
Generating reliable services' composition using

A-policies: a model-driven approach?

Genoveva Vargas-Solar1, Valeria de Castro4, Plácido Antonio de Souza Neto5,6,
Javier A. Espinosa-Oviedo3, Esperanza Marcos4, Martin A. Musicante5,

José-Luis Zechinelli-Martini2,1, and Christine Collet3

1 French Council of Scienti�c Research, LIG-LAFMIA, Grenoble, France
Genoveva.Vargas-Solar@imag.fr

2 Fundación Universidad de las Américas, San Andrés Cholula, Puebla, México
joseluis.zechinelli@udlap.mx

3 Grenoble Institute of Technology, Grenoble, France
Christine.Collet@grenoble-inp.fr, Javier.Espinosa@imag.fr

4 Universidad Rey Juan Carlos, Móstoles, Spain
Valeria.deCastro@urjc.es, esperanza.marcos@urjc.es

5 DIMAp - UFRN, ForAll - Formal Methods and Language Research Laboratory,
Natal - RN, Brasil
mam@dimap.ufrn.br

6 Instituto Federal do Rio Grande do Norte, Natal - RN, Brasil
placido.neto@ifrn.edu.br

Abstract. This paper presents an approach for modeling and associat-
ing A-Policies to services' based applications. It proposes to extend the
SOD-M model driven method with (i) the π-SCM an A-Policy services'
composition meta-model for representing non-functional constraints as-
sociated to services' based applications; (ii) the π-Pews meta-model pro-
viding guidelines for expressing the composition and the policies; and,
(iii) model to model and model to text transformation rules for semi-
automatizing the implementation of reliable services' compositions.

Keywords: MDD, Service Oriented Applications, Non-functional Properties

1 Introduction

Service oriented computing is at the origin of an evolution in the �eld of soft-
ware development. An important challenge of service oriented development is to
ensure the alignment between IT systems and the business logic. Thus, organi-
zations are seeking for mechanisms to deal with the gap between the systems
developed and business needs [2]. The literature stresses the need for methodolo-
gies and techniques for service oriented analysis and design, claiming that they

? This work is partially �nanced by the projectsOrchestra ECOS-ANUIES,Clever
STIC-AMSUD,Masai, National Scientific and Technological Network of
Service Science and CAPES/STIC-AMSUD Brasil, BEX 4112/11-3.

are the cornerstone in the development of meaningful services' based applications
[13]. In this context, some authors argue that the convergence of model-driven
software development, service orientation and better techniques for documenting
and improving business processes are the key to make real the idea of rapid, ac-
curate development of software that serves, rather than dictates, software users'
goals [19].

Service oriented development methodologies providing models, best practices,
and reference architectures to build services' based applications mainly address
functional aspects [1, 6, 18, 14]. Non-functional aspects concerning services' and
application's "semantics", often expressed as requirements and constraints in
general purpose methodologies, are not fully considered or they are added once
the application has been implemented in order to ensure some level of reliability
(e.g., data privacy, exception handling, atomicity, data persistence). This leads
to services' based applications that are partially speci�ed and that are thereby
partially compliant with application requirements.

The objective of this work is to model non-functional constraints and asso-
ciate them to services' based applications early during the services' composi-
tion modeling phase. Therefore this paper presents π-SOD-M, a model-driven
method that extends the SOD-M [18] for building reliable services' based infor-
mation systems. Our work proposes to extend the SOD-M [18] method with (i)
the notion of A-Policy [10] for representing non-functional constraints associated
to services' based applications. We also (ii) de�nes the π-Pews meta-model [17]
providing guidelines for expressing the composition and the A-policies. Finally,
our work (iii) de�nes model to model transformation rules for generating the
π-Pews model of a reliable services' composition starting from the extended
services' composition model; and, model to text transformations for generating
the corresponding implementation.

The remainder of the paper is organized as follows. Section 2 gives an overview
of our approach. It describes a motivation example that integrates and synchro-
nizes well-known social networks services namely Facebook, Twitter and, Spotify.
Sections 3, 4, and 5 describe respectively the three key elements of our proposal,
namelly the π-SCM and π-Pews meta-models and the transformation rules that
support the semi-automatic generation of reliable services' compositions. Section
6 analyses related work concerning policy/contract based programming and, ser-
vices' composition platforms. Section 7 concludes the paper and discusses future
work.

2 Modeling reliable services' compositions with

π-SOD-M

Consider for instance the following scenario. An organization wants to provide
the services' based application "To Publish Music" that monitors the music a
person is listening during some periods of time and sends the song title to this
person's Twitter and Facebook accounts. Thus, this social network user will have
her status synchronized in Twitter and Facebook (i.e., either the same title is

published in both accounts or it is not updated) with the title of the music she is
listening in Spotify. For developing this services' based application it is necessary
to compose the following services calling their exported methods: a) The music
service Spotify exports a method for obtaining information about the music a
given user is listening: get-Last-Song (userid): String ; b) Facebook and Twitter
services export a method for updating the status of a given user update-Status (

userid, new-status): String.
The "To Publish Music" scenario starts by contacting the music service Spo-

tify for retrieving the user's musical status (activity Get Song). Twitter and Face-
book services are then contacted in parallel for updating the user's status with
the corresponding song title (activities Update Twitter and Update Facebook).

Given a set of services with their exported methods known in advance or
provided by a service directory, building services' based applications can be a
simple task that implies expressing an application logic as a services' composi-
tion. The challenge being ensuring the compliance between the speci�cation and
the resulting application. Software engineering methods (e.g., [1, 6, 18, 14]) to-
day can help to ensure this compliance, particularly when information systems
include several sometimes complex business processes calling Web services or
legacy applications exported as services.

2.1 Modeling a services' based application

Figure 1 shows SOD-M that de�nes a service oriented approach providing a set
of guidelines to build services' based information systems (SIS) [18]. Therefore,
SOD-M proposes to use services as �rst-class objects for the whole process of
the SIS development and it follows a Model Driven Architecture (MDA) [15]
approach. Extending from the highest level of abstraction of the MDA, SOD-M
provides a conceptual structure to: �rst, capture the system requirements and
speci�cation in high-level abstraction models (computation independent mod-
els, CIMs); next, starting from such models build platform independent models
(PIMs) specifying the system details; next transform such models into plat-
form speci�c models (PSMs) that bundles the speci�cation of the system with
the details of the targeted platform; and �nally, serialize such model into the
working-code that implements the system. As shown in Figure 1, the SOD-M
model-driven process begins by building the high-level CIMs and enables speci�c
models PSMs for a service platform to be obtained as a result [18]. Referring to
the "To Publish Music" application, using SOD-M the designer starts de�ning
an E3value model 7 at the CIM level and then the corresponding models of the
PIM are generated leading to a services' composition model (SCM).

Now, consider that besides the services' composition that represents the or-
der in which the services are called for implementing the application "To Publish
Music" it is necessary to model other requirements that represent the (i) condi-
tions imposed by services for being contacted, for example the fact the Facebook

7 The E3 value model is a business model that represents a business case and allows
to understand the environment in which the services' composition will be placed [9].

BEHAVIOUR	 HYPERTEXT	 CONTENT	

Domain	
Modeling	

Computation	
Independent	
Model	 (CIM)	

Platform	
Independent	
Model	 (PIM)	

Platform	
Specific	

Model	 (PSM)	

Use	 Case	 Model	

Extended	 Use	 Case	 	
Model	

SOD-‐M	

Service	 Process	 	
Model	

Business	
Modeling	 Value	 Model	

Code	

π-‐Service	 	
Composition	 Model	

Service	 Composition	 	
Model	

extends	

π-‐PEWS	 Model	

PEWS	
Code	

π-‐SOD-‐M	

Fig. 1: SOD-M development process

and Twitter require authentication protocol in order to call their methods for
updating the wall; (ii) the conditions stemming from the business rules of the
application logic, for example the fact that the walls in Facebook and Twitter
must show the same song title and if this is not possible then none of them is
updated.

2.2 Modeling non-functional constraints of services' based

applications

Adding non-functional requirements and services constraints in the services' com-
position is a complex task that implies programming protocols for instance au-
thentication protocols to call Facebook and Twitter in our example, and atomic-
ity (exception handling and recovery) for ensuring a true synchronization of the
song title disseminated in the walls of the user's Facebook and Twitter accounts.

Service oriented computing promotes ease of information systems' construc-
tion thanks, for instance, to services' reuse. Yet, this is not applied to non-
functional constraints as the ones described previously, because they do not fol-
low in general the same service oriented principle and because they are often not
fully considered in the speci�cation process of existing services' oriented develop-
ment methods. Rather, they are either supposed to be ensured by the underlying
execution platform, or they are programmed through ad-hoc protocols.

Our work extends SOD-M for building applications by modeling the applica-
tion logic and its associated non-functional constraints and thereby ensuring the
generation of reliable services' composition. As a �rst step in our approach, and
for the sake of simplicity we started modeling non-functional constraints at the
PSM level. Thus, in this paper we propose the π-SCM, the services' composition
meta-model extended with A-policies for modeling non-functional constraints
(highlighted in Figure 1 and described in Section 3). π-SOD-M de�nes the π-
Pews meta-model providing guidelines for expressing the services' composition
and the A-policies (see Section 4), and also de�nes model to model transforma-
tion rules for generating π-Pews models starting from π-SCM models that will
support executable code generation (see Section 5).

3 π services' composition meta-model

The A-policy based services' composition meta-model (see in Figure 2) repre-
sents a work�ow needed to implement a services' composition, identifying those
entities that collaborate in the business processes (called Business Collab-

orators 8) and the Actions that they perform. This model is represented
by means of a UML activity diagram. This model includes the typical model-
ing elements of the activity diagram such as ActivityNodes, InitialNodes
and FinalNodes, DecisionNodes, etc., along with new elements de�ned by
SOD-M such as Business Collaborators, ServiceActivity and Action.
A Business Collaborator element represents those entities that collaborate
in the business processes by performing some of the required actions. They are
graphically presented as a partition in the activity diagram. Action, a kind of
ExecutableNode, are represented in the model as an activity. There are two
types of actions: i) a WebService (attribute Type is WS); and ii) a simple oper-
ation that is not supported by a Web Service, called an ActivityOperation
(attribute Type is AOP). The ServiceActivity element is a composed activity
that must be carried out as part of a business service and is composed of one or
more executable nodes.

Figure 2 illustrate the service compostion model of the "To Publish Music"
scenario. There are three external business collaborators (Spotify, Twitter and
Facebook 9). It also shows the business process of the "To Publish Music" appli-
cation that consists of three service activities: Listen Music, Public Music and
Con�rmation. Note that the action Publish Music of the application calls the
actions of two service collaborators namely Facebook and Twitter.

Instead of programming di�erent protocols within the application logic, we
propose to include the modeling of non-functional constraints like transactional
behaviour, security and adaptability at the early stages of the services' com-
position engineering process. We model non-functional constraints of services'
compositions using the notion of A-policy [10, 5], a kind of pattern for specifying
A-policy types. In order to represent constraints associated to services composi-
tions, we extended the SOD-M services' composition model with two concepts:
Rule and A-policy.

The Rule element represents an event - condition - action rule where the
Event part represents the moment in which a constraint can be evaluated ac-
cording to a condition represented by the Condition part and the action to be
executed for reinforcing it represented by the Action part.

An A-policy groups a set of rules. It describes global variables and operations
that can be shared by the rules and that can be used for expressing their Event
and Condition parts. An A-Policy is associated to the elements BusinessCol-
laborator, ServiceActivity and, Action of the π-SCM meta-model.

8 We use capitals for referring to meta-models' classes.
9 We use italics to refer to concrete values of the classes of a model that are derived
from the classes of a meta-model.

Application	 ListenMusic	
<<External	 false>>	

<<External	 true>>	

Facebook	

Twitter	

Spotify	

<<External	 true>>	

<<External	 true>>	

AOP	
GetSong	

AOP	
PublishMusic	

AOP	
PublishingOK	

WS	
ListenMusic	

WS	
UpdateMusic	

WS	
UpdateMusic	

SongData	

SongData	
SongData	

OK	
OK	

Confirmation	 PublishMusic	

<<A-‐Policy>>	
HTTPAuthPolicy	

Username:	 String	
Password:	 String	

<<A-‐Policy>>	
OAuthPolicy	

Token:	 token	

<<Rule>>	
R1	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 AND	 token	 ==	 null	
Action:	 token	 =	 getToken()	

<<Rule>>	
R2	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 AND	 token	 !=	 null	 AND	
token.isExpired()	 ==	 true	
Action:	 token	 =	 renewToken()	

<<Rule>>	
R1	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 	
Action:	
Scope.httpRequest.Credentials	 =	
newNetworkCredential(username,	
password);	

Business
Collaborator

-Type : ActionType
Action

ServiceActivity

Fig. 2: Services' composition model for the business service "To publish music"

Given that Facebook and Twitter services require authentication protocols
in order to execute methods that will read and update the users' space. A call
to such services must be part of the authentication protocol required by these
services. In the example we associate two authentication policies, one for the
open authentication protocol, represented by the class Twitter OAuthPolicy that
will be associated to the activity UpdateTwitter (see Figure 2). In the same way,
the class Facebook HTTPAuthPolicy, for the http authentication protocol will be
associated to the activity UpdateFacebook. OAuth implements the open authenti-
cation protocol. As shown in Figure 2, the A-policy has a variable Token that will
be used to store the authentication token provided by the service. This variable
type is imported through the library OAuth.Token. The A-policy de�nes two rules,
both can be triggered by events of type ActivityPrepared: (i) if no token has been
associated to the variable token, stated in by the condition of rule R1, then a
token is obtained (action part of R1); (ii) if the token has expired, stated in the
condition of rule R2, then it is renewed (action part of R2). Note that the code
in the actions pro�ts from the imported OAuth.Token for transparently obtaining
or renewing a token from a third party.

HTTP-Auth implements the HTTP-Auth protocol. The A-policy imports an
http protocol library and it has two variables username and password. The event of
type ActivityPrepared is the triggering event of the rule R1. On the noti�cation of
an event of that type, a credential is obtained using the username and password
values. The object storing the credential is associated to the scope, i.e., the
activity that will then use it for executing the method call.

Thanks to rules and policies it is possible to model and associate non-
functional properties to services' compositions and then generate the code. For
example, the atomic integration of information retrieved from di�erent social
network services or for providing security in the communication channel when
the payment service is called.

Back to the de�nition process of a SIS, once the A-policy based services'
composition model has been de�ned, then it can be transformed into a model
(i.e., π-PEWS model) that can support then executable code generation. The
following Section describes the π-PEWS meta-model that supports this repre-
sentation.

4 π-Pews meta-model

The idea of the π-Pews meta-model is based on the services' composition ap-
proach provided by the language PEWS[3, 17] (Path Expressions for Web Ser-

vices), a programming language that lets the service designer combine the meth-
ods or subprograms that implement each operation of a service, in order to
achieve the desired application logic. Figure 3 presents the π-Pews meta-model.

	

Path

-Alias : String
Operation

-nameOperator : OperatorType
Operator

+SEQUENCE
+PARALLEL
+CHOICE
+LOOP

«enumeración»
OperatorType

+REQ
+ACT
+TERM

«enumeración»
StateType

+ActivityPrepared
+TermActivity
+Activity

«enumeración»
EventType

-name : String
PEWSCTSpec

-name : String
-WSDLAddress : String

Namespace

-name : String
TypeOperation

CompositeOperation

-name : String
-value : String

Variable

-name : String
APolicy

Scope

-type : StateType
State

-act : String
Action

-type : EventType
Event

-expression : String
Condition

Rule

Precondition Postcondition TimeRestriction

1

-calls 1..*

1

-hasSome 1..*

1

-defines 0..*

-policy

1

-defines

1..*

-isRelatedWith1..*

0..*

-eventRepresents

1

-event0..1

-conditionRepresents

1..*

-condition0..1

-hasState0..1

0..*

-leftOp0..1

-left1

-rigthOp0..1

-right0..1

-representAn 0..1

1

-contains

1..*1

-canHave

0..*

1

-canHave

0..*

1

-contains1..*

-isDefinedIn

1

0..*

-has

0..*

0..1

1

-composeComposite

1..*

1

-defines 0..*

Fig. 3: π-Pews Metamodel

Namespace represents the interface exported by a service, Operation that
represents a call to a service method, CompositeOperation, and Operator
for representing a services' composition and Path representing a services' com-
position. A Path can be an Operation or a Compound Operation denoted
by an identi�er. A Compound Operation is de�ned using an Operator that
can represent sequential and parallel composition of services, choice among ser-
vices, the sequential and parallel repetition of an operation, or the conditional
execution of an operation.

A-Policies that can be associated to a services' composition: A-Policy,
Rule, Event, Condition, Action, State, and Scope.

As shown in the diagram an A-Policy is applied to a Scope that can be
either an Operation (e.g., an authentication protocol associated to a method
exported by a service), an Operator (e.g., a temporal constraint associated to
a sequence of operators, the authorized delay between reading a song title in
Spotify and updating the walls must be less then 30 seconds), and a Path (e.g.,

executing the walls' update under a strict atomicity protocol - all or noting).
It groups a set of ECA rules, each rule having a classic semantics, i.e, when an

event of type E occurs if condition C is veri�ed then execute the action A. Thus,
an A-policy represents a set of reactions to be possibly executed if one or several
triggering events of its rules are noti�ed.

The class Scope represents any element of a services' composition (i.e., op-
eration, operator, path). The class A-Policy represents a recovery strategy im-
plemented by ECA rules of the form Event - Condition - Action. A A-policy

has variables that represent the view of the execution state of its associated
scope, that is required for executing the rules. The value of a variable is repre-
sented using the type Variable. The class A-Policy is specialized for de�ning
speci�c constraints, for instance authentication A-policies.

Given a π-SCM model of a speci�c services' based application, it is possible
to generate its corresponding π-Pews model thanks to transformation rules.
The following Section describes the transformation rules between the π-SCM
and π-Pews meta-models of our method.

5 Transformation rules

Figure 4 shows the transformation principle between the elements of the π-SCM
meta-model used for representing the services' composition into the elements of
the π-Pews meta-model. There are two groups of rules: those that transform
services' composition elements of the π-SCM to π-Pews meta-models elements;
and those that transform rules grouped by policies into A-policy types.

Services Composition elements π-SCM à π-Pews A-Policy elements π-SCM à π-Pews

Rule elements π-SCM à π-Pews

SOURCE'π−SCM'META+MODEL! Mapping'Rules' TARGET'
PEWSModel!

Action'

'

!"An"Action"in"the"source"model"corresponding"to"an"external"Business'
Collaborator"is"mapped"to"an"Operation"in"target"model"
!" The" Action:name" in" the" source" model" is" transformed" into"
Operation:name"in"the"target"model"

'

Service'Activity'

'
'
'

!" The" ServiceActivity" in" the" source" model" is" mapped" to" a"
CompositeOperation" in" target"model"when"more" than"one"Actions" are"
called.""
!"If"CompositeOperation"is"generated"for"a"given"ServiceActivity"then"
the" ServiceActivity:name" in" the" source" model" is" mapped" to"
CompositionOperation:name"in"the"target"model"

'
''

'
Control'Nodes'

'

!"The"ControlNode"in"the"source"model"is"mapped"to"a"Operator"in"target"
model." According" to" the" type" of"ControlNode" (merge," decision," join," fork)"
the"expression"of"the"CompositeOperation"is:"

• Sequence"if"no"ControlNode"is"specified;'
• Parallel' <' Sequence" for" a" ControlNodes' pattern" fork' <'

join;"
• Choice" –" Sequence" for" a" ControlNodes'pattern" decision'–'

merge"

'

Business'Collaborator'

'

A"BusinessCollabortor:isExternal'in"the"source"model"generates"a''
NameSpaces'in"the"target"model"

" '

!

!

SOURCE'π(SCM'META(MODEL! Mapping'Rules' TARGET'
PEWSModel!

!

The$ Rule’s$ attribute$ event$ in$ the$ source$ model$ is$ transformed$ into$ an$
Event:type$ of$ the$ target$ model.$ In$ this$ case$ attribute$ is$ mapped$ to$ an$
entity$with$an$attribute.$The$Event,Type$ofaRule$ inthetarget$model$ is$
determinedbythe$Rule$type:$

• Event,Typeofa$Precondition,Rule$is$ActivityPrepared;$
• Event,Typeofa$Postcondition,Rule$is$ActivityPrepared-

Event,Typeofa$TimeRestriction,Rule$is$TermActivity$

,

,
,

,
,

,

The$Rule’s$attribute$condition$inthesource$model$is$transformed$intoa
Condition:expressioninthe$target$model.Inthis$case,$an$attribute$is$
mapped$into$an$entity$withanattribute$,

,

The$Rule:action$inthesource$model$is$transformed$inanAction:type$
in$ the$ target$model.$ The$attribute$action$ is$mapped$ to$ an$entity$with$ an$
attribute.$ In$ the$ target$model$ an$ action$ is$ executed$ according$ to$ the$ rule$
condition$value$(true/false)$,

!

SOURCE'π(SCM'
METAMODEL'

Mapping'Rules' TARGET'
PEWSModel'

!

!" Every"Policy" associated" to" an" element" (Business!
Collaborator,!Service!Activity,!Action)" in" the" source"
model"becomes"an" A6Policy" associated" to" the" corresponding"
element"in"the"target"model"
!"The"name"attribute"of"a"Policy"in"the"source"model"becomes"an"
Apolicy:name"of"the"target"model"

"

!

!

!" Every"Variable" associated" to" a" Policy" in" the" source"
model"becomes"a"Variable"associated"to"an"A!Policy"in"the"target"
model."The"variables"can"be"used" in"an"A6Policy’s!Condition"
of"the"target"model"
!" Every"Variable:name" in" the" source" model"becomes"a"
Variable:name"in"the"target"model"
!" Every"Variable:type" in" the" source" model"becomes"a"
Variable:type"in"the"target"model"

!

!

For"a"Rule"in"the"source"model,"depending"on"the"Event"Type,"the"
corresponding"transformation"in"the"target"model"is:"

• Precondition!Rule"if"the"Event"Type"is"Pre;"
• Postcondition!Rule"if"the"Event"Type"is"Post;"
• TimeRestriction"Rule"if"the"Event"Type"is"Time"

" !
!

Fig. 4: π-SCM to π-Pews transformation

6 Related works

Current standards in services' composition implement functional, non-functional
constraints and communication aspects by combining di�erent languages and
protocols. The selection of the adequate protocols for adding a speci�c non-
functional constraints to a services' composition (e.g., security, transactional
behaviour and adaptability) is responsibility of a programmer. As a consequence,
the development of an application based on a services' composition is a complex
and a time-consuming process. This is opposed to the philosophy of services that
aims at facilitating the integration of distributed applications.

Software process methodologies for building services based applications have
been proposed in[14, 16, 7, 4], and they focus mainly on the modeling and con-
struction process of services based business processes that represent the appli-
cation logic of information systems. Design by Contract [8] is an approach for
specifying web services and verifying them through runtime checkers before they
are deployed. A contract adds behavioral information to a service speci�cation,
that is, it speci�es the conditions in which methods exported by a service can
be called. Contracts are expressed using the language jmlrac [12]. The Contract
De�nition Language (CDL) [16] is a XML-based description language, for de�n-
ing contracts for services. There are an associated architecture framework, design
standards and a methodology, for developing applications using services. A ser-
vices' based application speci�cation is generated after several [11] B-machines
re�nements that describe the services and their compositions.

As WS-* and similar approaches, our work enables the speci�cation and
programing of crosscutting aspects (i.e., atomicity, security, exception handling,
persistence). In contrast to these approaches, our work speci�es policies for a
services' composition in an orthogonal way. Besides, these approaches suppose
that non-functional requirements are implemented according a the knowledge
that a programmer has of a speci�c application requirements but they are not
derived in a methodological way, leading to ad-hoc solutions that can be di�cult
to reuse. In our approach, once de�ned A-Policies for a given application they
can be reused and/or specialized for another one with the same requirements or
that uses services that impose the same constraints.

7 Conclusions and future work

This paper presented π-SOD-M for specifying and designing reliable service
based applications. We model and associate policies to services' based appli-
cations that represent both systems' cross-cutting aspects and use constraints
stemming from the services used for implementing them. We extended the SOD-
M method, particularly the π-SCM (services' composition meta-model) and π-
Pews meta-models for representing both the application logic and its associated
non-functional constraints and then generating its executable code.

Non-functional constraints are related to business rules associated to the gen-
eral "semantics" of the application and in the case of services' based applications,

they also concern the use constraints imposed by the services. We are currently
working on the de�nition of a method for explicitly expressing such properties
in the early stages of the speci�cation of services based applications. Having
such business rules expressed and then translated and associated to the services'
composition can help to ensure that the resulting application is compliant to the
user requirements and also to the characteristics of the services it uses.

Programming non-functional properties is not an easy task, so we are de�ning
a set of prede�ned A-policy types with the associated use rules for guiding the
programmer when she associates them to a concrete application. A-policy type
that can also serve as patterns for programming or specializing the way non-
functional constraints are programmed.

References

1. A. Arsanjani, S. Ghosh, A.A.T.A.S.G.K.H.: SOMA: A method for developing
service-oriented solutions. IBM System Journal 47(3) (2008)

2. Bell, M.: Service-Oriented Modeling: Service Analysis, Design, and Architecture.
(2008)

3. Cheikh, B., Mirian, H.F., Martin Alejandro, M.: Composing Web Services with
PEWS: A Trace-Theoretical Approach. In: ECOWS. (2006) 65�74

4. Ervin, R., Dimitris, D., Anthony J. H., S.: A survey of service oriented development
methodologies

5. Espinosa-oviedo, J.A., Vargas-Solar, G., Zechinelli-Martini, J.L., Collet, C.: Non-
Functional Properties and Services Coordination Using Contracts. In: In proceed-
ings of the 13th Int. Database Engineering and Applications Symposium (IDEAS
09), Cetraro, Italy, ACM (2009)

6. et. al, A.B.: SOA Development Using the IBM Rational Software Development
Platform: A Practical Guide. In: Rational Software. (2005)

7. George, F., Sooksathit, M.: Towards software development methodology for web
services. In: SoMeT. (2005) 263�277

8. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. In
Pezzé, M., ed.: Proceedings of the International Workshop on Test and Analysis
of Component Based Systems (TACoS 2004). Volume 116. (2005) 145�156

9. J., Gordijn, J.A.: Value based requirements engineering: exploring innovative e-
commerce idea. Requirements Engineering Journal 8(2) (2003)

10. Javier-Alfonso, E.O., Genoveva, V.S., Jos�-Luis, Z.M., Christine, C.: Policy driven
services coordination for building social networks based applications. In: In Proc.
of the 8th Int. Conference on Services Computing (SCC'11), Work-in-Progress
Track, Washington, DC, USA, IEEE (July 2011)

11. Jean-Raymond, A., Matthew K. O., L., David, N., P. N., S., Ib Holm, S.: The
b-method. In Prehn, S., Toetenel, W.J., eds.: VDM Europe (2). Volume 552 of
Lecture Notes in Computer Science., Springer (1991) 398�405

12. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of jml
accomodates both runtime assertion checking and formal veri�cation. In: FMCO.
(2002) 262�284

13. M. Papazoglou, P. Traverso, S.D.F.L.: Service-Oriented Computing: State of the
Art and Research Challenges. IEEE Computer 40(11) (2007)

14. Mike P., P., Willem-Jan, v.d.H.: Service-oriented design and development method-
ology. Int. J. Web Eng. Technol. 2(4) (2006) 412�442

15. Miller, J., Mukerji, J.: Mda guide. (2003)
16. Nikola, M.: Contract-based Web Service Composition. PhD thesis, Humboldt-

UniversitÃ¤t zu Berlin (2006)
17. Plácido A., S.N., Martin Alejandro, M., Genoveva, V.S., José-Luis, Z.M.: Adding

Contracts to a Web Service Composition Language. LTPD - 4th Workshop on
Languages and Tools for Multithreaded, Parallel and Distributed Programming
(September 2010)

18. V. De Castro, E. Marcos, R.W.: Towards a service-oriented mda-based approach to
the alignment of business processes with it systems: From the business model to a
web service composition model. International Journal of Cooperative Information
Systems 18(2) (2009)

19. Watson, A.: A brief history of MDA (2008)

