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Liouville type results for local minimizers of the micro-

magnetic energy.

by François Alouges, Giovanni Di Fratta, Benoit Merlet

Abstract

We study local minimizers of the micromagnetic energy in small ferromagnetic 3d convex particles

for which we justify the Stoner-Wohlfarth approximation: given a uniformly convex shape Ω⊂R3, there

exist δc>0 and C > 0 such that for 0 < δ ≤ δc any local minimizer m of the micromagnetic energy in

the particle δΩ satisfies ‖∇m‖L26Cδ2. In the case of ellipsoidal particles we strengthen this result by

proving that, for δ small enough, local minimizers are exactly spatially uniform.

This last result extendsW.F. Brown’s fundamental theorem for fine 3d ferromagnetic particles [Brown

(1968), Di Fratta et al. (2011)] which states the same result but only for global minimizers.

As a by-product of the method that we use, we establish a new Liouville type result for locally

minimizing p-harmonic maps with values into a closed subset of a Hilbert space. Namely, we establish

that in a smooth uniformly convex domain of Rd any local minimizer of the p-Dirichlet energy (p > 1,

p� d) is constant.

Keywords: Micromagnetism, Single-domain particles, Harmonic Maps, Local Minimizers.
AMS Cl.: 35B35, 35B53, 49K20, 49K40, 49S05, 74G65, 82D40.

1 Introduction and main results

Micromagnetism as introduced by Landau-Lifshitz and Brown describes the magnetization states inside a
ferromagnetic body below the Curie temperature (see [citerLL], [7] and the textbook [20]). According to this

theory, the magnetization in a ferromagnetic sample occupying the domain Ω⊂R3 is modeled by a vector
field m : Ω→R3, of constant magnitude Ms, the saturation magnetization, that we assume equal to 1 after
normalization. The (static) theory then states that observed magnetization distributions are local minimizers
of the micromagnetic energy

E(m; Ω) :=
lex
2

2

∫

Ω

|∇m(x)|2dx+
∫

Ω

ψ(m(x))dx− 1

2

∫

Ω

hd[m; Ω](x) ·m(x)dx.

a) The first term is called exchange energy and lex is the exchange length. This term penalizes brutal
variations of the magnetization.

b) The second term combines anisotropy effects and the action of an external field hext

ψ(u)=Aanis(u)−hext ·u,

where Aanis:S
2→R+ is a non negative function that vanishes at the so-called easy directions . When

merged with the energy due to the external field, the corresponding contribution favors directions of
magnetization which minimize ψ.

c) The last term, called stray field energy is a non local self-interaction energy. The vector field hd[m;
Ω] (usually called stray field or demagnetizing field) represents the magnetic field generated by
magnetization distribution m itself through Maxwell equations. From a mathematical point of view
the simplest and shortest way to define hd[m;Ω] is to extend m by 0 in R3 \ Ω̄ by setting m08 1Ωm.

The stray field is then defined as the opposite of the projection of m0 in L2(R3,R3) on the closed
subspace,

V 8 {∇v : v∈D ′(R3,R), ∇v∈L2(R3,R3)}.
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In particular, we see that the operator m � hd[m; Ω] is a non-local pseudo-differential operator of
order 0. By properties of the orthogonal projection, the stray field energy rewrites

− 1

2

∫

Ω

hd[m; Ω] ·m = −1

2

∫

R3

hd[m; Ω] ·m0 =
1

2

∫

R3

|hd[m; Ω]|2,

and we have the bounds

0 ≤ − 1

2

∫

Ω

hd[m; Ω] ·m ≤ 1

2
‖m‖L2

2 =
|Ω|
2
.

This energy is non-negative and vanishes if and only if m0 belongs to V ⊥, that is, by De Rham’s
Theorem, if and only if m0 is divergence free in the sense of distributions (this amounts formally to
∇ ·m≡ 0 in Ω and m · n≡0 on ∂Ω). The components of ∇ ·m0 induced by 1Ω∇ ·m and 1∂Ωm · n
are respectively called volume and surface charges.

Existence of a minimizer of the micromagnetic energy is easily obtained by the direct method of the
calculus of variation (at least when ψ is lower semi-continuous and Ω ⊂ R3 is a non empty open set with
finite volume).

Here, we are interested in the behavior of the magnetization when the shape of the ferromagnetic sample
is fixed and its size is comparable to the exchange length. For this, we introduce a reference domain Ω
with unit diameter that we rescale by setting Ωδ8 δΩ where δ > 0 is a (small) parameter. Similarly, for
any magnetization distribution mδ defined in the physical domain Ωδ we set m(x) =mδ(δx) for x∈Ω, the
reference domain. With this change of variable, we have δ∇mδ(δx)=∇m(x) while hd[mδ; Ωδ](δx)=hd[m;
Ω](x). Therefore the three energy terms scale as

∫

Ωδ

|∇mδ|2(xδ)dxδ = δ

∫

Ω

|∇m|2(x) dx,
∫

Ωδ

ψ(mδ(xδ))dxδ = δ3
∫

Ω

ψ(m(x)) dx,

and
∫

Ωδ

hd[mδ; Ωδ](xδ) ·mδ (xδ)dxδ = δ3
∫

Ω

hd[m; Ω] ·m dx .

Introducing the non-dimensional parameter ε8 δ/lex, we get

1

εlex
3 E(mδ; Ωδ) = Dε(m) 8

1

2

∫

Ω

|∇m(x)|2dx+ε2
(

1

2

∫

R3

|hd[m; Ω]|2 +

∫

Ω

ψ(m)

)

that we rewrite under the form

Dε(m) 8 D(m)+ ε2F(m), with F(m) 8
1

2

∫

R3

|hd[m; Ω]|2 +

∫

Ω

ψ(m) . (1)

For ε≫ 1, i.e. for samples much larger than the exchange length, the prominent terms in the energy are
the stray field energy and the anisotropy. Minimizing magnetization distributions are not uniform in these
situations because constant magnetizations induce large surface charges. The typical observed behavior is
in fact a partition of the sample into regions called domains where the magnetization is almost constant
separated by thin layers called domain walls of thickness comparable to lex where the energy concentrates.

For fine particles ε≪ 1, it is expected that the cost of domain walls exceeds the cost of surface charges.
In this case, the magnetization is almost uniform inside the body and the particle is said to be single-domain.
At the limit, according to the Stoner-Wohlfarth theory [30] the magnetization is considered as spatially
uniform in the particle, that is,

m∈U(Ω, S2) 8 {u : Ω→ S
2 : ∃σ ∈S

2 such that u≡σ almost everywhere in Ω}.
In this case, the micromagnetic energy of u≡σ ∈U(Ω, S2) reduces to

Dε(u)= ε2|Ω|
(

1

2
σT ·Neffσ+ ψ(σ)

)
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where the effective demagnetizing tensor Neff is the 3× 3 matrix defined by,

Neff σ=− 1

|Ω|

∫

Ω

hd[u] (x)dx .

The tensor Neff inherits the properties of −hd[·, Ω] as a continuous orthogonal projector of L2(Ω,R3). In
particular Neff is a non negative symmetric matrix and its eigenvalues are bounded by 1. Also notice that
since m� −hd[m,Ω] is a linear pseudo-differential operator of order 0, the coefficients of Neff only depend
on the shape of Ω and not on its diameter.

Let us state a simple result supporting the Stoner-Wohlfarth approximation: in small particles, minimizers
of the micromagnetic energy are almost constant.

Proposition 1. Let Ω be an open subset of R3 with a finite volume |Ω|, let ψ: S2 → R be lower semi-

continuous and let ε> 0. Then if m is a global minimizer of Dε in H
1(Ω, S2), it satisfies

‖∇m‖L2
2 ≤ |Ω|ε2.

Proof. If m is a minimizer, then Dε(m)≤ ε2F(u) for any u≡σ ∈U(Ω, S2). Choosing σ ∈ S
2 minimizing ψ,

we have ‖∇m‖L2
2 ≤ 2ε2(F(u)−F(m))≤ ε2|Ω|σT ·Neff σ≤|Ω|ε2. �

Moreover, A. De Simone established in [10] that for ε> 0 small, the magnetization can not substantially
decrease its energy by moving away from the set of constant maps.

Proposition 2. (Corollary of Proposition 3.4. in [10])

lim
ε↓0

min
m∈H1(Ω, S2)

1

ε2
Dε(m) = min

u∈U(Ω, S2)
F(u).

The Stoner-Wohlfarth approximation is almost never exact. Indeed, assume that u≡ σ ∈ U(Ω, S2) is a
minimizer or even a critical point of Dε in H

1(Ω, S2), the associated Euler-Lagrange equation at this point
reads,

−hd[u; Ω](x)+Dψ(σ) ∈ span{σ} inΩ .

Consequently, in the plane σ⊥, the components of hd[u, Ω] should be uniform in Ω. This turns out to be
wrong for general domains with the notable exception of Ω being a solid sphere or even a solid ellipsoid.
Indeed, in these latter cases, a well known result of potential theory ([22], [25]), states that the stray field
induced by uniform magnetizations is also uniform inside Ω. For these special geometries the effective stray
field is point-wise related to u.

Proposition 3. (Maxwell [25]) If Ω is a solid ellipsoid then, the linear mapping u� −hd[u; Ω]|Ω maps
U(Ω, S2) into itself (i.e. −hd[u] =Neff σ in Ω for u≡ σ).

Remark 4. Explicit formulas are known for the coefficients of Neff in general ellipsoids (see [25], [26], or
[20] chapter 3.2). In particular, in this case, we have TrNeff=1.

If Ω is the solid rotation ellipsoid {x∈R3: (x1/a)
2+(x2/b)

2+(x3/b)
2<R2}, then the eigenvalues ofNeff in

the standard basis are λ1, λ2=λ3∈(0,1) with λ1+2λ2=1. The extremal coefficients are obtained in the limit
of oblate ellipsoids: (λ1,λ2,λ3)→ (1,0,0) as b/a→∞. For prolate ellipsoids, we have (λ1,λ2,λ3)→ (0,1/2,1/2)
as b/a→ 0.

The Fundamental Theorem for fine ferromagnetic particles of W.F. Brown is stated in this setting:

Theorem 5. (Brown [6]: solid sphere case – Aharoni [1]: prolate spheroids – [11](see also [2]): general

ellipsoids)

Assume that Ω is a solid ellipsoid of unit diameter and that ψ is of class C1 on S
2. There exists εc> 0

such that for every ε∈ [0, εc), any minimizer of Dε in H
1(Ω, S2) is uniform in Ω .

Introduction and main results 3



In fact, in the above references, the result is established assuming that Aanis. is a second order polynomial,
(ψ(σ)=ψ0+H ·σ+(1/2)σT ·Aσ). For this reason, we provide the reader with a general proof of Theorem 5
in Section 2.2.

Remark 6. The proof of Theorem 5 gives an explicit lower bounds for εc. We can also derive an upper
bound by a linear stability analysis of the uniform magnetizations. Unfortunately, these bounds are not
sharp (and do not match). The critical value εc is not known explicitly, but can be determined by numerical
means (see e.g. [3], [4]). This remark also applies to the constants introduced in our main result below.

Remark 7. When ψ is a second order polynomial function, the minimizers of Dε in U(Ω, S2) are easily
deduced from the coefficients of ψ and Neff . For example, if ψ≡ 0 and if Ω is the solid ellipsoid defined by

{x∈R3: (x1/a)
2+(x2/b)

2+(x3/c)
2<R2} with semi-axes a≥ b≥ c > 0, these minimizers are

i. all the elements of U(Ω, S2) in the case a= b= c (sphere);

ii. the elements of the circle U(Ω, S2∩ span{e1, e2}) if a= b> c (prolate ellipsoid);

iii. the two vectors ±e1 if a> b≥ c (elongated ellipsoid).

Proposition 1 and Brown’s Theorem do not describe all the stable observable configurations in ellipsoidal
domains, since these results do not rule out the existence of non uniform local minimizers of Dε. The main
contribution of this paper consists in filling this gap, at least for smooth uniformly convex particles.

Theorem 8. Let ψ ∈C2( S2,R) and let Ω⊂R3 be a C2 uniformly convex domain with unit diameter. Let
ε> 0 and assume that m is a local minimizer of Dε in H

1(Ω,S2), i.e., there exists η > 0 such that for every
p∈H1(Ω, S2),

‖p−m‖H16η � Dε(p)≥Dε(m).

Then

i. there exist εF > 0 and CF ≥ 0 only depending on Ω and ψ such that:

ε< εF � ‖∇m‖L2(Ω) ≤ CFε
2.

ii. if moreover Ω is an ellipsoid, there exists ε
F

′ > 0 which only depends on Ω and ψ such that

ε< εF
′
� m∈U(Ω, S2).

The uniformity in space of locally minimizing magnetizations in small ellipsoidal particles (stated in the
second part) was conjectured by Brown himself [6].

The first part of the Theorem implies D(m) =O(ε4) for local minimizers of Dε in a smooth uniformly
convex particle. Thus the main contribution of the energy comes from the lower order term ε2F(m) which
leads to Dε(m) = O(ε2). This rules out the existence of high energy local minimizers, in particular, any
family {mε}ε<εF of local minimizers of {Dε}ε<εF converges up to extraction towards a critical point of F
in U(Ω, S2).

In the small particle limit ε=0, we may believe that, for finding the observed magnetization distributions,
it is sufficient to replace the Dirichlet energy by the constraint m∈U(Ω, S2) and look for local minimizers
of F in this set. It is indeed true that when F admits an isolated local minimizer u in the set of uniform
magnetizations then there exists a family of magnetizations {mε}ε<ε0 such that mε is a local minimizer of
Dε and mε→u in L2 as ε↓0 (see [10] Theorem 4.3).
On the other hand, the situation is more complex when F admits a continuum of local minimizers in
U(Ω, S

2), since in this case Dε may admit only finitely many local minimizers. This phenomenon called
configurational anisotropy is due to the slight deviation of mε from the set of uniform magnetizations (see
[9] and the rigorous analysis in [29] for prism-shaped particles with D4 symmetry).
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1.1 Locally minimizing p-harmonic maps.

In the proof of our main result, we establish a Liouville type result for harmonic maps that we believe of
independent interest. Since it does not make the proof more cumbersome, we state our result in the setting
of p-harmonic maps with values into a general Hilbert space.

Let Ω⊂Rd be a bounded open set, p> 1 and H be a Hilbert space. The p-Dirichlet energy of a mapping
m∈W 1,p(Ω, H) is defined as

E(m) = E(m; Ω) 8
1

p

∫

Ω

|∇m(x)|Hp dx,

where |·|H stands for the norm in H . Given a closed subset S of H , we define W 1,p(Ω,S) to be the set

W 1,p(Ω,S)= {m∈W 1,p(Ω, H) such that m(x)∈S for almost every x∈Ω} .

We first address the question of whether local minimizers of E in W 1,p(Ω, S) are constant vector fields
(i.e. m≡ σ ∈S a.e. in Ω); in this case local minimizers would be global minimizers.

If S were star-shaped with respect to some point σ, it is pretty obvious that a local minimizer m of E
in W 1,p(Ω, S) should be a constant vector field (just compare E(m) to E((1 − ε)m+εσ) for ε↓0). In the
general case, such variations using convex combinations are not possible, and this is a classical difficulty for
the study of the regularity of harmonic maps .

When S is a smooth manifold, critical points of E in W 1,p(Ω,S) are called p-harmonic maps or simply
harmonic maps in the case p=2. Such a map satisfies, at least formally, the Euler Lagrange equations:

−∇ ·
(

|∇m|Hp−2∇m
)

∈Tm(x)S a.e. inΩ.

We prove the following result.

Theorem 9. Let Ω⊂Rd be a bounded open set, let p> 1 and let S be a closed subset of a Hilbert space H.
Assume that m is local minimizer of E in W 1,p(Ω,S). We have,

i. if p> d and Ω is star-shaped, then m is constant;

ii. if p= d and Ω is star-shaped, then ∇m is supported in λΩ for some λ< 1;

iii. if p< d and if Ω is a C2 uniformly convex domain then m is constant.

Remark 10. In case ii (p= d), if we knew that m were analytic, we would be in a position to conclude,
using the unique continuation property, that m is uniform on Ω. Such a situation occurs when d= p=2 and
S ⊂RN is an analytic embedded compact manifold. In this case a Theorem of Morrey [24] states that m is
Hölder continuous. This allows us to localize in the target manifold, i.e. if U is a neighborhood of m(x) in S,
then there exists a neighborhood ω⊂Ω of x such that m(ω)⊂U . Using analytic local charts ψ:U ⊂S→R2,
we see that ψ◦m is a critical point of a coercive functional of the form

∫

ω
∇u(x)T ·A(u(x))∇u(x)dx defined

for u∈H1(ω,R2). The associated Euler Lagrange equations now read as a non degenerate, quasilinear elliptic
system with analytic coefficients. The general regularity theory for these systems yields the analyticity of
ψ ◦m. Hence m is analytic and thanks to i , spatially uniform.

Remark 11. In fact, we establish iii under a slightly weaker convexity assumption on Ω. The stated
assumption amounts to ask for the second fundamental form Ay on ∂Ω to be uniformly coercive, i.e. there
exists c> 0 such that Ay(v,v)≥ c|v|2 for every y∈∂Ω and every v∈Ty∂Ω. We can relax this hypothesis by

assuming that Ω⊂Rd is bounded, convex and of class C2 and that A(y) is coercive for almost every y in ∂Ω.

There is a huge literature on the qualitative theory of harmonic maps dealing with existence, regularity
and singularity issues. We refer the reader to the review papers [12], [13], [14], [15], [19], [31] and more
recently [21]. The regularity of p-harmonic maps has also been investigated, see e.g. [16], [17], [18] and [23].
The proof of Theorem 9 relies on ideas from the interior regularity theory of minimizing harmonic maps, in
particular we use the notion of inner variation and a refined version of the monotonicity formula of Schoen
and Uhlenbeck [28]. However the present paper is essentially self-contained, mainly because we need a specific
treatment of the boundary.
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In Section 2, we state a general stability result for perturbations Dε=D + ε2F of the Dirichlet energy:
Theorem 14, we show that the micromagnetic energy satisfies the relevant hypotheses and establish that
Theorem 8 follows from Theorem 14. We also prove Theorem 5 at the end of the Section. We establish The-
orem 9 and Theorem 14 in Sections 3 and 4, respectively. Eventually, in Section 5 we discuss open questions
and possible generalizations of our results.

1.2 Notation

For a mapping m : Ω→H , we denote by 〈m〉= 1

|Ω|

∫

Ω
m ∈H the mean value of m over Ω.

In order to ease possible further studies concerning the dependency of the constants appearing in The-
orem 8 with respect to Ω and ψ, we keep track of the constants in our estimates. In particular, we will use
the Poincaré inequality for functions with vanishing mean value. Let us recall that the value of the Poincaré
constant admits a universal bound in convex domains with prescribed diameter.

Proposition 12. (Poincaré inequality, see [5], [27]) Let Ω⊂Rd be a bounded convex open set. There
exists CP ≥ 0 such that,

‖f −〈f 〉‖L2 ≤ CP ‖∇f ‖L2 for every f ∈H1(Ω). (2)

Moreover, the optimal constant satisfies CP ≤ δ/π where δ is the diameter of Ω.

We will also make use of the following variation of the Poincaré inequality when Ω is a smooth convex
domains, which contains 0.

Proposition 13. (interior-boundary Poincaré inequality) Let Ω ⊂ Rd be a bounded smooth convex

domain, There exists CP
′ ≥ 0 such that

(
∫

Ω×∂Ω

|f(x)− f(y)|2 (n(y) · y)dx dHd−1(y)

)

1/2

≤CP
′ Ω
√

‖∇f ‖L2 for every f ∈H1(Ω), (3)

and CP
′ ≤ 2

√
(1+ (d+1)/π) δ, where δ is the diameter of Ω.

For the convenience of the reader, we establish (3) in Appendix A.

2 A general stability/rigidity result. Proof of Theorems 5 and 8

We obtain Theorem 8 as a particular case of the more general Theorem 14 given below which concerns more
general energies Dε: =D+ ε2F defined for functions m∈H1(Ω,S) where S is a closed subset of the Hilbert
H . Let us list the relevant hypotheses for this result.

First, since our method relies on the tools developed for the proof of Theorem 9.iii ., we need:

(H1) Ω is a C2, uniformly convex domain of Rd with unit diameter and d≥ 3.

Next, we require that the functional F satisfies some regularity properties. Namely,
(H2)

i. The functional F :L2(Ω,H)→R is differentiable. Denoting by k[p]∈L2(Ω, H) the gradient of F at
some point p ∈ L2(Ω, H) and by B the convex hull of S in H , we assume that there exists C1 ≥ 0,
such that

‖k[p]‖L2 ≤ C1 for every p∈L2(Ω,B) .

ii. The mapping p ∈L2(Ω, H)� k[p]∈L2(Ω, H) is Gâteaux differentiable and there exists C2≥ 0 such
that

‖Dk[p] ·q‖L2 ≤ C2‖q‖L2 for every p∈L2(Ω,B),q∈L2(Ω, H).

6 Section 2



iii. If p∈L2(Ω, H) and if K is a compact subset of L2(Ω, H), the convergence
∥

∥

∥

∥

k[p+ tq]−k[p]

t
−Dk[p] ·q

∥

∥

∥

∥

L2

�

t↓0
0.

holds uniformly in q∈K.

iv. If p∈H1(Ω,B), then k[p] belongs to H1(Ω, H) and there exists C3≥ 0 such that

‖∇k[p]‖L2 ≤ C3(1+‖∇p‖L2) for every p∈H1(Ω,B).

For the exact rigidity result, we require,
(H3) The gradient k=∇L2F maps U(Ω, H) into itself. Moreover, there exists C3

′ ≥ 0, such that

‖∇k[p]‖L2 ≤ C3
′‖∇p‖L2 for every p∈H1(Ω, H). (4)

We also need S to be a smooth manifold with a large group of isometries.
(H4) S is a smooth manifold. Moreover,

i. There exists a constant CS ≥ 0, such that for every σ ∈ S and ζ ∈ TσS there exists a smooth one

parameter group {R(t)}t∈R of isometries of S such that Ṙ(0)σ= ζ and
∥

∥Ṙ(0)
∥

∥

∞
≤CS|ζ |.

ii. There exists CS
′ ≥ 0, such that

|(σ ′−σ) · ξ | ≤ CS
′ |σ ′− σ |2|ξ | for every σ, σ ′∈S , ξ ∈NσS ,

where NσS denotes the orthogonal space to TσS in H .

Theorem 14. Let Ω⊂Rd, let S be a closed subset of some Hilbert H, let ε>0 and assume that m is a local
minimizer of Dε8 D+ ε2F in H1(Ω,S) then:

i. if hypotheses (H1-H2) hold, there exists CF ≥ 0 and εF > 0 such that

ε< εF � ‖∇m‖L2
2 ≤ CF ε

2.

ii. if moreover, (H3-H4) hold then, there exists εF
′ such that if ε<εF

′ then m is constant in Ω.

This result is established in Section 4.

Example 15. If Ω is bounded, Hypotheses (H2) are satisfied by functional F of the form

F(p)=F

[

1

2

∫

Ω×Ω

A(x1, x2 )(p(x1),p(x2))dx1dx2+

∫

Ω

ψ(x,p)dx

]

with F ∈C2(R,R), A∈Cc2(Ω2,S) where S is the space of continuous symmetric bilinear forms onH , A(x1,x2)
is symmetric for almost every (x1, x2), and ψ ∈Cc2(Ω×H). If moreover ψ does not depend on x and

∇x

∫

Ω

A(x, z)dz≡ 0 in Ω, for every σ ∈S ,

then F satisfies hypothesis (H3). This is precisely the situation of Theorem 8.ii . (with F linear).
Hypotheses (H3) and (H4) are satisfied for S =R,TN , SN−1, SON(R), SN−1/{−1, 1}. More generally, if
H is a Hilbert space, these hypotheses are satisfied for example if

. S =H ,

. S is the sphere {σ ∈H ; |σ |=1},

. S =Gσ where G is a manifold of O(H) which is also a subgroup and σ ∈H \ {0},

. S =H/G when G is a discrete subgroup of O(H).

A general stability/rigidity result. Proof of Theorems 5 and 8 7



2.1 Proof of Theorem 8 (regularity properties of the micromagnetic energy)

We assume here that p= 2, d= 3, S = S
2⊂R3=H and that Ω⊂R3 is a C2 uniformly convex domain

with unit diameter (i.e. (H1) holds). We fix ε > 0 and consider the perturbation of the Dirichlet energy
Dε= D+ ε2F introduced in (1). We assume that ψ ∈C2( S2,R) and that m is a local minimizer of Dε in
H1(Ω, S2).

Let us check step by step that the hypotheses of Theorem 14 are satisfied. Writing

F =Fd+F loc with Fd(p)8 −1

2

∫

Ω

hd [p; Ω](x) ·p(x)dx, Fd(p)8

∫

Ω

ψ(p(x))dx ,

we remark that F can be extended to a functional on L2(Ω, R3). Indeed, p � −hd[p; Ω] is a continuous
linear projector of L2(Ω,R3) while setting ψ(σ)8 ρ(|σ |)ψ(σ/|σ |)where ρ∈Cc∞(0, 2) satisfies ρ≡ 1 on some

neighborhood of 1 makes ψ ∈Cc2(R3) and F loc well defined on L2(Ω,R3).
The next propositions state that Fd and F loc comply to the requirements of Theorem 14.

Proposition 16. The functional Fd satisfies hypothesis (H2).

Proof. i.-ii.-iii. Since p � −hd[p; Ω] is a linear projection on the closed subspace V of L2(Ω, R3), Fd

is a continuous quadratic functional on L2(Ω, R3), with norm bounded by 1/2. Therefore it is infinitely
continuously differentiable, the gradient of Fd at some point p∈L2(Ω,R3) being given by kd[p]=−hd[p;Ω],
while ∀q∈L2(Ω,R3) one has Dkd[p] ·q=−hd[q; Ω]. We also have the bounds

‖kd[p]‖L2 ≤ ‖p‖L2, ‖Dkd[p] ·q‖L2 ≤ ‖q‖L2.

In particular, (H2)-i.-ii.-iii. hold with C1= |Ω|
√

, C2=1.

iv . We have to check that p � kd[p] = −hd[p, Ω] maps H1(Ω, R3) into itself. For this, we invoke
Proposition 17 below and conclude that Fd satisfies (H2)-iv. with C3=max

(

1, |Ω|
√

)

C3
′′. �

Proposition 17. ([8] Lemma 2.3.) Let Ω be a bounded domain of class C2. If p∈H1(Ω,R3), then the

restriction of hd[p,Ω] to Ω belongs to H1(Ω,R3). Moreover there exists a constant C3
′′=C3

′′(Ω) such that

‖hd[p]‖H1(Ω) ≤ C3
′′ ‖p‖H1, for every p∈H1(Ω,R3).

Proposition 18. The functional F loc satisfies hypothesis (H2).

Proof. (H2)-i. For p∈L2(Ω,R3), since ψ ∈Cc2(R3), the gradient of F loc at p is given by

kloc[p](x)8 ∇ψ(p(x)), ∀x∈Ω .

We notice that the operator p∈L2(Ω,R3)� kloc [p]∈L2(Ω,R3) is continuous, with

‖kloc [p]‖L2 ≤ ‖∇ψ‖∞ |Ω|
√

.

Thus F loc satisfies (H2)-i. with constant C1= |Ω|
√

‖∇ψ‖∞.

(H2)-ii. Now, since ψ ∈ C2, p ∈ L2(Ω,R3)� kloc[p] ∈ L2(Ω,R3), is Gâteaux differentiable and one has

Dkloc[p] ·q=D2ψ(p) ·q, for p,q∈L2(Ω,R3). Therefore, F loc satisfies (H2)-ii. with C2=‖D2ψ‖∞.

(H2)-iii. Let p∈L2(Ω,R3) and letK be a compact set of L2(Ω,R3). For q∈K and x∈Ω and t>0, we set

R(x;q, t) 8
∇ψ[p(x)+ tq(x)]−∇ψ[p(x)]

t
−D2ψ[p(x)] ·q(x),

and we remark that, using the Taylor-Lagrange formula, we have

R(x;q, t) = [D2ψ{p(x) + tζ(x, t)q(x)}−D2ψ{p(x)}] ·q(x) ,
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where ζ(x, t)∈ (0,1). Let us introduce a parameter η>0 and split Ω into Ωη8 {x : |q(x)|<η/t} and Ω\Ωη.
We have the obvious bounds

∀x∈Ω \Ωη , |R(x;q, t)| ≤2‖D2ψ‖∞ |q(x)| ,
while

∀x∈Ωη , |R(x;q, t)| ≤ ω(η)|q(x)| ,

where ω is a modulus of continuity for D2ψ (recall that ψ is of class C2 and compactly supported). This
leads to

∫

Ω

|R(x;q, t)|2dx ≤ ω2(η)‖q‖L2
2 +4‖D2ψ‖∞2

∫

{x : |q(x)|≥η/t}

|q(x)|2dx. (5)

Since K is compact in L2(Ω,R3), K is bounded in L2(Ω,R3)

∃CK> 0, ∀q∈K, ‖q‖L2≤CK ,

and the functions {x ∈ Ω� |q(x)|2 : q ∈ K} are uniformly equi-integrable. Therefore for η > 0 fixed the
integral in the right hand side of (5) goes to 0 as t↓0 uniformly in q∈K. This leads to

lim
t↓0

{

sup
q∈K

∫

Ω

|R(x;q, t)|2dx
}

≤ CKω
2(η).

Eventually, since η is arbitrary and ω(η)→ 0 as η↓0, the above limit vanishes, as required.

(H2)-iv . Let us now assume p ∈H1(Ω,R3). We have to check that k[p] belongs to H1(Ω,R3). First,

since ψ ∈Cc2(R3), the mapping x� kloc[p](x) =∇ψ(p(x)) belongs to H1(Ω,R3) and using the chain rule,
we have the estimate,

‖∇{kloc[p]}‖L2 ≤ ‖D2ψ‖∞‖∇p‖L2. (6)

We deduce from (6) that F loc satisfies (H2)-iv. with C3=‖D2ψ‖∞. �

For the second part of Theorem 8, we invoke Proposition 3 that states that, in solid ellipsoids, uniform
magnetizations create uniform stray fields. Taking into account the (homogeneous) anisotropy, we have the
following result.

Proposition 19. If Ω is a solid ellipsoid, then (H3) holds, that is to say k=∇L2F maps U(Ω,R3) into
itself and moreover, there exists C3

′ ≥ 0, such that

‖∇k[p]‖L2 ≤ C3
′‖∇p‖L2 for every p∈H1(Ω,R3).

Proof. Let u≡σ ∈U(Ω, S2), then

k[u](x) = −hd[u; Ω](x)+∇ψ(σ) for every x∈Ω.

By Proposition 3, we know that hd[u; Ω] is uniform inside Ω. Thus k[u]∈U(Ω, S2).
Let us now establish the estimate. With the notation of the proof of Propositions 16 and 18, we have

∇k[p]=∇{kloc[p]}−∇{hd[p]}, for every p∈H1(Ω,R3). For the first term, we have already established the
desired estimate in (6).

Next, let p ∈ H1(Ω, R3). By linearity of p � hd[p], we have hd[p] = hd[〈p〉] + hd[p − 〈p〉]. Since Ω is a
solid ellipsoid, it follows from Proposition 3 that hd[〈p〉] is constant in Ω. Hence ∇{hd[p]}=∇{hd[p−〈p〉]}.
Using Proposition 17 and the Poincaré inequality (2), we get

‖∇{hd[p]}‖L2
2 ≤ (C3

′′)2(‖p−〈p〉‖L2
2 +‖∇p‖L2

2 ) ≤ (C3
′′)2(1+CP

2 )‖∇p‖L2
2 .

This establishes the estimate of (H3) with C3
′ =‖D2ψ‖∞+C3

′′ 1+CP
2

√

. �

Eventually, we check that S2⊂R3 satisfies (H4).

Lemma 20. The sphere S = S
2 satisfies (H4).
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Proof. i. Let σ ∈ S
2, ζ ∈σ⊥=TσS

2 and call ζ ′8 σ× ζ. Let us define the one parameter group of rotations

R(t)=etA where A is the skew symmetric matrix given by Aσ ′= ζ ′×σ ′. This group satisfies Ṙ(0)σ=Aσ= ζ

and the estimate
∥

∥Ṙ(0)
∥

∥

∞
≤C S2|ζ | holds with C S2=1.

ii. For σ ∈ S2, we have NσS =R σ, so we may assume ξ=λσ. We compute for σ ′∈ S2,

(σ− σ ′) · ξ=λ(1−σ ′ ·σ) =
λ

2
|σ ′−σ |2 .

Hence, (H4)-ii. holds with C S2
′ =1/2. �

As a conclusion, by Propositions 16 and 18, Theorem 8.i. is a consequence of Theorem 14.i. and then by
Proposition 19 and Lemma 20, Theorem 8.ii. follows from Theorem 14.ii.

2.2 Proof of Theorem 5

At this point, we have at hand all the tools to prove Theorem 5.

Proof. (of Theorem 5) Let Ω be an ellipsoid, assume that ψ is of class C2 and let m minimizing Dε in

H1(Ω, S2). We denote by 〈m〉= 1

|Ω|

∫

Ω
m(x) dx the average value of m on Ω and define

σ=



















〈m〉
|〈m〉| if 〈m〉� 0 ,

any point in S
2 otherwise.

Eventually, let u≡σ ∈U(Ω, S2). By optimality of m, we have, Dε(m) ≤ Dε(u)= ε2F(u), thus

‖∇m‖L2
2 ≤ 2ε2[F(u)−F(m)]. (7)

Next, by Proposition 16. and Proposition 18, F is differentiable in L2(Ω,R3) and its gradient is given by
k[p](x)=−hd[p; Ω](x)+∇ψ(p(x)). So,

F(u)−F(m) =−
∫

0

1 ∫

Ω

k[u+ t(m−u)](x) · [m−u](x)dxdt.

Since k[u] does not depend on x∈Ω, we obtain

F(u)−F(m)=−k[u] ·
∫

Ω

[m−u] +

∫

0

1 ∫

Ω

{k[u]−k[u+ t(m−u)]} · [m−u]dt.

From the expression of k, this leads to

F(u)−F(m) ≤ (1+‖∇ψ‖∞)

∣

∣

∣

∣

∫

Ω

[m−u]

∣

∣

∣

∣

+
1

2
(1+‖D2ψ‖∞)‖m−u‖L2

2 .

We first bound the integral in the right hand side. By definition of u,
∫

Ω

[m−u] = |Ω|(〈m〉− σ) = |Ω|(|〈m〉| − 1)σ.

On the other hand, since |m(x)|=1 a.e. in Ω, we have
∫

Ω

|m−〈m〉|2 = |Ω|(1− |〈m〉|2).

Using |〈m〉| ≤ 1 and Poincaré inequality, we obtain
∣

∣

∣

∣

∫

Ω

[m−u]

∣

∣

∣

∣

= |Ω|(1−|〈m〉|) ≤ |Ω|(1− |〈m〉|2) ≤
∫

Ω

|m−〈m〉|2 ≤ CP
2 ‖∇m‖L2

2 .
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Next, we bound the last term ‖m− u‖L2
2 . Since m∈L2(Ω, S2) and u minimizes the distance |v− 〈m〉|

in S
2, we have |u − 〈m〉| ≤ |m(x) − 〈m〉| for almost every x ∈ Ω which gives the bound ‖u − 〈m〉‖L2

2 ≤
‖m−〈m〉‖L2

2 . Therefore

‖m−u‖L2 ≤ ‖m−〈m〉‖L2+‖〈m〉 −u‖L2≤2‖m−〈m〉‖L2 ≤ 2CP ‖∇m‖L2 (8)

from Poincaré inequality. Eventually, we have obtained,

F(u)−F(m) ≤ CP
2 (3+‖∇ψ‖∞+2‖D2ψ‖∞)‖∇m‖L2

2 .

Together with (7), we get that if ε2< 1/2CP
2 (3+‖∇ψ‖∞+2‖D2ψ‖∞), then m is constant. �

3 Proof of Theorem 9

Throughout this Section, we assume that Ω⊂Rd is a bounded open set which is star-shaped with respect to
some point x0∈Rd. Without loss of generality, we assume x0=0. We let p> 1 and S be a closed subset of
some Hilbert space H . Eventually we assume that m∈W 1,p(Ω, S) is a local minimizer of E in this set for
the W 1,p-topology.

In order to prove Theorem 9, we compare the energy of m with some competitors {mt}t∈(0,t0)⊂W 1,p(Ω,
S). As already noticed, the usual perturbations of the form mt=m+ tϕ are not allowed and we use instead
the so-called inner variations

mt=m ◦ (Id+ tϕ) (9)

for some suitable ϕ ∈ C∞(Ω, Rd). Notice that ϕ is not supposed to vanish on ∂Ω and hence we have the
following two possibilities.

• If (Id+ tϕ)(Ω)⊂Ω for t > 0 small enough, Id+ tϕ is a diffeomorphism from Ω onto a open subset of
Ω, mt is well defined and mt∈W 1,p(Ω, H) since by the chain rule,

∂imt(x) = [∂im+ t∂iϕ(x) · ∇m](x+ tϕ(x)) for i=1,� , d and for a.e. x∈Ω. (10)

We also have mt(x)∈S almost everywhere in Ω, so that mt∈W 1,p(Ω,S).
• If (Id+ tϕ)(Ω)⊂Ω, then we first have to consider a extension m̃∈W 1,p(O ,S) defined on some open

neighborhood O of Ω and such that m̃|Ω=m. We then set mt= m̃ ◦ (Id+ tϕ).

In both cases, we have mt�m as t↓0 in W 1,p(Ω,H) (we can see this by using the density of C∞(O ,H) in
Wloc

1,p(O , H)), and hence, by local optimality of m, there exists η= η(m̃, ϕ) such that

0<t< η � E(m) ≤ E(mt).

In what follows, we consider a family of such inner variations {{mt
θ: =m̃ ◦ (Id + tϕθ)}t}θ∈J where

{ϕθ}θ∈J ⊂C∞(Ω,Rd). We need the following Lemma.

Lemma 21. If {ϕθ}θ∈J is compact in C1(Ω,Rd) then the convergence mt
θ
�

t↓0
m in W 1,p(Ω,H) is uniform

in θ ∈J.

Proof. Denoting by Lθ the Lipschitz constant of ϕθ, we set

η 8 inf
θ∈J

min

(

d(Ω,Oc)

‖ϕθ‖∞
,
1

Lθ

)

> 0.

Then, as soon as 0<t< η, Id+ tϕθ is a diffeomorphism of Ω onto a relatively compact subset of O and mt
θ

is a well defined element of W 1,p(Ω,S) for every θ∈J . Now, assume by contradiction, that there exist δ > 0
and two sequences (θk)k⊂ J and (tk)k such that tk↓0 and

‖mtk
θk −m‖W 1,p>δ for every k ≥ 0. (11)
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Up to extraction, we may assume that (ϕθk)k converges towards ϕ
θ in C1(Ω,Rd), and therefore (Id+ tkϕ

θk)k
converges to Id in C1(Ω,Rd). We thus see that

(∣

∣mtk
θk
∣

∣

p
+
∣

∣∇mtk
θk
∣

∣

p)

k
is uniformly equi-integrable in Ω. When

H is a finite dimensional space, this is sufficient to conclude that
(

mtk

θk
)

is relatively compact in W 1,p(Ω,H).

We then have, up to extraction mtk

θk
� w∈W 1,p(Ω,H). But we also have mtk

θk
�m in D ′(Ω,H), so that we

can identify w=m contradicting (11).

When H is not finite dimensional, we need another argument. First we notice that we can approximate
m in L1(Ω, H) by a sequence (sj)j of simple measurable functions (the range of sj is a finite set Aj ⊂H).
We then set Hj 8 span {∪l≤j Al} and call Pj the orthogonal projector on Hj. Since this projection is a
contraction, we have

|Pjm|(x)≤ |m|(x) and |∇Pjm|(x)≤ |∇m|(x) a.e. in Ω .

On the other hand Pjm(x)→m(x) and for 1≤ k ≤ d, ∂kPjm(x) =Pj∂km→ ∂km(x) almost everywhere in

Ω, therefore by Lebesgue’s dominated convergence Theorem, we have Pjm→m in W 1,p(Ω, H).

For any δ > 0, we fix j such that ‖Pjm−m‖W 1,p<δ/3. A direct computation using (10) and the change

of variable y= x+ tkϕ
θk(x) shows that ‖Pjmtk

θk −mtk
θk‖W 1,p ≤ (1 +O(tk))‖Pjm̃− m̃‖W 1,p

(

Ω+B
(

0,tk‖ϕ
θk‖∞

)),

so we also have ‖Pjmtk
θk −mtk

θk‖W 1,p<δ/3 for k large enough.

Eventually, by the definition of Pj, we have Pjmtk
θk=(Pjm)◦ (Id+ tkϕθk) and from the finite dimensional

case, we know that for k large enough ‖Pjmtk
θk−Pjm‖W 1,p<δ/3. These estimates yield the desired contra-

diction

‖mtk
θk −m‖W 1,p≤‖Pjmtk

θk −mtk
θk‖W 1,p +‖Pjmtk

θk −Pjm‖W 1,p+‖Pjm−m‖W 1,p<δ

for k large enough. �

In the sequel, we only use three kinds of inner variations. In Section 3.1, we first consider dilations with
coefficient (1− t), which amounts to choose ϕ(x)=−x in (9). Since Ω is star-shaped with respect to 0, there
is no need to extend m outside Ω in that case. This turns out to be sufficient to establish parts i. and ii. of
Theorem 9. Then, assuming that Ω is C2 and convex, we introduce a particular extension of m and consider
dilations with coefficient (1 + t) which correspond to the choice ϕ(x) = x in (9). In these two steps, we do
not really need m to be a local minimizer, we only use the weaker first order condition

E(mt) ≥ E(m) + o(t).

In Section 3.2, we consider translations of the domain, that is to say inner variations generated by the family
of perturbations {ϕθ(x)= θ}θ∈Sd−1 . For this step, we make use of the second order optimality condition

E(mt
θ) ≥ E(m)+ o(t2) .

Since S
d−1 is compact, by Lemma 21, this optimality condition is satisfied uniformly in θ ∈ S

d−1 which is
required for our proof. This is the reason why we ask for m to be a local minimizer for the W 1,p-topology
(see the discussion in Section 5).

3.1 Domain dilations (proof of parts i,ii of Theorem 9 and preliminaries for iii)

Lemma 22. (Zooming in (a)) Under the hypotheses of Theorem 9, we have for t∈ (0, 1) small enough,

E(m; Ω \ (1− t)Ω)

t
≤ 1− (1− t)d−p

t
E(m; Ω) . (12)

Proof. We introduce a first family of inner variations of m, namely for t∈ (0, 1) and x∈Ω,we set,

mt(x) 8 m((1− t)x).
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Let us compare E(mt) and E(m). First, we compute ∇mt(x) = (1− t)∇m((1− t)x). This identity holds in
Lp(Ω), as soon as t∈ (0, 1) and by the change of variable y=(1− t)x, we get for t∈ (0, 1),

E(mt; Ω) = (1− t)p−dE(m; (1− t)Ω) .

By hypothesis, E(m; Ω)≤E(mt; Ω) for t small enough. Multiplying both sides of this inequality by t−1(1−
t)d−p and simplifying, we obtain (12). �

Let us notice that if d< p, then the coefficient in the right hand side is negative and since the left hand
side is non negative, this leads to E(m; Ω)= 0 and so m is constant in Ω. This proves Theorem 9.i.

When p=d, we get E(m; Ω \ (1− t)Ω)=0, which means that ∇m is supported in (1− t)Ω. This implies
part ii. of the Theorem.

From now on, we assume d > p and that Ω has Lipschitz regularity and is star-shaped with respect to
some non-empty open ball Bρ(0).

Lemma 23. (Zooming in (b)) The trace u0 of m on ∂Ω belongs toW 1,p(∂Ω,S) and satisfies the estimates,

1

p

∫

∂Ω

|∇u0|p(y)(y ·n(y))dHd−1(y) ≤ lim
t↓0

E(m;Mt
−)

t
≤ lim

t↓0

E(m;Mt
−)

t
≤ (d− p)E(m), (13)

with Mt
−
8 Ω \ (1− t)Ω, for t∈ (0, 1).

Proof. The central inequality of (13) is obvious. Moreover, starting from (12) and taking the limsup as t↓0,
we get the last inequality of (13).

We now study the left hand side of (12) and establish the first inequality of (13). Let us first notice
that by the trace Theorem (and since Ω is star-shaped with respect to Bρ(0)), m admits a representative
defined on Ω, still denoted by m, such that, if we set ut(y) = m((1 − t)y) for y ∈ ∂Ω and t ∈ [0, 1), then
t∈ [0,1)� ut∈L1(∂Ω,S) is continuous. By definition, the trace of m on ∂Ω is u0. Since S is closed, we have

ut∈L1(∂Ω,S), for every t∈ [0, 1). In particular,

lim
t↓0

ut = u0 in L1(∂Ω, H) . (14)

We now introduce the family of change of variables

ψt : ∂Ω× (0, 1)→Rd, (y, s)� (1− st)y .

For t∈ (0,1), the map ψt defines a (bi-Lipschitz) diffeomorphism from ∂Ω× (0, 1) onto its image Mt
−. Thus,

we can define a family vt∈H1(∂Ω× (0, 1),S) by vt(y, s)8 m(ψt(y, s)). Due to (14), we have

lim
t↓0

vt=u0 in L1(∂Ω× (0, 1), H), (15)

with the abuse of notation u0(y, s)=u0(y).

Next, we show that∇u0∈Lp(∂Ω,Hd). By the chain rule, the gradient of vt with respect to any tangential
direction ξ ∈Ty∂Ω reads

(ξ · ∇y)vt(y, s) = (1− st)(ξ · ∇)m(ψt(y, s)).

We write ∇yvt(y, s)= (1− st)∇τm(ψt(y, s)), where, for x= ψt(y, s)∈ Ω̂t, ∇τm(x) denotes the projection of

∇m(x) onto Ty∂Ω×H ⊂Rd×H . The change of variable formula leads to

1

tp

∫

∂Ω×(0,1)

|∇yvt|p(y, s) (1− st)−pJ
t
(y, s)dsdHd−1(y) =

1

tp

∫

Mt
−

|∇τm|p ≤ E(m;Mt
−)

t

where Jt denotes the Jacobian determinant of ψt. Using the orthogonal decomposition of Rd as Ty∂Ω ⊕
Rn(y)≃Ty∂Ω⊕R, we compute,

Dψt(y, s) =

(

(1− ts)IdTy∂Ω −t(y− (y ·n(y))n(y))
0 −t(y ·n(y))

)

.
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Hence, Jt(y, s)= t(1− ts)d−1(y ·n(y))= [1+O(t)]t(y ·n(y)) and the above identity simplifies to

[1+O(t)]
1

p

∫

∂Ω×(0,1)

|∇yvt|p(y, s) (y ·n(y))dsdHd−1(y) =
1

tp

∫

Mt
−

|∇τm|p ≤ E(m;Mt
−)

t
. (16)

Since Ω is star-shaped with respect to Bρ(0) the weight y ·n(y) is uniformly bounded from below by a positive
constant on ∂Ω. On the other hand, we know from (12) that the right hand side of (16) remains bounded
as t↓0. Hence, the family {∇yvt}t∈(0,1/2) is bounded in Lp(∂Ω × (0, 1)) and therefore, up to extraction,

∇yvt weakly converges in Lp(∂Ω × (0, 1)). We already know from (15) that (vt)t converges towards u0 in
D ′(∂Ω× (0, 1), H), and we can thus identify the limit and deduce:

∇yvt�
t↓0 ∇yu0, weakly in Lp(∂Ω× (0, 1)) . (17)

Consequently, u0∈W 1,p(∂Ω,S) as claimed. Eventually, by lower semi-continuity of the Lp-norm under weak
convergence, we get the first inequality of (13) by sending t↓0 in (16). �

We now establish that the inequalities (13) are in fact identities.

Lemma 24. (Zooming out) The following identities hold.

1

p

∫

∂Ω

|∇u0(y)|p(y ·n(y)) dHd−1(y) = lim
t↓0

E(m;Mt
−)

t
= (d− p)E(m) . (18)

Proof. Thanks to the higher regularity of u0=m|∂Ω established in Lemma 23, we are able to use extensions
of m that are only built on u0. Let s

⋆> 0 be small enough such that ψ: (y, s)∈∂Ω× (0, s⋆)� y+ sn(y)∈Rd

defines a (bi-Lipschitz) diffeomorphism onto its image N . We set O 8 Ω ∪ N and define the extension

m̄∈W 1,p(O ,S) of m by

m̄(x) =

{

m(x) if x∈Ω,

u0(y) if x= ψ(y, s).
(19)

Let t⋆> 0 be such that (1+ t⋆)Ω⊂O, we now define a new inner perturbation of m by mt(x)8 m̄((1+ t)x)
for x∈Ω, t∈ (0, t⋆).

By the local optimality of m, we know that E(m) ≤ E(mt) for t > 0 small enough. Then, using the
homogeneity of the energy and the splitting of (1+ t)Ω into Ω∪Mt

+, with Mt
+
8 (1+ t)Ω \Ω, we get

E(m) ≤ E(mt) = (1+ t)p−dE(m; Ω)+ (1+ t)p−dE(m̄;Mt
+).

Multiplying by (1+ t)d−p leads to

1

p

∫

Mt
+

|∇m̄|p(z)dz ≥ [(1+ t)d−p− 1]E(m).

Dividing by t and letting t↓0, we obtain

liminf
t↓0

1

tp

∫

Mt
+

|∇m̄|p(z)dz ≥ (d− p)E(m). (20)

But, on Mt
+, m̄ is given in terms of u0 which enables us to express the left hand side as a function of ∇u0.

Using the change of variable z=(1+ ts)y (as in the previous Lemma), we compute

1

tp

∫

Mt
+

|∇m̄|p(z)dz =
1

p

∫

0

1
[
∫

∂Ω

|∇m̄|p((1+ ts)y)(n(y) · y)dHd−1(y)

]

(1+ ts)d−1ds

Next, from the identity m̄(y+ sn(y))=u0(y) and the chain rule, we have for every ξ ∈Ty∂Ω,

ξ · ∇u0(y) = ([ξ+ s(ξ · ∇)n(y)] · ∇)m̄(y+ sn(y)),

and thus

∇m̄(y+ sn(y)) = [1+O(s)]∇u0(y) .
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Denoting by π the orthogonal projection on ∂Ω, this yields

1

tp

∫

Mt
+

|∇m̄|p(z)dz = [1+O(t)]
1

p

∫

∂Ω×(0,1)

|∇u0|p(π[(1+ ts)y])(n(y) · y)dHd−1(y)ds.

Now, we let t↓0. Since the family of mappings (y, s)� π[(1+ ts)y] converges to (y, s)� y in C1(∂Ω× (0,1))

as t↓0 and since y� |∇u0|p(y)(n(y) · y) belongs to L1(∂Ω), we get,

lim
t↓0

1

tp

∫

Ω̌
t

|∇m̄|p(z)dz =
1

p

∫

∂Ω

|∇u0|p(y)(n(y) · y)dHd−1(y) .

Together with (20), this leads to

1

p

∫

∂Ω

|∇u0|p(y)(n(y) · y)dHd−1(y) ≥ (d− p)E(m).

Using this inequality and (13), we get (18). �

The identities of Lemma 24 allow us to convert the weak convergence of Lemma 23 to strong convergence.

Lemma 25. We have the strong convergence

[∇m] ◦ ψt�
t↓0 ∇u0 in Lp(∂Ω× (0, 1)),

where we recall the notation ψt (y, s): =(1− st)y for y ∈ ∂Ω and s, t∈ (0, 1).

This Lemma plays the role of a regularity result for m near the boundary. It will be crucial for carrying
out the computations in the next sections.

Proof. Using the change of variable z= ψt(y, s)= (1− st)y as in the proof of Lemma 23, we get

1

p
‖[∇m] ◦ ψt‖L⋆

p
p = [1+O(t)]

E(m;Mt
−)

t
.

where we have denoted by ‖v‖L⋆
p the weighted norm in Lp(∂Ω× (0, 1)) defined by

‖v‖L⋆
p
8

(

∫

∂Ω×(0,1)

|v|p(y, s) (y ·n(y))dHd−1(y) ds

)

1

p

.

By Lemma 24, we know that

lim
t↓0

‖[∇m] ◦ ψt‖L⋆
p = ‖∇u0‖L⋆

p < ∞.

Thus, there exists w∈Lp(∂Ω× (0, 1)) and a sequence tk↓0 such that

(

[∇m] ◦ ψ
tk

)

k∈N → w weakly in Lp(∂Ω× (0, 1)). (21)

Moreover, by the lower semi-continuity of the Lp-norm under weak convergence

‖w‖L⋆
p 6 ‖∇u0‖L⋆

p . (22)

We now claim that

w = ∇u0 (23)

Assuming the claim, we get from (21) and (22)

(

[∇m] ◦ ψ
tk

)

k∈N� ∇u0 strongly in Lp(∂Ω× (0, 1)).

Eventually, since the limit ∇u0 does not depend on the particular subsequence (tk), we deduce that the
whole family {[∇m] ◦ ψt}t>0 converges towards ∇u0 as t↓0. This establishes the Lemma, assuming (23).
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Let us now establish (23). Using the notation ∂nm(ψt(y, s))8 n(y) · [∇m](ψt(y, s)) (notice that this
extends the classical normal derivative) and orthogonal decompositions, we have

[∇m] ◦ ψt = [∇τm] ◦ ψt + n⊗ ∂nm ◦ ψt, w = wτ +(w ·n)n.

With this decomposition, (21) reads

[∇τm] ◦ ψtk → wτ , ∂nm ◦ ψtk → w ·n both weakly in Lp(∂Ω× (0, 1)) as k↑∞.

Now, in the proof of Lemma 23 we have seen that [∇τm] ◦ ψt weakly converges to ∇u0 in Lp(∂Ω× (0, 1)),
and therefore wτ =∇u0. Taking into account (23) we end with

‖w‖L⋆
p 6 ‖∇u0‖L⋆

p = ‖wτ‖L⋆
p. (24)

Since wτ(y, s) and n(y) are orthogonal in H , this yields w=wτ =∇u0 and establishes the claim. �

Remark 26. The preceding Lemma implies the following strong form of the Neumann boundary conditions:

[∂nm] ◦ ψt�
t↓0

0 in Lp(∂Ω× (0, 1)).

3.2 Domain translations (Proof of Theorem 9. iii)

For the time being, we have considered inner variations produced by dilations of the domain with respect
to x0 = 0. When Ω is the unit ball, these variations do not rule out non-constant mappings of the form
m(x) =m0(x/|x|). Indeed, for p < d and m0∈W 1,p(Sd−1, S) such mappings do belong to W 1,p(Ω, S) and
are homogeneous of degree 0, (mt=m). Moreover, the identities (18) of Lemma 24 remain true regardless
of whether m is a local minimizer. In such cases our previous computations are not sufficient and looking
for second order optimality conditions would not improve the situation if we stick on the same variations.
We therefore consider below different inner variations, namely those produced by translations of the domain.

From now on, we assume that the domain Ω is (still) bounded, convex and of class C2. We also assume
that 0 ∈ Ω, which implies that Ω is still star-shaped with respect to some non-empty open ball Bρ(0) and
the results of the previous Section 3.1 apply. We also recall that 1< p<d, and in particular, d≥ 2.

We introduce a new extension of m. Let t⋆> 0 be such that

φ : (y, s)∈ ∂Ω× (−t⋆, t⋆) � y+ sn(y)∈Rd

defines a bi-Lipschitz diffeomorphism onto its range. For t∈ (0, t⋆), we set,

N t
+
8 φ(∂Ω× (0, t)) and N t

−
8 φ(∂Ω× (−t, 0)).

We extend m on {x∈R3 : d(x,Ω)< t⋆}=Ω∪N t⋆
+ by setting

m̃(x) : =

{

m(x) if x∈Ω,

m(φ(y,−s)) if x= φ(y, s), (y, s)∈ ∂Ω× [0, t⋆).
(25)

Since φ is a bi-Lipschitz diffeomorphism, we have m̃∈W 1,p(Ω,S). Next, for θ∈S
d−1, and t∈ (0, t⋆), we set

mt
θ(x) 8 m̃(x+tθ) for every x∈Ω.

It is clear that mt
θ∈W 1,p(Ω,S) and by Lemma 21, there exists t′∈ (0, t⋆] such that

E(m) ≤ E(mt
θ) for every t∈ (0, t′) and θ ∈S

d−1.

Averaging in θ ∈S
d−1, we set for t∈ (0, t′),

Q(t) 8
1

t2

∫

Sd−1

[E(mt
θ)−E(m)]dHd−1(θ) ≥ 0 for t∈ (0, t′). (26)

The main task of this Section is to establish the following lemma.
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Lemma 27. For ξ ∈ Ty∂Ω, let us denote by ay(ξ) = Ay(ξ, ξ) the quadratic form associated to the second
fundamental form Ay of ∂Ω at y. We have

lim
t↓0

Q(t) = − |Sd−1|
2d

∫

∂Ω

ay(∇u0(y))|∇u0|p−2(y)dHd−1(y). (27)

The factor ay(∇u0(y)) in the integrand of (27) deserves some comment. Since Ω is of class C2, ay
is well defined as a quadratic form on Ty∂Ω. As usual, we extend this quadratic form to Rd by setting

ay(ξ) 8 ay

(

πy ξ
)

where πy denotes the orthogonal projection onto Ty∂Ω. Next, given, any Hilbertian

basis B of H , we can extend the domain ay to continuous linear forms V : Rd → H . Indeed, writing the
decomposition of V into the Hilbertian basis as V (z)=

∑

b∈B Vb(z)b, for z ∈Rd, we set

ay(V )8
∑

b∈B

ay(Vb).

With this convention, the integrand in the right hand side of (27) is well defined with

ay(∇u0(y)) =
∑

b∈B

ay(∇(u0(y) · b)) =
∑

b∈B

Ay(∇(u0(y) · b),∇(u0(y) · b)).

We postpone the proof of Lemma 27, and show first that it implies Theorem 9.iii.

Proof. (of Theorem 9, iii .) We assume that Ω is uniformly convex or, at least, that ay is coercive for
almost every y ∈ ∂Ω (see Remark 11). Assuming that (27) holds, with (26), this leads to

∫

∂Ω

ay(∇u0)|∇u0|p−2dHd−1(y) ≤ 0 .

Since ay is coercive almost everywhere on ∂Ω, we see that ∇u0 vanishes in Lp(∂Ω). The identities of
Lemma 24 then lead to E(m)= 0 and m is constant, as claimed. �

Proof. (of Lemma 27) To lighten notation, we set

q(z) 8
1

p
|∇m̃|p(z) for z ∈Ω∪N t⋆

+ .

By Fubini, we rewrite Q(t) as

Q(t) =
1

t2

∫

Rd

wt(z)q(z)dz,

with

wt(z)=Hd−1({θ ∈S
d−1 : z ∈Ω+ tθ})−Hd−1(Sd−1 )1Ω(z) .

Obviously, if z ∈ Ω is such that d(z, ∂Ω)≥ t, then wt(z) = 0. For z ∈ ∂Ω + Bt(0), we distinguish the cases

z ∈N t
+ and z ∈N t

−.

wt(z) =























Hd−1({θ ∈ S
d−1 : z ∈Ω+ tθ}) if z ∈N t

+,

−Hd−1({θ ∈S
d−1 : z ∈ [Rd \Ω]+ tθ}) if z ∈N t

−,

0 if z ∈Rd \ [N t
+∪N t

−].

(28)

Using the change of variables z= φ(y, rt)= y+ rtn(y), we obtain

Q(t) =
1

t

∫

∂Ω

∫

−1

1

wt ◦ φ(y, rt) q ◦ φ(y, rt))Jφ(y, rt)drdHd−1(y),

where Jφ denotes the Jacobian determinant of φ. We rewrite this expression under the form

Q(t) =
1

t

∫

∂Ω

∫

0

1

{[(wt ◦φ) (q◦φ)Jφ](y, rt)− [(wt ◦φ) (q◦φ )Jφ](y,−rt)} drdHd−1(y). (29)
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In order to obtain the limit of this integral as t↓0, we compute the first order expansions in t of wt, q and Jφ.
•First, using the orthogonal decomposition Rd=Ty∂Ω⊕Rn(y)≃Ty∂Ω⊕R, we compute

Dφ(y, s) =

(

IdTy∂Ω+sDn(y) 0

0 1

)

which gives, uniformly in y ∈ ∂Ω and r∈ (−1,1),

Jφ(y, rt) = 1+ rtκ(y)+ o(t), (30)

where κ(y)=TrAy denotes the total curvature of ∂Ω at y.
• Next, for r ∈ (0, 1), using m̃(φ(y, rt))=m(φ(y,−rt)), we compute

Dm̃(φ(y, rt)) = Dm(φ(y,−rt)) ·Dφ(y,−rt) ·Dφ−1(y, rt)

= Dm(φ(y,−rt)) · [Id− 2rtDn(y)+ o(t)].

This yields the expansion, using the shorter notation y±= y± rtn(y)

q(y+) = q(y−)− 2rt(DmT (y−) ·Dn(y) ·Dm(y−))|∇m̃|p−2(y−)+ o(t)q(y−)

that we rewrite as

q(y+) = q(y−)− 2rt ay(∇m(y−))|∇m|p−2(y−)+ o(t)q(y−), (31)

uniformly in y ∈ ∂Ω, r ∈ (0,1).
• Eventually, we establish that

wt(φ(y,±rt))
|Sd−2| = ±Θ0(r)−Θ1(r)κ(y) t+ o(t), (32)

holds uniformly in y ∈ ∂Ω, r ∈ (0,1) and with the notation

Θ0(r) : =

∫

0

acos r

(sin ϕ)d−2dϕ, Θ1(r) 8
1

2(d− 1)
(1− r2)

d−1

2 .

Proof. (of (32)) Let y∈∂Ω. Without loss of generality, we use local coordinates for which y=0, n(y)=ed
and we identify Ty∂Ω with Rd−1. By definition, for t small enough,

wt(φ(y,+rt)) = Hd−1({θ ∈S
d−1 : rt ed+tθ ∈Ω}),

wt(φ(y,−rt)) = −Hd−1({θ ∈ S
d−1 :−rt ed+ tθ ∈Rd \Ω}). (33)

Since Ω is of class C2, using a local chart, we can parameterize locally ∂Ω as the graph of a C2 concave
function. Calling Dρ the (d−1)-ball Dρ=Ty∂Ω∩Bρ(y)⊂Rd−1, there exists ρ> 0 and hy∈C2(Dρ,R) such
that

∂Ω∩ [Dρ× (−ρ, ρ)] = {(ξ, hy(ξ)) ; ξ ∈Dρ}.
With our hypotheses, hy satisfies

hy(0)= 0, ∇hy(0)= 0, and D2hy(0)(ξ, η) =−Ay(ξ, η) for every ξ, η ∈Rd−1=Ty∂Ω.

Moreover (∂Ω being compact) there exists CΩ≥ 0 that only depends on Ω such that uniformly in y ∈ ∂Ω
‖D2hy‖∞ ≤ CΩ .

Notice also that ρ only depends on Ω.

We now estimate (33). Let ξ ∈S
d−2⊂Rd−1 and let us study the intersection of {θ∈S

d−1 ;−rted+ tθ∈
Rd \ Ω} with the half-plane R ed ⊕R+ξ. For this, we consider the following parametrization of the semi-

circle Sd−1∩ [Red⊕R+ξ],

eϕ 8 (cos ϕ) ed+(sin ϕ)ξ , for ϕ∈ [0, π].
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tSd−1\Ω

eϕξ,r,t

ed

y

ϕξ,r,t

ξ

Ω

Figure 1.

For r∈ (0, 1), −rt ed+ teϕ∈Rd \Ω if and only if

fξ,r,t(ϕ) 8 − t cos ϕ+ rt+hy(t (sin ϕ) ξ) < 0.

Performing the Taylor expansion of fξ,r,t(ϕ) at t=0 leads to

fξ,r,t(ϕ)

t
= − cos ϕ+ r+

t sin2ϕ

2
D2hy(0)(ξ, ξ)+ o(t) .

Now, noticing that fξ,r,t(0)/t=(r− 1)< 0 and fξ,r,t(π)/t=(1− r)> 0, we see that fξ,r,t changes sign only
once for t sufficiently small. Consequently, fξ,r,t(ϕ) < 0 on [0, ϕξ,r,t) where ϕξ,r,t ∈ (0, π) is the unique
solution in (0, π) of fξ,r,t(ϕ) = 0 (see Figure 2). The Taylor expansion of ϕξ,r,t writes

ϕξ,r,t = acos(r)− t

2
D2hy(0)(ξ, ξ)(sin acos(r)) + o(t).

Therefore, integrating in ξ ∈ S
d−2, we get

wt(φ(y,−rt)) = −
∫

Sd−2

{
∫

0

ϕξ,r,t

(sin ϕ)d−2dϕ

}

dHd−2(ξ)

= −Hd−2(Sd−2)

∫

0

acos r

(sin ϕ)d−2dϕ

+
t

2

(
∫

Sd−2

D2hy(0)(ξ, ξ)dHd−2(ξ)

)

(1− r2)
d−1

2 + o(t).

By the use of the identity
∫

Sd−2
(e · ξ)2dHd−2(ξ)= |Sd−2|/(d− 1) for all e∈S

d−2 and the diagonalization of

D2hy(0) in an orthonormal basis, we have
∫

Sd−2

D2hy(0)(ξ, ξ)dHd−2(ξ) =
Hd−2(Sd−2)

d− 1
TrD2hy(0) = − Hd−2(Sd−2)

d− 1
κ(y).

Substituting this identity in the expression above, we obtain the expected expansion of wt(φ(y, −rt)).
The computation for wt(φ(y, rt)) is similar and can be obtained by substituting −hy for hy. This estab-
lishes (32). �

We are now able to compute the limit of Q(t) as t↓0. Plugging the expansions (30), (31) and (32) in (29),
we get:

Q(t) = − |Sd−2|
{
∫

∂Ω

κ(y)

∫

0

1

(Θ1(r)− rΘ0(r))q(φ(y,−rt))drdHd−1(y)

+

∫

∂Ω

∫

0

1

2rΘ0(r) ay(∇m(φ(y,−rt)))|∇m|p−2(y)drdHd−1(y)

+o(1)

∫

∂Ω

∫

0

1

q(φ(y,−rt))drdHd−1(y)

}

.

(34)
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To justify the passage to the limit t↓0, we prove the following property which is a direct consequence of
Lemma 25 and of the convexity of the domain.

Lemma 28. Let {Ψt}0≤t be the family of functions defined on ∂Ω× (0, 1) by

Ψt(y, r) = y− rtn(y) = φ(y,−rt).

Then [∇m] ◦Ψt�
t↓0 ∇u0 in Lp(∂Ω× (0, 1)).

Proof. Let λ8 1/min {|y | ; y ∈ ∂Ω}> 0. We use the change of variable (y, r) =Ψt
−1 ◦ ψλt(y, s), where we

recall that ψλt (y, s)= (1− sλt)y for y ∈ ∂Ω, s, t∈ (0, 1). We have

∫

∂Ω×(0,1)

|[∇m] ◦Ψt(y, r)−∇u0(y)|pdHd−1(y)dr

=

∫

ψλt
−1
(

Ω̃
t

)

|[∇m] ◦ ψλt(y, s)−∇u0(y)|pJt(y, s)dHd−1(y)ds.

where Jt denotes the Jacobian determinant of Ψt
−1 ◦ ψλt. We easily check by direct computation that Jt is

uniformly bounded. By Lemma 25, the right hand side integral goes to 0 as t↓0. �

Passing to the limit t↓0 in (34) we get (using Lemma 28 in the three integrals)

lim
t↓0

Q(t) = − |Sd−2|
{(
∫

0

1

Θ1(r)− rΘ0(r)dr

)
∫

∂Ω

H(y)
|∇u0|p(y)

p
dHd−1(y)

+

(
∫

0

1

2rΘ0(r)dr

)
∫

∂Ω

ay(∇u0(y))|∇u0|p−2(y)dHd−1(y)

}

.

Let us now compute the integrals in r. Using Fubini and then integrating by parts, we get:
∫

0

1

rΘ0(r)dr =

∫

0

1 ∫

0

acos r

(sin ϕ)d−2dϕdr

=

∫

0

π/2

(sin ϕ)d−2

(
∫

0

cos ϕ

rdr

)

dϕ

=
1

2(d− 1)

∫

0

π/2

(sin ϕ)ddϕ,

while, using the change of variable r= cos ϕ,
∫

0

1

Θ1(r)dr =
1

2(d− 1)

∫

0

π/2

(sin ϕ)ddϕ =

∫

0

1

rΘ0(r)dr.

Calling Wd=
∫

0

π/2
(sin ϕ)ddϕ the Wallis integrals we get

lim
t↓0

Q(t) = − |Sd−2|Wd

d− 1

∫

∂Ω

ay(∇u0(y))|∇u0|p−2(y)dHd−1(y).

This expression can be further simplified by using the classical relationWd/(d−1)=Wd−2/d and the identity
|Sd−1| = 2|Sd−2|Wd−2. We thus have |Sd−2|Wd/(d − 1) = |Sd−1|/(2d), leading to (27). This completes the
proof of Lemma 27 and thus of Theorem 9. �

4 Proof of Theorem 14

Let Ω ⊂ Rd, d ≥ 3, let S be a closed subset of some Hilbert space H and F : L2(Ω, H) → R. The proof of
Theorem 14 proceeds as follows. In Section 4.1, considering Dε as a perturbation of E (in the case p= 2),
we go through the same steps as for the unperturbed case to obtain an inequality of the form

D(m) ≤ ε2[L(m)+L′(m)+Q(m)],
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where, roughly speaking, L(m), L′(m) and Q′(m) are respectively linear in k[m]⊗∇m, ∇[k[m]]⊗∇m
and Dk[m]⊗∇m. The estimates of hypothesis (H2) then lead to

|L(m) +L′(m)| ≤ κL‖∇m‖L2 (1+ ‖∇m‖L2), |Q(m)| ≤κQ‖∇m‖L2
2 .

Simplifying, we obtain ‖∇m‖L2≤ 2κL

1− 2(κQ+ κL)ε2
ε2 which proves Theorem 14.i.

Eventually, in Section 4.2, we assume that (H3-H4) hold and we compare Dε(m) with Dε(Rtm) when
{Rt} is a continuous group of isometries of S. Since the Dirichlet energy is invariant by isometry of the
target we deduce that 〈m〉 is almost a critical point of F . This fact and hypothesis (H3) then lead to the

quadratic estimate |L(m)+L′(m)|≤ κQ
′ ‖∇m‖L2

2 instead of the linear one we had before. As a consequence

we have ‖∇m‖L2
2 ≤2(κQ+ κQ

′ )ε2‖∇m‖L2
2 . Hence, for ε< 1/ 2(κQ+κQ

′ )
√

, m is constant.

4.1 Proof of Theorem 14.i . (inner variations)

In this subsection, we assume that Hypotheses (H1-H2) hold. Let us first state the counterpart of Lemma 23.

Lemma 29. The trace u0 of m on ∂Ω belongs to H1(∂Ω,S), with the estimate

1

2

∫

∂Ω

|∇u0(y)|p(y ·n(y))dH2(y) + ε2
∫

Ω

k[m](x) · (x · ∇m(x))dx ≤ D(m). (35)

Proof. We proceed as in the proofs of Lemmas 15 and 23, use the same notation and skip the details. By
local optimality of m, Dε(m)≤Dε(mt) for t > 0 small enough, where mt(x) =m((1− t)x) for t∈ [0, 1) and
x∈Ω. Since

Dε(mt)= (1− t)−1D(m; (1− t)Ω)+ ε2F(mt),

proceeding as in Lemma 15, we are led to

D(m;Mt
−)

t
≤ D(m)+ε2(1− t)

F(mt)−F(m)

t
, (36)

(with Mt
−=Ω \ (1− t)Ω). Using the differentiability of F , we rewrite the last term as

F(mt)−F(m)

t
=

(

k[m],
m
t
−m

t

)

L2

+ o
(∥

∥

∥

mt−m

t

∥

∥

∥

L2

)

. (37)

Now, since m∈H1(Ω, H), we have for almost every x∈Ω,

mt−m

t
(x)=−

∫

0

1

x · ∇m((1− ts)x)ds=−x · ∇m(x)−
∫

0

1

x · [∇m((1− ts)x)−∇m(x)]ds.

Squaring, integrating on Ω and then using Jensen inequality and Fubini, we get

∫

Ω

∣

∣

∣

∣

m
t
(x)−m(x)

t
+x · ∇m(x)

∣

∣

∣

∣

2

≤
∫

Ω

|x|2
∫

0

1

|∇m((1− ts)x)−∇m(x)|2dsdx

≤
∫

0

1
(
∫

Ω

|∇m((1− ts)x)−∇m(x)|2dx
)

ds.

Since ∇m∈L2(Ω, Hd), the family of maps {vλ}1/2<λ<1 defined by vλ(x)8 ∇m(λx) is relatively compact

in L2(Ω) (proceed as in the proof of Lemma 21). We already know that vλ�
λ↑1 ∇m in the sense of

distributions, so this convergence also holds in L2(Ω). In particular, the last integral tends to 0 as t↓0 and

we conclude that (1/t)[mt−m]�
t↓0

(x� −x · ∇m(x)) in L2(Ω).

Coming back to (37), we get

F(mt)−F(m)

t
=−

∫

Ω

k[m](x) · (x · ∇m(x))dx+ o(1).
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In particular, the right hand side of (36) is bounded as t↓0 and we have,

lim
t↓0

D(m;Mt
−)

t
≤ D(m)−ε2

∫

Ω

k[m](x) · (x · ∇m(x))dx.

We then conclude as in the proof of Lemma 23. �

Next, we revisit Lemma 24.

Lemma 30. The following identities hold.

1

2

∫

∂Ω

|∇u0(y)|2(y ·n(y))dH2(y)+ ε2
∫

Ω

k[m](x) · (x · ∇m(x))dx= lim
t↓0

D(m;Mt
−)

t
= D(m). (38)

Moreover m satisfies the conclusions of Lemmas 25 and 28 with p=2.

Proof. We proceed as in the proof of Lemma 24, we extend m on a neighborhood O ⊃Ω by the function
m̄ defined by (19). We then setmt(x)=m̄((1+ t)x) for x∈Ω and t∈ (0, t⋆). The optimality ofm now leads to

D(m) ≤ D(m̄; (1+ t)Ω \Ω)
t

+ ε2(1+ t)
F(mt)−F(m)

t
.

Since m̄∈H1(Ω,O), we obtain, as in the previous proof,

F(mt)−F(m)

t
=

∫

Ω

k[m](x) · (x · ∇m(x))dx+ o(1) .

The proof of (38) is now a copy of that of Lemma 24. Lemmas 25 and 28 follow since their proofs only rely
on the last equality of (38) and on the convexity of Ω. �

Eventually we consider translations of the domain as in Section 3.2.

Lemma 31. We have

∫

∂Ω

ay(∇u0(y))dH2(y) ≤ ε2
∫

Ω

∑

i=1

d

({Dk[m] · ∂im} · ∂im− ∂i{k[m]} · ∂im). (39)

Proof. We use the notation of Section 3.2, define

Q(t) : =
1

t2

∫

Sd−1

[D(mt
θ)−D(m)]dHd−1(θ), R(t) : =

1

t2

∫

Sd−1

[F(mt
θ)−F(m)]dHd−1(θ) (40)

and set Qε: =Q+ ε2R.

By local optimality ofm, we know that for t>0 small enough Qε(t)≥0. The computations of Section 3.2
leading to (27) remain valid in the present context. In particular, by Lemma 30 we can use Lemma 28.
Consequently,

lim
t↓0

Q(t) = − |Sd−1|
2

∫

∂Ω

ay(∇u0(y))dHd−1(y). (41)

Let us now compute the limit of R(t) as t tends to 0. Since F is continuously differentiable, we have for

t> 0 small enough and every θ ∈S
d−1,

F(mt
θ)−F(m)

t
=

∫

0

1 ∫

Ω

k[mst
θ ](x) · (θ · ∇mst

θ (x))dx ds.

Rewriting the integrand as

k[mst
θ ] · (θ · ∇mst

θ ) = k[mst
θ ] · (θ · ∇m) + k[mst

θ ] · (θ · ∇{mst
θ −m}),
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and integrating in θ ∈S
d−1, we obtain,

R(t) =
1

2t

∫

Sd−1

∫

0

1 ∫

Ω

{

k[mst
θ ]−k

[

mst
−θ
]}

(x) · (θ · ∇m)(x)dx ds dHd−1(θ)

+
1

t

∫

Sd−1

∫

0

1 ∫

Ω

k[mst
θ ](x) · (θ · ∇{mst

θ −m})(x)dx ds dHd−1(θ)

=: R1(t)+R2(t).

For the first term, we notice that m̃ ∈ H1({Ω + Bt⋆(0)}) implies that ξ ∈ Rd
� m̃(ξ + ·) ∈ L2(Ω,

Rd) is differentiable in Bt⋆(0) with differential ∇m̃(ξ + ·). Since ∇m̃ ∈ L2(Ω + Bt⋆(0)), we deduce that
{(m̃(ξ+ ·)−m)/|ξ |}ξ∈Bt⋆(0) is a relatively compact subset of L2(Ω, H). The differentiability properties of

p∈L2(Ω,R3)� k[p]∈L2(Ω,R3) stated in Hypotheses (H2)ii-iii then yield

k[m̃(ξ+ ·)]−k[m] = Dk[m] · (ξ · ∇m) + o(|ξ |)
in L2(Ω, H). This leads to

k[mst
θ ]−k

[

m
st
−θ
]

t
− 2sDk[m] ·(θ · ∇m)�

t↓0
0 in L2(Ω, H) uniformly in (θ, s)∈ S

d−1× (0, 1).

Integrating in (θ, s)∈S
d−1× (0, 1), we obtain

R1(t)�
t↓0 1

2

∫

Sd−1

∫

Ω

{Dk[m] ·(θ · ∇m)}(x) · (θ · ∇m)(x)dx dHd−1(θ).

And since
∫

Sd−1
(θ⊗ θ)dH2(θ) = (|Sd−1|/d)Id, we get

R1(t)�
t↓0 |Sd−1|

2d

∫

Ω

∑

i=1

d

{Dk[m] ·(∂im)} · ∂im. (42)

Next, in order to evaluate R2(t), we first integrate by parts to get

R2(t) = −
∫

Sd−1

∫

0

1 ∫

Ω

(θ · ∇{k[mst
θ ]})(x) · {mst

θ −m}(x)
t

dx ds dHd−1(θ)

+

∫

Sd−1

∫

0

1 ∫

∂Ω

k[mst
θ ](y) · {mst

θ −m}(y)
t

(θ ·n(y))dH2(y) ds dHd−1(θ)

=: R2,1(t) +R2,2(t).

The expansion mst
θ −m=stθ ·∇m+o(t) in L2(Ω,H) being valid uniformly in (θ, s)∈S

d−1× (0,1) we obtain
by Hypothesis (H2)-iv .:

R2,1(t)�
t↓0 − 1

2

∫

Sd−1

∫

Ω

(θ · ∇{k[m]}) · (θ · ∇m)dHd−1(θ) =−|Sd−1|
2d

∫

Ω

∑

i=1

d

∂i{k[m]}∂im. (43)

We now establish that the boundary term R2,2(t) goes to 0 as t↓0. Then (39) will follow from (41), (42),
(43) and the local optimality of m.

Writing mst
θ −m=st

∫

0

1
θ · ∇mrst dr , we get

R2,2(t) =

∫

Sd−1

∫

0

1

s

∫

∂Ω

∫

0

1

k[mst
θ ] · (θ · ∇mrst

θ )(θ ·n)dr dHd−1 ds dHd−1(θ).

Using Fubini and the change of variables r= q/s, we compute,

R2,2(t) =

∫

Sd−1

∫

∂Ω

[

∫

(0,1)2
k[mst

θ ] · (θ · ∇mqt
θ )(θ ·n) dqds

]

dHd−1 dHd−1(θ).
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By Hypothesis (H2)iv and the trace Theorem, the mapping ξ ∈Bt⋆(0)� k[p]|∂Ω∈L2(∂Ω,H) is continuous.
In particular,

{(y, s)� k[mst
θ ](y)}�t↓0 k[m] in L2(∂Ω× (0, 1)) uniformly in θ ∈ S

d−1.

On the other hand, by Lemma 28, we also have

{(y, q)� (θ · ∇mqt
θ )(y)}�t↓0 k[m] in L2(∂Ω× (0, 1)) uniformly in θ ∈S

d−1.

Consequently, R2,2(t) converges, as t↓0, towards
∫

∂Ω

k[m] ·
(
∫

Sd−1

(θ · ∇u0)(θ ·n)dH2(θ)

)

dH2 =
|Sd−1|
d

∫

∂Ω

k[m] · (n · ∇u0)dH2 = 0.

For the last identity, we recall that u0 is defined as an element of H1(∂Ω,R3), so n · ∇u0≡ 0 on ∂Ω. This
ends the proof of the Lemma. �

We are now able to establish the first part of Theorem 14. By Hypothesis (H1), Ω is uniformly convex
and 0∈Ω, so there exists cΩ> 0 such that

cΩay(ξ) ≥ (y ·n(y))|ξ |2, for every y ∈ ∂Ω, ξ ∈Ty∂Ω. (44)

Lemmas 30 and 31 then lead to

D(m) ≤ ε2 {L(m) +L′(m)+Q(m)}. (45)

with

L(m): =

∫

Ω

k[m](x) · (x · ∇m) (x)dx

Q(m)8 cΩ

∫

Ω

∑

i=1

3

(Dk[m] · ∂im} · ∂im), L′(m)8 −cΩ
∫

Ω

∑

(∂i{k[m]} · ∂im).

Using the bounds of Hypothesis (H2) we have:

L(m) ≤ C1‖∇m‖L2, L′(m) ≤ cΩC3‖∇m‖L2(1+ ‖∇m‖L2), Q(m) ≤ cΩC2‖∇m‖L2
2 . (46)

Plugging these estimates in (45), and simplifying, we obtain

‖∇m‖L2 ≤ CF ε
2 for ε< εF,

with

εF 8

1

2 cΩ(C2+C3)
√ , CF 8 4(C1+ cΩC3).

This establishes Theorem 14.i .

4.2 Proof of Theorem 14. ii . (target variations)

Let us now assume that hypotheses (H3-H4) also hold. We show that in this case, the right hand side

of (45) is bounded by Cε2‖∇m‖L2
2 . We already have the desired quadratic estimate for Q(t) (last inequality

of (46)). Next, by Hypothesis (H3) we also have

|L′(m)| ≤ cΩC3
′‖∇m‖L2

2 . (47)

The most difficult part is to establish that there exist εL> 0 and CL ≥ 0 depending on Ω and F such that
for 0<ε<εl, we have:

|L(m)| ≤ CL‖∇m‖L2
2 . (48)

Taking this estimate for granted, we end the proof as follows. Using (47), (48) and the last estimate of
(46) to bound the right hand side of (45), we get, for ε< εL,

(1− 2(cΩ(C2+C3
′) +CL)ε

2)D(m) ≤ 0.
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Thus m is constant as soon as ε<εF
′
8 min

(

εL, 1/ 2(cΩ(C2+C3
′)+CL)

√
)

.

To end the proof we establish (48). Let us first write L(m) =L1(m) +L2(m) with

L1(m): =k[〈m〉] ·
∫

Ω

(x · ∇m) dx, L2(m): =

∫

Ω

{k[m]−k[〈m〉]} · (x · ∇m) dx, (49)

where, with an abuse of notation, we identify k[m] with its constant value Neff · 〈m〉+∇ψ(〈m〉)∈H inside Ω.

For the second term, we use the Cauchy-Schwarz inequality and the differentiability of p∈L2(Ω,H)� k[p]∈
L2(Ω, H) with the estimate of Hypothesis (H2)-ii to get

|L2(m)| ≤ C2‖m−〈m〉‖L2‖∇m‖L2 ≤ C2CP ‖∇m‖L2
2 . (50)

Let us now bound L1(m). Let σ∈H be a projection of 〈m〉 on S, i.e. σ∈argmin{|σ ′−〈m〉|2 ; σ ′∈S}. First,
by definition of σ (with σ ′=m(x)∈S) we have:

|σ −〈m〉|2 =
1

|Ω|

∫

Ω

|σ −〈m〉|2 ≤ 1

|Ω|

∫

Ω

|m(x)−〈m〉|2dx ≤ CP
2

|Ω|‖∇m‖L2
2 .

By the triangular inequality this leads to

‖σ−m‖L2 ≤ 2CP ‖∇m‖L2 . (51)

Now, we integrate by parts to obtain

L1(m) = d|Ω|k[〈m〉] · (〈m〉∂ −〈m〉), with 〈m〉∂: = 1

d|Ω|

∫

∂Ω

m(y)(y ·n(y))dHd−1(y).

Let us perform the orthogonal decomposition:

〈m〉∂ −〈m〉 =: ξm+ ζm, with ξm∈NσS , ζm∈ TσS.

Let ξ8 ξm/|ξm| ∈NσS. Using hypothesis (H4) and (51) we have

|(〈m〉− σ) · ξ | =

∣

∣

∣

∣

1

|Ω|

∫

Ω

[m(x)−σ] · ξdx
∣

∣

∣

∣

≤ CS
′

|Ω|

∫

Ω

|m(x)− σ |2dx ≤ 4CS
′CP

2

|Ω| ‖∇m‖L2
2 .

We have a similar estimate for |〈m〉∂ − σ | which leads to,

|ξm| ≤ 2CS
′
(

6CP
2 +CP

′ 2
)

|Ω| ‖∇m‖L2
2 .

We conclude that

|d|Ω|k[〈m〉] · ξm| ≤ 2dC1CS
′
(

6CP
2 +CP

′ 2
)

‖∇m‖L2
2 . (52)

We now bound the term d|Ω|k[〈m〉] · ζm. First, we have an obvious linear control of ζm:

|ζm| ≤
∣

∣〈m〉∂ −〈m〉
∣

∣ ≤ CP
′

d|Ω|
√ ‖∇m‖L2. (53)

Eventually, we use the optimality of m to establish that the following estimate holds

|Ω||k[〈m〉] · ζ | ≤ (2C1CS +C2)CP ‖∇m‖L2|ζ | for every ζ ∈ TσS. (54)

Let ζ ∈TσS. By hypothesis (H4) there exists a smooth one parameter group of isometries of S, {R(t)}t∈R,

such that Ṙ(0) ·σ= ζ and
∥

∥Ṙ(0)
∥

∥

∞≤CS|ζ |.
Let us set γt8 R(t) ·m, for t ∈R. By local optimality of m the function f(t)8 F(γt) admits a local

minimum at t=0. In particular,

0 = f ′(0) = DF(m) ·
{

Ṙ(0) ·m
}

=

∫

Ω

k[m](x) ·
(

Ṙ(0) ·m(x)
)

dx. (55)
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Now, let us write

|Ω|k[〈m〉] · ζ =

∫

Ω

k[〈m〉] · ζ

=

∫

Ω

{k[〈m〉]−k[m]} · ζ +
∫

Ω

k[m] ·
{

Ṙ(0) · (σ−m)
}

+

∫

Ω

k[m] · Ṙ(0) ·m .

By (55), the last term vanishes. Using the Cauchy Schwarz inequality and (51), the second term satisfies the
estimate

∣

∣

∣

∣

∫

Ω

k[m] ·
{

Ṙ(0) · (σ −m)
}

∣

∣

∣

∣

≤ 2C1CSCP ‖∇m‖L2 |ζ |,

while for the first term, we have
∣

∣

∣

∣

∫

Ω

{k[〈m〉]−k[m]} · ζ
∣

∣

∣

∣

≤ C2‖〈m〉 −m‖L2|ζ | ≤ C2CP ‖∇m‖L2|ζ |.

The last two inequalities imply (54) which together with (52) and (53) yield |L1(m)| ≤C‖∇m‖L2
2 for some

C ≥ 0 depending on d, |Ω|, C1, C2, CS
′ , and CS. This ends the proof of Theorem 14.

5 Concluding remarks and further generalizations.

Let us discuss how our results depend on the shape of the domain Ω. Paying attention to the constants in
the estimates, we see that the parameters CF, εF and εF

′ in Theorem 14. only depend on cΩ, the Poincaré
constant CP , CP

′ and the constants C1, C2 and C3 of Hypothesis (H2). The Poincaré constant is uniformly
bounded since Ω is a convex domain with unit diameter.
In the context of micromagnetism (Theorem 8) the constants C1 and C2 only depend on ψ, but C3 also
depends on the constant C3

′ of Proposition 17 for which we do not have an explicit bound. It would be
interesting to know whether this constant admits a uniform bound in the set of smooth convex domains.
The constant cΩ (introduced in (44)) is the inverse of the minimal curvature of ∂Ω. In particular, this
constant blows up when considering a sequence of unit diameter convex domains (Ωk)k such that Ωk is
included in the thin cylinder BR2(0, 1)× (−1/k, 1/k). This includes the case of thin ellipsoids. So, our result
degenerates in the limit of thin ellipsoids.

We do not claim that the uniform convexity assumption on the domain is sharp. However, we believe
that the results do not hold in some complex geometries. For example, if Ω⊂R3 is the ball with cavity,

Ω = {x∈R3 ; 1< |x|< 2}
then we believe that the non-constant mapping m(x)8 x/|x| is a local minimizer of D in H1(Ω, S2). In
the perturbed case, we may conjecture that for ε small enough, we can find in the neighborhood of the set
{Rm : R∈SO3(R)} some local minimizers of Dε in H

1(Ω, S2).

In the proof of Theorem 9, we only test the local optimality of m under a small set of variations: small
dilations of the domain (for which we only need a first order optimality condition) and small translations of
the domain. The nature of the target set S does not play any role in the proof.
In the proof of Theorem 14.ii , we also use the optimality of m with respect to the target set. If we
denote by {mt}t∈(−t′,t′)⊂H1(Ω,S) the trajectory corresponding to one of these variations, we require that

Dε(m)≤Dε(mt) for |t|<t′ small enough. In the case of domain translations, we also used that this property
holds uniformly in every direction of translation. We do this when integrating the optimality condition on
the set of directions θ ∈ S

d−1 in (26), (40). We could avoid this if we already knew that m were smooth, in
this case we would prove the counterpart of (27) without integrating in θ. In this situation, we could weaken
the optimality hypothesis to

Dε(m)≤ lim
t↓0

Dε(mt), ∀{mt}∈C1([0, t′), L2(Ω, S2)), m0=m and
d

dt
m|t=0� 0. (56)
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We did not succeed in providing a proof with this weaker assumption in the general case. Let us mention
however that when Ω is the unit open ball centered at 0, then n(y)= y on ∂Ω and we can use the expansions
m̄ of m in place of the expansion m̃ (see their definitions in (19), (25)). In this case, the proof simplifies:
we only need to consider domain translations in the directions e1,
 ,ed, so that Theorem 14 holds under the
weaker assumption (56).

Theorems 9 and 14 may be generalized. First, if M is an invertible matrix of Rd×d, we see that, by the
change of variable z=Mx, Theorem 9 holds for the functional

EM(m) 8
1

p

∫

|M∇m|p.

We may also consider small perturbations of the form,

Eη(m) 8
1

p

∫

Ω

|∇m|p+ η

∫

Ω

a(x,∇m)

with η ∈R and a∈C2,1(Ω×Hd,R) such that

sup
(x,v)Ω×H

(
∣

∣D
x
a
∣

∣+
∣

∣D
x

2 a
∣

∣+ |v||Dva|
)

(x,v)

|v|p < ∞.

We obtain, with reasonable modifications of the current proof that Theorem 9 holds for E η under the
condition |η |< ηc where ηc> 0 depends on cΩ and a.

Appendix A (proof of Proposition 13)

Let Ω⊂Rd be a bounded convex smooth open set with diameter δ > 0 and assume that 0∈∂Ω. We consider
a real valued function f ∈C∞(Ω), (the result for f ∈H1(Ω) is obtained by density of C∞(Ω) in H1(Ω) and

by continuity of the trace mapping f ∈H1(Ω)� f|∂Ω∈L2(∂Ω)). We have to estimate the quantity

I(f)8

∫

Ω

∫

∂Ω

|f(x)− f(y)|2(n(y) · y)dHd−1(y)dx.

For y ∈ ∂Ω, we define te following weighted mean value of f along the segment (0, 1)y:

〈f 〉y: =
d+1

2

∫

0

1

r
d−1

2 f(ry)dr.

We then decompose f(y) as 〈f 〉y+ [f(y)−〈f 〉y] to get I(f)≤ 2 (|Ω| I1(f)+ I2(f)), with

I1(f)8

∫

∂Ω

|f(y)−〈f 〉y |2(n(y) · y)dHd−1(y),

I2(f)8

∫

Ω

∫

∂Ω

|f(x)−〈f 〉y |2(n(y) · y)dHd−1(y)dx.

We start by estimating I1(f). Let us fix y ∈ ∂Ω, we have,

f(y)−〈f 〉y =
(d+1)

2

∫

0

1

r
d−1

2 (f(y)− f(ry))dr

=
(d+1)

2

∫

0

1

r
d−1

2 (1− r)

∫

0

1

y · ∇f((r+(1− r)s)y)dsdr

Using the change of variable s=(t− r)/(1− r) and then Fubini, we obtain,

f(y)−〈f 〉y=
(d+1)

2

∫

0

1

r
d−1

2

∫

r

1

y · ∇f(ty)dtdr=
∫

0

1

y · ∇f(ty) t
d+1

2 dt.
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Squaring and using the Jensen inequality, we get:

|f(y)−〈f 〉y |2 ≤ |y |2
∫

0

1

|∇f(ty)|2 td+1 dt ≤ δ2
∫

0

1

|∇f(ty)|2 td−1 dt.

Then, we multiply by (y ·n(y)) and integrate in y∈∂Ω. Using the change of variable z= ψ(y, t)8 ty, which
maps ∂Ω× (0, 1) onto Ω \ {0}, we get

I1(f) ≤ δ2
∫

Ω

|∇f |2(z) [t(z)]
d−1 (y(z) ·n(y(z)))
Jψ(ψ−1(z))

dz = δ2
∫

Ω

|∇f |2(z)dz, (57)

with the notation, ψ−1(z) =: (y(z), t(z)) and Jψ(y, t) = detDψT ·Dψ
√

(y, t). Indeed, introducing the

orthogonal decomposition Rd=Ty∂Ω⊕Rn(y)≃ Ty∂Ω⊕R, we compute the Jacobian matrix of ψ in these
spaces:

Dψ(y, t) =

(

tIdTy∂Ω (y− (y ·n(y))n(y))
0 (y ·n(y))

)

.

The Jacobian determinant of ψ is Jψ(y, s)= td−1(y ·n(y)).
Now we bound I2(f). We first use the definition of 〈f 〉y and the Cauchy-Schwarz inequality to get for

every (x, y)∈Ω× ∂Ω:

|f(x)−〈f 〉y |2 ≤ (d+1)2

4

∫

0

1

|f(x)− f(ry)|2 rd−1dr

Integrating in y ∈ ∂Ω, and using the change of variable z= ψ(y, r) as above, we obtain (after integration in
x∈Ω):

I2(f) ≤ (d+1)2

4

∫

Ω×Ω

|f(x)− f(z)|2dxdz ≤ (d+1)2|Ω|CP2 ‖∇f ‖L2
2 . (58)

Inequality (3) follows from (57) and (58) with

CP
′

δ
= 2

[

1+ (d+1)2
(

CP
δ

)

2
]

√

≤ 2
√ (

1+
(d+1)CP

δ

)

.

Since CP/δ ≤ 1/π, we have CP
′ /δ≤ 2

√
(1+ (d+1)/π) as claimed.
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