γ× (0, tf).
(8)

Note that these transmission conditions account for the liquid gas thermodynamical equilibrium as
soon as the liquid phase is present at the interface on the porous-medium side. Note also that, in the
absence of the gas phase at the interface on the porous-medium side, the extended gas pressure and
gas molar fractions are used to express the continuity of the gas pressure and molar fractions at the
interface.
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3 Domain decomposition algorithm
The transmission conditions (7)-(8) at the interface Γ couple the porous medium equations (2)-(3)
with the free-flow domain equations (4)-(5). The system (2)-(8) is integrated in time using an Euler
implicit scheme, which leads to solve at each time step a fully coupled nonlinear system. The solution
of this nonlinear system is obtained at each time step using a domain decomposition algorithm solving
iteratively until convergence the three following submodels:

(i) the nonisothermal compositional liquid gas Darcy flow in the porous-medium domain using at
the interface Robin boundary conditions as well as a Dirichlet boundary condition for the gas
pressure,

(ii) the RANS flow equations for the velocity and for the pressure in the free-flow domain with a
Dirichlet boundary condition for the velocity at the interface,

(iii) the convection diffusion equations in the free-flow domain for the gas molar fractions and the
temperature with Robin boundary conditions at the interface.

This approach has two advantages. Firstly it allows to use different codes for the porous-medium
and the free-flow problems. Secondly, it reduces the complexity of the nonlinear and linear systems
and make it possible to use on-the shelves preconditioners which results in a better efficiency compared
with a monolithic Newton algorithm solving the fully coupled system [7, 15].

In the following, the time step count n is omitted for the sake of clarity, and the component total
number of moles and the total energy in the porous medium at the previous time step are denoted
respectively by nn−1

i and En−1. The domain decomposition count is denoted by the superscript k. As
usual, the algorithm is initialized by the previous time step solution and by the initial condition at
the first time step.

3.1 Compositional Darcy flow with Robin boundary conditions

The system (2)-(3) in the porous-medium domain is solved using Robin type boundary conditions at
the interface Γ. These boundary conditions are obtained by linear combinations of, on the one hand,
the continuity of the gas molar fractions and temperature, and, on the other hand, the continuity of
the normal molar and energy flow rates. The coefficients of these linear combinations, denoted by L,
Mi, i ∈ C and N in (9), will be computed in subsection 4.1 as functions of x at the interface Γ in order
to provide a good low frequency diagonal approximation of the Dirichlet to Neumann operator related
to the transport equations in the free-flow domain. In addition to Robin type boundary conditions,
it is natural to fix also the gas pressure at the interface since its variation in the free-flow domain
induced by the coupling is very small. This requires to introduce an additional unknown at the
interface since the total molar normal flow rate cannot be prescribed together with the gas pressure.
This additional unknown is chosen as the gas normal velocity correction, denoted by δkv and oriented
outward to the free-flow domain. It is induced on the free-flow side by the coupling with the porous
medium at iteration k of the domain decomposition algorithm and tends to zero with the convergence
of the domain decomposition algorithm.

Thus, the porous-medium subproblem solves for the phase pressures pα,k, α ∈ P, the fugacity
vector fk, the temperature T kpm in Ωpm and at the interface Γ together with the normal velocity
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correction δkv at the interface Γ such that

φ

∆t
(nki − nn−1

i ) +∇·vki = 0 in Ωpm, i ∈ C,
1

∆t
(Ek − En−1) +∇·vke = fe in Ωpm,∑

i∈C

cα,ki = 1, in Ωpm, α ∈ P ,

pg,k = ϕk on Γ,

Lcg,ki − vki · npm − cg,ki δkv = ϕki on Γ, i ∈ C,∑
i∈C

Mic
g,k
i +NT kpm − vke · npm − hg,kpmδ

k
v = ϕke on Γ,∑

i∈C

cα,ki = 1, on Γ, α ∈ P ,

(9)

with hg,kpm = hg(pg,k, cg,k, T kpm) and where the right hand sides

ϕk = nff · Tk−1nff

ϕki = Lck−1
i −wk−1

i · npm, i ∈ C,

ϕke =
∑
i∈C

Mic
k−1
i +NT k−1

ff −wk−1
e · npm

are given by the previous domain decomposition iterate in the free-flow domain.

3.2 RANS flow with Dirichlet boundary condition

Given the normal velocity correction δkv at the interface Γ, the pressure pk and the gas velocity uk in
the free-flow domain are updated by solving the RANS flow with a Dirichlet boundary condition for
the velocity at the interface Γ:

∇·Tk = ρg,kff g, in Ωff ,

∇·(ζg,kff uk) = 0, in Ωff ,

ζg,kff uk = ζg,k−1
ff uk−1 + δkvnff , on Γ.

(10)

In (10), the stress tensor is defined by

Tk = ρg,kff uk ⊗ uk − µkt (∇uk +∇t uk) + pkI,

with the turbulent viscosity µkt given by the turbulent model which also provides the turbulent
diffusivity dkt and thermal conductivity λkt that will be used in the following transport subproblem.
Note also that, in (10), the gas mass and molar densities are computed using the gas molar fractions
and the temperature in the free-flow domain at the previous domain decomposition iterate as follows:

ρg,kff = ρg(pk, T k−1
ff , ck−1), ζg,kff = ζg(pk, T k−1

ff , ck−1). (11)

3.3 Transport problem with Robin boundary conditions

Using the gas total molar flow rate ζg,kff uk and pressure pk computed at the previous RANS flow
step, the molar fractions ck and the temperature T kff are updated solving the transport model in
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the free-flow domain. Robin boundary conditions are imposed at the interface Γ. They are defined,
for the molar conservation of each component i ∈ C (resp. of the energy), as a linear combination
between the continuity equation of the gas molar fraction ci (resp. the temperature) and the continuity
equation of the molar flux wi · nff (resp. the energy flux we · nff). The coefficients P and Q of these
linear combinations in (12) will be computed in order to provide a good low frequency diagonal
approximation of the Dirichlet to Neumann operators of respectively a Richards equation for the
liquid pressure and of an energy conservation equation for the temperature in the porous-medium
domain. It leads to the following transport subproblem:

∇·wk
i = 0, in Ωff , i ∈ C,

∇·wk
e = 0, in Ωff ,

P cki −wk
i · nff = ψki on Γ, i ∈ C,

QT kff −wk
e · nff = ψke on Γ,

(12)

where wk
i = ζg,kff (ckiu

k − dkt ∇ cki ) is the gas molar flow rate of the component i ∈ C using the same
definition of the molar density ζg,kff as in (11), and wk

e =
∑

i∈C h
g
i (p

k, T kff )wk
i − λkt ∇T kff is the energy

flow rate. In (12), the right hand sides are defined by

ψki = Pcg,ki − vki · nff ,

ψke = QT kpm − vke · nff .

The domain decomposition algorithm is iterated until the following stopping criterion at the
interface Γ is satisfied for a given tolerance ε:∑

i∈C ‖c
g,k
i − cki ‖∑

i∈C ‖cki ‖
+
‖T kpm − T kff ‖
‖T kff ‖

+

∑
i∈C ‖(vki −wk

i ) · nff‖∑
i∈C ‖wk

i · nff‖
+
‖(vke −wk

e ) · nff‖
‖wk

e · nff‖
+

‖δku‖
‖uk · nff‖

< ε, (13)

where ‖·‖ is a function norm on Γ.

4 Computation of the Robin coefficients
The computation of the Robin coefficients L, Mi, i ∈ C and N for the Darcy problem (9) and P and
Q for the free-flow transport problem (12) is essential to obtain a robust and efficient convergence of
the domain decomposition algorithm. For a scalar linear Partial Differential Equation (PDE) such
as a diffusion or a convection diffusion equation on both subdomains, optimized Schwarz methods
have been designed. They compute the Robin coefficients in both subdomains simultaneously in
order to optimize the convergence rate of the domain decomposition algorithm. These computations
assume that the coefficients of the PDEs are constant, either the same in both subdomains [22],
[23] or discontinuous at the interface [24]. The extension to nonlinear problems is based on a linear
approximation of the PDEs and a freeze of their coefficients at each point of the interface. For systems
of PDEs, optimized Robin coefficients are much more difficult to compute. Also, in our case, the
turbulent boundary layer plays a major role in the evaporation process and would require to take into
account the variable coefficients of the free-flow molar and energy transport problem more accurately
than by freezing their values at the interface. This motivates the use of a simpler approach detailed
in the following subsections. It is based on a diagonal low frequency approximation of the Dirichlet
to Neumann (DtN) operator of the neighbouring subdomain problem. These approximations will be
built using simplified models accounting for the main physical processes in each subdomain.
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4.1 Computation of L, Mi, i ∈ C and N

The diagonal low frequency approximations of the Dirichlet to Neumann operators in the free-flow
domain are related to the so-called convective molar and energy transfer coefficients. Their computation
can be based on the uncoupled solution of the transport problem in the free-flow domain or alternatively
on the coupled solution. Since the perturbation induced by the coupling with the porous-medium
domain is small in the free-flow domain, both computations lead to similar results. In our case, it is
more convenient to compute the Robin coefficients from the uncoupled solution since the boundary
conditions on ∂Ωff \Γ and consequently the uncoupled solution are fixed in the numerical experiments
of section 5.

Let us denote by (u0, p0, c0, T 0
ff ) the solution of the uncoupled RANS flow and transport model in

the free-flow domain obtained by considering vanishing molar and energy normal fluxes at the interface
Γ. Let us also denote by d0

t and λ0
t the uncoupled turbulent diffusivity and thermal conductivity. Let

us remark that the uncoupled molar flow rates of the components i ∈ C

w0
i = ζg(p0, T 0

ff , c
0)(c0

iu
0 − d0

t ∇ c0
i ),

and the uncoupled energy flow rate

w0
e =

∑
i∈C

hgi (p
0, T 0

ff )w0
i − λ0

t ∇T 0
ff ,

are such that w0
i · nff |Γ = 0 and w0

e · nff |Γ = 0.
The Robin coefficients L, Mi, i ∈ C and N are computed from a linear approximation of the

transport equations using the gas enthalpy of each component linearized around p0, T 0
ff . Let us consider

the solutions c̄ and T̄ of the following linear transport equations in the free-flow domain with the
Dirichlet boundary conditions cΓ = (ci,Γ)i∈C and TΓ at the interface Γ:

∇· w̄i = 0, in Ωff , i ∈ C,
∇· w̄e = 0, in Ωff ,

c̄i = ci,Γ on Γ, i ∈ C,
T̄ = TΓ on Γ,

with
w̄i = ζg(p0, T 0

ff , c
0)(c̄iu

0 − d0
t ∇ c̄i), i ∈ C,

w̄e =
∑
i∈C

(
hgi (p

0, T 0
ff )w̄i +

∂hgi
∂T

(p0, T 0
ff , c

0)(T̄ − T 0
ff )w0

i

)
− λ0

t ∇ T̄ .

The Dirichlet to Neumann operators are defined from these solutions by DtNi(cΓ, TΓ) = w̄i · nff |Γ,
i ∈ C and DtNe(cΓ, TΓ) = w̄e · nff |Γ. Let us remark that DtNi(c

0|Γ, T 0
ff |Γ) = w0

i · nff |Γ = 0 and
DtNe(c

0|Γ, T 0
ff |Γ) = w0

e · nff |Γ = 0. The Robin coefficients are built from low frequency diagonal
approximations of these Dirichlet to Neumann operators using constant perturbations on the interface
Γ. Setting c(i)

j = δi,j, i, j ∈ C and considering ε > 0, they are defined by the following functions on Γ:

Li,j =
DtNi(c

0|Γ + εc(j), T 0
ff |Γ)−DtNi(c

0|Γ, T 0
ff |Γ)

ε
= DtNi(c

0|Γ + c(j), T 0
ff |Γ), i, j ∈ C,

Mi =
DtNe(c

0|Γ + εc(i), T 0
ff |Γ)−DtNe(c

0|Γ, T 0
ff |Γ)

ε
= DtNe(c

0|Γ + c(i), T 0
ff |Γ), i ∈ C,

N =
DtNe(c

0|Γ, T 0
ff |Γ + ε)−DtNe(c

0|Γ, T 0
ff |Γ)

ε
= DtNe(c

0|Γ, T 0
ff |Γ + 1).

Provided that, as usual, the boundary conditions on ∂Ωff \ Γ for the molar transport equations do not
couple the components and are of the same type for all components i ∈ C , it is clear that Li,j = Lδi,j
for all i, j ∈ C defining the Robin coefficient L.
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4.2 Computation of P and Q

Our strategy to compute the Robin coefficients P and Q is based on the Richards equation coupled
with the energy conservation equation. This simplified system provides a good approximation of the
liquid pressure and of the temperature. Then, after time integration using an Euler implicit scheme,
these equations are linearized and their coefficients are freezed at each point of the interface Γ leading
to a constant coefficient linear system of two equations two unknowns. A Taylor order 0 diagonal
approximation of the Dirichlet to Neumann operator related to this system leads to a 2 by 2 matrix
(see [23]) which is evaluated on the current solution obtained at each point of the interface. To
simplify the computations, the Richards and energy conservation equations will be decoupled leading
to a diagonal 2 by 2 matrix defining precisely the coefficients P and Q with simple analytical formula
evaluated at each point of the interface Γ. In practice, this decoupled approach suffices to obtain a
good convergence as will be exhibited in the numerical section 5.

The simplified system coupling the Richards and energy conservation equations is obtained by
neglecting the dissolution of the gaseous component in the liquid phase and by neglecting the variation
of the gas pressure which is approximated by the reference pressure denoted by pgref typically given
by the outflow pressure in the free-flow domain (see [25]).

Let us define the pure water molar fractions c̄` in the liquid phase by c̄`w = 1 and c̄`j = 0 for
j ∈ C \ {w}. The molar fractions c̄g in the gas phase at thermodynamical equilibrium with c̄` are
given for each components i ∈ C by

c̄gi (p
`, Tpm) = cgi (p

g
ref , Tpm, f

`(p`, Tpm, c̄
`)).

Let us define s̄l(x, pl) = sl(x, pgref − pl) and denote the thermodynamical laws as functions of p`
and Tpm by ζ̄α(p`, Tpm), ρ̄α(p`, Tpm), ēα(p`, Tpm), h̄α(p`, Tpm), and µ̄α(p`, Tpm) for α ∈ P, and let us
set

n̄w(x, p`, Tpm) = ζ̄`s̄` + ζ̄g(1− s̄`)c̄gw, M `(x, p`, Tpm) =
ζ̄`

µ̄`
k`r(x, s̄

`),

Ē(x, p`, Tpm) = φ(s̄`ē` + (1− s̄`)ēg) + (1− φ)ζrer.

The Richards equation with prescribed water molar fraction cw,Γ at the interface Γ is defined as
follows after Euler implicit time integration:

φ

∆t
(n̄w − n̄n−1

w ) +∇· v̄w = 0, in Ωpm,

c̄gw(p`, Tpm) = cw,Γ, on Γ,
(14)

where
v̄w = −M `K(∇ p` − ρ̄`g)− dgpm(x, 1− s̄`)∇ c̄gw(p`, Tpm).

The simplified energy conservation equation with prescribed temperature TΓ at the interface Γ is
defined by

1

∆t
(Ē − Ēn−1) +∇· v̄e = 0, in Ωpm,

Tpm = TΓ, on Γ,
(15)

where
v̄e = −M `h̄`K(∇ p` − ρ̄`g)− λpm∇Tpm.

To compute the Robin coefficient P , the Richards equation (14) is linearized with respect to p` at
fixed temperature Tpm and its coefficients are freezed at each point of the interface Γ leading to

Lpm(δp`) = ηδp` −∇·(κ∇ δp` − ψδp`)

10



with the Dirichlet boundary condition δp` = δcw/
∂c̄gw
∂p`

on Γ. The freezed coefficients are defined by

η =
φ

∆t

∂n̄w
∂p`

, κ = M `K, Ψ = −∂M
`

∂p`
K∇ p` +

∂M `ρ̄`

∂p`
Kg.

The Robin coefficient is obtained using the following DtN order 0 Taylor approximation [23] of this
linear scalar equation with constant coefficients:

P (x, tn) =
1

2∂c̄
g
w

∂p`

(
Ψ · nff +

√
(Ψ · nff)2 + 4ηκnff · nff

)
.

The Robin coefficient Q is computed using the same technique. We first linearize the energy
conservation equation (15) with respect to Tpm at fixed liquid pressure p` and freeze its coefficients at
each point of the interface Γ. Then, Q(x, tn) is equal to the order 0 Taylor approximation of the DtN
operator of this constant coefficient linear scalar equation.

5 Numerical experiments
In order to assess the efficiency of the domain decomposition algorithm, we consider in the following
tests a simple 2D setup with the free-flow vertical domain Ωff = (0, l)× (0, hff) and the porous-medium
vertical domain Ωpm = (0, l)× (hff , hpm) sharing the interface Γ = (0, l)× {hff} with hpm > hff > 0
and l > 0.

The top boundary of the porous medium is denoted by Γup = (0, l)×{hpm}, the output boundary of
the free-flow domain is denoted by Γout = {l}× (0, hff), and the input boundary by Γin = {0}× (0, hff).

The liquid and gas phases are considered as mixtures of air (a) and water (w) defining the set of
components C = {a, w}. The liquid molar density is fixed to ζ` = 55555 mol · m−3 and its viscosity to
µ` = 10−3 Pa · s. The gas molar density is given by the perfect gas law

ζg =
pg

RT
.

where R = 8.314 J · mol−1 · K−1 is the ideal gas constant. The gas viscosity µg = 1.851 · 10−5 Pa · s is
assumed constant. The mass density of the phase α ∈ P is deduced from the molar density by the
relation

ρα(pα, T, cα) = ζα(pα, T, cα)
∑
i∈C

cαimi,

where the molar masses of the water component and of the air component are given respectively by
mw = 18 · 10−3 kg · mol−1 and by ma = 29 · 10−3 kg · mol−1.

The fugacities of the components in the gas phase are given by Dalton’s law for an ideal mixture
of perfect gas

f gi = cgi p
g, i ∈ C.

The fugacities of the components in the liquid phase are given by Henry’s law for the dissolution of
the air component in the liquid phase

f `a = c`aHa(T ), Ha(T ) = H1 +
T − T1

T2 − T1

(H2 −H1),

with H1 = 6 · 109 Pa, H2 = 1010 Pa, T1 = 293 K, T2 = 353 K, and by Raoult-Kelvin’s law for the water
component in the liquid phase

f `e = c`epsat(T ) exp

(
p` − psat(T )

ζ`RT

)
,

11



where psat(T ) is the vapor pressure of the pure water given by the Rankine’s formula. The molar
fractions cα as functions of pα, T, f are deduced by inversion of the fugacity equations (1) leading to

c`w(p`, T, f) =
fw

psat(T )
exp

(
psat(T )− p`

ζ`RT

)
,

c`a(p
`, T, f) =

fa
Ha(T )

,

cgi (p
g, T, f) =

fi
pg
, i ∈ C.

The liquid molar enthalpy is taken from [26] and the gas molar enthalpy is defined by

hg(pg, Tpm, c
g) =

∑
i∈C

hgi (p
g, Tpm)cgi .

with the enthalpy of each component given in [26] for the water component and by

hga(T ) = Cg
p,amaT

for the air component, where Cg
p,a = 1000 J · K−1 · kg−1 is the specific heat capacity of pure

air. In the porous-medium domain, the rock internal energy per unit rock volume is given by
ζrer(T ) = 2 · 106T J · K−1 · m−3. The thermal conductivity of the liquid gas rock mixture is considered
as constant for the sake of simplicity and fixed to λpm = 2 W · K−1 · m−1.

The liquid saturation and the phase relative permeabilities are given by the Van Genuchten laws
defined by

s`(pc) = s`r + (1− s`r − sgr )(1 + (p−1
r pc)

nr)−mr (16)

and

k`r(s
`) =


0 if s` < s`r

(1− (1− (s̄`)1/mr)mr )2
√
s̄` if s`r ≤ s` < 1− sgr

1 otherwise

kgr (sg) =


0 if sg < sgr

(1− (s̄`)1/mr)2mr
√

1− s̄` if sgr ≤ sg < 1− s`r
1 otherwise

(17)

with

s̄`(s`) =
s` − s`r

1− s`r − s
g
r

and mr = 1− n−1
r . The parameters s`r, sgr , pr and nr will be specified for each test case according to

the rocktype.
In the free-flow domain, the turbulent viscosity µt used to define the RANS stress tensor (6) is

given by the Prandtl algebraic turbulent model as in [5] and computed once and for all from the
uncoupled solution in the free-flow model. The turbulent diffusivity

dt = dg +
µt − µg

ρgSc

is deduced using the gas Fickian diffusion dg = 2 · 10−5 m2 · s−1 and the Schmidt number Sc = 1. The
turbulent thermal conductivity is similarly defined by λt = λg + Cg

p,a(µt − µg) with the gas thermal
conductivity λg = 0.026 W · m−1 · K−1.

12
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Figure 1 – Setup of the Andra test case 1.

Following [5], a Cartesian mesh uniform in the x direction and refined at the interface Γ on both
sides is used. The Darcy problem (9) and the convection diffusion equations (12) are solved using a
two-point flux approximation scheme given in [27] with additional face unknowns at the interface Γ
to discretize the boundary conditions. The RANS model in (10) is solved using a staggered Marker
And Cell scheme given in [28]. An implicit Euler scheme is used for the time integration using the
time stepping

∆t1 = ∆t0,

∆tn = min(ρδt∆t
n−1,∆tmax), n > 1,

(18)

with an initial time step ∆t0, a growth rate ρδt and a maximum time step ∆tmax ≥ ∆t0. The final
simulation time is denoted by tf . The nonlinear systems obtained at each time step and at each domain
decomposition iteration are solved using a Newton algorithm for both the Darcy (9) and transport
(12) subproblems and a Quasi Newton algorithm described in [5] for the RANS flow subproblem (10).
The sizes of the linear systems for the Darcy and transport subproblems amount to 3 conservation
equations and unknowns per cell and 3 equations and unknowns per interface face. This reduction is
achieved for the Darcy problem thanks to the elimination of the local closure laws. The linear system
for the RANS flow Quasi-Newton algorithm couples the two velocities and the pressure. It is based
on the uncoupled RANS flow model leading to an independent on time linear system which can be
factorized once and for all. The solution of each linear system is computed at each nonlinear solver
iteration using the sequential version of the SuperLU direct sparse solver [29], [30].

The first three test cases are simplified two dimensional test cases defined with Andra [5] to
simulate the mass and energy exchanges occurring within deep geological radioactive waste disposal
at the interface between a geological formation with low permeable porous medium and a ventilated
excavated gallery. The data sets are derived from lab experiments and in accordance with the deep
disposal center for French radioactive waste project. The fourth test case considers the convective
drying of a porous medium with a much larger permeability.

5.1 Andra test case 1

For this first Andra test case, we consider the domain defined by l = 100 m, hpm = 15 m and hff = 5 m.
As exhibited in Figure 1, the porous medium includes a layer of concrete rocktype in the domain
Ωcc = (0, l)× (hff , hcc) with hcc = 6 m and a Callovo Oxfordian clay (COx) rocktype in the remaining
domain Ωox = Ωpm \ Ωcc.

The porosity and the isotropic permeability are set according to the rocktype such that

φ =

{
0.3 in Ωcc,

0.15 in Ωox,
K =

{
10−18 m2 in Ωcc,

5 · 10−20 m2 in Ωox.

The Van Genuchten parameters of each rocktype, governing the liquid saturation and the relative
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Figure 2 – Liquid saturation function and relative permeabilities of both phases in the Callovo
Oxfordian clay ( ) and in the concrete layer ( ).

permeability functions (16) and (17) exhibited in Figure 2, are set to

nr =

{
1.54, in Ωcc,

1.49, in Ωox,
pr =

{
2 · 106 Pa, in Ωcc,

15 · 106 Pa, in Ωox,
s`r =

{
0.01, in Ωcc,

0.4, in Ωox,
sgr = 0,

The effective diffusivity dαpm is computed from the tortuosity model

d`pm = 0, dgpm = φτsgζgdg,

with τ = 0.25 and the source term fe is set to 0. The liquid pressure, the temperature, the liquid
saturation and the water molar fraction in the liquid phase are set, at initial time in the porous-medium
domain, to

p` = p`up − ζ lmwg(hpm − z), Tpm = T 0
pm, s` = 1, c`w = 1 at t = 0,

and at the top boundary Γup of the porous medium, to

p` = p`up, Tpm = Tup, s` = s`up = 1, c`w = c`w,up = 1, on Γup,

with
p`up = 4 · 106 Pa, T 0

pm = Tup. (19)

At the output boundary Γout, the gas pressure is set to pout = 105 Pa. The velocity at the input
boundary Γin is defined by the uncoupled turbulent velocity profile u0(z) =

(
u0(z)

0

)
computed from

the Prandlt algebraic turbulent model (see [5]) and which is parametrized by the average velocity

uin =
1

hff

∫ hff

0

u0(z) dz.

The temperature at the input boundary Γin is fixed to Tin = 303 K, and the input water molar fraction
cw,in corresponds to the relative humidity

Hr =
poutcw,in
psat(Tin)

= 0.5.

Homogeneous Neumann boundary conditions are used at the remaining boundaries of the domain.
In the following, we consider four test cases defined by two choices of the input gas velocity

uin = 5 m · s−1 and uin = 0.05 m · s−1 and two choices of the initial and top temperature in the porous
medium T 0

pm = Tup = 303 K and T 0
pm = Tup = 333 K.
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Figure 3 – Average temperature in K at the interface as a function of time for the input velocities
uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in dashed line and for both initial temperatures
in the porous-medium domain.
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(b) T 0
pm = 333 K
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Figure 4 – Average relative humidity at the interface as a function of time for the input velocities
uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in dashed line and for both initial temperatures
in the porous-medium domain.

The time step is set by (18) with ∆t0 = 1 s, ρδt = 1.02 and ∆tmax = 1 year which is reached at
the 873th time step at t = 51, 7 year. The time integration reaches the final time tf = 200 year after
nt = 1022 time steps. The stopping criteria of the domain decomposition algorithm (13) is set to
ε = 10−6. For these test cases, no failure of convergence is observed for the nonlinear solvers used for
the subproblems, nor for the domain decomposition method.

The Cartesian mesh of the domain is uniform in the x direction with 100 edges. In the z direction,
the mesh is refined at both sides of the interface Γ with respectively 121 and 162 edges in the
porous-medium and free-flow domains including 41 edges in each boundary layer. The mesh step in
the z direction varies from 1.27 mm to 0.11 m in the porous-medium domain and from 0.057 mm to
0.05 m in the free-flow domain, down to the scale of the turbulent boundary layer.

Figures 3, 4 and 5 show respectively the average temperature, the average relative humidity and
the average evaporation rate at the interface as a function of time. Continuous lines and dashed lines
show respectively the results for the input velocity uin = 5 m · s−1 and uin = 0.05 m · s−1. For both
test cases with T 0

pm = 303 K, the variations of temperature exhibited in Figure 3a at the interface
are only due to the vaporization of the liquid phase. During the first stage of the drying process the
temperature decreases of a few degrees. The duration of this first stage depends on the input velocity,
with roughly 1 hour for the fast input velocity and 1 month for the slow input velocity. This is the
time during which the interface is saturated with water vapor on the free-flow side corresponding
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(b) T 0
pm = 333 K
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Figure 5 – Average evaporation rate at the interface in L · day−1 · m−1 as a function of time for the
input velocities uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in dashed line and for both
initial temperatures in the porous-medium domain.
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(b) T 0
pm = 333 K
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Figure 6 – Average gas volume in the porous medium in m3 as a function of time for the input
velocities uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in dashed line and for both initial
temperatures in the porous-medium domain.

to a maximum evaporation rate, as shown in Figure 4a and in Figure 5a. The second stage of the
drying process is the drop of the evaporation rate, due to the entry of the gas phase in the porous
medium, down to a stationary state with a low evaporation rate. Consequently, during that stage,
the temperature at the interface warms up almost back to its initial value.

For T 0
pm = 333 K, the average temperature, the relative humidity and the evaporation rate are

shown in the Figures 3b, 4b and 5b. In this case, due to a higher evaporation rate at high temperature,
as exhibited in Figure 5b, the first stage during which the interface is saturated with water is shorter
for both velocities, around 5 min and 9 hour for the fast and the slow input velocity respectively.
Then, the dynamic of the coupling is more complex due to the high variation of temperature at the
interface induced both by the evaporation of the liquid phase and by the cooling of the interface
by the free-flow. Let us remark that in Figure 4b, for the fast input velocity, the interface is dried
after 1 hour but still much hotter than the thermal equilibrium state which is reached after 3 month.
During that time, the temperature drop goes on, which lowers the vapor pressure and increases the
relative humidity at the interface. Note that the stationary solutions obtained at final time for both
input velocities differ due to the thermal equilibrium between the porous-medium top boundary at
Tup = 333 K and the free flow depending on the thermal resistance of the free-flow boundary layer.

Figure 6 shows the total gas volume in the porous medium as a function of time. Note that a larger
gas volume is reached at the final time of the simulation for the test case with initial temperature
T 0

pm = 333 K and input velocity uin = 0.05 m · s−1. It has been checked that this is mainly due to the
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Figure 7 – Average number of domain decomposition iterations per time step as a function of the
mesh step in the x direction hx (m) for the stopping criteria (13) with ε = 10−6.
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Figure 8 – Setup of the test case for Andra test case 2.

diffusion term in the porous medium.
The average number of domain decomposition iterations per time step is shown in Figure 7 for

different mesh sizes nx × nz = 100 × 283, 50 × 143, 25 × 73 and with a total number of 1022 time
steps in all cases. Figure 7 exhibits the very good robustness of the algorithm with respect to the
mesh size, the input velocity and the porous medium initial temperature. The average number of
iterations necessary for the convergence of the domain decomposition algorithm at the stopping
criterion ε = 10−6 is nearly insensitive to the mesh size and to the initial temperature, and only
slightly higher for the low input velocity than for the high one.

5.2 Andra test case 2

The objective of this second test case is to test the robustness of the domain decomposition algorithm
with respect to the heterogeneities of the porous medium in the direction of the interface Γ. As
exhibited in Figure 8, the concrete layer is now defined by Ωcc = ( l

2
, l)× (hff , hcc). All the physical

parameters are the same as in the previous test case except the input velocity set to uin = 0.5 m · s−1,
and the gas effective diffusion set to dgpm = 0. The initial and top boundary temperatures in the
porous medium are set to T 0

pm = Tup = 303 K and the input temperature in the free-flow domain is
set to Tin = 303 K.

The Cartesian mesh is uniform in the x direction with 400 edges and refined at both sides of the
interface Γ with 61 and 82 edges along the z direction respectively in the porous-medium and free-flow
domains. In the z direction, 21 edges are used to mesh the boundary layer of each subdomain. The
mesh step along the z direction varies from 2.6 mm to 0.22 m in the porous-medium domain and from
0.21 mm to 0.1 m in the free-flow domain.

The time stepping defined by (18) uses the maximal time step ∆tmax = tf , the initial time step
∆t0 = 1 s and the growth rate ρδt = 1.2. The final time of the simulation is set to tf = 200 year and is
reached after 115 time steps.
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Figure 9 – Average temperature in K (left) and average relative humidity (right) at the interface as
functions of time for the nonisothermal test case ( ) and the isothermal test case ( ).
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Figure 10 – Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume
in the porous medium in m3 (right) as functions of time for the nonisothermal test case ( ) and the
isothermal test case ( ).

The results are compared to the isothermal counterpart of this test case which has been presented
in [6] with no energy conservation and a fixed temperature T = 303 K.

Figures 9 and 10 exhibit for both the isothermal and nonisothermal cases, the average temperature,
relative humidity, evaporation rate at the interface and the gas volume in the porous medium as
functions of time. The differences between the solutions of both cases are small due to the rather low
evaporation rate inducing a low temperature decrease at the interface. It results in a small reduction
of the evaporation rate during the first stage of the drying process for the nonisothermal test case
compared with the isothermal test case.

The Robin coefficients L, Mw −Ma, N as functions of x along the interface Γ are shown in
Figure 11. Note that, for the Robin coefficientsMi, i ∈ C, only the value ofMw−Ma matters from the
sum to 1 of the gas molar fractions. The average value along the interface Γ of the Robin coefficients
P and Q are shown as a function of time in Figure 11. Let us stress the dependence of P on the
exponentially growing time step and on the relative humidity at the interface. It can be checked that
the Robin coefficient P corresponds roughly to a Dirichlet condition at the first stage of the drying
process before the drop of the evaporation rate and to a Neumann boundary condition after the drop
of the evaporation rate. This adaptation of P to the time step size and to the relative humidity at the
interface is crucial to obtain the convergence of the domain decomposition algorithm that could not
be obtained with a constant value of P . Figures 12 and 13 show the good convergence of the domain
decomposition algorithm both for the isothermal and nonisothermal test cases with respectively an
average of 3.44 and 4.25 iterations per time step to reach the stopping criteria (13) with ε = 10−6.
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Figure 11 – Value of the Robin coefficients L ( ), Mw −Ma ( ) and N ( ) along the interface (left)
and average value of the Robin coefficients P ( ), Q ( ) over time (right).
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Figure 12 – Convergence of the domain decomposition relative residual (13) at each time step for the
isothermal test case.
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Figure 13 – Convergence of the domain decomposition relative residual (13) at each time step for the
nonisothermal test case.
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Figure 14 – Setup of the Andra test case 3 with the heat sources in red.

5.3 Andra test case 3

The objective of this third Andra test case is to account for the heat produced by the radioactive
waste packages in the disposal. For that purpose, we consider an horizontal 2D cut along the x and y
directions of the disposal and ventilation gallery. The computational domain is shown in Figure 14 and
is similar to the one used for the first test case placed in the horizontal position. The free-flow domain
has a length of l = 400 m and a depth of hff = 5.25 m. The depth of the porous-medium domain
and of the concrete layer are set to hpm = 50 m and hcc = 6.75 m. Let δls = 1 m and δhs = 20 m be
respectively the length and the depth of a heat source. The location of the ns = 10 heat sources in
the porous-medium domain, as exhibited in Figure 14, is defined by

Ωs =
⋃ns

k=1
(lk, lk + δls)× (hs, hs + δhs),

with lk = 40(k − 1
2
) m, k = 1, · · · , 10, and hs = 10.25 m. Let us define

fe =

{
fs in Ωs,

0 in Ωpm \ Ωs,

and consider three different test cases corresponding to either no heat source with fs = 0, or low heat
sources with fs = 1 W · m−2, or high heat sources with fs = 25 W · m−2.

The boundary and initial conditions are the same as in the first test case with gravity set to zero,
T 0

pm = Tup = 296.15 K, Tin = 295.15 K and uin = 0.55 m · s−1. All the remaining physical parameters
are the same as in the first test case.

The time stepping defined by (18) uses the maximal time step ∆tmax = 1 year, the initial time
step ∆t0 = 1 s and the growth rate ρδt = 1.2. The final time of the simulation is set to tf = 200 year
and is reached after 290 time steps.

The Cartesian mesh has 400 edges along the x direction, and has respectively 61 and 162 edges
along the y direction in the porous-medium and in the free-flow domains, including 41 edges for the
boundary layer of each domain. The mesh step along the y direction varies from 8.8 mm to 1 m in the
porous-medium domain and from 0.3 mm to 0.053 m in the free-flow domain.

Figure 15 and 16 exhibit respectively, at different times for the high heat source test case, the
temperature in the porous-medium and free-flow domains, and the gas saturation in the porous
medium and the relative humidity in the free-flow domain. One can observe the effect of the heat
source on the desaturation of the porous medium at final time as well as the boundary layers at the
interface in the free-flow domain both for the temperature and relative humidity and both at time
t = 1 day and at final time.

Figure 17 exhibits the average temperatures in the porous-medium and the free-flow domains as
functions of time. Figures 18 and 19 exhibit the average temperature, relative humidity, evaporation
rate at the interface and gas volume in the porous medium as functions of time. It can be checked
that the temperature rise in the porous medium occurs during the drop of the evaporation rate. This
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Figure 15 – Temperature in K in the porous-medium and free-flow domains for the high heat source
test case.
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Figure 16 – Gas saturation in the porous-medium domain and relative humidity in the free-flow
domain for the high heat source test case.
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Figure 17 – Average temperature in K in the porous medium (left) and in the free-flow domain (right)
as functions of time and for the test cases: with no heat source ( ), with low heat sources ( ), with
high heat sources ( ).
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Figure 18 – Average temperature in K (left) and average relative humidity (right) at the interface as
functions of time and for the test cases: with no heat source ( ), with low heat sources ( ), with
high heat sources ( ).
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Figure 19 – Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume
in the porous medium in m3 (right) as functions of time and for the test cases: with no heat source
( ), with low heat sources ( ), with high heat sources ( ).
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Figure 20 – Convergence of the domain decomposition relative residual (13) at each time step up to
t = 20 years for the no heat source test case.

explains the small differences observed between the different test cases for both the evaporation rate
and the gas volume in Figure 19. These differences appear only at the end of the simulation where
the evaporation rate and the gas volume are slightly larger for the high heat source case than for the
other cases.

Figures 20 and 21 show the good convergence of the domain decomposition algorithm both with
no heat source and with high heat sources. Shortly before 20 years, the time step reaches the maximal
time step ∆tmax and both solutions are close to the stationary solutions. For t > 20 years, both
domain decomposition methods converges in 2 iterations until the final time tf = 200 years. Over
the overall simulation, the convergence is obtained with respectively an average of 2.84 and 2.94
iterations per time step for the no heat and high heat source test cases. Only one additional iteration
for the high heat source test case is needed around t = 1 year when the heat sources warm up the
porous-medium and free-flow domains.

1
sec

on
d

1
minu

te

1
ho

ur
1
da

y

1
mon

th
1
ye

ar

20
ye

ar
s

100

10−2

10−4

10−6

10−8

Time

Figure 21 – Convergence of the domain decomposition relative residual (13) at each time step up to
t = 20 years for the high heat source test case.
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Figure 22 – The liquid saturation as a function of the capillary pressure and the relative permeabilities
of both phases as a function of the liquid saturation.

5.4 Drying test case

The objective of this last test case is to assess the robustness of the domain decomposition algorithm
in the case of a much more permeable porous medium and for a total evaporation of the liquid in the
porous medium. For that purpose, we consider the nonisothermal version of the test case introduced
in [5, Section 4.4] and compare the solutions and convergence of the domain decomposition method
both for the isothermal and nonisothermal test cases.

The setup of the test case is similar to the first test case with dimensions reduced to l = 1 m,
hff = 0.5 m and hpm = 1.5 m. The porous medium contains only one rocktype with Van Genuchten
parameters set to

φ = 0.15, K = 10−12 m2,

and
nr = 4, pr = 15 · 103 Pa, s`r = 0, sgr = 0.

The liquid saturation and the relative permeability functions are shown in Figure 22. The effective
diffusion coefficient is set to dαpm = 0 for each phase α ∈ P and the source term to fe = 0.

The time stepping defined by (18) uses the maximal time step ∆tmax = 5 hour, the initial time step
∆t0 = 10−6 s and the growth rate ρδt = 1.2. The final time of the simulation is set to tf = 200 days
and reached in 625 time steps.

In the porous medium, the liquid pressure, the temperature, the liquid saturation and the water
molar fraction are given at initial time by (19) with p`up = 105 Pa and T 0

pm = 333 K. As opposed to the
previous test cases, an homogeneous Neumann boundary condition is imposed at the top boundary
Γup. Together with the vanishing liquid residual saturation, this allows for a total evaporation of the
liquid phase from the porous-medium. The input temperature at Γin is set to Tin = 333 K and the
input velocity to uin = 1 m · s−1. The remaining parameters are unchanged compared to the first test
case.

The Cartesian mesh is uniform in the x direction with 100 edges and is refined at both sides of
the interface Γ in the z direction with respectively 121 and 162 edges in the porous-medium and
free-flow domains, including 41 edges for the boundary layer of each domain. The mesh step along
the z direction varies from 1.3 mm to 11.2 mm in the porous-medium domain and from 0.1 mm to
5 mm in the free-flow domain.

Figure 23 exhibits the variations of the temperature in the porous medium and in the free-flow
domains due to the vaporization of the liquid phase. The gas saturation in the porous medium and
the relative humidity in the free-flow domain are shown in Figure 24. During the first 10 days of the
simulation, the high vaporization rate lowers the temperature of say 15 K in the porous medium. At
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Figure 23 – Temperature in K in the porous-medium and free-flow domains for the nonisothermal
drying test case.
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Figure 24 – Gas saturation in the porous-medium domain and relative humidity in the free-flow
domain for the nonisothermal drying test case.
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Figure 25 – Average temperature in K (right) and average relative humidity (left) at the interface as
functions of time, in dashed line for the isothermal test case and full line for the nonisothermal test
case.
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Figure 26 – Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume
in the porous medium in m3 (right) as functions of time, in dashed line for the isothermal test case
and full line for the nonisothermal test case.
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Figure 27 – Convergence of the domain decomposition relative residual (13) at each time step up to
t = 4 days for the isothermal test case.
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Figure 28 – Convergence of the domain decomposition relative residual (13) at each time step for
t ≤ 1 days and 25 ≤ t ≤ 35 days for the nonisothermal test case.

time t = 3 days the gas has already started to enter in the porous medium and rises by gravity to the
top boundary. At time t = 29 days, most of the liquid phase is evaporated from the porous medium,
the evaporation rate has decreased and the temperature starts to rise in the porous-medium with the
ventilation almost back to the input gas temperature at final time tf = 100 days. The evaporation
rate is slow down by the temperature drop in the nonisothermal test case which explains why the
drop of the relative humidity and of the evaporation rate appears sooner in the isothermal test case
as exhibited in Figures 25 and 26.

Figures 27 and 28 exhibit the convergence of the domain decomposition algorithm showing that it
remains efficient both for the isothermal and nonisothermal test cases with respectively an average
over the overall simulation of 2.32 and 2.97 iterations per time step to reach the stopping criteria (13)
with ε = 10−6. Figure 29 exhibits that the domain decomposition method does not converge if the
non diagonal Robin coefficients Mi, i ∈ C are set to 0, which exhibits the strong coupling between
the transport of energy and of the molar fractions in the boundary layer of the free-flow domain.
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Figure 29 – Convergence of the domain decomposition relative residual (13) at successive time steps
for the nonisothermal drying test case with the Robin coefficients Mw and Ma set to 0.
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6 Conclusion and perspectives
A domain decomposition method to couple nonisothermal compositional gas liquid Darcy and free
gas flow and transport have been introduced. Compared with monolithic fully coupled algorithms,
it leads to simpler nonlinear and linear systems for which on-the-shelves solvers are available and
still provides the fully coupled solution. It also allows to solve the coupled problem using existing
codes separately in each subdomain and possibly non-matching meshes at the interface between the
porous-medium and free-flow domains.

The efficiency and the robustness of our algorithm with respect to the mesh size, the gas velocity,
the porous-medium heterogeneities and the temperature range have been exhibited on 2D test cases
with simple geometry. The first three test cases are based on Andra data sets derived from lab
experiments and in accordance with the deep disposal center for French radioactive waste project. The
fourth test case considers the convective drying of a porous medium with a much larger permeability
and the full evaporation of the liquid phase in the porous medium.

The perspectives are to test the domain decomposition algorithm on more complex 3D geometries
using a code coupling strategy. The efficiency of the algorithm could also possibly be further improved
by designing adaptive stopping criteria for instance based on a posteriori estimates or also by using
more advanced techniques to compute the Robin coefficients partially based on the optimization of
the convergence rate.
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