
HAL Id: hal-01584832
https://hal.science/hal-01584832v2

Submitted on 24 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended abstracts of the ESSLLI 2015 workshop
TYTLES: Types Theory and Lexical Semantics

Robin Cooper, Christian Retoré

To cite this version:
Robin Cooper, Christian Retoré (Dir.). Extended abstracts of the ESSLLI 2015 workshop TYTLES:
Types Theory and Lexical Semantics. 2015. �hal-01584832v2�

https://hal.science/hal-01584832v2
https://hal.archives-ouvertes.fr

Extended abstracts of the ESSLLI 2015 workshop

TYTLES: Types Theory and Lexical Semantics

Workshops organizers / programme committee co-chairs:
Robin Cooper & Christian Retoré

Barcelona, 3-7 August 2015

Those are the extended abstracts of the TYTLES (Barcelona, August 3-7 2015) workshop together
with the slides that were projected during the introduction and the conclusion.

Some authors may publish alternative versions later on elsewhere.

	 ii	

Program committee:

• Robin Cooper (University of Gothenburg, Co-Chair),
• Christian Retoré (Université de Montpellier, & LIRMM Co-Chair)
• Alexandra Arapinis (CNR, Trento)
• Nicholas Asher (CNRS, Toulouse)
• Christian Bassac (Université Lyon II)
• Stergios Chatzikyriakidis (CNRS et LRIMM, Montpellier)
• Shalom Lappin (King’s College, London)
• Zhaohui Luo (Royal Holloway, University of London)
• Chiara Melloni (CNR, Verona)
• Bruno Mery (Université de Bordeaux)
• Richard Moot (CNRS, Bordeaux)
• Glyn Morrill (Universitat Polytècnica de Catalunya, Barcelona)
• Larry Moss (Indiana University, Bloomington)
• Reinhard Muskens (Universiteit Tilburg)
• Livy Real (IBM Research, Saõ Paolo)

	 iii	

Presentation

The pioneering work of Ranta (1994) on using Type Theory for NL semantics has initiated a strong
interest in the use of Type Theories for representing formal semantics. And even though Type Theory
was initially mainly concerned with compositional and formal semantics, a number of linguists, logicians
and computer scientists noticed the relevance of type theory for lexical semantics as well. Around 2000
the paper “the metaphysics of words in context” by Asher & Pustejovsky (2001) initiated Type Theoretic
approaches to lexical coercions and meaning transfers by investigating extension and refinement of the
type system used by Montague. Accounts for this type of phenomena need to capture
ordinary phenomena of selection restriction (e.g. a “chair” may not “bark”, in an ordinary context), while
at the same time they have to ensure some flexibility for adapting meanings to contexts in case of
meaning transfers, co-predication etc. The study of this kind of phenomena is of course not new. Their
study goes back at least till the 80’s (Bierwisch, Nunberg, Cruse among others). What is relatively new
is the study of these phenomena from the perspective of Type Theory and this approach is by now quite
successful as valuable type theoretical contributions on incorporating lexical considerations
into compositional semantics show (Asher, Bassac, Chatzikyriakidis, Cooper, Luo, Melloni, Mery, Moot,
Prévot, Pustejovsky, Ranta, Real, Retoré). The topics of the workshop include:

• Linguistically motivated variants of type theories (subtyping)
• Lexical semantics in type theory (compositionality and the lexicon)
• Interaction between lexical semantics and type theoretical semantics
• Classical semantic questions in richly typed frameworks (plurals, quantification, generics)
• Modelling specific questions in type theory (nouns, deverbals, events, adjectives, adverbs,

ontological aspects,)
• Computational aspects and implementation of type theoretical semantics (natural language

inference, proof assistants…)

Some references:

• Asher, N. (2011), Lexical Meaning in Context: A Web of Words, Cambridge University Press.
• Asher, N. & Luo, Z. (2012), Formalisation of coercions in lexical semantics, in 'Sinn und Bedeutung 17'.
• Asher, N. & Pustejovsky, J. (2005), 'Word Meaning and Commonsense Metaphysics', in course

materials for Type Selection and the Semantics of Local Context, ESSLLI 2005.
• Bassac, C.; Mery, B. & Retoré, C. (2010), 'Towards a type-theoretical account of

lexical semantics', Journal of Logic, Language and Information 19(2), 229--245.
• Chatzikyriakidis, S. & Luo, Z. (2013), Adjectives in a Modern Type-Theoretical Setting In Morrill, G. &

Nederhof, M.-J. Formal Grammar, LNCS 8036 pp. 159-174.
• Chatzikyriakidis, S. & Luo Z. (2014). Natural Language Reasoning Using Proof Technology: Rich Typing

and Beyond. Proceedings of EACL2014
• Cooper, R. (2011), Copredication, Quantfication and Frames, in S. Pogodalla & J.-Ph. Prost, ed.,

'Logical Aspects of Computational Linguistics: 6th International Conference, LACL 2011', Springer, pp.
64--79.

• Cooper, R.; Dobnik S.; Lappin, S.; Larsson, S. (2014) A Probabilistic Rich Type Theory for Semantic
Interpretation. ACL Workshop on Type Theory and Natural Language Semantics, Göteborg, 2014.

• Cooper, R. (2010), Type Theory and Semantics in Flux, In Kempson, R.; Asher, N. & Fernando, T.
Handbook of Philosophy of linguistics. pp. 271-323.

• Jezek, E. & Melloni, Ch. (2011) Nominals, polysemy and copredication, Journal of cognitive
sciences 12 pp. 1-31.

• Moot, R.; Prévot, L. & Retoré, C. (2011) A discursive analysis of itineraries in an historical and regional
corpus of travels: syntax, semantics, and pragmatics in a unified type theoretical framework In Contraints
in Discourse

• Ranta, A. (1994), Type-Theoretical Grammar, Clarendon Press, Oxford.
• Real L. & Retoré, C. (2013), Deverbal semantics and the Montagovian generative lexicon. Journal of

Logic Language and Information. 2014 DOI: 10.1007/s10849-014-9187-y
• Retoré, C. The Montagovian Generative Lexicon ΛTyn: a Type Theoretical Framework for Natural

Language Semantics in Ralph Matthes and Aleksy Schubert (eds) 19th International Conference on
Types for Proofs and Programs (TYPES 2013) LIPICS vol 26 pp. 202--229.

	 iv	

Table of contents / program
(by order of the talks, 3 per session 14:00-15:30 from Monday August 3 to Friday August 7 2015)

Introduction ... 1
Christian Retoré (and Robin Cooper)

A Puzzle about Long-distance Indefinites and Dependent Type Semantics 13
Justyna Grudzinska and Marek Zawadowski.

Type Theories and Lexical Networks: .. 21
Using Serious Games as the Basis for Multi-Sorted Typed Systems
Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier and Manel Zarrouk.

Perceptual Meaning in TTR Judgement-based Semantics and Conceptual Spaces 27
Staffan Larsson.

Interfacing Language, Spatial Perception and Cognition in Type Theory with Records 34
Simon Dobnik.

Probabilistic Mereological TTR and the Mass/Count Distinction .. 41
Peter Sutton and Hana Filip.

Are Widows Always Wicked? Learning concepts through enthymematic reasoning 49
Ellen Breitholtz.

The Relative Complexity of Constraints in Co-Predicative Utterances 56
Bruno Mery.

Calculating Projections via Type Checking .. 62
Daisuke Bekki and Miho Satoh.

Quantification in Frame Semantics with Hybrid Logic .. 69
Laura Kallmeyer, Timm Lichte, Rainer Osswald, Sylvain Pogodalla and Christian Wurm.

An Overview on Portuguese Nominalisation .. 77
Livy Real and Alexandre Rademaker.

Formalising type-logical grammars in Agda ... 83
Pepijn Kokke.

A Developed Analysis of Type Coercion Using Asher's TCL and Conventionality 91
Seohyun Im and Chungmin Lee.

Factivity and Presupposition in Dependent Type Semantics ... 100
Ribeka Tanaka, Koji Mineshima and Daisuke Bekki.

Final summary and discussion: .. 108
emerging themes in type theory and lexical semantics (from the above articles)
Robin Cooper (and Christian Retoré).

!

TYTLES
TYpes Theory and LExical Semantics:

Introduction to the Workshop

Robin Cooper University of Gothenburg
Christian Retoré Université de Montpellier LIRMM

ESSLLI 2015 Barcelona

!

1. Lexical semantics

Usually lexical semantics refers to:

• Word meaning in context (various forms of polysemy)

• Relation between meanings

• Lexical networks

Remark: relation between meanings ! higher order logic is needed

Usual techniques:

• description with features (human / non human)

• sometimes arguments structures specifying the nature of the argu-
ments

• in NLP: word vectors

1

!

2. Polysemy

(1) Simple
a. The river passed the bank.
b. The bank is nearby the river.
c. The bank phoned me.

(2) Institutions and such
a. The journal is printed on pink paper.
b. The journal hired a new commentator.
c. The journal is nearby the port.

(3) Events
a. The signature took three months.
b. The signature is unreadable.

(4) Dot objects
a. The book is red.
b. The book is quite interesting.

!

3. Borderline examples

(5) a. I am parked behind a blue BMW.
b. The ham sandwich asked for a coffee.

Rather supports contextualism in the radical minimalism / contextualism
debate.

2

!

4. Copredication

(6) Dinner was delicious but took ages. (event / food)
(7) * The salmon we had for lunch was lightning fast. (animal / food)
(8) I forgot on the table my preferred book on logic. (physical / info)
(9) I carried the books from the shelf to the attic since i already read

them. (phys. / info)
(10) Liverpool is a poor town and an important harbour. (people /

geographic)
(11) * Liverpool defeated Chelsea and is an important harbour. (foot-

ball / geographic)
(12) (context: ok) Barcelona won four champions leagues and organ-

ised the olympiads.
(13) (contrast: ok) Libourne, a small south-west town, defeated Lille.

!

5. Integrating lexical semantics into a com-

positional and computational framework

Standard lexical semantics, distributional semantics (in NLP big data,
machine learning):

what a text speaks about

Formal semantics:

what a (few) sentence(s) assert(s)

3

!

6. Complementary approaches

(14) (was geach a student of Wittgenstein) In 1941, he married Elis-
abeth Anscombe, by whom he got in contact with Wittgenstein.
Although he never attended his lectures, he was strongly influ-
enced by him.

(15) The children will have a pizza.

Both word meaning and sentence/discourse structure are needed to un-
derstand.

In Man Machine Interaction no large data but proper understanding is
mandatory.

!

7. Pustejovsky’s generative lexicon 1/4

Pioneering work:

• compositional (generative) view of word meaning

• formal framework : word meaning as complex feature structures
the way they combine is less specified

• can be implemented for computing semantics

• qualia structure can be learnt (at least partly)

4

!

8. Pustejovsky’s generative lexicon 2/4

The four levels of an entry:

• lexical typing structure: giving an explicit type for a word positioned
within a type system for the language;

• argument structure: specifying the number and nature of the argu-
ments to a predicate;

• event structure: defining the event type of the expression and any
subeventual structure it may have; with subevents;

• qualia structure: a structural differentiation of the predicative force
for a lexical item.

!

9. Pustejovsky’s generative lexicon 3/4

Qualia Structure:

• formal: the basic category of which distinguishes the meaning of a
word within a larger domain;

• constitutive: the relation between an object and its constituent parts;

• telic: the purpose or function of the object, if there is one;

• agentive: the factors involved in the object’s origins or “coming into
being.

5

!

10. Pustejovsky’s generative lexicon 4/4

Types in Pustejovsky:

• base types organised as an ontology

• there also are functional types

• in the argument structure the types are specified

!

11. Pustejovsky’s GL: conclusion

Compositional semantics that integrates lexical aspects.

Entries are well defined.

The base types ans their ontology remain obscure.

The composition modes are described on examples there is no general
procedure that could be implemented, and the relation to syntax is no
explicited.

Is this framework able to compute the semantics of a whole complex
sentence, or of a small discourse?

Can one learn other levels than qualia structure?

6

!

12. Restrictions of selection

A common way to start addressing lexical issues in compositional se-
mantics:

(16) The chair barked.
(17) Dictionary: "barks" is said from an animal, usually a dog.

Simple and good idea: infelicitous semantic composition is type mis-
match.

A function/predicate is expecting an argument of type A and receives an
argument of type B.

Such constraint needs to be relaxed because of the context.

(18) I was so late for registration that the secretary barked at me.

!

13. Lexical issues are idiosyncratic

Observe that meaning transfers are idiosyncratic:

(19) a. Ma voiture est crevée.
b. My can has a pinhole?
c. My car is flat?

(20) a. My brother in law is trivial.
b. He always makes trivial jokes.
c. A trivial vector space.
d. Apart from the trivial solution x

2 + x has no real solution.

7

!

14. Four frameworks: 1/3 TCL

TCL: type composition logic (Asher)

Simply typed lambda calculus with many types.

Meaning : formulae of higher order logic

Enriched with composition rules that import constructions from category
theory (e.g. pullbacks for dot object).

Question: do the terms obtain from lexical entries by those enriched
rules always reduce to a meaningful term/formula?

!

15. Four Frameworks: 2/4 MTTc+ DTS

Asher & Luo, Bekki, Chatzikyriakidis, Mineshima, Meaning logic and
composition logic: type theory (Subtyping)

Dependent types: family of types B(a) with x in a type A (dependent
types may depend on terms).

Type ⇧a : A.B(a) types for functions that maps a proof of A into a proof
of B(a) such functions may also be viewed as a term/proof of 8a : AB(a).

Type ⌃a : AB(a) types of couples (a, b) with a proof/term of type A and a
proof/term of type B(a) such couples may also be viewed as a term/proof
of 9a : AB(a).

Coercice subtyping:
f : A ! B a : A0

A

0
<c A

f(a) : B

Here: Seohyun Im and Chungmin Lee — Daisuke Bekki and Miho Satoh
— Ribeka Tanaka, Koji Mineshima and Daisuke Bekki.

8

!

16. Four frameworks: 3/4 TTR

Type theory with records Cooper

Meaning logic and composition logic: type theory

Record types are sequences of types terms ti : Ti where Ti+1 may de-
pend (dependent type) on the typed terms tk with 1 k i.
2

4
x : Real

loc : Loc

e : temp(loc, x)

3

5

2

4
scale : (AmbTempFrame ! Real)
e : AmbTempFrame

2

crise : scale(e[0]) < scale(e[1])

3

5

Here papers by : Staffan Larsson — Simon Dobnik — Peter Sutton and
Hana Filip — Ellen Breitholz — Pepijn Kokke

!

17. Four frameworks: 4/4 MGL

Montagovian Generative Lexicon (Retoré, Mery, Bassac, Moot, Real ...)
As Montague or TCL: typed lambda calculus for composing minings ex-
pressed in a different language (higher order predicate logic).

Montague with several base types (like Musken’s Tyn)

Quantification over types to factor uniform combinations.

Coercions are word specific (and not ontological)

For copredication some coercions block others.

Here: Bruno Mery

9

!

18. Common question 1) "base types"

What should be the base types?

• a dozen of ontological types (Asher, TCL)

• classifiers (like in Japanese, Mandarin, Sign Languages ...)

• common nouns (Luo)

A hint can be provided by dictionaries: how do they express the restric-
tion of selection? which classes/sorts/types do they use?

!

19. Common question 2) subtyping

Related to base types: if many of them subtyping is needed for natural
coercions (=? ontological inclusions)

Subtyping with quantification over types: complicated! The 8↵ should
preserve subtyping for positive occurrences of the type variable ↵ and
reverse subtyping for negative occurrences of ↵.

As said above for MTT a good solution by Luo & Soloviev: coercive sub-
typing Technical requirement that makes it work: at most one coercion
between any two types. Adaptation to System F by Lang & Retoré

A question does linguistic generalisation correspond to ontological gen-
eralisation ?

10

!

20. Common question 3) learning

Machine learning techniques cannot learn sophisticated structures like
types and terms. An exception without sequel: Luke S. Zettlemoyer and
Michael Collins. Learning to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Grammars. (2005)

An alternative exploiting existing lexical resources (Here: Stergios Chatzikyr-
iakidis, Mathieu Lafourcade, Lionel Ramadier and Manel Zarrouk. —
Livy Real and Alexandre Rademaker)

• Turning existing data (e.g. lexical networks like WordNet, or JeuxDe-
Mots crowdsourced by an Internet game) into the terms and types
we need.

• Groups of words that are similar in some aspect and the aspect
which makes them similar as well can be observed.

• Privileged relation can be extracted as well (e.g. is an agent, an
object a location for).

!

Another alternative (Cooper, Here: Ellen Breitholtz):

• Mimicking the interactive process by which we do learn meanings.

• Allow every one to have his one lexicon,

• Lexicons may evolve.

• Quite interesting per se about human cognition.

11

!

21. Common question 4) revisiting composi-

tional semantics

Having a complicated type system allow to revisit standard issue in for-
mal semantics:

• quantification (in situ quantification with Hilbert’s epsilon works much
better in the typed case) Here: Justyna Grudzinska and Marek Za-
wadowski — Laura Kallmeyer, Timm Lichte, Rainer Osswald, Syl-
vain Pogodalla and Christian Wurm

• plurals (Mery, Moot, Retoré)

• count/mass nouns (Mery, Moot, Retoré Here: Peter Sutton and
Hana Filip)

• predicates/type judgements (Luo, Retoré) a : A vs. Ã(a).

12

A Puzzle about Long-Distance Indefinites
and Dependently Typed Semantics with

Generalized Quantifiers

Justyna Grudzińska1 and Marek Zawadowski2

1 University of Warsaw, Institute of Philosophy
2 University of Warsaw, Institute of Mathematics

Abstract. Indefinites (e.g. a woman, some problem) have given rise to
a number of puzzles concerning their scopal and dynamic behavior. One
such puzzle about long-distance indefinites seems to be unsettled in the
literature ([2], [14], [13]). In this paper we show how the puzzle of long-
distance indefinites can be handled in Dependently Typed Semantics
with Generalized Quantifiers (DTSGQ). The proposal builds on our for-
mal system combining generalized quantifiers ([9], [5], [1]) with depen-
dent types ([8], [11], [7], [6]) in [3].

Keywords: quantifier scope, long-distance indefinite, dependent type

1 Background

The puzzle about long-distance indefinites arises in connection with sentences
such as

(1) Every linguist has studied every solution that some problem might have.

Sentence (1) allows the so-called long-distance intermediate scope reading saying
that for every linguist there is a possibly di↵erent problem such that he/she has
studied every solution that this problem might have. This reading is considered
exceptional, for the indefinite some problem takes scope out of its syntactic is-
land (unlike standard quantifiers). Kratzer in [4] credits the problematic reading
to the presence of a hidden pronoun/functional element, i.e. the apparent long-
distance intermediate readings are in fact bound/functional readings and they
only become available when there is a contextually salient pairing each of the
linguists with some particular problem/function present. The intended readings
can be expressed by the following paraphrases

(1a) Every linguist has studied every solution that a certain problem that
intrigued him/her might have.

(1b) Every linguist has studied every solution that some problem that
intrigued him/her most might have.

13

To capture the readings, Kratzer uses the mechanism of ‘Skolemized choice func-
tions (CF)’. Chierchia in [2] observes that there is a second kind of long-distance
readings that cannot be reduced to bound/functional readings

(2) Not every linguist has studied every solution that some problem might have.

Sentence (2) is intuitively true in a situation where: for some linguist there is
no problem such that he/she has studied every solution that this problem might
have. These are the truth-conditions for the negated long-distance intermediate
reading: for every linguist there is some problem such that he/she has studied
every solution that this problem might have (and not for the negated Kratzer’s
bound/functional reading). Chierchia’s proposal is to capture the long-distance
intermediate reading using the mechanism of the intermediate existential closure
of the CF variable. So the puzzle is that we need two mechanisms to account
for the behavior of long-distance indefinites: Skolemized CF (as pointed out
by Schlenker in [12], Skolemized CF are needed to account for some clear-cut
cases of functional readings) and the intermediate existential closure of the CF
variables. Moreover, the two mechanism are problematic on both theoretical and
empirical grounds (see e.g. [10]).

2 Our Proposal

Our Dependently Typed Semantics with Generalized Quantifiers (DTSGQ) com-
bines two semantic approaches to account for natural language quantification:
Generalized Quantifier Theory familiar from Montague-style semantics ([9], [5],
[1]) and type-theoretic approach ([8], [11], [7], [6]). Like in the classical Montague-
style analysis, DTSGQ makes essential use of generalized quantifiers (GQs). But
in the spirit of the type-theoretic framework we adopt a many-typed analysis (in
place of a standard single-sorted analysis). Like in the standard type-theoretic
approaches, we have type dependency in our system. But our semantics is model-
theoretic (with truth and reference being basic concepts), and not proof-theoretic
(where proof is a central semantic concept).

Combining GQs with dependent types allows us to handle in a uniform man-
ner a number of semantic puzzles concerning natural language quantifiers. In
our previous work we have defined a new interpretational algorithm to account
for a wide range of anaphoric (dynamic) e↵ects associated with natural language
quantification ([3]). In this paper we will show how the puzzle of long-distance
indefinites can be handled in DTSGQ. We propose to credit the problematic
readings to the presence of (possibly hidden) dependencies or functions, i.e. the
apparent long-distance intermediate readings involve in fact either dependent
types or functions.

14

2.1 Dependently Typed Semantics with Generalized Quantifiers

(DTSGQ)

In this and the following sections, we only discuss the elements of the system
relevant for the linguistic purposes of this paper. For the full system, see [3].

Polymorhic interpretation of quantifiers. Standard Montague-style seman-
tics is single-sorted in the sense that there is a single type e of all entities. On
the Montague-style analysis, quantifiers are interpreted over the universe of all
entities E. Our semantics is many-sorted in the sense that there are many types
and we have a polymorphic interpretation of quantifiers. On the Montague-style
analysis, quantifier phrases, e.g. some woman, are interpreted as sets of subsets
of E

k9x : woman xk = {X ✓ E : kWk \X 6= ;}.

On our analysis, a generalized quantifier associates to every set Z a subset of
the power set of Z: kQk(Z) ✓ P(Z); quantifier phrases, e.g. some woman, are
interpreted as follows

k9
w:Woman

k = {X ✓ kWk : X 6= ;}.

As a consequence of our many-typed analysis, predicates are also defined poly-
morphically, i.e. predicates are interpreted over many types (and not over the
universe of all entities).

Combining quantifier phrases. To handle multi-quantifier sentences, the
interpretation of quantifier phrases is further extended into the interpretation
of (generalized) quantifier prefixes. (Generalized) quantifier prefixes can be built
from quantifier phrases using the sequential composition ?|? constructor. The
corresponding semantical operation is known as iteration (see [3]). To illustrate
with an example: Every linguist has studied some problem can be understood to
mean that each of the linguists has studied a potentially di↵erent problem. To
capture this reading:

– a sequential composition constructor ?|? is used to produce a multi-quantifier
prefix: 8

l:L|9p:P ;
– the corresponding semantical operation of iteration is defined as follows

k8
l:L|9p:P k =

{R ✓ kLk⇥kPk : {a 2 kLk : {b 2 kPk : ha, bi 2 R} 2 k9
p:P k} 2 k8

l:Lk}.

The multi-quantifier prefix 8
l:L|9p:P denotes a set of relations such that the set

of linguists such that each linguist is in this relation to at least one problem

is the set of all linguists. Obviously, the iteration rule gives the same result as
the standard nesting of quantifiers in first-order logic.

15

Dependent types. Crucially, in a system with many types we can also have
dependent types. One example of such a dependence of types is that if m is a
variable of the type of months M , there is a type D(m) of the days in that month

m : M,d : D(m)

Feb Mar April

hFeb,1i
hFeb,2i

...

hFeb,28i

hMar,1i
hMar,2i

...

hMar,31i

hApr,1i
hApr,2i

...

hApr,30i

kDk(April)
�����⇡

?

kDk

kMk
?

⇡
D,m

If we interpret type M as a set kMk of months, then we can interpret type D
as a set of the days of the months in kMk, i.e. as a set of pairs

kDk = {ha, ki : k is (the number of) a day in month a},

equipped with the projection ⇡
D,m

: kDk ! kMk. The particular sets kDk(a)
of the days of the month a can be recovered as the fibers of this projection (the
preimages of {a} under ⇡

D,m

)

kDk(a) = {d 2 kDk : ⇡(d) = a}.

Generalized quantifiers on dependent types. Generalized quantifiers are
extended to dependent types in our system

k8
l:L|9

p:P (l)k =

{R ✓ kPk : {a 2 kLk : {b 2 kPk(a) : ha, bi 2 R} 2 k9
p:P (l)k(kPk(a))} 2 k8

l:Lk}.

The multi-quantifier prefix 8
l:L|9

p:P (l) denotes a set of relations such that the set
of linguists such that each linguist is in this relation to at least one problem in

the corresponding fiber of problems is the set of all linguists. By extending
the interpretation of generalized quantifiers to dependent types, our semantics
introduces quantification over fibers, e.g. quantification over the fiber of the
problems of John - kPk(John)

16

John Ann Lena Sean Mai

hJohn,P1i

hJohn,P2i hAnn,P2i

hAnn,P3i

hLena,P4i

hLena,P5i

hSean,P4i

hMai,P3i

hMai,P4i

?

kPk

kLk
?

⇡
P,l

2.2 DTSGQ Analysis of Sentence (1)

Alphabet. The alphabet of the system consists of:
type variables: X,Y, Z, . . .;
type constants: Linguist, Problem, Solution, . . .;
type constructor: T;
individual variables: x, y, z, . . .;
predicates: Pn, Pn

1 , . . .;
quantifier symbols: 9, 8, . . .;
prefix constructors: ?|?,

English-to-formal language translation. Consider now a sentence in (1):

(1) Every linguist has studied every solution that some problem might have.

Our English-to-formal language translation process consists of two steps (i) rep-
resentation and (ii) disambiguation. The syntax of the representation language
- for the English fragment considered in this paper - is as follows

S ! Prdn(QP1, . . . , QP
n

);
MCN ! Prdn(QP1, . . . , CN , . . . , QP

n

);
MCN ! CN ;
QP ! Det MCN ;
Det ! every, some, . . .;
CN ! linguist, problem, . . .;
Prdn ! study, have, . . .

Sentence (1) is accordingly represented as

Study2 (every linguist, every solution that some problem might have).

17

Multi-quantifier sentences of English, contrary to sentences of our formal lan-
guage, are often ambiguous. Hence one sentence representation can be associated
with more than one sentence in our formal language. The second step thus in-
volves disambiguation. We take quantifier phrases out of a given representation
and organize them into possible prefixes of quantifiers. In the case of our exam-
ple, the sentence translates as

8
l:Linguist|8ts:T

Solution to some problem

Study2(l, t
s

).

Interpretation. In the Montague-style semantics, common nouns are inter-
preted as predicates (expressions of type e ! t). In our type-theoretic setting,
common nouns (CN), e.g. linguist, are interpreted as types; modified common
nouns (MCN), e.g. solution that some problem might have, are treated as ⇤-
sentences (= Have2 (some problem, solution) determining a system of (possibly
dependent) types, and the types so determined are interpreted using an interpre-
tational algorithm defined in [3]. In the case of our example, the type Linguist
is interpreted as a set of linguists (indicated in the context) kLinguistk, and the
type T

Solution to some problem

is interpreted as

kT
Solution to some problem

k =

{c 2 kSolutionk : {b 2 kProblemk : hb, ci 2 kHavek} 2 k9
p:Problem

k}.

Thus, as can be seen from this analysis, DTSGQ can only yield a narrow scope
reading for the indefinite some problem in (1): every a in kLinguistk has studied
every c in kT

Solution to some problem

k.

2.3 DTSGQ Solution to the Puzzle about Long-Distance Indefinites

Indefinites. Unlike standard quantifier expresions, indefinites have been claimed
to be ambiguous between a quantificational and a referential reading. Our pro-
posal ties this ambiguity to the variability in type assignment. A quantificational
indefinite a/some problem combines a determiner a/some and the variable of
the type Problem, interpreted as the set of all problems (given in the context)
- kProblemk. A referential indefinite a/some (certain) problem combines the
determiner with the variable of the referential type Problem*, interpreted as
a certain singleton set consisting of a problem that the speaker has in mind -
kProblem⇤k. Correspondingly to referential types, we can also have dependent
referential types in our semantics.

Dependent and functional readings. Our proposal distinguishes dependent
referential and functional readings. If a sentence like (1) involves a hidden de-
pendent referential indefinite, e.g. a (certain) problem (that intrigues him/her),
then it quantifies over the dependent referential type:

18

l : L; p : P ⇤(l)

John Ann Lena Mai

hJohn,P1i

hAnn,P2i

hLena,P3i

hMai,P2i

?

kP ⇤k

kLk
?

⇡
P

⇤
,l

yielding the dependent referential reading saying that every linguist a in kLk
has studied every solution that a certain (one) problem b in kP ⇤k(a) might
have. That is, DTSGQ gives a reading: every a in kLk has studied every c in
kT

Solution to a (certain) problem (that intrigues him/her)

k =

{c 2 kSk : {b 2 kP ⇤k(a) : hb, ci 2 kHavek} 2 k9
p:P⇤(l)k(kP ⇤k(a))}.

If a sentence like (1) involves a hidden function inducing element (e.g. the most
intriguing problem function), then we get a functional reading saying that every
linguist a has studied every solution to f(a).

If sentence (1) involves a quantificational indefinite, DTSGQ does not give
a long-distance intermediate (Chierchia’s) reading (as explained above, DTSGQ
can only yield a narrow scope reading for the indefinite). Chierchia’s reading,
however, can be explained away. As observed by Chierchia in [2], special context
is needed to get a long-distance intermediate reading for (1) (in the absence of
factors inducing dependent referential or functional readings), e.g. ‘You know,
linguists are really systematic: Lee studied every solution to the problem of weak
crossover, Kim every solution to the problem of donkey sentences, etc.’ We pro-
pose that people posit certain dependencies (given some such context), e.g.: that
the type of problems depends on the type of linguists and the type of solutions
depend on the type of problems l : L; p : P (l); s : S(p) - by quantifying over
the so posited dependent types, we get the apparent dependent (' Chierchia’s)
reading

8
l:L|9

p:P (l)|8s:S(p)Study
2(l, s)

(for every linguist a in kLk there is a problem b in kPk(a) such that a has studied
every solution c in kSk(b)).

The negative sentence (2) would then claim that for some a in kLk there is no
problem b in kPk(a) such that a has studied every solution c in kSk(b).

19

Acknowledgments

The work of Justyna Grudzińska was funded by the National Science Center
on the basis of decision DEC-2012/07/B/HS1/00301. The authors would like to
thank the anonymous reviewers for their valuable comments.

References

1. Barwise, J., Cooper, R.: Generalized Quantifiers and Natural Language. Linguistics
& Philosophy 4, 159-219 (1981)

2. Chierchia, G.: A Puzzle about Indefinites. In Cecchetto C., Chierchia G., and Guasti
M.T. (eds.), Semantic Interfaces: Reference, Anaphora, and Aspect. CSLI, Stanford,
51-89 (2001)

3. Grudzińska, J., Zawadowski, M.: System with Generalized Quantifiers on Depen-
dent Types for Anaphora. In Cooper, R., Dobnik, S., Lappin, S., Larsson, S. (eds.),
Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language
Semantics, 10-18 (2014).

4. Kratzer, A.: Scope or Pseudoscope? Are there Wide-Scope Indefinites? In Rothstein
S. (ed.), Events and Grammar, Kluwer Academic Publishers, Dordrecht, 163-196
(1998).

5. Lindström, P.: First-order predicate logic with generalized quantifiers. Theoria 32,
186-95.(1966)

6. Luo, Z.: Formal Semantics in Modern Type Theories with Coercive Subtyping. Lin-
guistics & Philosophy 35, 491-513 (2012)

7. Makkai, M.: First Order Logic with Dependent Sorts, with Applications to Category
Theory. Preprtint McGill University (1995)

8. Martin-Löf, P.: An intuitionstic theory of types. Technical Report, University of
Stockholm (1972)

9. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,
12-36 (1957)

10. Onea, E.: Why indefinites can escape scope islands. Linguistics & Philosophy (to
appear)

11. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
12. Schlenker, P.: A note on Skolem functions and the scope of indefinites. Poster,
NELS (1998)

13. Szabolcsi, A.: Quantification. Cambridge University Press, Cambridge (2010)
14. Schwarz, B.: Two kinds of long distance indefinites. In Rooy R. van, Stokhof M.
(eds.), Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam Univer-
sity, 192-197 (2001)

20

Type Theories and Lexical Networks: Using

Serious Games as the Basis for Multi-Sorted

Typed Systems.

Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier and Manel
Zarrouk⋆

LIRMM
University of Montpellier 2

stergios.chatzikyriakidis@lirmm.fr

mathieu.lafourcade@lirmm.fr

lionel.ramadier@lirmm.fr

manel.zarrouk@lirmm.fr

Abstract. In this paper, we show how a rich lexico-semantic network
which has been built using serious games, JeuxDeMots, can help us in
grounding our semantic ontologies as well as different sorts of informa-
tion in doing formal semantics using modern type theories (type theories
within the tradition of Martin Löf). We discuss the domain of base types,
adjectival and verbal types, hyperonymy/hyponymy relations as well as
more advanced issues like homophony and polysemy.

1 Introduction

Modern Type Theories, i.e. Type Theories within the tradition of Martin Löf
[13,14], have become a major alternative to Montague Semantics (MS) in the
last twenty years. A number of influential approaches using MTTs have been
proposed by the years [15,11,16,7] and have shown that the rich typing sys-
tem offered by these MTTs (type many-sortedness, dependent types, type uni-
verses) has considerable advantages over simple typed theories predominantly
used in mainstream formal semantics. One further important aspect for consid-
ering the use of MTTs over traditional Montagovian frameworks concerns the
proof-theoretic nature of the former but not of the latter.1 This fact makes MTTs
a suited formal semantics language to perform reasoning tasks, as these are ex-
emplified for example in work on inference using proof-assistant technology [5,4].
However, this expresiveness of typing comes with a cost. For example, how does
one decide on the base types to be represented? On the one hand, we do have
a way to get a more fine-grained type system unlike the monolithic domain of

⋆ This work is partially supported by the ANR ContInt Polymnie project in France.
1 At least in the way it is employed in the Montagovian setting, simple type theory can
be viewed as model theoretic. There is however, interesting work on the proof theory
of simple type theory. The higher order theorem prover LEO-II [1] is an example of
such work. We are grateful to an anonymous reviewer for pointing this out to us.

21

entities found in MS, but on the other hand, constructing such a type ontology is
not at all straightforward and easy task. Different approaches and assumptions
have been put forward. For example [11,12] proposed to treat CNs as types, in
effect every CN is a different type. Approaches like [16] on the other hand, take
a more moderate view by building type ontologies according to classifier systems
(in effect type ontology is built using intuitions from classifier systems).

On the other hand, work with lexical-semantic networks have provided us
with structured lexicons that indicate lexical and semantic relations like for ex-
ample WordNet [8]. A very promising line of research in lexico-semantic network
construction concerns networks which are built collaboratively by using GWAPs,
games with a purpose i.e. serious games. This is the case of JeuxDeMots Lexical
Network (JDM, [9]), which is constructed through many GWAPs along with a
contributive tool (Diko) which allows players/users to contribute directly and to
browse the knowledge base.

In this paper, we propose to ground our semantic ontologies as well as any
other information needed in order to perform reasoning tasks using MTT se-
mantics in the JDM lexical network. In order to do this, we present some first
thoughts on how such an endeavour can be made by looking at the way a trans-
lation procedure from JDM to MTTs can be performed. Issues to be discussed
include the domain of base types, instances of these types, adjectival and ver-
bal types, hyponymy/hypernomy relations as well as more advanced issues like
homophony and polysemy.

2 From JDM to MTTs

2.1 Base Types and Instances of Base Types

MTTs, as already said are many-sorted systems in that they involve a multitude
of types rather than just one monolithic type e domain of entities. In the accounts
proposed by [11,12], every CN is associated with a base type. Note the first major
difference with MS: CNs are not predicates but rather Types.2 For base types,
an easy way to unify the two approaches is to assume that CNs are basically base
types. In JDM, POS tagging will provide this sort of information. We further
have to exclude instances of terms (for example John as an instance of Man) in
order to distinguish between instances of terms and terms themselves (CNs).3

This can be by excluding named entities:

(1) ∀A.POS(N,A) ∧ ¬SEM LABEL(NE,A) ⇒ A:cn.

2 See [12] for a number of arguments as regards the advantages of this move.
3 This does not mean that we are not interested in instances. To the contrary. What
we are saying here is that this rule distinguishes between CNs and instances of these
CNs (the difference between a type like Man and an instance of this type, e.g. John).
There will be a separate rule to derive instances which we do not show here. The
type cnis technically a universe, a collection of the names of types into a single type.
See [11,3] for more information on the use of the type theoretic notion of universe
as this is employed in MTT semantics.

2

22

Hyponym and hypernym relations are then defined as subtypes:

(2) ∀A,B.Hyp(A,B) ⇒ A < B:cn.

(3) ∀A,B.HyR(A,B) ⇒ B < A:cn.

Synonyms can be defined using equality:4

(4) ∀A,B.Syn(A,B) ⇒ A = B:cn.

Synonymicity is not only relevant for CNs but for other linguistic categories.
We can do that as well by changing to:

(5) ∀A,B.Syn(A,B) ⇒ A = B:C(C:LType)

LType is a universe of linguistic types, it includes the types instantiated in
linguistic semantics (CN, adjectival and verbal types, types for quantifiers etc.
See [2] for a discussion).

For instances of terms, like for example proper names, we define the following:

(6) ∀A,B.Ins(A,B) ⇒ A:B

This means that if A is an instance of B then A is of type B. For example,
if Einstein is an instance of Person, then Einstein:Person with Person:cn.

2.2 Predicates and world knowledge information

The next question is, how can one extract information on the type of predicates,
like for example verbs. JDM provides loads of information with every word,
for example characteristics, synonyms, antonyms, collocations. For verbs, agent,
patient and in general thematic relations are defined. These can guide us in
assigning types for predicates. In JDM, one can look for semantic relations like
action > agent, action > patient and various other such relations. For example
man appears as the agent of a number of verbs that express actions like question.
There is a further relation, the inverse agent relation, agent−1. This relation
returns a list of terms (and instances of terms) that can function as the agent
for the action denoted by the verb. For example, question will involve among
others teacher, mother, child, daugther, person, human. How can we make sense
in order to provide typings in MTTs? Well, there is a straightforward to do this.
What we need is to find the most general term, i.e. the term that all the other
terms are hyponyms of. Instances of terms are not needed in this process.5

4 Of course, this will treat A and B as perfect synonyms which as we know do not
really exist in natural languages. We do not discuss this issue here.

5 The formula reads as follows: forall A and B, where A is an agent of B (so B
is a predicate), if there exists a C such than all A are either hyponyms of C

3

23

(7) ∀A,B.Agent(A,B).∃C.(Hyp(A,C) ∨ (A = C)) ⇒ C → Prop

Similar processes can be defined for the patient arguments as well as for
adjectives. Adjectives like grande can be defined as regards typing by looking at
the terms that can have this characteristic. Again, JDM, gives us a list of terms
and instances of terms for this reason. For adjectives, we might (depending) on
the adjective, give either a typing in the same style as we have proposed above
or a polymorphic type extending over a universe which includes the most general
type found along with its subtypes:

(8) ∀A,B.Agent(A,B).∃C.Hyp(A,C) ⇒ C → Prop

(9) ∀A,B.Char(A,B).∃C.Hyp(A,C) ⇒ ΠC:cnC .C → Prop

Due to the abundance of information that JDM has to offer, one can further
encode different sorts of information in the form of axioms or definitions. For
example the has part relation, in effect a mereological relation, can be translated
as a part of relation with part of : [[Object]] → [[Object]] → Prop.

2.3 Polysemy

The next issue we want to look at is polysemy, most specifically what to do
with respect to the translation process in case of polysemous terms. First of all,
we have to note here that JDM does not distinguish between homophony and
polysemy in the sense they are usualy understood in the literature on formal
semantics (e.g. bank as homophonous and book as polysemous). For JDM, there
is only one term to refer to both homophony and polysemy, and this is polysemy.
This is what we are going to use here as well, a single notion for all cases where
different meanings associated with a given word are found. For JDM, there is
this first level where a word with more than one meaning (irrespective of whether
the meanings are related or not) are dubbed as polysemous, and then additional
levels of refinement where relations between the different meanings can arise (or
not). In MTTs, as in formal semantics in general, there are different treatments
with respect to cases of homophony and cases of polysemy. For example, in [11],
homophony is treated via using local coercions (local subtyping relations) while
logical polysemy (cases like book) via introducing dot-types, types that encode
two senses that do not share any components (see [10] for the formal details). It is
a difficult task to be able to translate from a polysemous term identified in JDM

or are equal to C, the predicate C → Prop is returned. In case there is no
supertype in the refinements, then there are two options: a) introduce a super-
type or b) split the refinements into different classes. For example in case we
have refinements human,man, pilot, vehicle, car, bike, we can split this into class
A = pilot,man < human and class B = bike, car < vehicle and propose an
overloaded polysemous type for the verb in question, with two different typings,
[[Human]] → Prop and [[V ehicle]] → Prop.

4

24

to the correct mapping in MTTs. However, there are some preliminary thoughts
on how this can be achieved. First of all, let us look at some cases of polysemy
identified in JDM that would not be considered such cases in mainstream formal
semantics. For example the term individual is marked as polysemous in JDM.
The reason for this is that JDM goes into more detail than what most formal
semantics theories do. JDM distinguishes different meanings of individual with
respect to its domain of appearance, i.e. the different notion of individual in
statistics, biology or administration. This level of fine-grainedness is not found
in formal semantics. However, there is no reason why we should not go into
this level of detail in MTTs. This can be captured in a translation procedure
by presenting the different types according to the different domains. In order to
encode domains, we use type theoretic contexts [15,6]. The following translation
can be defined for these cases:

(10) ∀A,B1, ..., Bn.POS(N,A) ∧ ¬(Instance(PN,A)) ∧ Domain(B1, ..., Bn) ∧
A(in B1, ..., Bn) ⇒ A:cn in ΓB1, A:cn in ΓB..., A:cn in ΓBn

What about other cases of polysemy like for example book or bank? One way
to look at the translation process in these cases is the following: In case a term is
dubbed polysemous in JDM, we look at the semantic refinements and introduce
all these refinements as subtypes of the initial term:

(11) ∀A,B1, ..., Bn.POS(N,A)∧¬(POS(PN,A))∧Ref(A, (B1 , ..., Bn)) ⇒ A <
B1, ..., Bn:cn

Now in order to decide whether we are going to use local coercions or dot-
types we proceed as follows: the types that participate in dot-types are limited
and enumerable: some of these include [[Phy]], [[Info]], [[Event]], [[Inst]] among
others. We can thus create such a set of refinements that can be senses of a dot-
type. Call this set dot refinements, DR. Now, in case the refinements happen
to be members of this set then we can form a dot-type out of the individual
refinements:

(12) ∀A,B1...Bn.POS(N,A) ∧ Ref(A(B1, ..., Bn))A,B ∈ DR ⇒ A:CN < B1 •

B... •Bn

More information on ways to approach the translation procedure with respect
to polysemy will be given in the full paper. There, other cases will be discussed:
a) cases where the two meanings are associated with different types (e.g. a case
where one meaning is verbal and the other adjectival), b) Cases where a com-
bination of approaches might be needed (e.g. a polysemous noun that further
has adjectival or verbal meanings). Further issues of how to use world-knowledge
information drawn from JDM and in which way will also be discussed. Last but
not least, we are going to discuss how can such an idea be implemented in a
system that will take as input information from JDM and will output MTT
representations (to be used for example in the proof-assistant Coq).

5

25

References

1. C. Benzmüller, Theiss F., and Fietzke A. The LEO-II project. In Automated
Reasoning Workshop, 2007.

2. S. Chatzikyriakidis and Z. Luo. An account of natural language coordination in
type theory with coercive subtyping. In Y. Parmentier and D. Duchier, editors,
Proc. of Constraint Solving and Language Processing (CSLP12). LNCS 8114, pages
31–51, Orleans, 2012.

3. S. Chatzikyriakidis and Z. Luo. Adjectives in a modern type-theoretical setting.
In G. Morrill and J.M Nederhof, editors, Proceedings of Formal Grammar 2013.
LNCS 8036, pages 159–174, 2013.

4. S. Chatzikyriakidis and Z. Luo. Natural language inference in Coq. J. of Logic,
Language and Information., 23(4):441–480, 2014.

5. S. Chatzikyriakidis and Z. Luo. Natural language reasoning using proof-assistant
technology: Rich typing and beyond. In Proceedings of EACL2014, 2014.

6. S. Chatzikyriakidis and Z. Luo. Using signatures in type theory to represent situ-
ations. Logic and Engineering of Natural Language Semantics 11. Tokyo, 2014.

7. Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson. A probabilis-
tic rich type theory for semantic interpretation. In Proceedings of the European
Associaton of Computational Linguistics, 2014.

8. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT press, 1998.
9. M. Lafourcade. Making people play for lexical acquisition with the jeuxdemots pro-

totype. In SNLP’07: 7th international symposium on natural language processing,
page 7, 2007.

10. Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver, 2010.

11. Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. Logical
Aspects of Computational Linguistics (LACL’2011). LNAI 6736, 2011.

12. Z. Luo. Common nouns as types. In D. Bechet and A. Dikovsky, editors, Logical
Aspects of Computational Linguistics (LACL’2012). LNCS 7351, 2012.

13. P. Martin-Löf. An intuitionistic theory of types: predicative part. In H.Rose and
J.C.Shepherdson, editors, Logic Colloquium’73, 1975.

14. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
15. A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.
16. C. Retoré. The montagovian generative lexicon Tyn: a type theoretical framework

for natural language semantics. In R. Matthes and A. Schubert, editors, Proc of
TYPES2013, 2013.

6

26

Perceptual Meaning in
TTR Judgement-based Semantics

and Conceptual Spaces

Sta↵an Larsson

Dept. of Philosophy, Linguistics and Theory of Science

University of Gothenburg, Sweden

Abstract. We are developing a type-theoretical judgement-based se-

mantics where notions such as perception, classification, judgement, learn-

ing and dialogue coordination play a central role. By bringing perception

and semantic coordination into formal semantics, this theory can be seen

as an attempt at unifying cognitive and formal approaches to meaning.

The purpouse of this paper is to briefly compare judgement-based se-

mantics to the theory of conceptual spaces. We argue that the former

enables integration of perceptual aspects of meaning with those tradi-

tionally studied in formal semantics, and furthermore that it enables

computational modeling and implementation of these aspects of mean-

ing.

1 Introduction

How is linguistic meaning related to perception and the world? How do words
acquire their meaning? These are two central questions for any theory of mean-
ing in natural language (Miller and Johnson-Laird, 1976) . We are developing
a type-theoretical judgement-based semantics where notions such as perception,
classification, judgement, learning and dialogue coordination play a central role
(Cooper, 2005; Cooper and Larsson, 2009; Larsson, 2011; Dobnik et al., 2011;
Cooper, 2012; Dobnik and Cooper, 2013; Cooper et al., 2015; Larsson, 2013).
Meaning is regarded as being acquired by an agent through its perception of,
and interaction with, the world and other agents. This makes meaning agent-
relative but essentially social (in the sense of being coordinated in interaction
between individuals) and dynamic (in the sense of always being up for revision
and negotiation as new perceptual and conversationally mediated information
is encountered). By bringing perception and semantic coordination into formal
semantics, this theory can be seen as an attempt at unifying cognitive and for-
mal approaches to meaning. The purpouse of this paper is to briefly compare
judgement-based semantics to the theory of conceptual spaces (Gärdenfors, 2000;
Gärdenfors, 2004).

27

2 Sta↵an Larsson

2 Judgement-based semantics and perceptual meaning

We will here take for granted that relating meaning to perception is of central
importance when accounting for the meaning of linguistic expressions which
refer to the physical world; for a motivation see Larsson (2013). Knowing the
meaning of an expression is related to an agent’s ability to identify perceived
objects and situations which can be referred to by the expression. For example,
knowing the meaning of “blue” is intimately connected with an agent’s ability to
correctly identify blue objects. Similarly, an agent’s ability to assign a meaning
to “a boy hugs a dog” is related to her ability to correctly classify perceived
situations where a boy hugs a dog. An important di↵erence to traditional possible
worlds semantics (Montague, 1974) is that we focus on modelling perceptual
mechanisms which start from perceptual raw data, rather than giving an abstract
representation of them as functions from possible worlds and times to objects
in a space of denotations as in the Montagovian approach. This allows us to
provide a more concrete account of the nature of the link between language and
the world.

To make the link between “low-level” perceptual data and “high-level” for-
mal linguistic representations, we will use the notion of a (statistical) classifier, a
computational device determining what class an item belongs to, based on vari-
ous properties of the item. Crucially, the information fed to a classifier need not
be encoded in some high-level representation language (such as logic or natural
language). Instead, it may consist entirely of empirical raw data encoding “low-
level” information about the item in question. The idea of using classifiers (or
more specifically, connectionist models) to represent meanings was first put for-
ward by Harnad (1990) as a way of addressing the “symbol grounding problem”
in artificial intelligence, and is consistent with several theories of word meaning
as grounded in sensory (or embodied) representations which have emerged during
the last decade or so (Roy, 2005; Steels and Belpaeme, 2005).

To integrate classification of perceptual data with formal semantics, we are
using TTR (Type Theory with Records), a framework developed with a view to
giving an abstract formal account of natural language interpretation (Cooper,
2012), as our formalism and foundational semantic theory. TTR starts from the
idea that information and meaning is founded on our ability to perceive and
classify the world, i.e., to perceive objects and situations as being of types. In
TTR, types are first-class objects, which allows perceptual classifier functions
to be formalised and used in representing meanings of linguistic expressions
together with the high-level conceptual aspects of meaning traditionally studied
in formal semantics. Semantic phenomena which have been described using TTR
include modelling of intensionality and mental attitudes (Cooper, 2005), dynamic
generalised quantifiers (Cooper, 2004), co-predication and dot types in lexical
innovation, frame semantics for temporal reasoning, reasoning in hypothetical
contexts (Cooper, 2011), enthymematic reasoning (Breitholtz and Cooper, 2011),
clarification requests (Cooper, 2010), negation (Cooper and Ginzburg, 2011), and
information states in dialogue (Cooper, 1998; Ginzburg, 2012).

28

Perceptual Meaning 3

Larsson (2011) and Larsson (2013) show how a simple classifier of sensory
information based on the perceptron can be cast in TTR, and how an agent can
learn from interaction by training the classifier based on linguistic and perceptual
input. Linguistic input, e.g. utterance of “That’s red” (assuming a situation
where two agents are inspecting a colour sample), is interpreted as a function
from a situation where some object is in the (shared) focus of attention and
there is a sensor reading (e.g. in the form of a real-numbered vector, but shown
below as a colour patch) from a colour sensor, to a judgement that the situation
is of a type where the object is judged to be red.

foc-obj = a
sensor

colour

=

�
: red(a)

To achieve this, the function contains a classifier which takes the (real-
numbered vector corresponding to the perception of the) colour sample and
produces a judgement whether the vector is within the borders of redness. For
details on how classifiers are embedded into TTR functions, see Larsson (2013),
which also includes a brief account of compositionality.

Categorical judgments of the kind exemplified above are of course not suited
for accounting for vagueness and other gradient semantic phenomena. To remedy
this, a probabilistic extension of TTR has been developed (Cooper et al., 2014,
2015). For an account of vagueness in perception using probabilistic TTR, where
judgements are associated with probabilities, see Fernández and Larsson (2014).
Below is an example of a probabilistic judgement where a situation is judged,
with a probability of 0.79, to be one where the object in the focus of attention
is red.

foc-obj = a
sensor

colour

=

�
:0.79 red(a)

In probabilistic TTR, the result of an act of classification is represented as
a probability distribution over type assignments, i.e., as a set of probabilistic
judgements where the probabilities sum to 1.

3 Observations in conceptual spaces

There are interesting connections between the idea of using classifiers to model
perceptual meaning, and the notion of conceptual spaces. Gärdenfors distin-
guishes three levels of modeling concepts and reasoning: symbolic, subconcep-
tual, and conceptual.

Reasoning on the symbolic level is framed as operations on propositions ex-
pressed by symbolic structures (i.e., symbol manipulation according to explicit
rules), and focuses on computing logical consequences (i.e. deductive reason-
ing). Gärdenfors also discusses connectionist models of meaning as an example
of representations on a subconceptual level, where reasoning modelled by the
activities of the artificial neurons. Concepts on the subconceptual are modelled

29

4 Sta↵an Larsson

“implicitly”, in contrast to the more explicit conceptual level where concepts
are modelled as geometrical structures (points, vectors and regions) in concep-
tual spaces. Conceptual reasoning is described in terms of distances in a space,
and focuses on modeling reasoning about concepts, in particular inductive and
nonmonotonic reasoning.

Corresponding to these three kinds of reasoning, Gärdenfors makes a distinc-
tion between three ways of describing an observation, which we will use to frame
our discussion. On the symbolic level, observations are described in some speci-
fied language with a fixed set of primitive predicates. Denotations of predicates
assumed to be known, and observational statements furnished to reasoner by
incorrigible perceptual mechanisms. On the conceptual level, concepts charac-
terised in terms of some underlying conceptual space, consisting of a number of
“quality dimensions” (or domains). An observation on this level is an assignment
to an object of a location in a conceptual space. For example, an observation
that “x is red” is expressed by assigning x a point in colour space. Finally, on the
subconceptual level an observation is regarded as something which is received by
our sensory organs, or in general some kind of receptors, including e.g. measuring
instruments.

4 Perceptual judgements and conceptual spaces

Below, we will explore the relation between conceptual spaces and classifiers
as di↵erent (but to some extent complementary) ways of capturing perceptual
meaning. Roughly, the correspondence is the following: classification events can
be regarded as making a judgement as to whether an observation falls within
that region in a conceptual space. Also, classifier learning can be regarding as
defining areas (regions or volumes) within a conceptual space.

4.1 Sensor readings and the subsymbolic level

It appears fairly obvious that the sensor readings in TTR correspond to Gärdenfors’
subsymbolic representations. Both represent low-level perceptual input using
vectors, points or regions in vector spaces. In judgement-based semantics, sensor
readings are the input to classifiers.

4.2 Types and the symbolic level

Gärdenfors’ symbolic representations of observations appears to correspond to
the types which result from judgements. However, in TTR we do not assume that
there is a fixed set of primitive predicates. Instead, we are interested in modeling
concept learning (Larsson, 2013). Perhaps even more importantly, we do not
assume that the extensions (denotations) of predicates are known. Instead, we
represent meanings of concrete expressions using classifiers which take some
perceputal input and produce a judgement. The classifiers can be thought of
as representing the intensions of linguistic expressions. Since these classifiers

30

Perceptual Meaning 5

can be trained, they are also dynamic and learnable. Furthermore, TTR does
not assume that perceptual mechanisms are always correct, nor that agents
always agree on their perceptions of a situation or their judgements about the
situation. Finally, a nice feature of TTR is not only properties but also relations
are types which opens the way for compositional semantics involving predicates
of arbitrary arity.

4.3 Classifiers, judgements and the conceptual level

According to Gärdenfors, an observation on the conceptual level is an assign-
ment to an object of a location in a space. In TTR, this corresponds to an act
of classification producing a (possibly probabilistic or graded) judgement con-
cerning (the probability of) a situation being of a certain type, thus mediating
between the sensor reading and the high-level “symbolic” types. In this way, clas-
sifiers connects subsymbolic observations and semantic concepts to “symbolic”
reasoning.

Induction is indeed closely related to concept formation, since our concepts
are formed and learned by induction from observations (including observations
in interaction). Gärdenfors’ claim that “induction can be seen as establishing
connections between various kinds of input” is echoed in TTR in that classifiers
are trained by generalising over several instances, thereby connecting several
instances. An advantage of classifiers is that they are straightforwardly imple-
mentable, and that classification on sensory input is a well-studied research area.

5 Conclusion

We have compared judgement-based semantics with conceptual spaces, and con-
cluded that there are important similarities but also some di↵erences. One aim
of TTR judgement-based semantics is to formalise semantic classification and
learning in detail, to enable integration of these aspects of meaning with those
traditionally studied in formal semantics, and to enable computational modeling
and implementation of these aspects of meaning. By using statistical classifiers,
we connect to machine learning theory, giving access to a host of classification
methods and associated learning algorithms.

31

Bibliography

Breitholtz, E. and Cooper, R. (2011). Enthymemes as rhetorical resources. In
Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dia-
logue (SemDial 2011), pages 149–157, Los Angeles (USA).

Cooper, R. (1998). Information states, attitudes and dependent record types.
In ITALLC98, pages 85–106.

Cooper, R. (2004). Dynamic generalised quantifiers and hypothetical contexts.
In Ursus Philosophicus, a festschrift for Björn Haglund. Department of Phi-
losophy, University of Gothenburg.

Cooper, R. (2005). Austinian truth, attitudes and type theory. Research on
Language and Computation, 3, 333–362.

Cooper, R. (2010). Generalized quantifiers and clarification content. In
P. Lupkowski and M. Purver, editors, Aspects of Semantics and Pragmatics
of Dialogue. SemDial 2010, 14th Workshop on the Semantics and Pragmatics
of Dialogue, Poznań. Polish Society for Cognitive Science.

Cooper, R. (2011). Copredication, quantification and frames. In S. Pogodalla
and J.-P. Prost, editors, LACL, volume 6736 of Lecture Notes in Computer
Science, pages 64–79. Springer.

Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, N. Asher,
and T. Fernando, editors, Handbook of the Philosophy of Science, volume 14:
Philosophy of Linguistics. Elsevier BV. General editors: Dov M. Gabbay, Paul
Thagard and John Woods.

Cooper, R. and Ginzburg, J. (2011). Negation in dialogue. In Proceedings of
the 15th Workshop on the Semantics and Pragmatics of Dialogue (SemDial
2011), Los Angeles (USA).

Cooper, R. and Larsson, S. (2009). Compositional and ontological semantics
in learning from corrective feedback and explicit definition. In J. Edlund,
J. Gustafson, A. Hjalmarsson, and G. Skantze, editors, Proceedings of Dia-
Holmia, 2009 Workshop on the Semantics and Pragmatics of Dialogue.

Cooper, R., Dobnik, S., Lappin, S., and Larsson, S. (2014). A probabilistic rich
type theory for semantic interpretation. In Proceedings of the EACL Workshop
on Type Theory and Natural Language Semantics (TTNLS).

Cooper, R., Dobnik, S., Lappin, S., and Sta↵an, L. (2015). Probabilistic type
theory and natural language semantics. Under review.

Dobnik, S. and Cooper, R. (2013). Spatial descriptions in type theory with
records. In Proceedings of IWCS 2013 Workshop on Computational Models of
Spatial Language Interpretation and Generation (CoSLI-3), pages 1–6, Pots-
dam, Germany. Association for Computational Linguistics.

Dobnik, S., Larsson, S., and Cooper, R. (2011). Toward perceptually grounded
formal semantics. In Proceedings of the Workshop on Integrating Language and
Vision at NIPS 2011, Sierra Nevada, Spain. Neural Information Processing
Systems Foundation (NIPS).

32

Perceptual Meaning 7

Fernández, R. and Larsson, S. (2014). Vagueness and learning: A type-theoretic
approach. In Proceedings of the 3rd Joint Conference on Lexical and Compu-
tational Semantics (⇤SEM 2014).

Gärdenfors, P. (2000). Conceptual spaces - the geometry of thought. MIT Press.
Gärdenfors, P. (2004). Conceptual spaces as a framework for knowledge repre-
sentation. Mind and Matter, 2(2), 9–27.

Ginzburg, J. (2012). The Interactive Stance. Oxford University Press, New York.
Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phe-
nomena, 42(1990), 335–346.

Larsson, S. (2011). The ttr perceptron: Dynamic perceptual meanings and se-
mantic coordination. In Proceedings of the 15th Workshop on the Semantics
and Pragmatics of Dialogue (SemDial 2011), Los Angeles (USA).

Larsson, S. (2013). Formal semantics for perceptual classification. Journal of
Logic and Computation.

Miller, G. A. and Johnson-Laird, P. N. (1976). Language and perception. Belknap
Press.

Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven. ed. and with an introduction by Richmond
H. Thomason.

Roy, D. (2005). Grounding words in perception and action: computational in-
sights. Trends in Cognitive Sciences, 9(8), 389–396.

Steels, L. and Belpaeme, T. (2005). Coordinating perceptually grounded cat-
egories through language: A case study for colour. Behavioral and Brain
Sciences, 28(4), 469–89. Target Paper, discussion 489-529.

33

Interfacing Language, Spatial Perception and

Cognition in Type Theory with Records

Simon Dobnik?

Dept. of Philosophy, Linguistics & Theory of Science
Centre for Language Technology
University of Gothenburg, Sweden

simon.dobnik@gu.se

http://flov.gu.se

Abstract. We argue that computational modelling of perception, ac-
tion, language, and cognition introduces several requirements on a for-
mal semantic theory and its practical implementations. Using examples
of semantic representations of spatial descriptions we show how Type
Theory with Records (TTR) satisfies these requirements. The advantage
of truth being based on agent-relative judgements in TTR is crucial in
this but practically it comes with a computational cost. We argue that
the number of type judgements an agent has to make can be minimised
by incorporating a cognitive notion of judgement that is driven by per-
ceptual attention.

Keywords: spatial language, Type Theory with Records (TTR), atten-
tion driven judgements, computational framework

In the proposed presentation we overview and connect two lines of our work
related to Type Theory with Records (TTR) [2, 3]: modelling of spatial language
and cognition [8] and modelling attention-driven judgement [18].

Cross-disciplinary research has shown that spatial language is dependent on
several contextual factors that are part of an agent’s interaction with the en-
vironment through perception and other agents through dialogue, for example
geometrical arrangement of the scene [28], the type of objects referred to and
their interaction [5], visual and discourse salience of objects [17], alignment in
dialogue [32], and gesture [31] among others. Although the contribution of these
contextual factors has been well studied in psychology, computational linguis-
tics, computer science, geo-information science and robotics, several questions
relating to representing their semantics and building formal computational mod-
els for situated agents still remain. These relate to (i) how an agent is able to
determine the sense and reference of spatial descriptions; (ii) grounding and in-
formation fusion of contextual features into bundles of meaning representations;
(iii) bridging of perceptual and conceptual domains ; (iv) formal accuracy and

? I am grateful to Robin Cooper, Sta↵an Larsson and John D. Kelleher for discussion
which has lead to significant changes in this paper.

34

2 Language, Spatial Perception and Cognition in TTR

su�cient expressiveness of representations for modelling human reasoning; (v)
their compositionality with meaning representations of other words, sentences
and utterances; (vi) their adaptability and learnability by an agent in new phys-
ical and conversational contexts.

In building situated conversational agents, several systems have been pro-
posed but none of them capture all of these requirements. For example, semiotic
schemas [29] account for the meaning of words that define perceivable entities
and performable actions but it is not straightforwardly evident how they relate
to other linguistic representations. [20] adopt a layered model with distinct rep-
resentations at each layer. Although there exist mechanisms by which these rep-
resentational levels interact, the kinds of representations at each level are quite
distinct from each other and are shaped by di↵erent operations. The question
we would like to address is whether such representational levels and operations
can be generalised by taking inspiration from the way humans assign, learn and
reason with meaning.

Classical formal semantics based on first order logic [11, 1] provides the re-
quired formal accuracy and expressiveness of a representation system. However,
it mainly on explaining how meaning representations of words are composed
to form meaning representations of sentences and does not address how mean-
ing (both sense or intension and reference or extension) is learned and as-
signed in perception. The analyses of spatial descriptions are represented in
first order logic such as: on(x,y)1: object(x) ^ object(y) ^ supports(y,x) ^
contiguous(surface(x),surface(y)) and on(x,y)2: object(x) ^ object(y) ^ con-
tiguous(boundary(x),y), see for example [26, 15]. The analysis tell us that the
meaning of spatial descriptions is composed of several geometric primitives (sur-
face/1, contiguous/2, boundary/1) but the meaning of these primitives is left
un-accounted for. In model-theoretic semantics the expression’s reference is de-
termined by an assignment in a form of a valuation function between the lin-
guistics strings and entities (or sets of tuples of entities) in a model. The model
is agent external and fixed. The valuation returns true if an entity or a relation
between entities denoted by an expression can be found in the model, otherwise
it returns false. While it would be possible to represent the referential seman-
tics of a “on” in a model by listing a set of all the coordinates of the locations
where this spatial description applies, this referential representation of meaning
is cumbersome as the model would have to represent for every scale, for every
spatial relation, for every pair of objects. Note also that angles and distances in
a coordinate system are continuous measures which means that such sets would
be infinite. Furthermore, the way humans refer to space is vague (an object may
be “near” another object depending on several contextual factors) and there
is gradience of reference (some objects are “nearer” the landmark than others.
Both vagueness and gradience of spatial language is captured in computational
models as spatial templates or potential fields. While spatial templates can be
thought of as referential overlays of regions induced experimentally (as a set of
points where participants consider a particular spatial relation to apply) [25],
potential fields capture the notion that such regions can be generalised as func-

35

Language, Spatial Perception and Cognition in TTR 3

tions [13, 28]. However, these functions do not represent objects in the model
(or the extension or referential meaning of these descriptions) but rather cap-
ture their sense or intension: in what ways a description relates to perceptual
observations. Knowing this function we can check whether a particular spatial
relation associated with the function applies for particular pair of objects and
to what degree. In addition to angle and distance, several contextual param-
eters can be incorporated, for example the presence of distractor objects [4],
object occlusion [19], etc. or the function itself can be learned from the dataset
of perceptual observations and descriptions as a classifier [30, 7]. The notion of
applying a function representing the meaning of words to the perceptual obser-
vations is also known as grounding these words in perception [14]. The grounded
meanings of spatial descriptions or their senses can be thought of as bundles of
several distinct yet interacting sources of information organised at di↵erent levels
of conceptual abstraction, ranging from sub-conceptual perceptual information
to contents of entire dialogue interactions in an information state of an agent
[22].

Model-theoretic approach to semantics assumes that the model is given (de-
rived through some external process), complete and represents a state of a↵airs
at a particular temporal snapshot [12]. However, practically complete models
may be rarely observable and we must deal with partial models. We must also
account for the fact that the we may incrementally observe more and more of
the world and we have to update the model with new observations, sometimes
even correct the representation that we have already built in light of the new
evidence. Finally, the world is not static itself as new new objects and events
continuously come into existence. Imagine a robot (and indeed such robots were
used in the early days of robotics) with a pre-programmed static model of the
world. Every minute change in the world would render it useless as there would
be a discrepancy between its representation of the world and the actual world.
Modern robotic models used in localisation and map building are incrementally
learned or updated over time by taking into account robot’s perception and mo-
tion and errors associated with both [6]. An important consequence of this is
that the model of the world a robot builds is individual to a particular robot’s
life-span and experience. Two robots experiencing the same world will have a
slightly di↵erent models. Of course, the more they experience the world, the
more similar the models will be. It is conceivable that humans learn meanings
in the same way. However, doing so they are equipped with yet another tool
to overcome individual inconsistencies in their model. They can use linguistic
dialogue interaction to resolve such inconsistencies in the form of repair [27].

Type Theory with Records (TTR) builds on the tradition of the classical
formal semantics (and therefore captures the notion of compositionality) but at
the same time, drawing on insights from situation semantics, addresses the out-
standing questions related to perception discussed in the preceding paragraphs.
It starts from the idea that information is founded on our ability to perceive and
classify the world, that is to perceive or judge objects and situations as being
of types. Types are intensional - that is, there can be distinct types which have

36

4 Language, Spatial Perception and Cognition in TTR

identical extensions. In this way sense is derived operationally as a computable
function [21] or a classifier [23]. The notion of truth is linked to judgements that
an object a is of type T (a : T). Under this view the type inventory is internal
to an agent as types are learned and continuously refined by each agent as it
encounters new situations [23]. Agents converge on su�ciently similar type rep-
resentations which are a requirement for successful communication because they
are part of the same perceptual and discourse contexts that impose external
constraints on it, for example in terms of corrective feedback or the di↵erences
of what an agent expects to perceive and what it perceives. In such a situated
dialogue learning scenario the TTR system can be also given a Bayesian proba-
bilistic interpretation [3]. Because TTR relates perception directly to higher-level
conceptual reasoning in a probabilistic way which allows modelling of gradience
which makes it suitable for modelling semantics of spatial descriptions.

In contrast to the classical model-theoretic framework where types are used
for the purpose of compositionality (the denotations of phrases are either model
objects of basic types such as entities and truth values or functions composed
from these types), TTR introduces an extended set of basic types (for example
Ind and Real that correspond to basic human conceptual categories such as in-
dividuals and real numbers) and a rich type system which contains arbitrarily
complex record types which are able to, among other things, express complex
lexical semantics and dialogue information states. The proof objects of record
types are records. Records and record types are similar to feature structures con-
taining label-value pairs. The information expressed in types can be compared
and reasoned about as the type systems allows subtype and dependent type re-
lations. The ability of TTR to represent hierarchically organised multi-source
information fulfils another requirement for modelling spatial descriptions.

In this presentation we discuss how our empirical investigations of learning
geometric meanings of spatial descriptions with situated robots [7], learning func-
tional meanings of prepositions from collections of image descriptions [9], and
modelling of reference frame assignment in conversation [10] can be formulated
in the TTR framework. For examples and details of TTR formulations refer to
[8]. The overall goal is to provide an account of semantics of spatial prepositions
for these modalities, and over the longer term, use the framework as a knowledge
representation system of a situated agent.

This leads to a question how well as a semantic framework TTR is practically
suited as a semantic representation layer for embodied agents. Humans are very
flexible in assigning meaning and naturally we would like to preserve the same
flexibility in our framework. New types can be created or learned by an agent
dynamically. Furthermore, the record types allow us to construct the following
relations between types which allow us to compare and reasoning about meaning:

– Intensionality/non-exclusivity of types: an object may belong to more than
one type which may be structurally (nearly) an entirely di↵erent representa-
tion. For example, a sensory reading of a particular situation in the world in-
volving spatial arrangement of objects may be assigned several record types

37

Language, Spatial Perception and Cognition in TTR 5

of spatial relations simultaneously, each with a unique internal structure:
Left, Near, At, Behind, etc.

– A type may be a subtype of another type. An object judged as being of a
particular type is also of all types that this type is a sub-type of: given that
Chair is a sub-type of Object, a situation of type Chair is also of type Object.

– A type may be a component of another type. An object of the first type
is partially matched with the second type. For example, a situation of type
Chair is a component of the situation of Table-Left-Chair.

– A type may be a dependent type of another type. For example, the type Left
is a dependent type of Table-Left-Chair. In order to judge a situation to be
of type Table-Left-Chair one has to judge it to be of type Left.

Since each type assignment involves a binary judgement (something is of a
type T or not) for each record of situation an agent having an inventory of n
types can make n assignments. Learning what types a particular situation can be
assigned involves 2n possible outcomes, hence for n = 3, 23 = 8: {}, {T1}, {T2},
{T3}, {T1, T2}, {T1, T3}, {T2, T3} and {T1, T2, T3}, but if types are sub-types or
dependent of another the number of judgements could be reduced.

We argue that agents such as situated robots need (i) a judgement control
mechanism and (ii) a method for organising their type inventory [18]. For (i) we
propose the Load Theory of selective attention and cognitive control [24] to be
a suitable candidate. This model of attention distinguishes between two mecha-
nisms of selective attention: perceptual selection and cognitive control. Following
this theory, we argue that type judgements can be grouped into three cate-
gories: (i) pre-attentive, (ii) task induced, and (iii) context induced judgements.
An agent makes the first kind of judgements continuously, but varying strategies
depending on its cognitive load. The other two kinds of judgements are primed
by the task and the physical context that the agent is engaged with. We propose
that agents organise their inventory of types that fall under (ii) and (iii) into
subsets or bundles (computationally they can be modelled as lists) that are asso-
ciated with the agent’s cognitive states. The states can be modelled as Partially
Observable Markov Decision Processes (POMDPs, [16]) and can be thought of
as sensitivities towards certain objects, events, and situations. The states of a
POMDP network are connected by actions, in this case the priming policies (ii)
and (iii). The types an agent actually perceives in each state represent the ob-
servations for each state (note that here we are not dealing with learning new
types). The model ensures that observing certain types at a particular state
primes the agent to observe particular other types in the states following it.
Hence, past experience primes the agent to observe new situations. The reward
function is governed by the benefit of an agent being primed to perceive the
world this way.

In this paper we outlined an application of type theory to natural language
semantics and demonstrated how the TTR framework allows us to relate the
semantics to action, perception and cognition. Furthermore, on the example of
spatial descriptions we argued tat natural language, perception and cognition
put high demands on the expressiveness of the type theoretic framework which

38

6 Language, Spatial Perception and Cognition in TTR

is associated with high computational cost. In order to counter this, we proposed
a method to limit the possible type judgements of an agent by separate cognitive
attentual mechanism which we will be testing in practical implementations with
situated agents in our forthcoming work.

References

1. Blackburn, P., Bos, J.: Representation and inference for natural language. A first
course in computational semantics. CSLI Publications (2005)

2. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N., Fer-
nando, T. (eds.) Handbook of the Philosophy of Science, General editors: Dov M
Gabbay, Paul Thagard and John Woods, vol. 14. Elsevier BV (2012)

3. Cooper, R., Dobnik, S., Lappin, S., Larsson, S.: A probabilistic rich type the-
ory for semantic interpretation. In: Cooper, R., Dobnik, S., Lappin, S., Larsson, S.
(eds.) Proceedings of the EACL 2014 Workshop on Type Theory and Natural Lan-
guage Semantics (TTNLS). pp. 72–79. Association for Computational Linguistics,
Gothenburg, Sweden (27 April 2014)

4. Costello, F.J., Kelleher, J.D.: Spatial prepositions in context: the semantics of
near in the presence of distractor objects. In: Proceedings of the Third ACL-
SIGSEM Workshop on Prepositions. pp. 1–8. Prepositions ’06, Association for
Computational Linguistics, Stroudsburg, PA, USA (2006)

5. Coventry, K.R., Prat-Sala, M., Richards, L.: The interplay between geometry and
function in the apprehension of Over, Under, Above and Below. Journal of Memory
and Language 44(3), 376–398 (2001)

6. Dissanayake, M.W.M.G., Newman, P.M., Durrant-Whyte, H.F., Clark, S., Csorba,
M.: A solution to the simultaneous localization and map building (SLAM) problem.
IEEE Transactions on Robotic and Automation 17(3), 229–241 (2001)

7. Dobnik, S.: Teaching mobile robots to use spatial words. Ph.D. thesis, University of
Oxford: Faculty of Linguistics, Philology and Phonetics and The Queen’s College,
Oxford, United Kingdom (September 4 2009)

8. Dobnik, S., Cooper, R., Larsson, S.: Type Theory with Records: a general frame-
work for modelling spatial language. In: Dobnik, S., Cooper, R., Larsson, S.
(eds.) Proceedings of The Second Workshop on Action, Perception and Language
(APL’2). The Fifth Swedish Language Technology Conference (SLTC), Uppsala,
Sweden (13 November 2014)

9. Dobnik, S., Kelleher, J.: Exploration of functional semantics of prepositions from
corpora of descriptions of visual scenes. In: Proceedings of the Third V&L Net
Workshop on Vision and Language. pp. 33–37. Dublin City University and the
Association for Computational Linguistics, Dublin, Ireland (August 2014)

10. Dobnik, S., Kelleher, J.D., Koniaris, C.: Priming and alignment of frame of ref-
erence in situated conversation. In: Rieser, V., Muller, P. (eds.) Proceedings of
DialWatt - Semdial 2014: The 18th Workshop on the Semantics and Pragmatics
of Dialogue. pp. 43–52. Edinburgh (1–3 September 2014)

11. Dowty, D.R., Wall, R.E., Peters, S.: Introduction to Montague semantics. D. Reidel
Pub. Co., Dordrecht, Holland (1981)

12. Fagin, R., Halpern, J.Y., Moses, Y., Y. Vardi, M.: Reasoning about knowledge.
MIT Press, Cambridge, Mass. (1995)

13. Gapp, K.P.: Basic meanings of spatial relations: Computation and evaluation
in 3d space. In: Hayes-Roth, B., Korf, R.E. (eds.) AAAI. pp. 1393–1398. AAAI
Press/The MIT Press (1994)

39

Language, Spatial Perception and Cognition in TTR 7

14. Harnad, S.: The symbol grounding problem. Physica D 42(1–3), 335–346 (June
1990)

15. Herskovits, A.: Language and spatial cognition: an interdisciplinary study of the
prepositions in English. Cambridge University Press, Cambridge (1986)

16. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)

17. Kelleher, J., Costello, F., van Genabith, J.: Dynamically structuring updating and
interrelating representations of visual and linguistic discourse. Artificial Intelligence
167, 62–102 (2005)

18. Kelleher, J.D., Dobnik, S.: A model for attention-driven judgements in Type The-
ory with Records. In: Kempson, R., Purver, M. (eds.) Proceedings of the Worshop
on Interactive Meaning Construction at the International Workshop on Computa-
tional Semantics (IWCS 2015). pp. 13–14. Queen Mary University of London (14
April 2015)

19. Kelleher, J.D., Ross, R.J., Sloan, C., Namee, B.: The e↵ect of occlusion on the
semantics of projective spatial terms: a case study in grounding language in per-
ception. Cognitive Processing 12(1), 95–108 (2011)

20. Kruij↵, G.J.M., Zender, H., Jensfelt, P., Christensen, H.I.: Situated dialogue and
spatial organization: what, where... and why? International Journal of Advanced
Robotic Systems 4(1), 125–138 (2007), special issue on human and robot interactive
communication

21. Lappin, S.: Intensions as computable functions. Linguistic Issues in Language Tech-
nology 9, 1–12 (2013)

22. Larsson, S.: Issue-based Dialogue Management. Ph.D. thesis, University of Gothen-
burg. (2002)

23. Larsson, S.: Formal semantics for perceptual classification. Journal of Logic and
Computation online, 1–35 (December 18 2013)

24. Lavie, N., Hirst, A., de Fockert, J.W., Viding, E.: Load theory of selective attention
and cognitive control. Journal of Experimental Psychology: General 133(3), 339–
354 (2004)

25. Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial
relations. In: Bloom, P., Peterson, M.A., Nadel, L., Garrett, M.F. (eds.) Language
and Space, pp. 493–530. MIT Press, Cambridge, MA (1996)

26. Miller, G.A., Johnson-Laird, P.N.: Language and perception. Cambridge University
Press, Cambridge (1976)

27. Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behav-
ioral and Brain Sciences 27(2), 169–190 (2004)

28. Regier, T., Carlson, L.A.: Grounding spatial language in perception: an empirical
and computational investigation. Journal of Experimental Psychology: General
130(2), 273–298 (2001)

29. Roy, D.: Semiotic schemas: a framework for grounding language in action and
perception. Artificial Intelligence 167(1-2), 170–205 (Sep 2005)

30. Roy, D.K.: Learning visually-grounded words and syntax for a scene description
task. Computer speech and language 16(3), 353–385 (2002)

31. Tutton, M.: A new approach to analysing static locative expressions. Language
and Cognition 5, 25–60 (3 2013)

32. Watson, M.E., Pickering, M.J., Branigan, H.P.: Alignment of reference frames in
dialogue. In: Proceedings of the 26th Annual Conference of the Cognitive Science
Society. Chicago, USA (2004)

40

Probabilistic Mereological TTR and the

Mass/Count Distinction

Peter Sutton and Hana Filip

Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany,
peter.r.sutton.@icloud.com; hana.filip@gmail.com

Abstract. We propose that countability of nouns is not a matter of
just a bipartite mass vs. count distinction. Instead we distinguish four
classes of nouns. We propose that these divisions can be modelled in a
mereological enrichment of prob-TTR (Cooper et al. 2014), via patterns
that emerge in probabilistic type judgements associated with them.

Keywords: lattice theoretic semantics, Type Theory with Records,
Bayesian Semantics

1 Introduction

The goals of this paper are threefold. (1) We argue that four semantic classes
can be used to predict cross and intralinguistic variation in whether nouns are
encoded as count or mass. These semantic classes are defined in terms of two kinds
of sources: vagueness and overlap. (2) We enrich prob-TTR (Cooper et al. 2014,
a probabilistic variant of TTR, Cooper 2012) with mereological relations to give
probM-TTR. We adopt prob-TTR since its probabilistic basis is perfectly suited
to the representation of vagueness. We enrich it so as to be able to express when
two (mereological) entities overlap. (3) We derive our four classes by showing
how vagueness and overlap interact.

2 Sources of Countability

We propose that countability in nouns can be accounted for by combining three
factors. Two relate to vagueness, and one to overlap.

The first factor is individuation: what counts as a single quantity (an indi-
vidual) of a given noun. Individuation can be vague. For some nouns (e.g. mud,
blood) it is vague what a single quantity or individual portion is. There is no
generally accepted way to partition the domain of such nouns into individuals.
For other nouns (e.g. cat, boy, lentil, rice, kitchenware, furniture) there is little or
no vagueness in this respect. There are generally accepted ways to partition these
domains (e.g. into single cats, single lentils, single grains of rice). Vagueness of
individuation can a↵ect countability. If you can find no one clear way to partition
the domain into individuals, there is no clear answer to how many individuals

41

there are. Individuation features in many accounts of the mass/count distinc-
tion ((Grimm 2012), (Rothstein 2010), (Landman 2011) among many others).
Vagueness of individuation has been suggested as a factor by Rothstein (2010).

The second factor is quantity: how much of a given amount of stu↵ is su�cient
to classify it as falling under a noun. This can be vague too. For some nouns
(mud, blood, rice, lentil) a single speck of mud or a single grain of rice is not
always su�cient to count as mud or rice (you can truly say “we don’t have any
rice (for dinner)” when there are only a few grains left in the packet). However,
it is vague just how much is enough in a given context. For other nouns (cat, boy,
kitchenware, furniture), there is little or no vagueness in this respect. Vagueness
in quantity can a↵ect countability. If there is no clear minimal quantity of N that
counts as N (in a context), then there are no clear minimal parts of N to count.

These two vagueness factors are highly interrelated, but they are separable.
Nouns such as lentil and rice are not vague in the first respect, but are vague
in the second. This type of quantity vagueness is suggested as the source of the
mass/count distinction in Chierchia (2010).

The third factor is overlap. For some nouns (furniture, kitchenware), the
things classified as individuals/single quantities may overlap. For example, a
pestle and mortar can count as a single item of kitchenware, but individually,
a pestle and a mortar can each count as single items of kitchenware. For other
nouns (cat, boy, lentil, rice) there is no overlap in this respect. Overlap can a↵ect
countability, because it leads to double counting. Is a pestle and mortar one, two
or even three items of kitchenware? The overlap of individual entities (things
that count as one) is proposed as the source of the mass/count distinction in
Landman (2011).

The first vagueness factor and the overlap factor can interact. If it is vague
how to partition a domain into individuals, then it will not be possible to
determine what the disjoint non-overlapping individuals are. In some sense,
therefore, individuation-vague nouns (mud, blood) are also overlapping. Hence,
nouns can be overlapping as well as vague with respect to both individuation and
quantity [+V,+O] (mud, blood), quantity vague but non-overlapping [+V,�O]
(rice, lentil), overlapping but non-vague [�V,+O] (kitchenware, furniture), and
neither vague nor overlapping [�V,�O] (cat, boy). As Table 1 helps to show,
these four classes display striking cross- and intralinguistic patterns when it
comes to the encoding of their members as count [+C] and mass [�C].

[+O] [�O]

[+V] mud[�C], blood[�C] rice[�C], lentils[+C]= lešta[�C],Bulgarian

[�V] furniture[�C]= huonekalu[+C],F innish cat[+C], boy[+C]

Table 1. Feature Matrix for [±V], [±O], [±C]

Nouns in the upper left quadrant of Table 1 are typically substances and are
encoded universally as mass, while nouns in the lower right quadrant are proto-
typical count nouns, and both types tend not to display cross- or intralinguistic
variation in the encoding as count or mass. Nouns in the upper right quadrant

42

are typically granular. Such nouns will display count/mass variation e.g. rice
[�C]

,
lentil

[+C]

, lešta
[�C],lentil (Bulgarian)

. Nouns in the lower left quadrant are typically
aggregates in the sense of Payne and Huddleston (2002) and are often superordi-
nate categories. Such nouns display cross- or intralinguistic count/mass variation
e.g. furniture

[�C]

, meubel

[+C],furniture (Dutch)

, jalkineet
[+C],PL,footwear (Finnish)

.
This leads us to formulating the following Hypothesis: The presence of indi-

viduation vagueness entails uncountability ([�C]). The absence of vagueness and
overlap entails countability ([+C]). The presence of quantity vagueness, without
overlap allows grammaticization of a given noun concept as [+C] or [�C]. The
presence of overlap without quantity vagueness allows grammaticization of a
given noun concept as [+C] or [�C].

As we shall go on to argue, this variability may ultimately be viewed as a
reflection of the di↵erences in perspective on what appears to be the same slice of
the real world. Most importantly, no single source account, such as the vagueness-
only account of Chierchia (2010) or the overlap-only account of Landman (2011),
will be su�cient to account for all the count/mass data as represented in Table 1.

3 Probabilistic Mereological TTR

3.1 Individuation and Individuation Vagueness

The basic schema for a record type involving a nominal predicate will be the
record type in (1) where P would be replaced with cat, rice, mud etc. The type
⇤Ind is the type of stu↵ (a type involving substances, individuals and any sums
thereof):

x : ⇤Ind
c
p

: P (x)

�
(1)

Following Krifka (1995), we view the application of nominal predicates as
being a↵ected by both the qualitative and quantitative factors. In addition to
whatever observable and intrinsic properties that might usually be associated
with the qualitative aspects of a noun’s denotation, we assume properties such as
boundedness, contiguity, size, and topology. For every type as in (1) we assume a
dependent type including P

qual

(x) which packages together all of these properties
such as in (2):

x : ⇤Ind
c
p

: P
qual

(x)

�
(2)

The quantitative aspect of applying nominal predicates will be charac-
terised as a function f

pqual

: (RecType ! N). This is a quantising function
which maps Record types, such as (2), to a natural number, where the nat-
ural number represents a quantity of P . So, it takes the type of things with
rice qualities, boundedness, contiguity, size, and topology, for example, and
maps this to a number. (Where 1 would indicate a single rice grain, and, 2

43

a sum of two rice grains etc.)1 Finally, we also introduce a condition that
the output of the function is some particular value. All of these components
together yield a schema for a record type in (3), with an example in (4).

2

6666664

c
ppt

:

x : ⇤Ind
c
pql : PQual

(x)

�

f
pqt :(

x : ⇤Ind
c
pql : PQual

(x)

�
! N)

i : N
c
pqt : f

pqt(cppt) = i

3

7777775
(3)

2

66664

c
ppt

:

x : ⇤Ind
c
riceql : riceQual

(x)

�

f
riceqt :(

x : ⇤Ind
c
pql : riceQual

(x)

�
! N)

c
riceqt : f

riceqt(cppt) = 1

3

77775
(4)

The type in (4), with quantity value of 1, represents the type of single grains of
rice. For this and other such special cases with quantity values of 1, we introduce a
notational convention. Let Ind

cat

, Ind
rice

etc. be the type of single cats, (grains)
of rice etc. We then abbreviate (4) as (5):

[x : Ind
rice

] (5)

In prob-TTR, judgements are of the form p(a : T) = k where k 2 [0, 1].
Within Cooper et el’s learning model, p

A,J(r : T) is the probability that an agent,
A, assigns to r being of type T with respect to J (her experience and learning
data set).

Individuation vagueness (which a↵ects substance nouns like mud) can be
represented as the low probability of anything in an agent’s experience being
categorised as a single quantity. For example, with mud, nothing one has experi-
enced counts as a single mud quantity. This is because there is no principled way
to divide the stu↵ with the right mud qualities into parts. Assuming a threshold

probability ✓, below which an agent will not make a type judgement, this means
that for all r : Rec in A, J:

p(r : [x : Ind
mud

]) < ✓ (6)

Nothing the agent has experienced is judged to be a single quantity of mud
because for every mud experience, any part of that mud is as good a candidate
to be a single unit of mud as the whole is. Intuitively, this is precisely because
mud lacks the relevant boundedness, contiguity, size, and topology properties to
allow individuation.

3.2 Quantity Vagueness

Even for those nouns that are not individuation vague, another form of vagueness
(first described by Chierchia 2010) can still remain. In any given situation, if
some small amount of P is not enough to count as P , but some larger amount
is, it can be vague what the least amount to count as P is. For example, one
lentil or rice grain left on a plate does not mean that you have not eaten (all)

1 The quantising function may be more course grained for higher values, just as
perception is. For example, for rice high quantity values of could represent some
range of numbers of grains.

44

your rice/lentils. Other nouns are not, or at least, are not usually vague in this
way. A single chair is usually enough to count as furniture. A single cat is usually
enough to count as a cat. For individuation vague nouns (which have no clear
single units), quantity vagueness can also be present: A tiny fleck of mud left on
your boot does not mean that you have not cleaned (all) the mud o↵ your boots,
but it can be vague how much mud would.

This form of vagueness can be represented as gradience in a conditional
probability distribution. For example, p(x is rice | x is some quantity i of rice)
will be low for small quantities, higher for higher quantities. We get a sorites-like
slope, where, even if there is a threshold probability for assertion, an agent may
not be sure whether or not she is at the threshold. In probM-TTR, this will be
represented as the probability distribution generated by a record being of a type
as in (1), given that it is of a type as in (3) (with i as a variable). For rice, this
would be represented in (7)

p
A,J(r :

x : ⇤Ind
crice : rice(x)

�
| r :

2

666664

cppt :

x : ⇤Ind
criceql : riceQual(x)

�

fricequant :(

x : ⇤Ind
cpql : riceQual(x)

�
! N)

i : N
criceqt : fricequant(cppt) = i

3

777775
) = k (7)

So, the probability k that something is rice, given that it is i quantised portions
of rice (roughly, i number of grains, although see footnote 1), varies with the value
of i. There will be little or no such vagueness for nouns such as cat, furniture,
etc. This is represented as an above the threshold probability of something being
a cat, given it is a single cat (8), and an above the threshold probability of
something being furniture, given that it is a single (item of) furniture (9).

p
A,J(r :

x : ⇤Ind
c
cat

: cat(x)

�
| r :

⇥
x : Ind

cat

⇤
) > ✓ (8)

p
A,J(r :

x : ⇤Ind
c
furn.

: furniture(x)

�
| r :

⇥
x : Ind

furn.

⇤
) > ✓ (9)

The di↵erence between nouns like cat, and nouns like furniture will be that single
cats (entities of type [x : Ind

cat

]) do not overlap, but single items of furniture
(entities of type [x : Ind

furn

]) may well do.

3.3 Overlap

We will capture overlap and non-overlap in terms of Disjointedness: There is
overlap within a type if the type is not disjoint. A type T is disjoint i↵ for
all a : T and b : T , if a 6= b, then a \ b = ?. The type of single items of
furniture ([x : Ind

furn

]) is not disjoint, since all of the following are of this type:
dressing-table, mirror, dressing-table [mirror.

Interpreted probabilistically, we will again use the probability threshold for
type judgements, ✓:

45

Definition 1. T is Probabilistically Disjoint relative to ✓
T : Disj

✓

i↵ there is at least some a such that p(a : T) � ✓, and for all a, b
such that p(a : T) � ✓ and p(b : T) � ✓, if a 6= b then a \ b = ?

So T is disjoint relative to threshold ✓ i↵ T is not empty from the perspective of
su�cient certainty of what is of type T , and no two things which are su�ciently
probably of type T overlap.

4 Countability in probM-TTR

Within the formal representations of nouns we have developed here, the denota-
tions of nouns admit of two di↵erent perspectives: The “zoomed out” perspective
of what counts, with su�cient certainty, as the smallest amount of stu↵ which
is of some type (as determined by conditional probability distributions like in
(7) for rice); and the “zoomed in” perspective of what counts as single, but
also disjoint entities of a noun (disjoint entities of the type Ind

p

). From each
perspective, countability may be prevented by either vagueness, which prevents
the identification of what one should count, or overlap, which leads to double
counting and so incompatible counting results. We will now derive our four classes
of nouns via whether countability is prevented from one of these two perspectives,
from both, or from neither.

Prototypical count nouns: For nouns such as cat, the zoomed in and the
zoomed out perspectives coincide. Zooming out, the smallest quantities that
clearly satisfy the predicate cat are single individual cats, as the probability of
something being a cat, given that it is of type Ind

cat

, is very high/above the
threshold. Zooming in, we see that this type Ind

cat

is also disjoint. Either way,
we are left with just individual cats, and so only one possible counting result.
The fact that we get the same result from either perspective can explain why
non-vague, non-overlapping nouns are encoded universally as count.

Vague, non-overlapping nouns: For nouns such as rice and lentils, the zoomed
in and the zoomed out perspectives do not coincide. Zooming out, it is (quantity)
vague what the smallest entities are that satisfy the predicates rice and lentils.
Single grains/lentils frequently do not count as satisfying these predicates, as the
probability of something being rice/lentils, given that it is of type Ind

rice

/Ind
lentil

is very low/below the threshold. Large quantities do count frequently enough,
but the cut-o↵ point is vague. From this zoomed out perspective we cannot focus
on a reasonable counting base and so countability is blocked. Zooming in, the
types Ind

rice

and Ind
lentil

are anyway disjoint (single grains/single lentils do
not overlap). Furthermore, Ind

rice

and Ind
lentil

are not (particularly) vague. So
counting can occur at this level.

The di↵erence in the result between perspectives can explain why we see
mass/count variation in such nouns. Depending on whether their denotations are

46

viewed from a zoomed in or a zoomed out perspective, we can either count or
fail to be able to count what is there. On this understanding of the mass/count
distinction, English, for example, conceptualises rice from a zoomed out perspec-
tive, and lentils from a zoomed in perspective, hence the di↵erence in count/mass
encoding. Bulgarian conceptualises lešta (lentil) from a zoomed out perspective,
hence lešta is encoded as mass.

Non-vague, overlapping nouns: For nouns such as furniture and kitchenware,
the zoomed-in and the zoomed-out perspectives also do not coincide, but not for
the same reasons as with nouns such as rice and lentils. Zooming out, there is
no quantity vagueness for furniture or kitchenware. The smallest quantities that
clearly satisfy the predicates furniture, kitchenware are items of kitchenware
and items of furniture respectively (the probability of something being a kitchen-
ware/furniture, given that it is of type Ind

furn.

/Ind
kitch.

is very high/above the
threshold). However, we cannot count entities of the types Ind

furn.

and Ind
kitch.

,
because they are not disjoint. This overlap leads to incompatible counting results.
For example {pestle,mortar, pestle \mortar} are all of type Ind

kitch.

, but it is
not, from this perspective decided whether this set constitutes one, two or even
three items of kitchenware. Zooming in, we are forced, relative to a context, to
try to find a disjoint subset of the set Ind

kitch.

and thereby ignore/remove the
overlap. The type Ind

kitch

is not vague and so it is clear what is of this type.
Taking the above example, this allows two possible contexts. In context 1, we
take the disjoint subset that leaves {pestle,mortar} in which case there are two
things. In context 2, we take the disjoint subset that leaves {pestle [mortar} in
which case there is only one thing.

The di↵erent outcome of the two perspectives can explain why we see
mass/count variation in such nouns. In English, for example, both kitchen-

ware and furniture are viewed from a zoomed out perspective and so are encoded
as mass. In Finnish huonekalu

[+C],furniture

is viewed from a zoomed in perspective
and is encoded as count.

Vague and overlapping nouns: For nouns such as mud and blood, the zoomed
in and the zoomed out perspectives do coincide. Zooming out, it is (quantity)
vague what the smallest entities are that satisfy the predicates mud and blood.
Tiny amounts of mud and blood most of the time do not count as satisfying
these predicates, but in contrast to nouns such as rice and lentils, there is also
individuation vagueness here. Within the denotations of mud and blood, we are
not even sure what is of the types Ind

mud

or Ind
blood

. From this zoomed out
perspective we cannot focus on a reasonable counting base and so countability
is blocked. Zooming in does not get us much further. Because of individuation
vagueness, we are not su�ciently sure that anything is of type Ind

mud

or Ind
blood

etc. That means that types such as Ind
mud

and Ind
blood

are not probabilistically
disjoint because nothing has a high enough probability of being of these types.
That means that we can not discern a disjoint subset within this set. Countability
is prevented from a zoomed-in perspective too. From either perspective, there is

47

no counting result for individuation vague nouns. This can explain why substance
nouns always get encoded as mass.

5 Conclusion

Depending upon the ways we can conceptualise some referent of a noun, counting
either gets a free pass, faces a conceptually avoidable stumbling block (vagueness
or overlap), or is stopped in its tracks (vagueness and overlap). We have proposed
that in the first case, nouns will be universally encoded as count. In the second,
depending on how the stumbling block was treated within and between languages,
we expect mass/count encoding to vary. In the third case, we expect universal
mass encoding. If correct, we improve upon Landman (2011) and Chierchia (2010)
by accounting for cross- and intralinguistic variation, while also motivating the
stubborn resistance that prototypical mass nouns show to counting.

References

Chierchia, G.: Mass nouns, vagueness and semantic variation. Synthese 174, 99–149
(2010)

Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Fernando, T., Asher, N.
(Eds.), Philosophy of Linguistics, Handbook of the Philosophy of Science. Elsevier,
271–323 (2012)

Cooper, R., Dobnik, S., Lappin, S., Larsson, S.: A probabilistic rich type theory for
semantic interpretation. Proceedings of the EACL 2014 Workshop on Type Theory
and Natural Language Semantics (2014)

Grimm, S.: Number and Individuation. PhD Dissertation, Stanford University (2012)
Krifka, M.: Common nouns: A contrastive analysis of English and Chinese. In: Carlson,

G., Pelletier, F. J. (Eds.), The Generic Book. Chicago UP, 398–411 (1995)
Landman, F.: Count nouns – mass nouns – neat nouns – mess nouns. In: The Baltic

International Yearbook of Cognition: Vol. 6. pp. 1–67 (2011)
Payne, J., and Huddleston, R.: Nouns and Noun Phrases: In: Pullum, G. and Huddleston,

R. (Eds.) The Cambridge grammar of the English language. Cambridge UP, 323–524
(2002)

Rothstein, S.: Counting and the mass/count distinction. Journal of Semantics 27 (3),
343–397 (2010)

48

Are Widows Always Wicked?

Learning concepts through enthymematic

reasoning

Ellen Breitholtz

University of Gothenburg, Department of Philosophy, Linguistics and Theory of
Science

ellen@ling.gu.se

Abstract. This paper suggests that enthymematic reasoning may play
a role in the acquisition of new concepts by a language learner. To illus-
trate this we analyse an example of natural dialogue using Type Theory
with Records. Our approach allows us to represent misunderstanding and
misinterpretation of meaning, since it is based on the conceptualisation
of entities in individuals rather than on a God’s eye view of meaning.
Thus our account fits well with an approach to word meaning where
speakers are constantly adjusting meanings on the basis of experience.
An enthymematic perspective on the learning of concepts relates previ-
ous work done on enthymematic reasoning cast in TTR to work where
enthymemes are used to explain lexical disambiguation.

Keywords: Enthymeme, topos, Type Theory with Records, learning,
lexicon, human reasoning

1 Introduction

Consider the example in (1) of an interaction between a mother and a child:

(1)
Mother: When Snow White was still a baby her

mother died. After some time her father, the
king, remarried. His new wife was beautiful
but vain and wicked.

Child: Yes mum – a widow!

To anyone familiar with the conventional meaning of the word widow, it seems
obvious that the child has got it wrong. However, how did she get it wrong? And
can the mechanisms of how she got it wrong explain how most of us eventually
get it right?

In this paper we suggest how reasoning using enthymemes – rhetorical ar-
guments – can be a means not only of lexical disambiguation (as suggested by
Pustejovsky (1998)), but also a means of acquiring new concepts. We will intro-
duce enthymematic reasoning in dialogue as it is presented in Breitholtz (2014a),

49

2 Ellen Breitholtz

Breitholtz (2014b), Breitholtz and Cooper (2011). We will then analyse the ex-
ample in (1) in terms of the inferences that may be drawn using enthymematic
reasoning based on topoi in the resources of the dialogue participants. For our
account we will use Type Theory with Records (TTR) Cooper (2013), Cooper
(2005), Ginzburg (2012).

2 Enthymematic Reasoning

2.1 What Is an Enthymeme?

An enthymeme is a rhetorical argument which appeals to what is in the lis-
tener’s mind. In his Rhetoric Aristotle refers to enthymemes as belonging to
the logos-part of discourse, that is, to the part concerned with content and rea-
soning. Aristotle also relates the enthymeme to logic by calling it a “rhetorical
syllogism”. However, in the case of a syllogism, the inference presented as the
conclusion is non-negotiable, while an enthymeme owes a lot to context and
background knowledge. It is therefore often negotiable and defeasible.

Jackson and Jacobs (1980), Breitholtz (2014a), Breitholtz and Cooper (2011)
show that enthymematic reasoning occurs frequently in spontaneous dialogue
and other types of highly interactive language genres, not only in rhetoric In 2,
A presents an argument that she cannot make it to a party because she is going
to a wedding, but since the bride is pregnant she might be able to drop by later
in the evening.

(2)
A: Oh! I’m invited to a wedding that night. But the bride is preg-
nant so I might drop by in the wee hours. (?)p1]Breitholtz2014b

Thus, A implies that the bride being pregnant might be a reason for the
wedding not continuing very late – an assumption itself underpinned by a chain
of inference. We refer to all of these underpinnings as the topoi of the enthymeme.

Ducrot (1988) and Anscombre (1995) propose a theory of meaning in context
where the notion of topos is central. The theory is based on the idea that between
two utterances A and C, where one of them is an assertion or a suggestion,
exhortation, etc. and the other an assertion which functions as a support for
the first, there is always a link which sanctions the interpretation of A and C
as an (enthymematic) argument. Important points of the theory they propose
are that topoi are assumed or taken for granted in a community, and that one
topos can be employed in various contexts as underpinning for di↵erent types of
arguments, but also the converse – that di↵erent topoi can be employed in one
context.

Anscombre suggests that topoi are part of ideology, ways in which we per-
ceive the world, and ideologies are not monolithic. Therefore, a principle like
opposites attract and birds of a feather flock together may co-exist not only in
one community, but in the set of topoi of one individual, and even be applicable
in the same contexts. Following Ducrot and Anscombre, we argue that topoi,

50

Are Widows Always Wicked? 3

contrary to logical rules, do not constitute a monolithic system. Instead the sys-
tem of topoi in the resources of one individual consists of principles which may
be combined in di↵erent ways – like logical rules – but which may be inconsistent
if combined in a specific situation.

2.2 Enthymemes and the Lexicon

The work on enthymemes and topoi by Breitholtz, Ducrot and Anscombre is
mainly concerned with the relation between utterances in dialogue and discourse.
However, Pustejovsky (1998) suggests that enthymemes are also important for
lexical interpretation. He discusses the example Steven King began a new novel
(?)p 238]Pustejovsky1998 and argues that the world knowledge regarding who
Steven King is (a writer) and what writers do (write novels) serves as hidden
premises in an enthymematic argument with the conclusion that Steven King has
begun writing a new novel. In the terms of Ducrot and Breitholtz, this example
is underpinned by a topos saying that “writers write”, or “if someone is a writer,
they write”. However, there are also other possible topoi in our resources that
could be drawn on in this context, for example the topos “people read novels”.
Interestingly, our bias towards interpreting began in this case as began writing
rather than began reading is not directly linked to the number of occurrences
of events where writers write novels compared to the number of occurrences of
events where writers read novels – arguably, writers on average read more novels
than they write. Instead the preference for the first interpretation has to do with
the salience of the topos.

3 Learning concepts using enthymemes

We will now return to the example dialogue in (1). We will consider the types
representing the individuals mentioned in the data, the enthymematic argu-
ments present and the topoi that underpin the arguments or are obtained as
a result of generalising an enthymeme. We would like to think of reasoning in
terms of dialogue game boards representing dialogue participants’ respective
take on the dialogue at any point in time. We should therefore think of the en-
thymematic arguments, topoi and types representing individuals as features of
such a gameboard. Following many other gameboard-based approaches to dia-
logue, for example the ones found in Ginzburg (2012) and Cooper (2013) we use
the formalism Type Theory with Records. TTR is a rich type theory that has
the advantage of modelling both utterance events and utterance types, which is
crucial for analysing meta-communicative aspects of interaction. Subtyping in
TTR is also important for our account of how we employ topoi in di↵erent en-
thymemes through operations like restriction and generalisation. The mother’s
utterance in (1) says explicitly that Snow White’s stepmother is vain and wicked.
Thus we may assume that the type of Snow White’s step mother that is common
ground in the dialogue this far is the one in (3)1.

1 This could also be a subtype of 3 including other constraints like “woman”. However,
we leave aside such considerations here for clarity

51

4 Ellen Breitholtz

(3) 2

4
x=Snow White’s stepmother:Ind
c
vain

:vain(x)
c
wicked

:wicked(x)

3

5

The child’s utterance together with that of the mother, makes up a co-
constructed enthymeme saying that Snow White’s stepmother is vain and wicked,
therefore, she is a widow. We represent topoi and enthymemes as dependent
types, functions from records to record types, as seen in (4). Intuitively, such
a function represents the idea that if you have a situation of one type – say,
the type where someone is vain and wicked – then you can predict the type of
situation where that person is a widow.

(4)

�r:

2

4
x=Snow White’s stepmother:Ind
c
vain

:vain(x)
c
wicked

:wicked(x)

3

5.
⇥
c
widow

:widow(r.x)
⇤

For the child to make this argument, we must assume that she has access to
a topos that underpins the enthymeme. To obtain a possible topos we generalise
the enthymeme in (4) by removing the value of the manifest field (x=Snow
White’s stepmother:Ind)in the domain type. We now have a dependent type
representing a topos saying that “if someone is vain and wicked, they are a
widow”.

(5) �r:

2

4
x:Ind
c
vain

:vain(x)
c
wicked

:wicked(x)

3

5.
⇥
c
widow

:widow(r.x)
⇤

Now, we may ask, how was this topos established? It seems reasonable to
say that if the child believes that someone being vain and wicked is a reason for
concluding that that person is a widow, the child perceives vain and wicked as
essential components of the meaning of the word widow. But how was this idea
established? No one is likely to have told the child that widow means vain and
wicked, or that widows are vain and wicked. We argue that the child has learnt
this from reasoning.

Consider for example this excerpt from another fairy tale – Cinderella:

(6) “After a few years Cinderella’s father took a new wife, a widow
with two daughters of her own”

From this passage, we learn that Cinderella’s stepmother is a widow. As
the story evolves, we get multiple proof that she is also vain and wicked. From
the story of Cinderella a topos regarding widows may be tentatively construed,
namely the one in (7):

(7)

�r:

x:Ind
c
widow

:widow(x)

�
.

c
vain

:vain(r.x)
c
wicked

:wicked(r.x)

�

52

Are Widows Always Wicked? 5

This topos says that if we have a situation of the type where someone is a
widow, we also have a type of situation where that person is vain and wicked.

Now, from dependent types like topoi and enthymemes, we may derive fixed
point types. A fixed point type in this context would be a type describing the
situation from a more holistic perspective, so instead of perceiving that we have
access to a topos saying that if someone is a widow, they are vain and wicked, we
perceive a scenario where this topos would be accuarate as one type of situation.
For example, if we have a topos saying that in the summer, people spend time
at the beach, we may from this topos construe a type of situation In which the
topos would be realised, namely a type of situation where it is summer and
people spend time at the beach. In formal terms this means that if ⌧

2

is the
topos in (7), then a fixed-point type for ⌧

2

is a type T such that a : T implies
a : ⌧

2

(a). We can obtain such a type by merging the domain type and the result
type adjusting the references to r in the dependencies, as in (8). For a thorough
discussion of fixed point types in TTR, see Cooper (fthc).

(8) 2

664

x:Ind
c
widow

:widow(x)
c
wicked

:wicked(x)
c
vain

:vain(x)

3

775

We perceive the reasoning with enthymemes and topoi to be partly associa-
tive, and related to the kind of associations that arise in neural activity where
association of two patterns of neural activation during perception eventually lead
to the fact that an external stimulation of one pattern will engender the second
pattern even in the absence of a stimulus. This means that for a child to perceive
a number of qualities co-ocurring in one individual in a situation, the child would
find it reasonable to construe various types of dependencies between these quali-
ties. Thus, when encountering a type of situation where someone (Snow White’s
stepmother) is vain and wicked, the child draws on a topos construed from the
type of situation in (8), saying that if someone is vain and wicked, they are a
widow.

Other topoi that would be possible to derive from (8) would be ones saying
that vain widows are wicked and that widows are wicked and vain. In fact,
from all topoi we may derive any topos that has the same fixed point type.
The more constraints we add to the situation type encountered by the child in
Cinderella, such as “in fairytale” and “stepmother”, the more acceptable some
of the dependent types construed from the situation type will seem.

However, it is not the case that the topoi we have access to are symmetri-
cal in the sense that the dependency is equally strong in both directions. For
example, it seems like a useful rule of thumb that someone who is called Lisa
identifies as a woman, while the inference rule that if someone identifies as a
woman, then that person is called Lisa, would be a pretty useless rule. In order
to acchieve a dynamic theory of language learning and reasoning, we would thus
need to include a probabilistic component. Exactly how this would be set up we

53

6 Ellen Breitholtz

leave aside for the time being, but it seems intuitively clear that the child, as it
encounters the word widow in other situations, will revise the dependencies of
the relevant topoi in her resources, and vain and wicked would gradually move
from the centre of the meaning of widow to the periphery to become at most a
connotation.

4 Conclusion

We have seen an example that illustrates how we use reasoning to establish
the meaning of words as well as to disambiguate word meaning. Our approach
allows us to represent misunderstanding and misinterpretation of meaning, since
it is based on the conceptualisation of entities in individuals rather than on a
God’s eye view of meaning. Thus our account fits well with an approach to
word meaning where speakers are constantly adjusting meanings on the basis of
experience, which can be found in work by for example Cooper (2012), Kempson
et al. (2012), Ludlow (2014) and Pustejovsky (1998).

One of the advantages of using topoi as the underpinning for the kind of non-
monotonic reasoning we find in enthymemes, rather than default rules, is that
the set of topoi of one agent does not constitute a monolithic logical system. Thus
they do not need to be consistent or lead to consistent conclusions even within
one model or domain (Breitholtz, 2014a). This ability to follow various strains
of reasoning also inconsistent ones seems to be a prerequisite for the complex
type of interactive language understanding and problem solving that humans
master so well. However, in order to fully take advantage of the possibility to
model this ability, we need to be able to account for the reasoning of agents
with access to a wider range of topoi than those we have considered here. A
natural progression of the account presented here would be to extend the model
presented in Breitholtz (2014a) to include a probablilistic component. This would
enable us to make predictions regarding the enthymematic inferences of an agent
with access to several topoi applicable in a particular situation. It would also
allow for modelling the learning of new topoi through interaction with other
agents. Interesting work has been done by Cooper et al. (2014) on probabilistic
semantics in TTR, and Clark and Lappin (2010) convincingly show how language
learning is related to probability theory. Both of these approaches fit well with the
approach that we suggest, and they thus o↵er a way to introduce a probabilistic
component into the account of learning presented here.

54

Bibliography

Anscombre, J.-C. (1995). La théorie des topoi: Sémantique ou rhétorique?
Hermés, 15.

Aristotle, G. A. K. (2007). On Rhetoric, a theory of civic discourse. Oxford
University Press.

Breitholtz, E. (2014a). Enthymemes in Dialogue: A micro-rhetorical approach.
Ph.D. thesis, University of Gothenburg.

Breitholtz, E. (2014b). Reasoning with topoi - towards a rhetorical approach to
non-monotonicity. volume Proceedings of the 50:th anniversery convention of
the AISB, pages 190–198. AISB.

Breitholtz, E. and Cooper, R. (2011). Enthymemes as rhetorical resources. In
D. D. K. G. E. K. A. S. Ron Artstein, Mark Core, editor, Proceedings of,
volume SemDial 2011 (LosAngelogue) Proceedings of the 15th Workshop on
the Semantics and Pragmatics of Dialogue, pages 149–157.

Clark, A. and Lappin, S. (2010). Linguistic Nativism and the Poverty of the
Stimulus. John Wiley & Sons.

Cooper, R. (2005). Records and record types in semantic theory. Journal of
Logic and Computation, 15(2), 99–112.

Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, N. Asher,
and T. Fernando, editors, Handbook of the Philosophy of Science, volume 14:
Philosophy of Linguistics. Elsevier BV. General editors: Dov M Gabbay, Paul
Thagard and John Woods.

Cooper, R. (2013). Clarification and generalized quantifiers. Dialogue and Dis-
course, 4(1).

Cooper, R. (fthc). Type theory and language - From perception to linguistic
communication. Draft, June 17 2014.

Cooper, R., Dobnik, S., Lappin, S., and Larsson, S. (2014). A probabilistic rich
type theory for semantic interpretation. In Proceedings of the EACL 2014
Type Theory and Natural Semantics Workshop (TTNLS). EACL.

Ducrot, O. (1988). Topöı et formes topique. Bulletin d’études de la linguistique
française, 22, 1–14.

Ginzburg, J. (2012). The Interactive Stance: Meaning for Conversation. Oxford
University Press.

Jackson, S. and Jacobs, S. (1980). Structure of conversational argument: Prag-
matic bases for the enthymeme. Quarterly Journal of Speech, 66(3), 251–265.

Kempson, R., Gregoromichelaki, E., and Cann, R. (2012). Context and compo-
sitionality: the challenge of conversational dialogue. Philosophical and Formal
Approaches to Linguistic Analysis, page 215.

Ludlow, P. (2014). Living Words: Meaning Under determination and the Dy-
namic Lexicon. Oxford University Press.

Pustejovsky, J. (1998). The Generative Lexicon. Bradford Books. MIT Press.

55

The Relative Complexity of Constraints in

Co-Predicative Utterances

Bruno Mery1

IUT de Bordeaux, Université de Bordeaux, France & LaBRI — CNRS
bruno.mery@me.com

Abstract– We explore the particular variations of semantic felicity in co-predicative utter-
ances the constraints on the combination of facets of polysemous words, and the possible adap-
tations that can be proposed to existing formal frameworks that support lexical semantics. As
the linguistic data is incomplete and disputed, we also include a proposal for a linguistic survey
aimed at clearing up many outstanding issues.1

1 The Generative Approach to Lexical Semantics and Polysemy

1.1 The Issue of Polysemy in Compositional Semantics

The inarguable facts that words in human languages can be employed with many
different meanings, according to the context they are used in, is seemingly at odds
with the principle of compositional semantics inherited from Montague, which presup-
poses that singular meaningful term can be provided for every lexical item. This can
be resolved by Word Sense Disambiguation techniques (associating the most probable
meaning to each word before composition, using data refined from corpora). Another
approach is to hold polysemy to be an important feature of language, and to re-design
the compositional semantics around it. In this approach, the lexicon becomes much
more complex than a map of words to meanings, as each lexical entry can be combined
with others in order to select the appropriate sense for a word used in a specific context:
this is the so-called Generative approach to lexical semantics developped in [Pus95]
and many subsequent works. We will discuss a few basic features of this approach in
Section 1.2.

In the present paper, we will study the specific issue of the felicity of co-predicative
utterances. Those constructs are detailed in Section 2.1, the issues of felicity in Section
2.3, and we will focus on the characterisation of constraints on felicity in Section 3, and
the necessary adaptations of formal semantics in Section 4.

1 The present abstract is intended as a discussion material, detailing a specific issue in order to
foster collaborations around the subject. Having been prepared by the author in his spare time,
it is, by necessity, incomplete. The work presented here is closely related to LTY n, a formal
framework for lexical semantics developed since 2006 with Christian Bassac, Richard Moot,
Christian Retoré and many other researchers at LaBRI and LIRMM. As a team, we would like
to thank everyone that has joined in TYTLES and engaged in discussions and research around
type-theoretical lexical semantics.

56

1.2 GL Qualia, Dots, Processes and Uses

[Pus95] and subsequent works such as [Ash11] have detailed the implications on
Montagovian semantics of relational polysemy, distinguishing (among many other phe-
nomena) four kinds of meanings that are distinct, but directly related (by opposition to
accidental polysemy, which consists of different words that happen to be homonyms).

The qualia are derived from the “modes of explanation” of Aristotle; the idea is that
a noun for something can refer to :

1. The thing itself (formal quale, as in long sword),
2. A salient part of the thing (constitutive quale, as in dull sword ! dull edge), and,

for artificial items,
3. Their creation process (agentive quale, as in master’s sword ! sword made by a

master blacksmith),
4. Their use, for objects that have one (telic quale, as in fine sword ! sword fine for

fighting).

Pustejovsky argues that such uses are extremely common, and that a competent speaker
of a language has access to a qualia, thus justifying that such information should be part
of the lexicon itself.

Complex objects, called dot-objects (sometimes written •-objects) are words that
denote a singular concept that can be envisioned on two or more different facets. Canon-
ical examples include books (with physical and informational facets), meals (with an
event and a food facet), newspapers (with an organisational and a physical aspect), etc.
There are many examples which seem to stem from compounding essential and existen-
tial information. As the number and type of facets is not determined, contrary to qualia,
and as those facets enjoy differentiated individuation conditions, they have proved to be
one of the most serious difficulties for formal models of lexical semantics.

In addition, some implicit processes can shift the meaning of a word referring
to something to different states: grinding can turn materials into artefacts, animals
or plants into food (delicious salmon), packaging can provide implicit containers for
masses (there is water and wine on the table) – see [MMR15] for details. Deverbal
nouns are notoriously polysemous between process and result (the construction is at
the end of the street) – see [Jac01], [RCR13].

Finally, additional facets can be bestowed upon a lexical item via explicit construc-
tions, which are easier to account for. They include as-phrases (I do not have issues
with Mr. X as a lawyer; however, as a candidate. . .) and for-phrases (this knife is sharp
enough for shaving).

57

2 The Many Facets of Co-Predicative Sentences

2.1 Co-Predications

Co-predicative utterances, phrases or sentences, or co-predications for short, con-
sist in the explicit reference to two (or more) different facets of the same lexical items at
the same time. The most classical example is heavy and interesting book, but there are
many others. The difficulty of co-predications is that the two predicates apply to differ-
ent types (here, to physical and informational objects respectively). Lexical semantics
frameworks that do not consider this and simply coerce the type of the argument to the
one required by the predicate fail to provide a suitable typing for book in such sentences.

2.2 Mixing Polysemy Facets

In the original formulation by Pustejovsky, co-predications were mostly studied
between facets of dot-objects. However, they can be equally valid between various
sources:

– two or more qualia:
• good, expensive wine (telic+formal);
• fast blue car (constitutive+formal). . . ;

– two or more facets of a dot-object:
• red closed door (physical+aperture);
• liberal, picture-less tabloid (organisation+physical). . . ;

– a facet of a dot-object and a qualia of another facet:
• I have an inspired article in my briefcase (agentive quale of the informational

facet + physical facet);
– process, result, and other facets:

• the translation, printed right after its lengthy completion, is considered bold
yet naive (physical and agentive quale of the informative facet of the result +
process);

– an arbitrary number of references to different facets in a coherent discourse:
• The book is 5lbs, and has 400 pages. It has been set in Times 12, with large

margins. Its leather cover is aged but sound. Its writing took five years, and the
completion of the hundred in-quarto printings four months. [. . .] It certainly is
an interesting read.

2.3 Felicitous and Infelicitous Co-Predications

There are thus many possible combinations of facets that can be predicated on si-
multaneously. However, some co-predications are infelicitous. We have elaborated pre-
viously on the case of grinding :
* The salmon was lightning-fast and delicious,

many examples of process/result alternations:
* The construction took three months and stands tall,

as well as capital-governments alternations:
* Washington is an old American city and has denounced Teheran.2

2 Those examples are subject to personal interpretation and linguistic idiosyncrasies that we will
discuss in Section 3.3.

58

3 Characterising Constraints on Felicity

3.1 Relaxable and Fixed Constraints

The most evident constraints are the following: facets that can cognitively co-exist
for the same object are not constrained in their co-predications, while facets that are
only present after a transformative process (grinding, packaging, resultatives) are ex-
clusive to all others.

In addition, a proper name of a polysemous entity (such as a city or place) can be
used as a paraphrase for a specific group of people (such as the name of the capital being
a proxy for the national government), to the exclusion of all other possible senses. We
can thus distinguish between two rough classes of facets: flexible and rigid.

However, the rigidity constraint can be relaxed in some cases. A syntactic split of
the components of the co-predications can render some infelicitous phrases acceptable :
the salmon, which was very fast, is delicious, or the construction, that took three months
to complete, stands tall. Beyond the syntactical separation, the use of different tenses or
explicit contrast using yet or but can also relax the constraints on the use of facets that
correspond to different, exclusive states of the same entity.

Capital/government (and related) alternation constraints are much more difficult to
relax, considering: Washington is an old American city. It is located on the banks of the
Potomac. * It has denounced Teheran..

That distinction has given us the three classes of constraints that we have been using
until now, flexible facets, semi-rigid facets (the constraints can be relaxed via syntactic
means) and rigid facets (the constraints are fixed).

3.2 City Names: a Short Case Study

However, this does not cover the whole complexity of constraints on the felicity
of co-predications. See [RCR13] for a case study on deverbal co-predications; we will
discuss here the specific case of city names.

City names are highly polysemous, with many possible facets that can be separated
in two groups. The first is composed of facets that pertain to the city as a whole: ar-
chitecture, location, size, atmosphere, climate, population, lifestyle. . . that we will call
characteristics, and the second, of facets we will call essentials, that use the name of
the city to refer to a specific group of people, such as city/metropolis/regional/national
government and sport clubs. In our first approximation, characteristics are flexible and
essentials are rigid.

However, the following constructions can allow some of the essentials to co-
predicate:

– lexical proximity – if two facets share the same lexical field, as in Barcelona domi-
nates Europe in football as well as in handball;

– object identity – if the predication is made on a single direct object, as in Barcelona
dominates Europe in football as in architecture;

– zeugma – if zeugma are considered acceptable, as in Barcelona dominates Europe
in football as they do Madrid in politics;

59

– discourse flow – logical relations in the narration can provide felicitous readings, as
in Detroit, by lake Michigan, has filed for bankruptcy; the city has become desolate
and lifeless.

– The above can be daisy-chained in order to co-predicate over seemingly incompat-
ible facets in a long discourse: Bordeaux, struggling with traffic issues due to its
growing population and its geographical position on both sides of the Garonne,
wishes to build a new bridge in order to ease commuting between those.

3.3 Evaluating the Idiosyncrasies of Felicity in Co-Predications

We want to stress that felicity is an highly subjective notion, that varies from speaker
to speaker. Additionally, it appears that some of the constraints are idiosyncratic; anec-
dotical evidence, including separate personal communications from Asher, Lecomte
and Luo indicate that some common co-predications are felicitous in English but not
in Chinese. While this should not stop formal frameworks to develop mechanisms that
integrate constraints on co-predications, establishing a robust catalogue of the actual
usages is important.

We would like to propose a set of templates for sentences that can be adapted to valid
local city data, with co-predications we consider felicitous, infelicitous, and forced by
the various mechanisms evoked above, as well as straightforward predications on a sin-
gle facet as controls. This survey should be conducted by native speakers of several lan-
guages in different linguistic groups (minimally Romance, Germanic and East-Asiatic),
and we would like it to be part of collaborative international projects that are being con-
structed as a result of the recent interest in lexical semantics.

4 A Proposal for Linear Types and Terms

Constraints on co-predications can be added to current lexical frameworks as an ex-
ternal mechanism3. However, it is also possible to allow for every possible combination
with a redesign of the formalism. Our proposal incorporates a l -calculus whose terms
are typed with formulae of the second-order linear intuitionistic logic.

Linear LTY n is adapted from our framework in the following way:

– Simple predications are implemented by linear application (heavy is Hj(t).
– Basic morphisms (type transformations) also (selecting the physical facet is done

via La. f a(j).
– Lexical transformations (giving access to specific facets of each term) are imple-

mented as pairs, the first component being an accessor to the facet (a type transfor-
mation, as above) and the second assessing the compatibility of the facet with other
transformations.

3 It is sufficient to keep track of the flexible/rigid characteristic of terms, relaxing the constraints
when appropriate using a set of rules that detect syntactic or discursive features, and to stop
the composition when incompatible co-predications are detected; this is the approach we have
proposed so far, see [Ret14] for a recent synthesis in our LTY n framework.

60

– Additional terms, that modify this compatibility, can be provided by syntax, dis-
course and pragmatics in order to relax the constraints when appropriate.

A detailed account of this proposal is given in [Mer15].

Summary

While the work presented here is still in progress, we are convinced that the issue
of constraints on co-predication is of importance in the establishment of precise natural
language semantics. We hope to gather enough linguistic data in order to characterise
the extent of the phenomena, and have the necessary formal tools to treat it accurately.
Our goal remains to integrate issues of lexical semantics and polysemy directly in the
flow of analysis of natural language, from syntax to semantics and logical representa-
tion.

References

[Ash11] Nicholas Asher. Lexical Meaning in Context: a Web of Words. Cambridge University
Press, March 2011.

[Jac01] Evelyne Jacquey. Ambiguı̈tés lexicales et traitement automatique des langues :
modélisation de la polysémie logique et application aux déverbaux d’action ambigus
en français. PhD thesis, Université de Nancy 2, 2001.

[Mer15] Bruno Mery. Lexical Semantics with Linear Types. In NLCS ’15, the Third Workshop
on Natural Language and Computer Science, Kyoto, Japan, July 2015.

[MMR15] Bruno Mery, Richard Moot, and Christian Retoré. Computing the Semantics of Plu-
rals and Massive Entities using Many-Sorted Types. In To appear in the selected
proceedings of LENLS 11, Lecture Notes in Computer Science. Springer, 2015.

[Pus95] James Pustejovsky. The Generative Lexicon. MIT Press, 1995.
[RCR13] L.-M. Real-Coelho and C. Retoré. A generative montagovian lexicon for polysemous

deverbal nouns. In 4th World Congress and School on Universal Logic – Workshop on
Logic and Linguistics, Rio de Janeiro, 2013.

[Ret14] Christian Retoré. The Montagovian Generative Lexicon Lambda Tyn: a Type Theoret-
ical Framework for Natural Language Semantics. In Ralph Matthes and Aleksy Schu-
bert, editors, 19th International Conference on Types for Proofs and Programs (TYPES
2013), volume 26 of Leibniz International Proceedings in Informatics (LIPIcs), pages
202–229, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

61

Calculating Projections via Type Checking ⋆

Daisuke Bekki1,2,3 and Miho Satoh1

1 Ochanomizu University, Graduate School of Humanities and Sciences ⋆⋆

2 National Institute of Informatics ⋆ ⋆ ⋆

3 CREST, Japan Science and Technology Agency †

1 Projection in Dependent Type Semantics

In recent years, formal semantics in the context of dependent type theory [9],
which originates in Sundholm’s [15] and Ranta’s [12] seminal works, has achieved
gradual progress: Cooper’s type theory with records [4], Luo and Asher’s type
theory with coercive subtyping [7][1], and Martin and Pollard’s [8] dynamic
categorial grammar, among others. Meanwhile, dependent type semantics (DTS
[2][3]) is a compositional framework of natural language semantics whose calcula-
tion of projective contents (namely, presupposition, anaphora, and conventional
implicatures) reduces to type checking in dependent type theory, and whose pre-
supposition binding/anaphora resolution reduces to a proof search (along the
lines of Krahmer and Piwek [5][11] and Mineshima [10]). For example, in (1), for
each pair of sentences, the left side of ⇒ has the right side of ⇒ as its projective
content, and this empirical relation is calculated by type checking in DTS.4

(1) a. Sweden does not cherish its king.
⇒ Sweden has a king.

b. If Sweden is a monarchy, Sweden cherishes its king.
⇒ If Sweden is a monarchy, Sweden has a king.

c. Every monarchy cherishes its king.
⇒ Every monarchy has a king.

d. Sweden, a monarchy, cherishes its king.
⇒ Sweden is a monarchy/has a king.

⋆ Our sincere thanks to Kenichi Asai, Koji Mineshima, Ribeka Tanaka for many helpful
discussions. I also thank the anonymous reviewers of TYTLES for their insightful
comments. Daisuke Bekki is partially supported by JST, CREST.

⋆⋆ 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
⋆ ⋆ ⋆ 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan.

† 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
4 Due to the page limit, the following intriguing issues are not discussed in the abstract:

the intermediate accommodation case in (1c), and comparison between our “proof
theoretic” account and pragmatic accounts of projection, such as the ones in Simons
et al. [13] and Tonhauser et al. [16], among others.

62

Two concepts in DTS that enable the unity are underspecified terms and local
contexts. An underspecified term (notated as @i, where i is a natural number)
is a proof term for a projective content. A local context is a proof term of the
preceding discourse for a sentence whose representation in DTS is a function that
takes a local context and returns a type (that is, a data type for proof terms).
Most underspecified terms are functions that receive a local context as their
argument in the context-passing mechanism of DTS. Then, anaphora resolution
and presupposition binding are formulated as a substitution of underspecified
terms by some proof terms, which are to be found via proof search that is
unified with the inference system for calculating entailments. Different proof
terms correspond to different choices of antecedents.

The whole system is integrated within a standard Montagovian composi-
tional setting; for instance, the sentences in (1) are derived by the lexical items
listed in Figure 15, where presupposition/CI triggers and anaphora introduce an
underspecified term6,7, which yields the semantic representations in (2).

An underspecified term of type A in DTS requires the existence of a proof
term of type A, which means that A (as a proposition) is true regardless of the
truth of the sentence itself; thus, A is projective.

Note that local contexts received by underspecified terms @ in the semantic
representations in (2) vary according to their syntactic configurations. In (2a),
@1 receives the proof term c of its preceding discourse alone. In (2b), the proof
term u of the antecedent part of the implication is also passed to @1. In (2c), a
given proof term is further abstracted. In (2d), @3, which corresponds to the CI
content, does not receive any local context.

Thus, the type of an underspecified term depends on the type of the local
context it receives, but this information is recoverable by type checking. This is
the reason that projective contents can be calculated via type checking in DTS.

2 Type Checking/Inference Algorithm

Despite the above, the type checking/inference algorithm for DTS remains un-
defined in [2]. This is due to two technical problems: 1) the undecidability of
type checking in dependent type theory [14], which DTS is based on, and 2) the
existence of underspecified terms.

5 We adopt the notation

[
x:A
B(x)

]
for the dependent sum type Σx : A.B(x), and write

(x : A) → B(x) for the dependent functional type Πx : A.B.
6 The representation of the word its contains two underspecified terms @i and @j :

the former (i.e. an anaphoric part) takes a local context and returns a pair of some
entity and a proof of its non-humanness. The latter (i.e. possessive presupposition)
takes a local context and returns a triple of some entity, a proof that it belongs to
the nominal category specified by the preceding common noun, and a proof that it
is owned by it.

7 The compositional analysis of the appositive in (2d) is due to Bekki and McCready
[3].

63

PF Syntactic categories Semantic representations
if S/S/S λp.λq.λc. (u:pc) → (q(c, u))
everynom S/(S\NP)/N λn.λp.λc. (x:entity) → (u:nx(c, x)) → (px(c, (x, u)))

aacc (S\NP)\(S\NP/NP)/N λn.λp.λx.λc.

⎡

⎣
y:entity[
v:ny(c, y)
pyx(c, (y, v))

]
⎤

⎦

king N λx.λc.king(x)
cherish S\NP/NP λy.λx.λc.cherish(x, y)

itsacc (S\NP)\(S\NP/NP)/N λn.λp.λx.λc.p

⎛

⎜⎜⎝π1

⎛

⎜⎜⎝@jc ::

⎡

⎢⎢⎣

y:entity⎡

⎣
nyc

have

(
π1

(
@ic ::

[
z:entity
¬human(z)

])
, y

)
⎤

⎦

⎤

⎥⎥⎦

⎞

⎟⎟⎠

⎞

⎟⎟⎠xc

Fig. 1. Lexical items in DTS (where @i and @j are underspecified terms)

(2) a. λc.¬cherish

⎛

⎜⎜⎝sweden, π1

⎛

⎜⎜⎝@1(c) ::

⎡

⎢⎢⎣

y:entity⎡

⎣
king(y)

have

(
π1

(
@2(c) ::

[
z:entity
¬human(z)

])
, y

)
⎤

⎦

⎤

⎥⎥⎦

⎞

⎟⎟⎠

⎞

⎟⎟⎠

b. λc.(u : monarchy(sweden)) → cherish

⎛

⎜⎜⎝sweden, π1

⎛

⎜⎜⎝@1(c, u) ::

⎡

⎢⎢⎣

y:entity⎡

⎣
king(y)

have

(
π1

(
@2(c, u) ::

[
z:entity
¬human(z)

])
, y

)
⎤

⎦

⎤

⎥⎥⎦

⎞

⎟⎟⎠

⎞

⎟⎟⎠

c. λc.(x : entity) → (u : monarchy(x)) → cherish

⎛

⎜⎜⎝x, π1

⎛

⎜⎜⎝@1(c, (x, u)) ::

⎡

⎢⎢⎣

y:entity⎡

⎣
king(y)

have

(
π1

(
@2(c, (x, u)) ::

[
z:entity
¬human(z)

])
, y

)
⎤

⎦

⎤

⎥⎥⎦

⎞

⎟⎟⎠

⎞

⎟⎟⎠

d. λc.

⎡

⎢⎢⎢⎣
cherish

⎛

⎜⎜⎝sweden, π1

⎛

⎜⎜⎝@1(c) ::

⎡

⎢⎢⎣

y:entity⎡

⎣
king(y)

have

(
π1

(
@2(c) ::

[
z:entity
¬human(z)

])
, y

)
⎤

⎦

⎤

⎥⎥⎦

⎞

⎟⎟⎠

⎞

⎟⎟⎠

@3 =monarchy(sweden) @3

⎤

⎥⎥⎥⎦

Fig. 2. Semantic representations for (1)

With regard to 1), the type checking system of the proof assistant Agda8

employs the annotation construction of the form M :: A, which behaves just
like the term M except that its type is specified as A (which turns a checkable
term M into an inferable term), and presents checkable and inferable fragments
of dependent type theory [6]. We adopt this strategy as well.

With regard to 2), what we need for DTS is not a type checker in the genuine
sense of a functional programming language, but, instead, a checker that also
infers a type for an underspecified term that appears in a given term. For this
purpose, the type A of an underspecified term @ should be calculated from its
surroundings, and when the algorithm tries to check whether @ has a type A
within the given surroundings, it is supposed to update the list of judgements
for underspecified terms by adding Γ ⊢ @ : A.

However, the algorithm in [6] requires that the function in a function appli-
cation construction must be an inferable term, which means that the type of
an underspecified term @, in the form of function, must be inferable from the
structure of @ itself. This is not the case.

8 http://wiki.portal.chalmers.se/agda/

64

v ::= n | type | kind | ⊤ | ⊥ | () | (x:v) → v′ |
[
x:v
v′

]
| λx.v | (v, v′) | v → v′ |

[
v
v′

]

n ::= x | c | @i | nv | πin

M↑ ::= x | c | type | (x:M↓) → M↓ | M↑M↓ |
[
x:M↓
M↓

]
| (M↑, M↑) | πiM↑ | M↓ :: M↓ | M↓ → M↓ |

[
M↓
M↓

]
| () | ⊤ | ⊥

M↓ ::= M↑ | λx.M↓ | M↓M↑ | (M↓, M↓) | @i

Fig. 3. Values, neutral terms, inferable and checkable terms

(3) a. (for (2a)(2d)) δ : type, c : δ ⊢ @2 : δ →
[
z:entity
¬human(z)

]

b. (for (2b)) δ : type, c : δ, u : monarchy(sweden) ⊢ @2 :

[
δ
monarchy(sweden)

]
→

[
z:entity
¬human(z)

]

c. (for (2c)) δ : type, c : δ, x : entity, u : monarchy(x) ⊢ @2 :

⎡

⎣
δ[
entity
monarchy(x)

]
⎤

⎦ →
[
z:entity
¬human(z)

]

(4) a. (for (2a)(2d)) δ : type, c : δ ⊢ @1 : δ →

⎡

⎣
y:entity[
king(y)
have(sweden, y)

]
⎤

⎦

b. (for (2b)) δ : type, c : δ ⊢ @1 :

[
δ
monarchy(sweden)

]
→

⎡

⎣
y:entity[
king(y)
have(sweden, y)

]
⎤

⎦

c. (for (2c) δ : type, c : δ, x : entity, u : monarchy(x) ⊢ @1 :

⎡

⎣
δ[
entity
monarchy(x)

]
⎤

⎦ →

⎡

⎣
y:entity[
king(y)
have(x, y)

]
⎤

⎦

(5) a. (for (2d)) δ : type, c : δ ⊢ @3 : monarchy(sweden)

Fig. 4. Projective contents of (2)

The key observation to solve the second problem is that an underspecified
term @ in DTS is always a simply typed function. Therefore, it suffices for the
type of a simply typed function @ to be inferable from the type of a local context
c and the type of the application @(c) (the same situation arises for simply typed
pairs, but we do not discuss the details of that case here). The main contributions
of this work are as follows.

(i) We extend the fragment of dependent type theory given in [6] to include
underspecified terms and dependent sum types, as defined in Figure 3,
where v, n,M↑ and M↓ are the collections of values, neutral terms, inferable
terms, and checkable terms, respectively.

(ii) We extend the type checking/inference rules of [6] as in Figure 5 for the
fragment in Figure 3, where simply typed functions (and simply typed
pairs) are inferable terms.

Note that any annotations that are required for the representation language
of DTS to be confined to the fragment in Figure 3 can be naturally specified
within the lexical representations of presupposition triggers, as shown in Fig-
ure 1.

Note also that the soundness of this algorithm—namely, that every judgment
that is checked as true or inferred in this algorithm is also derivable in the original

65

[L] Γ ⊢σ M :↑ v [L′]

[L] Γ ⊢σ M :↓ v [L′]
(CHK)

(x, v) ∈ Γ

[L] Γ ⊢σ x :↑ v [L]
(VAR)

(c, v) ∈ σ

[L] Γ ⊢σ c :↑ v [L]
(CON)

[L] Γ ⊢σ type :↑ kind [L]
(TYPE)

[L] Γ ⊢σ A :↓ s1 [L′] A ⇓β v [L′] Γ, x : v ⊢σ B :↓ s2 [L′′]

[L] Γ ⊢σ (x:A) → B :↑ s2 [L′′]
(ΠF)

(s1, s2 ∈ {type, kind})

[L] Γ, x : v ⊢σ M :↓ v′ [L′]

[L] Γ ⊢σ λx.M :↓ (x:v) → v′ [L′]
(ΠI)

[L] Γ ⊢σ M :↑ (x:v) → v′ [L′] [L′] Γ ⊢σ N :↓ v [L′′] v′[N/x] ⇓β v′′

[L] Γ ⊢σ MN :↑ v′′ [L′′]
(ΠE)

[L] Γ ⊢σ A :↓ s1 [L′] [L′] Γ ⊢σ B :↓ s2 [L′′]

[L] Γ ⊢σ A → B :↑ s2 [L′′]
(→F)

(s1, s2 ∈ {type, kind})

[L] Γ, x : v ⊢σ M :↓ v′ [L′]

[L] Γ ⊢σ λx.M :↓ v → v′ [L′]
(→I)

[L] Γ ⊢σ N :↑ v [L′] [L′] Γ ⊢σ M :↓ v → v′ [L′′]

[L] Γ ⊢σ MN :↓ v′ [L′′]
(→E)

[L] Γ ⊢σ A :↓ s1 [L′] A ⇓β v [L′] Γ, x : v ⊢σ B :↓ s2 [L′′]

[L] Γ ⊢σ

[
x:A
B

]
:↑ s2 [L′′]

(ΣF)

(s1, s2 ∈ {type, kind})

[L] Γ ⊢σ M :↓ v [L′] v′[M/x] ⇓β v′′ [L′] Γ ⊢σ N :↓ v′′ [L′′]

[L] Γ ⊢σ (M, N) :↓

[
x:v
v′

]
[L′′]

(ΣI)

[L] Γ ⊢σ M :↑

[
x:v
v′

]
[L′]

[L] Γ ⊢σ π1M :↑ v [L′]
(ΣE)

[L] Γ ⊢σ M :↑

[
x:v
v′

]
[L′] v′[π1M/x] ⇓β v′′

[L] Γ ⊢σ π2M :↑ v′′ [L′]
(ΣE)

[L] Γ ⊢σ A :↓ s1 [L′] [L′] Γ ⊢σ B :↓ s2 [L′′]

[L] Γ ⊢σ

[
x:A
B

]
:↑ s2 [L′′]

(→F)

(s1, s2 ∈ {type, kind})

[L] Γ ⊢σ M :↑ v [L′] [L′] Γ ⊢σ N :↑ v′ [L′′]

[L] Γ ⊢σ (M, N) :↑

[
v
v′

]
[L′′]

(∧I)
[L] Γ ⊢σ M :↑

[
v
v′

]
[L′]

[L] Γ ⊢σ π1M :↑ v [L′]
(∧E)

[L] Γ ⊢σ M :↑

[
v
v′

]
[L′]

[L] Γ ⊢σ π2M :↑ v′ [L′]
(∧E)

[L] Γ ⊢σ A :↓ s [L′] A ⇓β v [L′] Γ ⊢σ M :↓ v [L′′]

[L] Γ ⊢σ M :: A :↑ v [L′′]
(ANN)

(s ∈ {type, kind})

[L] Γ ⊢σ ⊤ :↑ type [L]
(⊤F)

[L] Γ ⊢σ () :↑ ⊤ [L]
(⊤I)

[L] Γ ⊢σ ⊥ :↑ type [L]
(⊥F)

[L] Γ ⊢σ @i :↓ v [L, (Γ ⊢σ @i : v)]
(ASP)

Fig. 5. Type checking/inference rules for DTS

typing rule of dependent type theory—should be proven by a straightforward
induction on constructions.

3 Implementation

We implemented the algorithm in Figure 5, using the functional programming
language Haskell. The program includes two main functions: typeInfer and
typeCheck. The function typeInfer 1) takes a global context Γ and a term M ,
and returns a type A such that Γ ⊢ M : A; and 2) updates the current list [L] of
judgments for underspecified terms. The function typeCheck 1) takes a global
context Γ , a term M , and a type A, and returns a Boolean value indicating

66

whether Γ ⊢ M : A holds; and 2) updates the current list [L] of judgments for
underspecified terms.

4 Calculating Projective Contents

Given terms (2) as inputs, our type checking program checks whether it has
a type δ → type within a global context δ : type, c : δ (δ is a propositional
content of its preceding discourse and c is its proof term), and updates the
list of judgments for underspecified terms so as to contain those in Figure 4.
The lists (3) and (4) are, respectively, for @2 and @1, which correspond to the
anaphoric part and the possessive presupposition part of its. The list (5) is for
the appositive CI in (2d).

The judgments in (4) are the ones obtained after anaphora resolution for
@2 has been executed: the output of the program contains the occurrence of
@2 within the types for @1 (this means that the possessive presuppositions
in (1) contain the anaphora antecedents). The proof terms corresponding to
the intended reading in (1) (i.e. it refers to Sweden in (1a)(1b)(1d), and every
monarchy in (1c)) are as follows:

@2 = λc.(sweden, n(sweden)m)
@2 = λc.(π1π2(c), n(π1π2(c))(π2π2(c))),

where m is a proof term for monarchy(sweden) (Sweden is a monarchy), and n
is a proof term for (x : entity) → monarchy(x) → ¬human(x) (Monarchy is
not a human). Then, (4) is obtained by substituting @2 with these proof terms.

The judgments for @1 in (4) correctly represent the projective contents in
(1): the type of (4a) states that the preceding discourse entails that Sweden
has a king (which is a projective content of (1a)). The type of (4b) states that
the preceding discourse entails that, if Sweden is a monarchy, then Sweden has
a king. (This is a projective content of (1b). The type of (4c) states that the
preceding discourse entails that every monarchy has a king (which is a projective
content of (1c).) The type of (5) is the projected CI content in (1d), stating that
Sweden is a monarchy.

5 Conclusion

We show that the projective contents of (1) are automatically calculated from
the semantic representations via the type checking/inference algorithm in Fig-
ure 5. In future work, we plan to connect the input of this program to a robust
CCG parser, or, independently, to connect the output of this program to a theo-
rem prover, aiming at establishing a pipeline from sentences to their entailment
relation, including projective contents such as presuppositions, anaphora and
conventional implicatures.

67

References

1. Asher, N., Luo, Z.: Formalisation of coercions in lexical semantics. In: Sinn und
Bedeutung 17. pp. 63–80. Paris (2012)

2. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S.V. (eds.) Logical Aspects of Computational Linguistics (8th international con-
ference, LACL2014, Toulouse, France, June 2014 Proceedings), LNCS 8535. pp.
14–29. Springer, Heiderburg, Toulouse (2014)

3. Bekki, D., McCready, E.: Ci via dts. In: LENLS11. pp. 110–123. Tokyo (2014)
4. Cooper, R.: Austinian truth, attitudes and type theory. Research on Language and

Computation 3, 333–362 (2005)
5. Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt,

H., Muskens, R. (eds.) Computing Meanings: Current Issues in Computational
Semantics. Studies in Linguistics Philosophy Series, Kluwer Academic Publishers,
Dordrecht (1999)

6. Löh, A., McBride, C., Swierstra, W.: A tutorial implementation of a dependently
typed lambda calculus. Fundamenta Informaticae - Dependently Typed Program-
ming 102(2), 177–207 (2010)

7. Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) Logical
Aspects of Computational Linguistics, 7th International Conference, LACL2012,
Nantes, France, July 2012 Proceedings, pp. 173–185. Springer (2012)

8. Martin, S., Pollard, C.J.: A dynamic categorial grammar. In: Formal Grammar 19,
LNCS 8612 (2014)

9. Martin-Löf, P.: Intuitionistic Type Theory, vol. 17. Italy: Bibliopolis, Naples (1984),
sambin, Giovanni (ed.)

10. Mineshima, K.: A presuppositional analysis of definite descriptions in proof theory.
In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007 LNAI, vol.
4914, pp. 214–227. Springer, Heidelberg (2008)

11. Piwek, P., Krahmer, E.: Presuppositions in context: Constructing bridges. In: Bon-
zon, P., Cavalcanti, M., Nossum, R. (eds.) Formal Aspects of Context. Applied
Logic Series, Kluwer Academic Publishers, Dordrecht (2000)

12. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)
13. Simons, M., Tonhauser, J., Beaver, D.I., Roberts, C.: What projects and why. In:

SALT 20. pp. 309–327 (2010)
14. Sørensen, M., Urzyczyn, P.: Lectures on the Curry–Howard Isomorphism. Studies

in Logic and the Foundation of Mathematics, Elsevier (2006)
15. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. III, pp. 471–506. Kluwer, Reidel (1986)
16. Tonhauser, J., Beaver, D.I., Roberts, C., Simons, M.: Towards a taxonomy of pro-

jective content. Language 89(1) (2013)

68

Quantification in Frame Semantics
with Hybrid Logic�

Laura Kallmeyer1, Timm Lichte1, Rainer Osswald1, Sylvain Pogodalla1,2, and
Christian Wurm1

1 Heinrich Heine Universität, Düsseldorf
{laura.kallmeyer,timm.lichte,rainer.osswald,christian.wurm}

@phil.uni-duesseldorf.de

2 INRIA, Villers-lès-Nancy, F-54600, France
Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France

CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France
sylvain.pogodalla@inria.fr

Abstract. This paper aims at integrating logical operators into frame-
based semantics. Frames are semantic graphs that allow to capture lex-
ical meaning in a fine-grained way but that do not come with a natu-
ral way to integrate logical operators such as quantifiers. The approach
we propose starts from the observation that modal logic is a powerful
tool for describing relational structures, hence frames. We use its hybrid
logic extension in order to incorporate quantification and thereby allow
for inference and reasoning. We develop a type theoretic compositional
semantics using this approach, formulated within Abstract Categorial
Grammar.

1 Frames and Lexical Semantics

Frames emerged as a representation format of conceptual and lexical knowl-
edge [10,4,15]. They are commonly presented as semantic graphs with labelled
nodes and edges, such as the one in Fig. 1, where nodes correspond to en-
tities (individuals, events, . . .) and edges correspond to (functional or non-
functional) relations between these entities. In Fig. 1 all relations except part-of

are meant to be functional. Frames can be formalized as extended typed feature
structures [18,12,14], but a reformulation in first order logic is also straightfor-
ward [12]. This conception of frames is therefore not to be confused with the
somewhat simpler FrameNet frames (see [17]).

Recent work has addressed the composition of lexical frames on the senten-
tial level by means of an explicit syntax-semantics interface [12]. However, the
integration of logical operators remains a desideratum. While [13] presents an
experiment with a seamless intergration of “quantifier frames”, [16] suggests to
keep frames and logical operators separate. We follow the latter general approach
in this paper.
� This work was supported by the INRIA sabbatical program and by the CRC 991

“The Structure of Representations in Language, Cognition, and Science” funded by
the German Research Foundation (DFG).

69

2 L. Kallmeyer, T. Lichte, R. Osswald, S. Pogodalla, C. Wurm

2 Hybrid Logic and Semantic Frames

2.1 Hybrid Logic

With the notations of [2], Rel is a set of relational symbols, Prop a set of
propositional variables, Nom a set of nominals, and Svar a set of state variables
(Stat = Nom ∪ Svar). The language of formulas is Forms ∶∶= � � p � s � ¬� � �1 ∧
�2 � �R�� � E� � @

s

� � ↓x.� � ∃x.� where p ∈ Prop, s ∈ Stat, R ∈ Rel and �,�1,�2 ∈
Forms. A model M is a triple �M, (RM)

R∈Rel, V � such that M is a non-empty set,
each R

M is a binary relation on M , and the valuation V ∶ Prop∪Nom�→ �(M)
is such that if i ∈ Nom then V (i) is a singleton. An assignment g is a mapping
g ∶ Svar �→M . For an assignment g, gx

m

is an assignment that differs from g at
most on x and g

x

m

(x) = m. For s ∈ Stat, we also define [s]M,g to be the only m

such that V (s) = {m} if s ∈ Nom and [s]M,g = g(s) if s ∈ Svar.
Let M be a model, w ∈ M , and g an assignment for M. The satisfaction

relation is defined as follows:

M, g,w � �
M, g,w � s iff w = [s]M,g for s ∈ Stat
M, g,w � ¬� iff M, g,w �� �
M, g,w � �1 ∧ �2 iff M, g,w � �1 and M, g,w � �2
M, g,w � �R�� iff there is a w

′ ∈M such that R

M(w,w′) and M, g,w

′ � �
M, g,w � p iff w ∈ V (p) for p ∈ Prop
M, g,w � @

s

� iff M, g, [s]M,g � � for s ∈ Stat
M, g,w �↓x.� iff M, g

x

w

,w � �
M, g,w � ∃x.� iff there is a w

′ ∈M such that M, g

x

w

′ , w � �
M, g,w � E� iff there is a w

′ ∈M such that M, g,w

′ � �
We also define

A

� ≡ ¬ E(¬�) (i.e., M, g,w � A

� iff ∀w′ M, g,w

′ � �)3 and � �⇒
 ≡ (¬�) ∨ . A formula � is:

– satisfiable if there is a model M, and assignment g on M, and a state w ∈M
such that M, g,w � �

– globally true in a model M under an assignment g, i.e., M, g,w � � for all
w ∈M . We write M, g � �

2.2 Feature Structures

In [12], semantic frames are introduced as base-labelled feature structure with

types and relations. This definition extends the standard definition of feature
structures in two respects: In addition to features, proper relations between nodes
can be expressed. Moreover, it is not required that every node is accessible from
3 According to the satisfaction relation, ↓ and ∃ bind state variables without changing

the current evaluation state. [7] shows that they define a distinct hierarchy from the
one we get using E(or some other binder ⌃). It also shows that the fragment using
operators from the two hierarchies is as expressive as the most expressive fragment.

70

Quantification in Frame Semantics with Hybrid Logic 3

l0

motion

l1

man

path

walking

l2

house

agent

mover

path

manner

endp at-region

part-of

goal

Fig. 1. Frame for the meaning of the man walked to the house (adapted from [12])

a single root node via a feature path; instead, it is required that every node is
accessible from one of the base-labelled nodes. Semantic frames defined in this
way can be seen as finite first-order structures which conform to a signature
consisting of a set Label ∪ Type of unary relation symbols and a set Feat ∪ Rel
of binary relation symbols subject to the constraints that the members of Label
denote singletons, the members of Feat denote functional relations, and that
the above accessibility condition holds. In the example frame of Fig. 1, symbols
inside nodes (l0, l1, . . .) indicate base labels, symbols attached to nodes (man,
motion, . . .) belong to Type, members of Feat are marked by small caps (agent,
endp, . . .), and part-of is the only member of Rel occurring in the frame.

Structures of this kind can easily be turned into Kripke structures by treating
the interpretation of the members of Label ∪Type by a separate valuation func-
tion. Semantic frames, or feature structures, provide thus a natural application
domain for modal languages and, in particular, for hybrid extensions because
of the need to cope with node labels and feature path re-entrancies [5]. Under
the formal set-up of Section 2.1, Type corresponds to Prop, Label corresponds
to Nom, and Feat is subsumed under Rel. (The functionality of the members of
Feat must be enforced separately.) The semantic frame of Fig. 1 is a model that
satisfies the formula (1) at the element named by l0.

(1) l0 ∧motion ∧ �agent�(l1 ∧man) ∧ �mover�l1 ∧ �goal�(l2 ∧ house)∧�manner�walking ∧ (∃v w.�path�(path ∧ �endp�v)∧
@

l2(�at-region�w) ∧@
v

(�part-of �w))
The logical framework of [12] does not provide means for explicit quantification.
As a consequence, the referential entities of the domain of discourse are implicitly
treated as definite, which is reflected by the crucial role of nominals in (1).4 In

4 Hybrid logic with nominals but without quantification over states also allows [3] to
describe semantic dependency graphs. Natural language quantification is encoded
using restr and body relations. However, it is not clear how to compute relations
between these representations (e.g., how to check that John kisses Mary holds in
case every man kisses Mary holds).

71

4 L. Kallmeyer, T. Lichte, R. Osswald, S. Pogodalla, C. Wurm

the following, we will show how this limitation can be overcome by employing
hybrid languages.

3 Type-Theoretic Semantics with Frames

We now provide the type-theoretic syntax-semantics interface allowing for a com-
positional building of the meanings. We describe it using the ACG [9] framework.
As we are concerned in this article with semantic modeling and quantification
rather than with parsing, we use higher-order types for quantified noun-phrases.

The models we are considering are semantic frames instead of arbitrary
first-order models. So we first present some models in which we consider the
sentences (2a–4a). When the model is the frame of Fig. 2(a), we expect (2a) to
be true as there is a kissing event with agent and theme attributes linking to
persons named (linked with the named attribute) John and Mary resp. (3a) is
expected to be false, as well as (4a) with the object wide scope reading as there
is a person named Paul (resp. named Peter) who is agent of a single kissing

event whose theme is a person named Sue (resp. Mary). On the other hand,
the subject wide scope reading of (4a) is expected to be true. (5a) shows how
state storing with the ↓ operator correctly interacts with the @ operator used in
specifying node sharing (for instance that the state linked with a goal relation
in the verb semantic recipe has to be specified by the PP). This sentence is ex-
pected to be true (both readings) in the model given by the frame of Fig. 2(b).

(2) a. John kisses Mary

b. E(kissing ∧ �agent�(person ∧ �named�John)∧�theme�(person ∧ �named�Mary))
(3) a. Every man kisses Mary

b.

A(↓i.man �⇒ E(kissing ∧ �agent�i∧�theme�(person ∧ �named�Mary)))
(4) a. Every man kisses some woman

b.

A(↓i.man �⇒ E(↓i′.woman ∧ E(kissing ∧ �agent�i ∧ �theme�i′)))
c. E(↓i.woman ∧ A(↓i′.man �⇒ E(kissing ∧ �agent�i′ ∧ �theme�i)))

(5) a. Every man walked to some house

b. E(↓i.house ∧ (A(↓i′.man �⇒(∃a g. E(motion ∧ �agent�a ∧ �mover�a ∧ �goal�g∧�path�path ∧ �manner�walking ∧@
a

i

′∧(∃r v w.event ∧ �path�(path ∧ �endp�v)∧
@

r

(�at-region�w) ∧@
v

(�part-of �w) ∧@
r

(g ∧ i)))))))
c.

A(↓i.man �⇒ (E(↓i′.house∧(∃a g. E(motion ∧ �agent�a ∧ �mover�a ∧ �goal�g∧�path�path ∧ �manner�walking ∧@
a

i∧(∃r v w.event ∧ �path�(path ∧ �endp�v)∧
@

r

(�at-region�w) ∧@
v

(�part-of �w) ∧@
r

(g ∧ i′)))))))

72

Quantification in Frame Semantics with Hybrid Logic 5

a

g

e

n

t

n

a

m

e

d

t

h

e

m

e

n

a

m

e

d

agent named

t

h

e

m

e

a

g

e

n

t

theme

t

h

e

m

e

kissing

person

John

person

Mary

kissing person

Peter

kissing person

Sue

kissing

person

Paul

a
g
e
n
t

n
a
m
e
d

n
a
m
e
d

(a) Quantification

endp

p

a

t

h

m

a

n

n

e

r

a

t

-

r

e

g

i

o

n

goal

a

c

t

o

r

m

o

v

e

r

n

a

m

e

d

path

m

a

n

n

e

r

m

o

v

e

r

a

c

t

o

r

g

o

a

l

named

motion

path

v

walking

house

w

person

John

motion

v

path

walking

person peter

p
a
r
t
-
o
f

p

a

r

t

-

o

f

e
n
d
p

(b) Quantification and node sharing

Fig. 2. Frame samples

As in [12], the syntax-semantics interface we propose builds a frame descrip-

tion out of a sentence in natural language. This frame description is a logical
formula that is checked against the possible models, and the sentence is true
w.r.t. a model M in case this model satisfies the logical formula. More precisely,
given a sentence s and its semantic representation JsK, we say that s is true

iff for all assignments g, M, g � JsK (i.e., JsK is globally true in M under any
assignment).

We use the following syntactic types: NP , S , N , and PP and the following
syntactic type assignments:

John,Mary ∶ NP kisses ∶ NP → NP → S to, into ∶ NP → PP

man,woman,house ∶ N every, some ∶ N → (NP → S)→ S walk ∶ PP → NP → S

73

6 L. Kallmeyer, T. Lichte, R. Osswald, S. Pogodalla, C. Wurm

event , kissing ,motion,person,John,Mary , . . . ∶ t @ ∶ t→ t→ t∧ ∶ t→ t→ t �⇒ ∶ t→ t→ t E,

A∶ t→ t ↓,∃ ∶ (t→ t)→ t

Table 1. Constant terms of the semantic language

S ,NP ,N ∶= t PP ∶= t→ t

John ∶= John Mary ∶= Mary

man ∶= man woman ∶= woman

house ∶= house

some ∶= �P Q. E(↓i.P ∧ (Q i)) every ∶= �P Q.

A(↓i.P �⇒ (Q i))
kisses ∶= �o s. E(kissing ∧ �agent�s ∧ �theme�o)
walks ∶= �pp s.∃a g. E(motion ∧ �agent�a ∧ �mover�a ∧ �goal�g∧�path�path ∧ �manner�walking ∧@as ∧ (pp g))
to ∶= �n g.∃r v w.event ∧ �path�(path ∧ �endp�v)∧

@r�at-region�w ∧@v�part-of �w ∧@r(g ∧ n)
into ∶= �n g.∃r v w.event ∧ �path�(path ∧ �endp�v)∧

@r�in-region�w ∧@v�part-of �w ∧@r(g ∧ n)
Table 2. Semantic interpretation of constants

Table 1 shows the semantic constants we use, including logical operators and
quantifiers. We follow [12] in the semantics and meaning decomposition of loco-
motion verbs.

Then we can use the semantic interpretation given in Table 2. For sake of
conciseness and explanatory purposes, we use a single type t to denote modal
formulas. This is not completely satisfactory as we can build terms that are not
in Forms. (In principle, any proposition could specify the @ ∶ t→ t→ t operator.
But in our lexicon example, we of course restrict the first parameter to state
variables.) A more faithful encoding could use the standard parametrization
of the propositions with a s type for states, or use a dedicated hybrid type-
theory [1]. Then the following equalities hold, where t2b is the term in (2b), t3b
is the term in (3b), etc.:

Jkisses Mary JohnK = t2b(6)
J(every man) (�x.kisses Mary x)K = t3b(7)

J(every man) (�x.(some woman) (�y.kisses y x))K = t4b(8)
J(some woman) (�y.(every man) (�x.kisses y x))K = t4c(9)

In (10) and (11), we have an interaction of the storing for quantification and
path equalities compositionally deriving from the verb and the preposition. In
the verb semantics, the path equalities specify that the mover and the agent

attributes of the event are the same, and that the information provided by
the pp argument should hold for the goal g. In its semantics, the preposition
contributes on the one hand to the main event (as the event proposition is
evaluated at the current state) and on the other hand by specifying that the g

state (meant to be the target node of the verb that the proposition modifies,
here the target of the goal attribute) should be identified to the n argument

74

Quantification in Frame Semantics with Hybrid Logic 7

(the noun phrase which is argument of the preposition).

J(every man) (�x.(some house)(�y.walked (to y) x))K = t5b(10)
J(some house)(�y.(every man) (�x.walked (to y) x))K = t5c(11)

4 Conclusion and Perspectives

We used hybrid logic as a means to integrate logical operators with frame seman-
tics. A type theoretic semantics was presented that shows how to compositionally
derive different quantifier scope readings. This approach has much in common
with [16], which combines data semantics with frame semantics. The exact re-
lation between the two approaches needs to be spelled out in future work. We
see applications of our approach of using hybrid logic for frame semantics in the
context of various formalisms; we plan in particular to pursue this approach in
the framework of Lexicalized Tree Adjoining Grammars (LTAG) [12].

We also think that the compositional account we presented allows us to
consider an embedding within a underspecified representation language. The
object language (in the sense of [8]) would be the hybrid logic language instead
of the usual first-order logic language, following a standard modeling of scope
ambiguity in LTAG.

Finally, we plan to investigate the computational properties of the framework
we propose with respect to the hybrid inferential systems [6] and the specific
properties induced by the frame models we consider, typically the functionality
of the attribute relations [19].

References

1. Areces, C., Blackburn, P., Huertas, A., Manzano, M.: Completeness in hy-
brid type theory. Journal of Philosophical Logic 43(2-3), 209–238 (2014), doi:
10.1007/s10992-012-9260-4

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Benthem, J.V., Wolter, F.
(eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3,
chap. 14, pp. 821–868. Elsevier (2007), doi: 10.1016/S1570-2464(07)80017-6

3. Baldridge, J., Kruijff, G.J.: Coupling CCG and hybrid logic dependency semantics.
In: Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics. pp. 319–326. Association for Computational Linguistics, Philadelphia,
Pennsylvania, USA (July 2002), doi: 10.3115/1073083.1073137

4. Barsalou, L.: Frames, concepts, and conceptual fields. In: Lehrer, A., Kittey, E.F.
(eds.) Frames, fields, and contrasts: New essays in semantic and lexical organiza-
tion, pp. 21–74. Lawrence Erlbaum Associates, Hillsdale (1992)

5. Blackburn, P.: Modal logic and attribute value structures. In: de Rijke, M. (ed.) Di-
amonds and Defaults, Synthese Library, vol. 229, pp. 19–65. Springer Netherlands
(1993), doi: 10.1007/978-94-015-8242-1_2

6. Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fer-
müller, C. (eds.) Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Lecture Notes in Computer Science, vol. 2381, pp. 38–52. Springer Berlin
Heidelberg (2002), doi: 10.1007/3-540-45616-3_4

75

8 L. Kallmeyer, T. Lichte, R. Osswald, S. Pogodalla, C. Wurm

7. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4(3), 251–272 (1995), doi: 10.1007/BF01049415

8. Bos, J.: Predicate logic unplugged. In: Proceedings of the Tenth Amsterdam Col-
loquium (1995), http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf

9. de Groote, P.: Towards Abstract Categorial Grammars. In: Association for Com-
putational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference. pp. 148–155 (2001), acl anthology: P01-
1033

10. Fillmore, C.J.: The case for case reopened. In: Cole, P., Sadock, J.M. (eds.) Gram-
matical Relations, Syntax and Semantics, vol. 8, pp. 59–81. Academic Press, New
York (1977)

11. Gamerschlag, T., Gerland, D., Osswald, R., Petersen, W. (eds.): Frames and Con-
cept Types, Studies in Linguistics and Philosophy, vol. 94. Springer International
Publishing (2014), doi: 10.1007/978-3-319-01541-5

12. Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexical-
ized tree adjoining grammars. Journal of Language Modelling 1(2), 267–330 (2013),
doi: 10.15398/jlm.v1i2.61

13. Kallmeyer, L., Richter, F.: Quantifiers in frame semantics. In: Morrill, G., Muskens,
R., Osswald, R., Richter, F. (eds.) Formal Grammar, pp. 69–85. No. 8612 in Lecture
Notes in Computer Science, Springer (2014), doi: 10.1007/978-3-662-44121-3_5

14. Lichte, T., Petitjean, S.: Implementing semantic frames as typed feature structures
with XMG. Journal of Language Modelling (to appear)

15. Löbner, S.: Evidence for frames from human language. In: Gamerschlag et al. [11],
pp. 23–67, doi: 10.1007/978-3-319-01541-5_2

16. Muskens, R.: Data semantics and linguistic semantics. In: Aloni, M., Franke,
M., Roelofsen, F. (eds.) The dynamic, inquisitive, and visionary life of �, ?�,
and ��, chap. 24, pp. 175–183. Pumbo.nl (2013), http://www.illc.uva.nl/

Festschrift-JMF/papers/23_Muskens.pdf

17. Osswald, R., Van Valin, Jr., R.D.: Framenet, frame structure, and the syntax-
semantics interface. In: Gamerschlag et al. [11], chap. 6, pp. 125–156, doi:
10.1007/978-3-319-01541-5_6

18. Petersen, W.: Representation of concepts as frames. The Baltic International Year-
book of Cognition, Logic and Communication 2, 151–170 (2007), http://user.
phil-fak.uni-duesseldorf.de/~petersen/paper/Petersen2007_proof.pdf

19. Schneider, T.: The Complexity of Hybrid Logics over Restricted Classes of Frames.
Ph.D. thesis, University of Jena, Germany (2007), http://www.cs.man.ac.uk/

%7Eschneidt/publ/sch07_phd.pdf

76

An Overview on Portuguese Nominalizations

Livy Real1 and Alexandre Rademaker2

1 IBM Research (Brazil)
2 IBM Research - FGV/EMAp (Brazil)

Abstract. We discuss nominalizations in Portuguese formed by the suf-
fix -ura. We have done a corpus-based description of the behavior of
these nominals and proposed a type ontology to categorize them. In or-
der to o↵er a rich description, we also tested all words formed by -ura
in co-predication contexts to check if their types could be co-predicated.
Although our main goal was to produce a corpus-based description on
those nominals, we have found that may be the frequency of use of a
given word has a special role on the acceptability of co-predication be-
tween di↵erent senses of a nominalization.

1 Introduction

If we consider the last decades of formal linguistic studies, the behavior of nom-
inalizations is a very recurring topic, specially because it imposes challenges to
lexical semantics theories, knowledge representation systems, and other areas of
formalism.

Generally, studies on nominalizations consider only prototypical nominals
(as construction, destruction and translation) in the search for generalizations
on their behavior or even while deciding what is the best way to represent (or
to understand) them. This research intents to look extensively into one specific
kind of nominalization: deverbal nouns formed by su�x -ura in Brazilian Por-
tuguese (henceforth BP) as abertura ‘opening’, assinatura ‘signing/signature’
and brancura ‘whiteness’. We hope to reach an enriched description of a rele-
vant fragment of deverbal nominals in BP, considering all possible senses of each
noun and possible co-predications between them.

2 Our motivations

We focus on BP because it is not a very mainstream language used in linguistic
studies, even though it has similarities with most neo-Latin languages. The choice
of the su�x -ura was made for two reasons: we already know [5] how this su�x
morphologically works and, more than that, the discussion of their behavior
in BP probably could be used to understand other su�xes in other neo-Latin
languages (as -ura in Catalan or -ure in French) as they have similar su�xes
working on deverbal nominalization processing.

The decision to work on nominalizations formed by a specific su�x was be-
cause we want to do a corpus-based overview of one fragment of nominalizations

77

in order to include action nominals — deverbal nouns which carry eventive read-
ings, cf. [9] — and also non-prototypical nominalizations, that is, nominalizations
whose main value is not an eventive or processual meaning.

We hope that our investigation on -ura nominals can hint us on the behavior
of similar nominalizations in other languages, since -ura is a morpheme which has
at least eight meanings cataloged by literature on Portuguese ([8, 7, 4]), which
include eventive, resultative, locative and collective readings, just as other well-
known morphemes like -ung in German and -age in French. In those lines, we
expect that working on these nominal will get new perceptions on what is going
on nominalizations.

3 Methodology

To produce an empirical description of this data, we have chosen to work on a
corpus-based analysis. All of our descriptions are based on written corpora and
the test sentences were checked in a given context with at least three speakers
not related to linguistics studies. We believe that it is important to enlarge the
discussion on nominalizations since many researches take into account just very
well known and simple sentences and constructions.

All the nouns used in the research came from OpenWordNet-PT([3], http://
www.logics.emap.fgv.br/wn/). We extracted from the list all nominals finished
by the graphic form “ura” (442 words) and manually selected the nouns formed
by the su�x -ura (150 words). It is important to note that, as we extracted
synsets from OpenWordnet-PT, some words were counted more than once, as
they appear in more than one synset.

Then, to categorize the selected nominals, we have checked dictionaries (Porto’s
Dictionaries (http://www.infopedia.pt), Caldas Aulete Dictionary (http://
www.aulete.com.br) and Houaiss Dicionary (http://www.houaiss.uol.com.
br) for all the possible meanings to each noun in our list. We also checked the
presence of each noun on Corpus Brasileiro (developed by Tony Berber Sardinha
alii) trough AC/DC tool ([2], http://www.linguateca.pt/ACDC) which has
more than 1 billion words extracted from various textual genders. Google engine
was used when Corpus Brasileiro was not enough.

In addition we have relied in recent literature on nominalizations and BP to
capture some more insight about the typology those nouns could assume. Almost
all the sentences analyzed in this work comes from Corpus Brasileiro and some
of them were found on Google search engine in di↵erent trustworthy websites.

4 Analysis

Earlier studies have shown that eventive nominalizations in Portuguese can as-
sume at least the following readings (cf. [4]): event, result, physical result, resul-
tative state, abstract result, locative and collective.

Following this categorization, we checked on dictionaries and confirmed on
corpora the possible meanings to each noun from our list. From that analysis,

78

we found that nominals formed by -ura can have the following readings: event,
result, physical result, locative, collective, means, property, instrument, a given
portion, rest, function, duration of a function, science/art, as shown by the
examples bellow.

Event Deduziu-se que a mãe lhe deu muita chicotada a cada travessura. ‘It
was deduced that the mother gave him a lot of whiplashes at every trick

(every time he misbehaved).’
Result A análise do material revelou que, 30 dias após a microenxertia, ocorreu

a soldadura parcial dos microenxertos. ‘The analysis of the material showed
that, 30 days after micrografting, occurred the partial welding of micro-
grafts.’

Physical Result A varredura mostra somente picos, como pode ser visto na
Figura 8, onde o espelho de simetria de 0 é mostrado. ‘The scan shows only
peaks, as it can be seen in Figure 8, where the symmetry mirror of 0 is
shown.’

Locative Meu certificado está na pasta com meus documentos na prefeitura,
mas o prefeito não o reconheceu. ‘My certificate is the folder with my docu-
ments in the city hall, but the Mayor did not recognized it.’

Collective U�zi tem o mais completo testemunho do século XV, um momento
decisivo da história da arte, marcado pela passagem da tradição bizantina
medieval para a pintura do Renascimento. ‘U�zi has the most complete
reference of XV Century, a decisive moment of Art History, marked by the
passage of Medieval Bizantine tradition to the Renaissance painting’

Means A narrativa é um cavalo: um meio de transporte cujo tipo de andadura,
trote ou galope, depende do percurso a ser executado. ‘The narrative is a
horse: a means of transportation which type of gait, trot or gallop, depends
on the route to run.’

Property Possui cerca de 48% de umidade e 24% de gordura. ‘It has around
48% of umidity and 24% of fat.’

Instrument Caricaturizada, a gostosona desfila engravatada, com chapéu, abotoadura
e tudo mais. ‘Caricatured, the hot girl parades with tie, hat, cu✏ink and
everything.’

A given portion Assim verificamos que os 587 pés que aquelas dez propriedades
dos Calça Pereira comportam podiam render uma mdia de 23,5 moeduras,
isto , uns 940 alqueires de azeite, que valeriam, ao preço de 60 reais o alqueire,
5640 reais. ‘Thus we have verified that the 587 feet of those ten properties
from Cala Pereira family include could yield an average of 23.5 milling por-

tions, that is, some 940 acres of olive, which would be worth at the price of
60 reais per bushel, 5640 reais.’

Rest O arroz-caril, confeccionado com especiarias e moedura de coco, era car-
acteŕıstico de Goa e estava muito difundido em Moçambique.3 ‘The rice-
curry, made with spices and coconut grinding, was characteristic of Goa
and was widespread in Mozambique.’

3 http://www.scielo.br/pdf/hcsm/v21n2/0104-5970-hcsm-21-2-0609.pdf

79

Function Mario renunciou à magistratura em novembro. ‘Mario resigned to
the magistracy in November.’

Duration of a function Para a legislatura de 1995-1998, os dados provêm do
Brasil. ‘For the legislative period 1995-1998, the data comes from Brazil.’

Science/Art A Itália exprimiu-se, durante certos séculos, pela arquitetura,

escultura, pintura. ‘Italy expressed herself, during some centuries, by the
architecture, sculpture, painting.’

We also cataloged all the lexicalized values, which are not closely related
to the verb base or that cannot be found recurrently in the lexicon. From our
150 nouns list, 33 presented a lexicalized and idiosyncratic meaning. It is worth
knowing that two possible types of action nominal formed by -ura are not pos-
sible (or frequent) in BP: resultative state and abstract result.

Within this categorization, we looked for possible generalizations on the be-
havior of those nominals and also specific cases that can confirm (or not) the
patterns brought by the literature.

After this categorization, we searched for co-predications within the nouns
on Corpus Brasiliero and Google. For our surprise, we did not find any co-
predication among the nouns that are not used frequently in BP, we only found
co-predications among very commonly used nouns (as assinatura “signature/signing”
and abertura “opening”).

After that, we produced some sentences combining di↵erent types of nouns
of frequent and not so frequent use to discover what kind, if any kind, of co-
predication would be possible. We have tested all these sentences in context with
at least three native speakers of BP with no knowledge of linguistic study theo-
ries. Surprisingly again, all the words which are not very commonly used in BP
do not accept co-predication in any situation, even when the tested types were
‘result’ and ‘event’:

Apesar de ter durado uma hora, a abertura foi proveitosa a todos os alunos.
‘Although it lasted one hour, the opening was beneficial to all students.’

*Apesar de ter durado uma hora, a brochura deixou os livros lindos.
‘Although it lasted one hour, the brochure left the books beautiful.’

*A mordedura foi rápida, mas deixou uma cicatriz.
‘The bite was quick, but left a scar.’

The examples above show co-predication attempts with the words abertura,
brochura and mordedura which have a very di↵erent number of occurrence in
Corpus Brasileiro: abertura occurs 70699 times, brochura appears 371 times and
mordedura has only 120 tokens. Therefore, it seems that the frequency of use of a
given noun has some influence on its co-predication acceptability, since abertura

and mordedura have the exact same type structure and their verb bases, abrir
‘open’ and morder ‘bite’, have a very similar behavior.

80

From all this, the generalizations we could get are related to the type struc-
ture assumed:

1. A nominal form that has the type ‘rest’ belongs to the type ‘event’ (as
lavadura ‘washing’ and varredura ‘scan’), but co-predications between them are
impossible;

2. A noun that belongs to the type ‘a given portion’ (as moedura ‘milling’ and
semeadura ‘sowing’) has always the following types: ‘event’, ‘result’, ‘event.result’,
but any co-predication with ‘a given portion’ is blocked;

3. Every noun that belongs to ‘duration of a function’ also holds the same
‘function’ type;

4. Nouns that belong to the type ‘means’ do not belong in any other type;
5. All lexicalized senses can not be co-predicated with any other type.

5 Conclusions and future work

From this small experiment, we can conclude that some nominalizations have a
very strict behavior and some others are much more flexible. It seems that an-
other linguistic phenomena could have an influence on this flexibility: the (high
or low) frequency that a word is used may be the key to its co-predication ac-
ceptability. Besides, our generalizations above are about how particular nominals
behave in BP. Perhaps our main contribution with this small analysis is to call
the attention to the fact that ordinary nominalizations (highly used words) have
the tendency to allow co-predication between their types. Meanwhile uncommon
words, with the same type structure and the very same morphological formation,
do not.

For this note, we do not present a formalization of our results, but, as argued
by [4], it seems that a tool like Montagovian Generative Lexicon is able to deal
with this very idiosyncratic behavior of nominalizations formed by -ura, as it
has a very flexible mechanism to describe (in)felicitous co-predication. For now,
the application of Montagovian Generative Lexicon on -ura nominalizations and
a deeper investigation on the relation between felicitous co-predication and the
frequency of use of a given noun remains for future analysis.

References

1. REAL, L. RETORÉ C. Deverbal Semantics and the Montagovian Generative Lex-
icon ⇤ Tyn. Journal of Logic, Language and Information, v. 1, p. 1, 201, 2014.

2. SANTOS, D. SARMENTO, L. O projecto AC/DC: acesso a cor-
pora/disponibilização de corpora, APL, pp. 705-717, Porto, 2002.

3. de Paiva, V. RADEMAKER, A. MELO, G. OpenWordNet-PT: An Open Brazil-
ian WordNet for Reasoning, Proceedings of the 24th International Conference on
Computational Linguistics, 2012.

4. REAL, L. Nominalizações. Ph.D thesis, Universidade Federal do Paraná, Curitiba,
Brazil, 2014.

5. REAL, L.Morfologia Categorial. Undergraduation final work, Universidade Federal
do Paraná, Curitiba, Brazil, 2006.

81

6. BASSAC, C. MERY, B. RETORÉ, C. A Montagovian generative lexicon in CSLI,
Formal Grammar 2007.

7. ROCHA, L. C. A nominalização no português do Brasil. Revista de Estudos da
Linguagem, 8 (17), 1999.

8. SANDMANN, A. J. Formação de palavras no português brasileiro contemporâneo.
Curitiba: Scentia et Labor: Ícone, 1988.

9. MELLONI, C. Polysemy in word formation: the case of deverbal nominals. Uni-
versity of Verona: Dissertation, 2007

82

Formalising type-logical grammars in Agda

Pepijn Kokke

Utrecht University

Abstract. In recent years, the interest in using proof assistants to formalise and reason about mathematics and
programming languages has grown. Type-logical grammars, being closely related to type theories and systems
used in functional programming, are a perfect candidate to next apply this curiosity to. The advantages of using
proof assistants is that they allow one to write formally verified proofs about one’s type-logical systems, and that
any theory, once implemented, can immediately be computed with. The downside is that in many cases the formal
proofs are written as an afterthought, are incomplete, or use obtuse syntax. This makes it that the verified proofs
are often much more difficult to read than the pen-and-paper proofs, and almost never directly published. In this
paper, we will try to remedy that by example.
Concretely, we use Agda to model the Lambek-Grishin calculus, a grammar logic with a rich vocabulary of type-
forming operations. We then present a verified procedure for cut elimination in this system. Then we briefly
outline a continuation-passing style translation from proofs in the Lambek-Grishin calculus to programs in Agda.
And finally, we will put our system to use in the analysis of a simple example sentence.

1 Introduction

Why would we want to formalise type-logical grammars using proof assistants? One good reason is that it allows us
to write formally verified proofs about the theoretical properties of our type-logical grammars. But not only that—it
allows us to directly run our proofs as programs. For instance, we can directly run the procedure for cut elimination
in this paper to investigate what kind of derivations are created by it and be confident in its correctness.

Why, then, would we want to use Agda instead of a more established proof assistant such as, for instance, Coq?
There are several good reasons, but we believe that the syntactic freedom offered by Agda is the most important. It is
this freedom that allows us to write machine-checkable proofs, formatted in a way which is very close to the way one
would otherwise typeset proofs, and which are highly readable compared to other machine-checked proofs. This means
that we can be confident that the proofs as they are published are correct, and that they are necessarily complete—for
though we can hide some of the less interesting definitions from the final paper, we cannot omit them from the source.

Additionally, because there is a one-to-one correspondence between the published proofs and the code, it becomes
very easy for the reader to start up a proof environment and inspect the proofs interactively in order to further their
understanding.

Our test case in this paper is the Lambek-Grishin calculus (LG, ?). LG is an example of an extended Lambek
calculus. In addition to the product (⌦) and the residual slashes (,), LG has a dual family with � and differ-
ence operations (◆,) together with distributivity principles for the interaction between the two families. See ? for
discussion of how LG overcomes syntactic and semantic limitations of the original Lambek calculus.

We will formalise the residuation-monotonicity axiomatisation for the Lambek-Grishin calculus (?) in Agda, present
a verified procedure for cut elimination in this system, and briefly outline a continuation-passing style (CPS) translation
into Agda. There are several reasons why we have chosen to formalise this particular system.

– It allows cut as an admissible rule, i.e. a function on proofs, instead of defining a separate cut-free system and a
cut-elimination procedure;

– it has efficiently decidable proof search, largely due to the absence of the cut rule;
– it has some interesting symmetries, as explored in ??. Because of this, most proofs of properties of LG are not

much more complicated than their associated proofs for the non-associative Lambek calculus;
– it has a continuation-passing style interpretation, which has shown to be useful in both derivational and lexical

semantics (???);
– lastly, an implementation of the non-associative Lambek calculus can easily and mechanically be extracted from

our implementation of LG.

Since this paper is by no means a complete introduction to Agda or to dependently-typed programming, we advise
the interested reader to refer to ? for a detailed discussion of Agda.

It should be mentioned that (although we omit some of the more tedious parts) this paper is written in literate
Agda, and the code has been made available on GitHub.1

1 See https://gist.github.com/pepijnkokke/cc12b92a8a60696b712c#file-main-agda.

83

2 Formulas, Judgements, Base System

If we want to model our type-logical grammars in Agda, a natural starting point would be our atomic formulas—such
as n, np, s, etc. These could easily be represented as an enumerated data type. However, in order to avoid committing
to a certain set of atomic formulas and side-step the debate on which formulas should be atomic, we will simply assume
there is a some data type representing our atomic formulas. This will be reflected in our module header as follows:

module logic (Atom : Set) where

Our formulas can easily be described as a data type, injecting our atomic formulas by means of the constructor el,
and adding the familiar connectives from the Lambek-Grishin calculus as binary constructors. Note that, in Agda, we
can use underscores in definitions to denote argument positions. This means that _⌦_ below defines an infix, binary
connective:

data Type : Set where

el : Atom ! Type
⌦ _ _ _ _ : Type ! Type ! Type
� _◆_ __ : Type ! Type ! Type

In the same manner, we can define a data type to represent judgements:

data Judgement : Set where

` : Type ! Type ! Judgement

Using the above definitions, we can now write judgements such as A ⌦ A B ` B as Agda values. Next we will define
a data type to represent our logical system. This is where we can use the dependent type system to our advantage.
The constructors for our data type will represent the axiomatic inference rules of the system, and their types will be
constrained by judgements. Below you can see the entire system LG as an Agda data type2:

data LG_ : Judgement ! Set where

ax : LG el A ` el A
-- residuation and monotonicity for (, ⌦ ,)

r ⌦ : LG B ` A C ! LG A ⌦ B ` C
r⌦ : LG A ⌦ B ` C ! LG B ` A C
r ⌦ : LG A ` C B ! LG A ⌦ B ` C
r⌦ : LG A ⌦ B ` C ! LG A ` C B
m⌦ : LG A ` B ! LG C ` D ! LG A ⌦ C ` B ⌦ D
m : LG A ` B ! LG C ` D ! LG B C ` A D
m : LG A ` B ! LG C ` D ! LG A D ` B C

-- residuation and monotonicity for (◆ , � ,)
r� : LG B C ` A ! LG C ` B � A
r� : LG C ` B � A ! LG B C ` A
r�◆ : LG C ` B � A ! LG C ◆ A ` B
r◆� : LG C ◆ A ` B ! LG C ` B � A
m� : LG A ` B ! LG C ` D ! LG A � C ` B � D
m : LG C ` D ! LG A ` B ! LG D A ` C B
m◆ : LG A ` B ! LG C ` D ! LG A ◆ D ` B ◆ C

-- grishin distributives
d : LG A ⌦ B ` C � D ! LG C A ` D B
d : LG A ⌦ B ` C � D ! LG C B ` A D
d◆ : LG A ⌦ B ` C � D ! LG B ◆ D ` A C
d◆ : LG A ⌦ B ` C � D ! LG A ◆ D ` C B

Note that Agda allows arbitrary unicode characters in identifiers, so r⌦ is a valid Agda identifier.
Using this data type, we can already do quite a lot. For instance, we can show that while the inference rule ax

above is restricted to atomic formulas3, the unrestricted version is admissible, by induction on the formula. Note that
the construction {A = ...} below is used to pattern match on the implicit variable A:
2 For the typeset version of this paper we omit the quantifiers for all implicit, universally quantified arguments.
3 Whereas the rule ax may appear to be unrestricted, it only allows the derivation of the identity proof for any formula el A.

That is, any atomic formula A delimited by the constructor el.

2

84

ax0 : LG A ` A
ax0 {A = el } = ax
ax0 {A = ⌦ } = m⌦ ax0 ax0

ax0 {A = } = m ax0 ax0

ax0 {A = } = m ax0 ax0

ax0 {A = � } = m� ax0 ax0

ax0 {A = ◆ } = m◆ ax0 ax0

ax0 {A = } = m ax0 ax0

Alternatively, we could derive the various applications and co-applications that hold in the Lambek-Grishin calculus:

appl- 0 : LG A ⌦ (A B) ` B
appl- 0 = r ⌦ (m ax0 ax0)
appl- 0 : LG (B A) ⌦ A ` B
appl- 0 = r ⌦ (m ax0 ax0)
appl-0 : LG B ` A � (A B)
appl-0 = r� (m ax0 ax0)
appl-◆0 : LG B ` (B ◆ A) � A
appl-◆0 = r◆� (m◆ ax0 ax0)

However, the most compelling reason to use the axiomatisation we have chosen, using residuation and monotonicity
rules, is that cut becomes an admissible rule.

3 Admissible Cut

We would like to show that cut0 of type LG A ` B ! LG B ` C ! LG A ` C is an admissible rule. The method of ?,
for the basic non-associative Lambek calculus, can be readily generalized to the case of LG:

(i) every connective is introduced symmetrically by a monotonicity rule or as an axiom;
(ii) every connective has one side (antecedent or succedent) where, if it occurs there at the top level, it cannot be

taken apart or changed by any inference rule;
(iii) as a consequence of (ii), every formula has one side where, if it occurs there at the top level, it is immutable, i.e.

there is no rule which can eliminate it;
(iv) due to (i) and (iii), when we find such an immutable formula, we can be sure that, stepping through the derivation,

after some number of steps we will find the monotonicity rule which introduced that formula;
(v) due to the type of cut0, when we match on the cut formula B we will always have an immutable variant of that

formula in either the first or the second argument of cut0;
(vi) finally, for each main connective there exists a rewrite rule which makes use of the facts in (iv) and (v) to rewrite

an application of cut0: to two applications of cut0 on the arguments of the monotonicity rule which introduced the
connective, chained together by applications of residuation (for binary connectives) or simply to a derivation (for
atomic formulas). As an example, the rewrite rule for _⌦_ can be found in figure 1.

E ` B F ` C

E ⌦ F ` B ⌦ C

...
A ` B ⌦ C B ⌦ C ` D

A ` D

E ` B

F ` C

B ⌦ C ` D

C ` B D

F ` B D

B ⌦ F ` D

B ` D F

E ` D F

E ⌦ F ` D

...
A ` D

Fig. 1. Rewrite rule for cut on formula B ⌦ C.

We can model the view on the left-hand side of the rewrite rule in figure 1 as a data type. In order to construct
this view for some suitable derivation f, we need two derivations, h1 and h2 and a derivation f0, which represents the
arbitrary derivation steps taking (m⌦ h1 h2) back to f. Lastly, we include a proof pr of the fact that the reconstructed
derivation f0 (m⌦ h1 h2) is identical to f:

3

85

data Origin (f : LG A ` B ⌦ C) : Set where

origin : (h1 : LG E ` B)
(h2 : LG F ` C)
(f0 : 8 {G} ! LG E ⌦ F ` G ! LG A ` G)
(pr : f ⌘ f0 (m⌦ h1 h2))

! Origin f

In the above snippet, we have chosen to leave the quantifier 8 {G} explicit to stress that f0 should work for any formula
G, not only for B ⌦ C.

All that remains now is to show that for any f of type LG A ` B ⌦ C, we can construct such a view. We will
attempt to do this by induction on the given derivation. Note that { }0 is the Agda syntax for a proof obligation. For
clarity, I have added the types of the various subproofs f in comments:

find : (f : LG A ` B ⌦ C) ! Origin f
find (m⌦ f g) = origin f g id refl
find (r ⌦ f) = { }0 -- f : LG A2 ` A1 B ⌦ C
find (r ⌦ f) = { }1 -- f : LG A1 ` B ⌦ C A2

find (r� f) = { }2 -- f : LG A2 ` A1 � B ⌦ C
find (r�◆ f) = { }3 -- f : LG A1 ` B ⌦ C � A2

Alas! While in the first case, where f is of the form m⌦ f g, we have found our monotonicity rule, the remaining cases
are less kind. It seems that we have neglected to account for derivations where our cut formula is temporarily nested
within another formula.

We will need some new vocabulary to describe what is going on in the above example. We would like to describe
contexts which a) can be taken apart using residuation, and b) when fully taken apart, will leave the nested formula
on the correct side of the turnstile. A natural fit for this is using polarity:

data Polarity : Set where + � : Polarity

Below we define well-polarised formula and judgement contexts with exactly one hole. We use a / or . to denote in
which argument the hole is:

data Context (p : Polarity) : Polarity ! Set where

[] : Context p p
_ ⌦ ._ : Type ! Context p + ! Context p +
_ ._ : Type ! Context p � ! Context p �
_ ._ : Type ! Context p + ! Context p �
_/ ⌦ _ : Context p + ! Type ! Context p +
_/ _ : Context p + ! Type ! Context p �
_/ _ : Context p � ! Type ! Context p �
_ � ._ : Type ! Context p � ! Context p �
_ ◆ ._ : Type ! Context p � ! Context p +
_ ._ : Type ! Context p + ! Context p +

_/ � _ : Context p � ! Type ! Context p �
_/ ◆ _ : Context p + ! Type ! Context p +
_/ _ : Context p � ! Type ! Context p +

data ContextJ (p : Polarity) : Set where

_/ ` _ : Context p + ! Type ! ContextJ p
_ ` ._ : Type ! Context p � ! ContextJ p

We also define two operators which, given a context and a formula, will fill the hole in the given context with the given
formula. The definition for [] is entirely predictable and repetitive, and has been mostly omitted4:

[] : Context p1 p2 ! Type ! Type
[] [A] = A
(B ⌦ . C) [A] = B ⌦ (C [A])
...

4 For the remainder of this paper, any partial omission of a function will be denoted with an ellipsis at the end of the code
block.

4

86

[] J : ContextJ p ! Type ! Judgement
(A / ` B) [C] J = A [C] ` B
(A ` . B) [C] J = A ` B [C]

The crucial point about these well-polarised judgement contexts is that, once the entire context is peeled away, the
formula will be at the top level on the side corresponding to the polarity argument—with + and � corresponding to
the antecedent and the succedent, respectively. Therefore, in order to generalise our previous definition of Origin, we
want the occurrence of B ⌦ C to be nested in a negative context:

data Origin0 (J : ContextJ �)
(f : LG J [B ⌦ C] J)

: Set where

origin : (h1 : LG E ` B)
(h2 : LG F ` C)
(f0 : LG E ⌦ F ` G ! LG J [G] J)
(pr : f ⌘ f0 (m⌦ h1 h2))

! Origin0 J f

Using this more general definition Origin0, we can define a more general function find0—and this time, our proof by
induction works!

Note that in Agda, the with construct is used to pattern match on the result of an expression:

find0 : (J : ContextJ �) (f : LG J [B ⌦ C] J) ! Origin0 J f
find0 (._ ` . []) (m⌦ f g) = origin f g id refl
find0 (._ ` . (A /)) (r⌦ f) with find0 (` . A) f
... | origin h1 h2 f0 pr rewrite pr = origin h1 h2 (r⌦ � f0) refl
find0 (._ ` . (. B)) (r⌦ f) with find0 (` . B) f
... | origin h1 h2 f0 pr rewrite pr = origin h1 h2 (r⌦ � f0) refl
...

However, there are many cases—53 in total. The reason for this is that the possible derivation steps depend on the
main connective; therefore we first have to explore every possible main connective, and then every possible rule which
would produce that main connective. Because of this, the definitions of the various find0 functions are very long and
tedious, and have mostly been omitted.5

From the more general Origin0 and find0 we can very easily recover our original definitions Origin and find by setting
the context to be empty. In the case of the cut formula B ⌦ C, we set the context to (` . []) to ensure that the
formula ends up at the top level in the succedent:

Origin : (f : LG A ` B ⌦ C) ! Set
Origin f = Origin0 (` . []) f
find : (f : LG A ` B ⌦ C) ! Origin f
find f = find0 (` . []) f

And with that, we can finally put the rewrite rules from ? to use. We can define cut0 by pattern matching on the cut
formula B; applying the appropriate find0 function to find0 the monotonicity rule introducing the formula; and apply
the appropriate rewrite rule to create a derivation containing two cuts on structurally smaller formulas:

cut0 : (f : LG A ` B) (g : LG B ` C) ! LG A ` C
cut0 {B = el } f g with el.find g
... | (el.origin g0) = g0 f
cut0 {B = ⌦ } f g with ⌦.find f
... | (⌦.origin h1 h2 f0) = f0 (r ⌦ (cut0 h1 (r⌦ (r ⌦ (cut0 h2 (r⌦ g))))))
cut0 {B = } f g with .find g
... | (.origin h1 h2 g0) = g0 (r⌦ (r ⌦ (cut0 h2 (r⌦ (cut0 (r ⌦ f) h1)))))
cut0 {B = } f g with .find g
... | (.origin h1 h2 g0) = g0 (r⌦ (r ⌦ (cut0 h1 (r⌦ (cut0 (r ⌦ f) h2)))))
cut0 {B = � } f g with �.find g

5 The burden on the programmer or logician can be reduced by clever use of the symmetries ·./ and ·1 as done in ?. One
would have to implement only three of the find

0 functions (e.g. for el, ⌦ and); the remaining four can then be derived using
the symmetries.

5

87

... | (�.origin h1 h2 g0) = g0 (r◆� (cut0 (r�◆ (r� (cut0 (r� f) h2))) h1))
cut0 {B = ◆ } f g with ◆.find f
... | (◆.origin h1 h2 f0) = f0 (r�◆ (r� (cut0 (r� (cut0 h1 (r◆� g))) h2)))
cut0 {B = } f g with .find f
... | (.origin h1 h2 f0) = f0 (r� (r◆� (cut0 (r�◆ (cut0 h2 (r� g))) h1)))

4 CPS Translation

For this paper, we have opted to implement the call-by-value CPS translation as described in ?. This translation
consists of three elements:

– a function d_e, which translates formulas in LG to formulas in the target system—while we have chosen to translate
to Agda, the original translation targeted multiplicative intuitionistic linear logic;

– a pair of mutually recursive functions d_eL and d_eR, which translate terms in LG to terms in the target system.

In order to write these functions, we will need two additional pieces of information: a function d_eA, which translates
the atomic formulas to Agda types; and a return type R, which we will use to define a “negation” as ¬ A = A ! R.
We will therefore implement the CPS translation in a sub-module, which abstracts over these terms:

module translation (d_eA : Atom ! Set) (R : Set) where

When using this module, we will generally identify the return type R with the type Bool for booleans. However,
abstracting over it will ensure that we do not accidentally use this knowledge during the translation.

The type-level translation itself maps formulas in LG to types in Agda, as follows:

d_e : Type ! Set
d el A e = d A eA
d A ⌦ B e = (d A e ⇥ d B e)
d A B e = ¬ (d A e ⇥ ¬ d B e)
d B A e = ¬ (¬ d B e ⇥ d A e)
d B � A e = ¬ (¬ d B e ⇥ ¬ d A e)
d B ◆ A e = (d B e ⇥ ¬ d A e)
d A B e = (¬ d A e ⇥ d B e)

The translations on terms map terms in LG to the Agda function space. Each LG term is associated with two functions,
depending on whether the focus is on A or B as the active formula:

mutual

d_eL : LG A ` B ! ¬ d B e ! ¬ d A e
d_eR : LG A ` B ! d A e ! ¬ ¬ d B e

...

The CPS translations of the terms are rather verbose, and trivial to deduce, when guided by the translation on types.
Therefore, in the interest of space they have been omitted from the paper.6

5 Example

In this final section, we will present the analysis of an example sentence, using the type-logical grammar implemented
above. The example we will analyse is:

“Someone loves everyone.”

This sentence is well known to be ambiguous, owing to the presence of the two quantifiers. There are two readings:

a. There is some person who loves every person.
b. For each person, there is some person who loves them.

6 They are, however, present in the source and therefore available on GitHub.

6

88

We will demonstrate that the system, as implemented in this paper, accurately captures these readings.
Before we can do that, however, there is a small amount of boiler plate that we have to deal with: we still need to

choose a representation for our atomic types, and show how these translate into Agda. In what follows, we will assume
we have access to a type for entities, suitable definitions for the universal and existential quantifiers, and meanings for
‘loves’ and ‘person’:

postulate

Entity : Set
8 : (Entity ! Bool) ! Bool
9 : (Entity ! Bool) ! Bool
loves : Entity ! Entity ! Bool
person : Entity ! Bool

We will instantiate the type for atomic formulas to Atom, as defined below:

data Atom : Set where N NP S : Atom

Last, we need to define a function which maps the values of Atom to Agda types. We would like to map the atomic
formulas as follows:

d_eA : Atom ! Set
d N eA = Entity ! Bool
d NP eA = Entity
d S eA = Bool

Now that we have Atom and d_eA, we can open up the modules defined as above, instantiating the return type R with
the type of booleans.

open logic Atom
open logic.translation Atom d_eA Bool

With everything that we implemented in scope, we can now define a small lexicon for our example sentence.
In what follows, we will use the aliases n, np and s for el N, el NP and el S, respectively:

someone : d (np n) ⌦ n e
someone = ((l {(g, f) ! 9 (l x ! f x ^ g x)}), person)

loves : d (np s) np e
loves = l {(k, y) ! k (l {(x, k) ! k (loves x y)})}
everyone : d (np n) ⌦ n e
everyone = ((l {(g, f) ! 8 (l x ! f x � g x)}), person)

Given the types we used for our lexical entries, the judgement which asserts the grammaticality of our sentence
becomes:

((np n) ⌦ n) ⌦ (((np s) np) ⌦ ((np n) ⌦ n)) ` s

There are seven proofs of this judgement. Below we have included the first two proofs:7:

sent0 = r ⌦ (r ⌦ (m (m (r ⌦ ax0) ax) (r ⌦ ax0)))
sent1 = r ⌦ (r ⌦ (m (r⌦ (r ⌦ (r ⌦ (m ax0 (r ⌦ ax0))))) ax))
...

We can now apply our CPS translation to compute the denotations of our sentence, passing in the denotations of the
words as a tuple, and passing in the identity function as the last argument in order to obtain the result:

sent0 : d sent0 eR (someone, loves, everyone) id 7! 8 (l y ! person y � 9 (l x ! person x ^ loves x y))
sent1 : d sent1 eR (someone, loves, everyone) id 7! 9 (l x ! person x ^ 8 (l y ! person y � loves x y))
...

Voila! Our system produces exactly the expected readings.
7 We have chosen not to include the other five proofs as, under the CPS translation, they have the same interpretations as

either the first or the second proof. For the interested reader, however, the proofs are present in the source, and therefore
available on GitHub.

7

89

np ` np n ` n

(m)

np n ` np n

(r ✏)

(np n) ✏ n ` np s ` s

(m)

np s ` (np n) ✏ n s

np ` np n ` n

(m)

np n ` np n

(r ✏)

(np n) ✏ n ` np

(m)

(np s) np ` ((np n) ✏ n s) (np n) ✏ n

(r ✏)

((np s) np) ✏ (np n) ✏ n ` (np n) ✏ n s

(r ✏)

((np n) ✏ n) ✏ ((np s) np) ✏ (np n) ✏ n ` s

8 (�y ! person y � 9 (�x ! personx ^ lovesx y))

np ` np s ` s

(m)

np s ` np s

np ` np n ` n

(m)

np n ` np n

(r ✏)

(np n) ✏ n ` np

(m)

(np s) np ` (np s) (np n) ✏ n

(r ✏)

((np s) np) ✏ (np n) ✏ n ` np s

(r ✏)

np ✏ ((np s) np) ✏ (np n) ✏ n ` s

(r ✏)

np ` s ((np s) np) ✏ (np n) ✏ n n ` n

(m)

np n ` (s ((np s) np) ✏ (np n) ✏ n) n

(r ✏)

(np n) ✏ n ` s ((np s) np) ✏ (np n) ✏ n

(r ✏)

((np n) ✏ n) ✏ ((np s) np) ✏ (np n) ✏ n ` s

9 (�x ! personx ^ 8 (�y ! person y � lovesx y))

Fig. 2. “Someone loves everyone.”

6 Conclusion

We have presented the reader with a simple formalisation of the Lambek-Grishin calculus, using the proof assistant
Agda. We have shown how to formalise the proof of the admissibility of cut from ? in Agda, and have extended this
proof to cover all of LG. While we have not covered any of the usual unary operators, the formalism presented here
generalises straightforwardly to accommodate connectives of any arity—and this extension, together with many other
extensions, are indeed implemented in the full version of our code.

We have then presented the reader with a call-by-value CPS translation into the host language Agda, and used
this translation to demonstrate the analysis of an example sentence.

Most importantly, we hope we presented the reader with a clean and readable formalisation of the Lambek-Grishin
calculus.

7 Related & Future Work

Previous work on the formalisation of Lambek calculi was done in Coq by ?, who, amongst other things, implemented
sequent calculus and natural deduction systems for multi-modal categorial grammars.

The work presented in this paper is part of a larger undertaking to formalise type-logical grammars in Agda.
At the moment, we have formalised not only the algebraic Lambek-Grishin calculus—which was presented in this
paper—but also structural and polarised varieties of this calculus. From these implementations, we are able to extract
implementations of their respective non-associative Lambek calculi.

In addition, we have implemented various other multi-modal systems, such as NLCL (?).
We aim to extend this work by further formalising the known work w.r.t. these calculi, and creating tools to

accommodate the writing of formal linguistics papers in literate style.

References

Anoun, H. (2007). Une bibliothèque coq pour le traitement des langues naturelles. Technique et Science Informatiques,
26(9):1111–1136.

Anoun, H., Castéran, P., and Moot, R. (2004). Proof automation for type-logical grammars. Rapport de recherche ,
European Summer School in Logic, Language and Information - 2004.

Asher, N. (2011). Lexical Meaning in Context: A Web of Words. Cambridge University Press.
Barker, C. and Shan, C. (2015). Continuations and Natural Language (Oxford Studies in Theoretical Linguistics).

Oxford University Press.
Moortgat, M. (1996). In situ binding: a modal analysis. In Dekker, P. and Stokhof, M., editors, Proceedings of the

Tenth Amsterdam Colloquium, Amsterdam. Institute for Logic, Language and Computation, Amsterdam.
Moortgat, M. (2007). Symmetries in natural language syntax and semantics: The lambek-grishin calculus. In Logic,

Language, Information and Computation, pages 264–284. Springer Berlin Heidelberg.
Moortgat, M. (2009). Symmetric categorial grammar. Journal of Philosophical Logic, 38(6):681–710.
Moortgat, M. and Oehrle, R. T. (1999). Proof nets for the grammatical base logic. In Abrusci, M. and Casadio, C.,

editors, Dynamic perspectives in logic and linguistics. Proceedings of the Fourth Roma Workshop, pages 131–143,
Roma. Bulzoni.

Moot, R. and Retoré, C. (2012). The Logic of Categorial Grammars. Springer Berlin Heidelberg.
Norell, U. (2009). Dependently typed programming in agda. In Proceedings of the 4th International Workshop on

Types in Language Design and Implementation, TLDI ’09, pages 1–2, New York, NY, USA. ACM.

8

90

A DEVELOPED ANALYSIS of TYPE
COERCION based on TYPE THEORY and

CONVENTIONALITY

Seohyun Im1 and Chunngmin Lee2

1 Seoul National University seohyunim71@gmail.com

2 Seoul National University clee@snu.ac.kr

Abstract. This paper aims to propose a developed analysis of the type
coercion phenomenon such as begin the book by introducing Type Theory
and Conventional Non-linguistic Context, making a distinction between
linguistic and non-linguistic context. We argue that linguistic and non-
linguistic context as well as the lexical meaning of the words are deeply
involved in the interpretation of the type-coerced construction. In the lex-
ical semantic level, the type-coerced construction is ambiguous. Although
its linguistic context can decrease the number of possible interpretations
of the construction, it is still ambiguous until its non-linguistic context
disambiguates the meaning of the construction. More importantly, we
propose that the lexical meaning of a word is a conventionalized mean-
ing under the assumption of a conventional non-linguistic context linked
to the word. The context holds in the compositional process. There-
fore, a type-coerced construction has a preferred interpretation derived
from its conventional non-linguistic context, if no specific non-linguistic
context (situation of utterance) is provided and its linguistic context is
neutral. For instance, the preferred interpretation of begin the book is
begin reading the book, because the conventional non-linguistic context
of book is the situation of reading the book. However, the preference is
only a probability and the construction is still ambiguous.

1 Introduction

In this paper, we aim to give a developed analysis of type coercion phenom-
ena such as begin the book explained in the early Generative Lexicon theory
(GL: [PJ1995], [PJms]). For that purpose, we adopt the type theory based
on Type Compositional Logic (TCL: [AN2011]). In addition, we introduce the
“conventional non-linguistic context”, distinguishing between linguistic and non-
linguistic context.

One of the strong points of the GL is to explain well the polymorphic behavior
of argument selection by predicates, as shown in (1).

(1) a. John began reading the book.
b. John began to read the book.
c. John began the book.

91

The GL provides the methodology - qualia structure and type coercion - to ex-
plain the polymophism of the begin construction and recover the missing pred-
icate in a construction such as (1c). However, the type coercion mechanism of
the GL brings up the following questions:

• What conditions allow the type coercion of begin?
• What is the mechanism of recovering the missing predicate in the type co-

ercion construction with begin?
• What are the e↵ects of context on type coercion and its interpretation?
• What is the relation between type coercion and (lexical) semantics and prag-

matics?

We go through the following steps to answer the above questions.

1. We propose the semantic type of begin and its selection restriction. (section
2)

2. We propose the semantic type of book and its distributional constraint. (sec-
tion 3)

3. We consider the condition which allows the type coercion.(section 4)
4. We discuss the interpretation of the type-coerced construction and the e↵ects

of context. (section 5, 6)
5. We conclude our argument . (section 7)

In the next section, we explore the semantic type of the aspectual verb begin in
English.

2 The Semantic Type of BEGIN

According to the GL, the verb begin requires an event-type object argument,
because it is an aspectual-type verb. However, this type assignment is not spe-
cific enough to explain the type coercion phenomenon of begin. In this paper,
we divide the aspectual verbs into more specific subtypes, following [IS2013].
The verb begin is classified as a begin-type, distinguished from other aspectual
verbs such as finish, continue, and stop. The begin-type verbs select only pro-

cess or accomplishment-type expressions as their object arguments3. Consider
the following examples:

(2) a. Kern began building a house. (accomplishment)
b. He began working. (process)

In (2), building a house (2a) is accomplishment-type and and working (2b) is
process-type (2b). On the contrary, begin takes neither an achievement nor a state-
type gerundive construction. The sentence in (3a) is ungrammatical because
buying the modern painting represents an achievement-type eventuality.

3 We do not discuss here the other subtypes in the aspectual-type verb class.

92

(3) a. *He had begun buying the modern painting.
b. He had begun buying the modern paintings.

In (3b), begin allows the gerundive construction in which buying takes a plural
object, since the gerundive is process type, not achievement type4. The argument
selection restriction of the begin-type verbs is explained well by its event structure
([IS2013]).

(4) Event Structure of the begin-type verbs
se1: state = not in process(e2)
se2: process = beginning(x, e2)
se3: process = in process(e2)

For an event to be in process after its beginning, it should at least belong to
process or accomplishment.

To sum up, we propose the semantic type of begin and the argument structure
- argument selection restriction - of the begin-type verb class as follows:

(5) begin

a. semantic type = begin

b. argument structure (selection restriction) of begin-type verbs
arg1 = agent: top
arg2 = event: {process, accomplishment}

The argument structure above represents the type selection restriction on the
arguments of begin. It implies that begin cannot take the achievement or state

type ones out of the verbs governing the NP the book. In the next section, we
explore the semantic type of book and its governing predicates.

3 The Semantic Type of the Noun BOOK

The semantic type of the noun book needs to be more specific than phys object·info,
which was proposed in the GL, to cover its distributional behavior, although it
is right to consider it as a complex type. In this paper, we propose a tentative
semantic type of book below.

• The Semantic Type of book (tentative proposal)
[text info]· [info container made by binding papers]· [goods]

The dot type of book has many entailments related with its linguistic context -
expressions co-occuring with the noun book. The semantic type text info shows
the entailments below 5:
4 This kind of type shifting from achievement to process is a well-known phenomenon.
5 In this work, we only consider the verbs which take the book as their direct object.
We will extend the corpus so that we can define the complete semantic type of book
in the furture work.

93

• text info

!entail

[write, read , translate, publish, digitize, evaluate, underestimate, criticize,etc.]

The text info subtype means that a book is text-type information written in a
language and thus is readable and translatable6. Moreover, it can be published,
digitized, or evaluated because it is a kind of information. The text info is a
subtype of info and thus inherits all the properties of it. The subtype triggers
entailments related with the governing predicates of the noun the book listed
above.

The second subtype info container made by binding papers inherits from arti-

fact (artifact ⇢ physical object). We show entailments triggered by this type as
follows.

• info container made by binding papers

!entail

[take, carry , put , place, position, pack , tear , burn,weight , borrow , own, have, lend ,etc.]

The list of verbs includes motion verbs and possession or change of possession
verbs. Since it is made by binding papers, entailments such as tearing are allowed.

Finally, the subtype goods entails all events related to buying or selling. We
show the entailments below:

• goods

!entail

[buy , sell , promote,market , advertise,etc.]

In order to represent the complete semantic type of the noun book, we need to
analyze its linguistic context in more detail. In this paper, we suggest its tentative
dot-type, pointing out that phys object·info is not specific enough to explain the
linguistic behavior of the noun book and type coercion. Nevertheless, it is a
crucial argument that the predicates taking book are derived from the dot-type
of book. Based on the semantic types of begin and book and their distributional
restriction, we argue about the type coercion phenomenon of begin the book in
the next section.

4 Compositional Meaning and Type Coercion

Relying on the semantic type and selection restriction of begin and book given
by their lexical meaning, they combine with each other by type coercion in the
compositional process. Type coercion of begin-type verbs has some constraints. A
part of the constraints were discussed in [PJPB1996]. Adopting their argument,
we propose the constraints on type coercion of begin the book.

6 In addition, there are di↵erent types of book such as an audio book, a video book, and
an e-book. However, the distinction will be studied in the future work. we consider
a book to represent a paper book here.

94

• Constraints on type coercion of begin the book

- only in the control construction of begin;
- when the subject is animate;
- only when the missing predicate belongs to a process or an accomplish-

ment type verb class;
- and only when the missing predicate is a two-place verb which takes a
subject and an object.

The first two constraints are explained in detail in [PJPB1996]. We focus on the
last two in this paper. Given the list of governing verbs of the book, begin does
not take the state or achievement type ones out of them. Consider the following
examples.

(7) a. *John began having the book. (state)
b. *John began losing the book. (achievement)

The verb have cannot combine with begin because it is a state type and thus
violates the semantic type restriction on its theme argument. In the same way,
losing also cannot head the gerundive phrase, the object of begin. Therefore,
these verbs are not candidates for the missing predicate in type coercion. The
following examples show that type coercion is allowed when the head of the
gerundive construction is accomplishment or process type.

(8) a. John began reading the book. (accomplishment)
b. John began (reading) the book.

In the above example, reading the book can combine with begin because it is
an accomplishment eventuality. As shown in (8b), reading can be ellipsed and
recovered.

Even when a gerundive satisfies the selection restriction of begin aspectually,
it cannot be ellipsed if it is not a two-place predicate. See the following example:

(9) a. John began giving me books.
b. *John began me books.

Since books is plural, giving me books is a process aspectual type expression,
although give is achievement type. Therefore, the sentence in (9a) is grammatical
but begin does not allow the ellipsis of giving, as shown in (9b). This example
shows that type coercion is allowed only when the missing predicate takes a
subject and a direct object.

In the above sections, we explored which verbs can be the head of the gerun-
dive construction with the book in the begin construction. However, there still is
the problem of recovering an appropriate predicate in the interpretation of begin
the book. The next section discusses it.

95

5 Interpretation: Ambiguity and Linguistic and
Non-linguistc Context

Regarding type coercion, one of the biggest issues is to clarify how to recover
the missing predicate in the interpretation of a type-coerced construction. As
argued above, the constraints on type coercion exclude many predicates from
the list of potential recoverable predicates. Nevertheless, there still remain many
verbs as candidates. For instance, the following verbs can be recovered in the
interpretation of begin the book:

• read, write, publish, print, review, translate, promote, market, use, etc.

In order to solve this issue, we suggest the distinction between linguistic and
non-linguistic context. A linguistic context means the distributional behavior of
an expression: that is, the other expressions co-ocurring with the expression in a
sentence. On the other hand, a non-linguistic context is defined as the situation
in which the utterance occurs.

The linguistic context of begin the book (e.g., the subject) can lead us to
prefer a specific interpretation of the type coerced construction. Moreover, it
sometimes excludes some predicates from the cadidate list for recovering the
missing predicate. Consider the following example:

(10) a. The author began ({writing} / {reading, promoting, translating, using,

...}) the book.
b. The author began (?*{writing, promoting, ...} / {reading, translating,

using, ...}) the borrowed book.

Because of the lexical meaning of author, the sentence in (10a) is predominantly
interpreted as ‘The author began writing the book’. However, the sentence is still
ambiguous. The NP the book in (10a) can be interpreted as reading the book or
other events, even though the subject of the sentence is the author. The NP the

borrowed book in (10b) presupposes there exists the book. The presupposition
implies that the author cannot write the book. The writer cannot promote or
advertize the borrowed book on the purpose of selling it, either. Given that
the linguistic context of begin the book narrows the range of candidates for the
position of a missing predicate, its non-linguistic context, the utterance situation,
finally disambiguates the sentence with begin the book. Consider the following
examples:

(11) a. In the situation in which the author has been writing a new book,
The author began (writing) the book.

b. In the situation in which the author should read some books to prepare
for writing,
The author began (reading) the book.

In the situation as in (11), it is natural that the missing predicates are recovered
as writing and reading, respectively.

96

To sum up, both linguistic and non-linguistic contexts contribute to disam-
biguation in the interpretation process of type coercion construction. A type-
coerced construction such as begin the book can have various interpretations
including reading and writing, depending on linguistic and non-linguistic con-
text. The disambiguation process of the type coercion construction goes from
the lexical meaning of words to non-linguistic context (situation) via linguistic
context (composition). Nevertheless, we prefer interpretation such as reading or
writing to others in the interpretation of begin the book. Why do we prefer some
interpretation to the others? In the next section, we introduce “conventional
non-linguistic context” to answer the question.

6 Conventional Non-linguistic Context

Usually, the most preferable interpretation of begin the book is to begin reading
the book, with no special non-linguistic context. We argue that it is because
there is a “conventional non-linguistic context” linked to an expression which is
commonly assumed by most normal people in a language culture. In other words,
the lexical meaning of a word is a conventionalized meaning which assumes a
conventional non-linguistic context linked to the word (cf. [GDnd]). In addition,
the context holds in the compositional process of the words. For example, the
noun book is conventionally linked to the situation of reading it, because reading
is the most common activity which people do with a book. That argument is
proved by the frequency of predicates combining with the book collected from
various corpora. The verb read has the highest frequency and the second is write
in most corpora. If we have no information about the non-linguistic context and
the linguistic context is neutral, we usually interpret the sentence John began

the book as John began reading the book.
However, the interpretation under the assumption of “conventional non-

linguistic context” is only the most probable one (cf. [PC2015]). The ambiguity
of begin the book is not dissolved yet. The specific non-linguistic context of the
utterance finally disambiguates the type coerced construction begin the book.
We mention here that the Qualia Structure in the GL is attractive in that it
gives insight about the preferred interpretation of a type coercion construction
by postulating telic and agentive qualia, in spite of the risk that qualia can be
extended too much. The conventional activity of normal people with a book is
closely related to the original function of the artifact and how to create it.

7 Conclusion

In this paper, we tried to rethink the condition which allows aspectual coer-
cion of begin and the interpretation of the type-coerced construction (begin the

book), introducing Asher’s type-theoretical point-of-view and the “conventional
non-linguistic context” based on Conventional Semantics ([GDnd]). The lexical
semantic type of begin triggers some constraints on type coercion. In addition,
we distinguished linguistic and non-linguistic context. Basically, the constraints

97

of aspectual coercion of begin are dependent on its lexical meaning. Regarding
the interpretation of the type-coerced construction begin the book, we summarize
our argument as follows:

I. lexical meaning

The semantic type and selection restriction of begin and book under the
conventional non-linguistic context linked to the words

II. compositional meaning

The set of possible interpretations of the type-coerced construction begin the

book with support of linguistic context
cf. begin reading the book is “preferred” as the interpretation of begin the

book by its conventional non-linguistic context.
III. contextual meaning

The non-linguistic context finally dissolves the ambiguity of the type coerced
construction begin the book.

A type-coerced construction is basically ambiguous until the non-linguistic con-
text disambiguates it. We showed the three steps of interpreting a type-coerced
construction above. Without any specific linguistic or non-linguistic context,
conventionally-assumed situation linked to words works for disambiguation. Read-
ing interpretation is the most probable one for begin the book, although it is still
ambiguous.

There remain many important and interesting issues related with semantic
type of words and type coercion. First, we need to define the concept of “conven-
tional non-linguistic context” more strictly, considering its relation to the lexical
meaning of words. Second, we need to decide what a dot-type is theoretically
and propose the semantic type of book specific enough to explain its linguistic
behavior (cf. [AN2011]). In the future research, we will explore the semantic type
of words, including book and begin, and their semantic relation. In addition, we
will develop the formalism of representing the interpretation mechanism which
puts together lexical meaning and linguistic and non-linguistic context.

References

[AN2011] Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge: Cam-
bridge University Press. (2011)

[GDnd] Gutzmann, D.: Semantics vs. Pragmatics L. Matthewson, C. Meier, H. Rull-
man, and E. Zimmerman, The Semantic Companion. (n.d.)

[IS2013] Im, Seohyun: The Generator of the Event Structure Lexicon (GESL): Auto-
matic Annotation of Event Structure for Textual Inference Tasks. PhD Disser-
tation. Brandeis University. (2013)

[PC2015] Potts, C., Lassiter, D., Levy, R. and Frank, M. C.: Embedded Implicatures
as Pragmatic Inferences under Compositional Lexical Uncertainty. Manuscript.
(2015)

[PJ1995] Pustejovsky, J.: The Generative Lexicon. The MIT Press. (1995)
[PJms] Pustejovsky, J.: Lexical Semantics. Manuscript.

98

[PJPB1996] Pustejovsky, J. and P. Bouillon: Aspectual Coercion and Logical Poly-
semy. Pustejovsky, J. and B. Bogurave (eds.) Lexical Semantics: The Problem
of Polysemy. Clarendon Press: Oxford. (1996)

99

Factivity and Presupposition
in Dependent Type Semantics⋆

Ribeka Tanaka1, Koji Mineshima1,2, and Daisuke Bekki1,2

1 Ochanomizu University
2 CREST, Japan Science and Technology Agency

{tanaka.ribeka, bekki}@is.ocha.ac.jp, mineshima.koji@ocha.ac.jp

1 Introduction

Dependent Type Semantics (DTS, Bekki [3]) is a framework of natural language se-
mantics based on dependent type theory (Martin-Löf [19]). In contrast to traditional
model-theoretic semantics, DTS is a proof-theoretic semantics, where entailment rela-
tions are characterized as provability relations between semantic representations. One
of the distinctive features of DTS, as compared to other type-theoretical frameworks,
is that it is augmented with underspecified terms so as to provide a unified analysis of
entailment, anaphora and presupposition from an inferential/computational perspective.
In contrast to previous work on anaphora in dependent type theory (cf. Ranta [22]), DTS
gives a fully compositional account of inferences involving anaphora (Bekki [3]). It is
also extended to the analysis of modal subordination (Tanaka et al. [25]).

In this paper, we provide the framework of DTS with a mechanism to handle entail-
ment and presupposition associated with factive verbs such as know. Although there are
numerous studies on factive verbs in natural language semantics, they are usually based
on model-theoretic approaches; it seems fair to say that there has been little attempt
to formalize inferences with factivity from a computational and proof-theoretical per-
spective. On the other hand, various proof systems for knowledge and belief have been
studied in the context of epistemic logic (cf. Meyer and van der Hoek [20]). However,
such systems are mainly concerned with knowledge and belief themselves, not with
how they are expressed in natural languages, nor with linguistic phenomena such as
factivity presuppositions. Our study aims to fill this gap by providing a framework that
explains entailments and presuppositions with factive verbs in dependent type theory.

2 Factive verbs and presupposition

We briefly summarize entailments and presuppositions triggered by factive verbs. Fac-
tive verbs like know, in contrast to non-factive verbs like believe, presuppose that the
complement is true. There are two characteristic properties of presuppositions. First, a
presupposition projects out of embedded contexts such as negation, question, and the
antecedent of a conditional. Thus, not only (1) but also (3a-c) imply (2).

(1) John knows that he is successful.
⋆ We thank the anonymous reviewers of TYTLES for helpful comments and suggestions.

100

(2) John is successful.

(3) a. John does not know that he is successful. NEGATION

b. Does John know that he is successful? QUESTION

c. If John knows that he is successful, ... CONDITIONAL

(4) a. If John is successful, he knows that he is.
b. John is successful, and he knows that he is.

Second, a presupposition is filtered when it occurs in contexts such as (4a, b). In general,
if S′ entails the presuppositions of S, constructions like S′ and S and If S′ then S do
not inherit the presuppositions of S.

Unlike non-factive verbs, factive verbs can take interrogative complements as in (5),
and license inferences as shown in (6) and (7) (Groenendijk and Stokhof [9]).3

(5) a. John {knows, ∗believes} whether Ann or Bob came.
b. John {knows, ∗believes} who came.

(6)
John knows whether Ann or Bob came.
Ann came.
John knows that Ann came.

(7)
John knows who came.
Ann came.
John knows that Ann came.

Interrogative complements themselves have presuppositions (Hintikka [12]; Karttunen [14]).
For instance, it is natural to take whether Ann or Bob came as presupposing “Ann or
Bob (but not both) came” and who came as presupposing “someone came”. Figure 1
summarizes basic inference patterns for factive verb know.

E1 x knows whether A or B, A ⇒ x knows that A
E2 x knows whether A or B, B ⇒ x knows that B
E3 x knows who F , F (a) ⇒ x knows that F (a)
P1 x knows that P ◃ P
P2 x knows who F ◃ someone F
P3 x knows whether A or B ◃ A or B (but not both)

Fig. 1. Entailments (⇒) and presuppositions (◃) associated with factive verbs.

3 Dependent Type Semantics

DTS (Bekki [3]) is a natural language semantics based on dependent type theory (Martin-
Löf [19]). Since the work of Sundholm [24] and Ranta [22], dependent type theory
has been applied to the analysis of various dynamic discourse phenomena, providing
a type-theoretic alternative to model-theoretic frameworks such as DRT and Dynamic

3 Here and henceforth, we take whether A or B as expressing an alternative question.

101

Semantics. Dependent type theory has also been applied to the study of natural lan-
guage inferences in computational semantics with the help of modern proof assistants
(Chatzikyriakidis and Luo [6]).

In dependent type theory, two type constructors Σ and Π play a crucial role in form-
ing the semantic representations for natural language sentences. The type constructor
Σ is a generalized form of the product type and behaves as an existential quantifier. An
object of type (Σx : A)B(x) is a pair (m,n) such that m is of type A and n is of type
B(m). Conjunction A ∧B is a degenerate form of (Σx : A)B if x does not occur free
in B. Σ-types are associated with projection functions π1 and π2 that are computed
with the rules π1(m,n) = m and π2(m,n) = n, respectively. The type constructor Π
is a generalized form of the functional type and behaves as a universal quantifier. An
object of type (Πx : A)B(x) is a function f such that for any object a of type A, fa
is an object of type B(a). Implication A → B is a degenerate form of (Πx : A)B if x
does not occur free in B. See e.g., Martin-Löf [19] and Ranta [22] for more details.

Common nouns: types or predicates? There are two possible approaches to represent-
ing basic sentences like A man entered in dependent type theory. One is the approach
proposed in Ranta [22] and Luo [17, 18], according to which common nouns like man
are interpreted as types so that the sentence is represented as (Σx : man) enter(x). A
problem with this approach is that it is not straightforward to analyze sentences con-
taining predicate nominals, such as (8a, b).

(8) a. John is a man.
b. Bob considers Mary a genius.

One might analyze (8a) as a judgement john : man; but then it is not clear how to ac-
count for the fact that such a sentence can be negated (John is not a man) or appear in
the antecedent of a conditional (If John is a man, ...). One possible solution is to con-
strue be-verbs as the so-called “is-of identity” along the Russell-Montague lines. Thus,
(8a) is represented as (Σx : man) john =man x. This predicts that the predicate nom-
inal a man introduces a discourse referent (in terms of Σ-types). However, contrary to
this prediction, predicate nominals cannot serve as an antecedent of an anaphoric pro-
noun like he or she (Mikkelsen [21]); hence they do not introduce a standard discourse
referent.4

As an alternative approach, we interpret a common noun as a predicate; thus A
man entered is represented as (Σu : (Σx : entity)manx) enter(π1u). This approach
is in line with the traditional analysis of common nouns, so we can integrate stan-
dard assumptions in formal semantics into our framework. Note that although we do
not take common nouns to be types, it is possible to refine type entity by introducing
more fined-grained types such as ones representing animate/inanimate objects, physi-
cal/abstract objects, events/states, and so on (Asher [1]; Asher and Luo [2]; Bekki and
Asher [4]; Retoré [23]). Such richer type structures will be needed to provide a proper
treatment of lexical phenomena such as polysemy, coercion and, selection restriction

4 See Fara [7] and Heim [11] for more discussion on the problems of the Russell-Montague
analysis of predicate nominals.

102

Π-types Σ-types

Standard notation (Πx : A)B(x) (Σx : A)B(x)

Notation in DTS (x:A) → B(x)

[
x:A
B(x)

]

When x /∈ fv(B) A → B

[
A
B

]

Fig. 2. Notation for Π-types and Σ-types in DTS. fv(B) means the set of free variables in B.

within the framework of dependent type theory. Our framework is consistent with such
an extended type system.

In what follows, we will make use of the notation in DTS for Π-types and Σ-types
as shown in Figure 2.

Presupposition in DTS. DTS is based on the paradigm of the Curry-Howard corre-
spondence, according to which propositions are identified with types; the truth of a
proposition is then defined as the existence of a proof (i.e., proof-term) of the propo-
sition. In order to handle anaphora and presupposition in a compositional setting (see
Bekki [3] for detail), DTS distinguishes two kinds of propositions, static and dynamic
propositions. For any static proposition P , we say that P is true if P is inhabited, that is,
there exists a proof-term t such that t : P . A dynamic proposition in DTS is a function
mapping a proof c of a static proposition γ, a proposition representing the preceding
discourse, to a static proposition. Such a proof term c is called a local context.

Underspecified term @i (where i is a natural number) is used to represent presup-
position triggers. For instance, (9a) is represented as (9b), where definite article the
introduces the term @1 in the semantic representation.

(9) a. The apple is red.

b. λc. red(π1(@1c :

[
x: entity
apple(x)

]
))

The underspecified term @1 is a function that takes a local context c as argument. A
term of the form @ic : Λ is called type annotation and specifies that the term @ic has
type Λ. In the case of (9b), the term @1c is annotated with a type corresponding to the
proposition there is an apple represented as a Σ-type. This means that the underspeci-
fied term @1 takes a local context c as argument and returns a proof of that proposition.
In this way, the annotated type represents the existential presupposition triggered by the
definite description the apple.5

The type of an underspecified term @i can be specified by a type-checking algo-
rithm (Bekki and Satoh [5]). Based on the inferred type, a proof search is carried out to

5 Here we take it that the uniqueness presupposition is not part of the conventional meaning
of a definite description but can be derived on pragmatic considerations along the lines of
Heim [10]. Although it is possible to include the uniqueness presupposition in the type anno-
tation Λ associated with the, the proof-search procedure to find the antecedent of an under-
specified term would then become complicated.

103

construct a term of that type; then the underspecified term @i is replaced by the obtained
term. This whole process corresponds to the process of presupposition resolution.

In the case of (9b), if a proof term for the existential proposition there is an apple
is constructed given a local context c, it can substitute @1. Such a proof construction
is possible when (9a) appears in contexts such as There is an apple and the apple is
... and If there is an apple, then the apple is These cases correspond to the case of
presupposition filtering. Note that given its type, @1c is a pair of an entity and a proof
of the entity being an apple. Accordingly, in (9b), the projection function π1 is applied
and returns the first element of the pair, i.e., an entity corresponding to the apple in
question; then the predicate red takes this entity as argument.

When one cannot construct a proof required by @i from a given local context c, the
existence of a term having the intended type can be assumed by means of the process of
accommodation. The whole process of resolving an underspecified term @i is the same
if the presupposition trigger is embedded under such a context as the scope of negation
or the antecedent of a conditional. In this way, we can explain basic projection patterns
of presuppositions.

4 Analyzing factivity in DTS

We will provide semantic representations for factive verbs by using underspecified term
@i in DTS. For reasons of space, we will concentrate on the case of declarative com-
plements and leave the analysis of interrogative complements for another occasion. We
take the factive verb know as a representative case.

Declarative complements. We represent a sentence of the form a knows that P as
λc. kn(a,@ic : Pc) . The underspecified term @i here takes a local context c as argu-
ment and requires one to construct a proof term of type Pc, i.e., to find evidence of the
(static) proposition Pc being true given the context c. Here P is a dynamic proposition
expressed by the declarative complement of know. If such a proof term is constructed,
it fills the second argument position of kn. Here predicate kn(x, t) can be read as agent
x obtains evidence t. In sum, given a context c, the sentence x knows that P presup-
poses that there is a proof (evidence) of Pc and asserts that the agent x obtains it, i.e.,
x has a proof (evidence) of the proposition Pc. In the same way as the case of definite
descriptions the analysis of presuppositional contents in terms of @i terms accounts for
the projection and filtering properties of know as shown in (3) and (4).

The standard analysis of know in formal semantics follows Hintikka’s [13] possi-
ble world semantics, which fails to capture the notion of evidence or justification that
has been traditionally associated with the concept of knowledge. An advantage of de-
pendent type theory is that it is equipped with proofs as first-class objects and thus
enables us to analyze the factive verb know as a predicate over a proof (evidence) of a
proposition.6

6 The idea that a proof term serves as an antecedent of anaphor can be traced back to Ranta [22],
where under the the assumption that proofs are identified with events it is claimed that aspec-
tual verbs like stop presuppose the existence of a proof. See also Krahmer and Piwek [15],

104

In contrast to know, a verb like believe does not have factivity presupposition. Ac-
cordingly, we analyze non-factive attitude verbs like believe as a predicate over a propo-
sition (cf. Tanaka et al. [25]). Thus, we treat factive and non-factive verbs as predicates
having a different semantic type. This treatment of factive and non-factive verbs is con-
sistent with Zeno Vendler’s view that know and believe select different semantic objects,
i.e., know selects a fact, while believe selects a proposition (Vendler [27]; Ginzburg [8]).
Note that in our approach, the notion of facts is not taken as primitive but analyzed in
terms of the notion of evidence of a proposition.

One advantage of this analysis is that it is consistent with, and directly applicable
to, a language like Japanese in which factive and non-factive verbs require a different
complementizer. In Japanese, there are two types of complementizer, koto and to. As
Kuno [16] observed, factive verbs usually take a clause ending with koto, while non-
factive verbs take a clause ending with to:

(10) John-wa
John-TOP

Mary-ga
Mary-NOM

kita
came

koto-o
COMP-ACC

sitteiru.
know.

‘John knows (the fact) that Mary came.’

(11) John-wa
John-TOP

Mary-ga
Mary-NOM

kita
came

to
COMP

sinziteiru.
believe.

‘John believes that Mary came.’

In general, koto-clauses trigger factive presupposition, while to-clauses do not. This
contrast can be captured by assuming that a factive verb like sitteiru takes as its object
a proof (evidence) of the proposition expressed by a koto-clause, while a non-factive
verb selects a proposition denoted by a to-clause.

NP-complements. Our analysis can be naturally extended to factive verbs taking NP-
complements. The factive verb know taking an NP-complement of the form the N that A
shows different entailment patterns from non-factive verbs like believe and interrogative
verbs like ask (Vendler [27]; Ginzburg [8]; Uegaki [26]): know does not license the
entailment from x Vs the rumor that P to x Vs that P , nor that from x Vs the question
whether A or B to x Vs whether A or B.

(12) a. John believes the rumor that Mary came. ⇒ John believes that Mary came.
b. John knows the rumor that Mary came. ̸⇒ John knows that Mary came.

(13) a. John asks the question whether Mary or Bob came. ⇒ John asks whether
Mary or Bob came.

b. John knows the question whether Ann or Bob came. ̸⇒ John knows whether
Mary or Bob came.

where it is briefly mentioned that the presuppositions triggered by noun phrases like the fact
that P can be treated in a similar way. Although space limitations preclude us from examining
these analyses in detail, our claim is that the idea that proofs act as antecedents of anaphora
can best be applied to the presuppositions of factive verbs in general.

105

We take it that know is ambiguous between the evidence-taking reading (kn) and the
so-called acquaintance reading. The latter is denoted as knnp. For example, x knows
the man is represented as (14).

(14) knnp(x,π1(@ic :

[
x: entity
man(x)

]
))

(15) knnp(x,π1(@ic :

⎡

⎣
p: type[
p = P
rumor(P)

]
⎤

⎦)

Using the predicate knnp, we represent x knows the rumor that P as (15), which pre-
supposes that there is a rumor whose content is identified with type P . When this pre-
supposition is satisfied, (15) is provably equivalent to knnp(x, P), which is clearly dis-
tinguished from the reading that x has evidence of P , hence, the non-entailment in
(12b) follows. (12a), which contains believe, is represented in the same way as (15);
thus it is equivalent to believe(x, P), hence we can derive the entailment in (12a). The
asymmetry between ask and know in (13) can be explained in a same manner.

5 Conclusion

This paper analyzed entailments and presuppositions associated with factive verbs in
the framework of DTS. We analyzed factive verbs as predicates taking a proof-object
as argument, and non-factive verbs as predicates taking a proposition in the sense
of dependent type theory. A fully compositional analysis of factive verbs in English
and Japanese, including those with NP-complements, as well as an analysis of wh-
complements, is left for another occasion.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University Press (2011)
2. Asher, N., Luo, Z.: Formalisation of coercions in lexical semantics. In: Sinn und Bedeutung.

vol. 17, pp. 63–80 (2012)
3. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev, S. (eds.)

Logical Aspects of Computational Linguistics, Lecture Notes in Computer Science, vol.
8535, pp. 14–29. Springer (2014)

4. Bekki, D., Asher, N.: Logical polysemy and subtyping. In: Motomura, Y., Butler, A., Bekki,
D. (eds.) New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, vol.
7856, pp. 17–24. Springer (2013)

5. Bekki, D., Satoh, M.: Calculating projections via type checking. In: Proceedings of TYTLES
(to appear)

6. Chatzikyriakidis, S., Luo, Z.: Natural language inference in Coq. Journal of Logic, Language
and Information 23(4), 441–480 (2014)

7. Fara, D.G.: Descriptions as predicates. Philosophical Studies 102(1), 1–42 (2001)
8. Ginzburg, J.: Resolving questions, I. Linguistics and Philosophy 18(5), 459–527 (1995)
9. Groenendijk, J., Stokhof, M.: Semantic analysis of wh-complements. Linguistics and Philos-

ophy 5(2), 175–233 (1982)

106

10. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. Ph.D. thesis, University of
Massachusetts, Amherst (1982)

11. Heim, I.: Definiteness and indefiniteness. In: Maienborn, C., von Heusinger, K., Portner,
P. (eds.) Semantics: An International Handbook of Natural Language Meaning, vol. 2, pp.
996–1025. De Gruyter Mouton (2011)

12. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
13. Hintikka, J.: Semantics for propositional attitudes. In: Models for Modalities, Synthese Li-

brary, vol. 23, pp. 87–111. Springer (1969)
14. Karttunen, L.: Syntax and semantics of questions. Linguistics and Philosophy 1(1), 3–44

(1977)
15. Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt, H.,

Muskens, R. (eds.) Computing Meanings: Current Issues in Computational Semantics.
Kluwer Academic Publishers (1999)

16. Kuno, S.: The Structure of the Japanese Language. The MIT Press (1973)
17. Luo, Z.: Common nouns as types. In: Bchet, D., Dikovsky, A. (eds.) Logical Aspects of

Computational Linguistics, Lecture Notes in Computer Science, vol. 7351, pp. 173–185.
Springer (2012)

18. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy 35(6), 491–513 (2012)

19. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
20. Meyer, J.J., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge

University Press (2004)
21. Mikkelsen, L.: Specifying Who: On the Structure, Meaning, and Use of Specificational Cop-

ular Clauses. Ph.D. thesis, University of California, Santa Cruz (2004)
22. Ranta, A.: Type-theoretical grammar. Oxford University Press (1994)
23. Retoré, C.: The montagovian generative lexicon ΛTyn: A type theoretical framework for

natural language semantics. In: Proceedings of TYPES 2013. pp. 202–229 (2013)
24. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.) Handbook of

Philosophical Logic, vol. 3, pp. 471–506. Springer (1986)
25. Tanaka, R., Mineshima, K., Bekki, D.: Resolving modal anaphora in Dependent Type Se-

mantics. In: Proceedings of LENLS11. pp. 43–56 (2014)
26. Uegaki, W.: Content nouns and the semantics of question-embedding. Journal of Semantics

(to appear)
27. Vendler, Z.: Res Cogitans: An Essay in Rational Psychology. Cornell University Press (1972)

107

TYTLES summary

Why types for lexical semantics?

I generative lexicon, coercion, learning, meaning in flux,
dynamic system

I dependent types

I probability

I computability

2 / 10

Robin COOPER (U. Gothenburg)
Christian RETORÉ (U. Montpellier)

108

Generative lexicon, . . . , dynamics

I types can remain constant over change of
witnesses/inhabitants

I possibility of observing new witnesses of a type

I di↵erent from a Montagovian notion of sense: function from
possible worlds to extensions — if you change the extension
the sense changes

I the type a word is associated with can also change —
structured types allow us to give an account of change not
available in a Montagovian sense

3 / 10

Papers relating to some kind of dynamic aspect of types

I Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel
Ramadier and Manel Zarrouk. Type Theories and Lexical
Networks: Using Serious Games as the Basis for Multi-Sorted
Typed Systems

I Sta↵an Larsson. Perceptual Meaning in TTR
Judgement-based Semantics and Conceptual Spaces

I Simon Dobnik. Interfacing Language, Spatial Perception and
Cognition in Type Theory with Records

I Ellen Breitholtz. Are Widows Always Wicked? Learning
concepts through enthymematic reasoning

I Bruno Mery. The Relative Complexity of Constraints in
Co-Predicative Utterances

I Livy Real and Alexandre Rademaker. An Overview on
Portuguese Nominalisation

I Seohyun Im and Chungmin Lee. A Developed Analysis of
Type Coercion Using Asher’s TCL and Conventionality

4 / 10

109

Paper relating to the notion of structured types

I Frames in hybrid logic ⇡ frames as record (types)

I can expressions of hybrid logic be thought of as record types
(event types)?

I Laura Kallmeyer, Timm Lichte, Rainer Osswald, Sylvain
Pogodalla and Christian Wurm. Quantification in Frame
Semantics with Hybrid Logic

5 / 10

Dependent types

I story of Martin-Löf and donkey anaphora

I DRT conditionals sort of reinvented dependent types

I no corresponding general strategy in standard model theoretic
semantics

6 / 10

110

Some uses of dependent types

I specific indefinites — Justyna Grudzinska and Marek
Zawadowski. A Puzzle about Long-distance Indefinites and
Dependent Type Semantics

I enthymemes/topoi — Ellen Breitholtz. Are Widows Always
Wicked? Learning concepts through enthymematic reasoning

I presupposition — Daisuke Bekki and Miho Satoh. Calculating
Projections via Type Checking; Ribeka Tanaka, Koji
Mineshima and Daisuke Bekki. Factivity and Presupposition
in Dependent Type Semantics

7 / 10

Probability

I probability associated with vagueness

I probability associated with type judgements vs. probability of
possible worlds

I Peter Sutton and Hana Filip. Probabilistic Mereological TTR
and the Mass/Count Distinction

8 / 10

111

Computability

I tractability more likely than with traditional possible world
semantics

I Pepijn Kokke. Formalising type-logical grammars in Agda

9 / 10

Conclusion

I a broad span of approaches, di↵erent type theories

I but common assumptions and goals

I we should keep talking . . .

10 / 10

112

