
HAL Id: hal-01584800
https://hal.science/hal-01584800v1

Submitted on 9 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Planning-Based Service Composition Approach for
Data-Centric Workflows

Carlos-Manuel López-Enríquez, Víctor Cuevas-Vicenttín, Genoveva
Vargas-Solar, Christine Collet, José-Luis Zechinelli-Martini

To cite this version:
Carlos-Manuel López-Enríquez, Víctor Cuevas-Vicenttín, Genoveva Vargas-Solar, Christine Collet,
José-Luis Zechinelli-Martini. A Planning-Based Service Composition Approach for Data-Centric
Workflows. Service-Oriented Computing - ICSOC 2014 Workshops - WESOA; SeMaPS, RMSOC,
KASA, ISC, FOR-MOVES, CCSA and Satellite Events, Nov 2014, Paris, France. pp.377 - 143. �hal-
01584800�

https://hal.science/hal-01584800v1
https://hal.archives-ouvertes.fr

A Planning-Based Service Composition

Approach for Data-Centric Workflows

Carlos-Manuel López-Enŕıquez2,4, Vı́ctor Cuevas-Vicentt́ın3, Genoveva
Vargas-Solar1,2, Christine Collet2, and José-Luis

Zechinelli-Martini4

1 CNRS
2 Grenoble Institute of Technology

BP. 72, 38402, Saint Martin d’Hères Cedex, France
3 Universidad Panamericana Campus Guadalajara

Calzada Circunvalación Poniente No. 49, Ciudad Granja 45010
Zapopan, Jalisco, Mexico

4 Universidad de las Américas Puebla
Exhacienda Sta. Catarina Mártir s/n, 72820

San Andrés Cholula, Puebla, Mexico
carlos.manuel.lopez@gmail.com,victorcuevasv@gmail.com,genoveva.vargas@imag.fr,

christine.collet@grenoble-inp.fr,joseluis.zechinelli@udlap.mx

Abstract. This paper presents a planning-based approach for the enu-
meration of alternative data-centric workflows specified in ASASEL (Ab-
stract State mAchineS Execution Language), which define the coordina-
tion of data and computation services for satisfying data requirements.
The optimization of data-centric workflows is associated to the explo-
ration of the parallelization of the workflow activities. We address the
exploration of parallelism formalizing the enumeration problem in the
DLV-K language. Together, our ASASEL language and enactment en-
gine along with our enumeration approach provide the foundation for a
highly flexible mechanism for managing data-centric workflows.

Keywords: workflows, services, answer set planning, logic programming

1 Introduction

We witness a proliferation of streaming and on-demand data services for acce-
ssing data pertaining to a multitude of domains, possibly involving temporal and
mobile properties. The availability of data services is accompanied by a democra-
tization in access to computational resources. Nevertheless, users typically must
rely on proprietary applications that delegate data processing to their backend,
which makes it difficult to share resources and add new features.

Therefore we propose ASASEL (Abstract State Machines Execution Lan-
guage) to build up systems from shared resources accessible as services via data-
centric workflow specifications. Our work considers both on-demand and stream-
ing data services producing complex values, operations on these data, and the

ability to construct composite computation services to process them. In addition,
we propose a workflow transformation framework based on planning techniques
to meet quality of service goals. We present a concrete implementation of this
framework covering parallelization through the workflow structure.

The remainder of this paper is structured as follows. Section 2 presents our
workflow model and language, while Section 3 introduces our complex values
data model and related operations. In Section 4 we present a planning-based
workflow transformation framework, whose experimental results are presented
in Section 5. Our system implementation is discussed in Section 6. Section 7
discusses related work. Finally, we present our conclusions and discuss future
work in Section 8. The material in Section 2 is also presented in [?], which
however does not cover the contents of Section 3 onwards.

2 Data-Centric Workflows

Consider a Friend Finder application in which multiple users carry mobile devices
that periodically transmit their location. Assume that they have agreed to share
some of their personal information. A user in this scenario may want to Find

friends recently located no more than 3 km away from me, which are over 21

years old and that are interested in art.

Data services produce data in one of two ways: on-demand in response to a
given request, or continuously as a data stream. In either case, the data service
exposes an interface, composed of several operations and supported by standard-
ized protocols. The JavaScript Object Notation is used to represent the data.
Accordingly, objects are built from atomic values, nested tuples, and lists.

For instance, in our scenario the users’ location is available by a stream data
service with the interface

subscribe()→ ⌈location : 〈nickname, coor〉⌉

consisting of a subscription operation that after invocation will produce a stream
of location tuples, each with a nickname that identifies the user and his/her
coordinates. The rest of the data is produced by the next two on-demand data
services, each represented by a single operation

profile(nickname)→ person : 〈age, sex, email〉
interests(nickname)→ [s tag : 〈tag, score〉]

The first provides a single person tuple denoting a profile of the user, once
given a request represented by her nickname. The second produces, given the
nickname as well, a list of s tag tuples denoting the interests of the user by
scored tags (e.g. ’music’ with 8.5).

In order to obtain the desired result we need to give to it an executable
form, in our case a workflow of activities implementing a service coordination.
Workflows are built by the parallel and sequential composition of activities that
are bound to data and computation services; the first provide the data, while
the latter process them as required.

2.1 Workflow Model

The workflow is specified as an Abstract State Machine (ASM) [4], which can
be represented as a series-parallel graph. The ASM specification of the service
coordination corresponding to our example application is presented in Listing
1.1, while its workflow representation is given in Figure 1. It includes the location,
profile, and interests data services, as well as computation services for various
relational operations such as selections, joins, and a time-based window bounding
the location stream to recent data (e.g. location notifications obtained within
the last 10 minutes).

seq

par

seq

par

seq

l o c a t i o n := l . l o c a t i o n ()
locWin := comp . timeWin (l o c a t i on , 1 0)
d i s t S e l := comp . f unCa l l S e l (locWin ,
d . d i s t (lat , lon , 4 8 . 8 5 , 2 . 2 9) <3.0)

endseq

p r o f i l e := p r o f i l e . p r o f i l e ()
endpar

lp := comp . bindJoin (d i s tS e l , p r o f i l e , nickname=nickname)
ageSe l := comp . s e l e c t i o n (lp , age > 21)

endseq

i n t e r e s t s := i . i n t e r e s t s ()
endpar

l i p := comp . bindJoin (lp , i n t e r e s t s , nickname=nickname)
tagSe l := comp . s e l e c t i o n (l i p , tag= ’ a r t ’)
output := comp . output (t agSe l)

endseq

Listing 1.1: ASM specification for example application

Fig. 1: Data-centric workflow for example application

A workflowW is modeled as a directed acyclic graphW = (V,E, in, out, A,C)
where:

V is a set of vertices
E ⊆ V × V is a set of edges

A ⊆ V is a set of activities
{in, out} ⊆ A are the initial and final activities of W

C ⊆ V is a set of composition operators {par1, ..., parn}
.

There are three types of vertices: activities perform a service method invocation
and always have ancestor and descendant vertices, in vertices have no ancestors
and their only goal is to launch the first activity of the workflow, out vertices
have no descendants and stop the workflow execution after the last activity. A
series of construction rules enable to generate a workflow graph from a given
ASM, which are detailed in [2].

2.2 Computation services

Two kinds of computation services form part of our approach: simple compu-
tation services and composite computation services specified in the ASASEL
language.

Simple computation services involve a single service operation invoca-
tion to process data. For instance, a distance computation service that relies
on a geo-distance service, which provides the capability to calculate the geo-
graphical distance between two points, e.g., by Vincenty’s formula.

Composite computation services process data by multiple operation in-
vocations, possibly from different services, and often also by the manipulation
of local data. These tasks are organized in a service coordination specified in the
ASASEL language and represented as a workflow, following a model in which
we add data items as well as conditional and iteration constructs to our basic
parallel and sequential composition workflow model illustrated in Figure 1.

The specification of a time-based window composite service in ASASEL is
presented in Listing 1.2, based on a simple calendar-queue service. It has a
corresponding workflow representation as detailed in [2].

i f (c t l s t a t e = ’ a c t i v e ’)
seq

inTuple := readTuple ()
i f (inTuple = n i l)

skip

else

seq

oldTuple := cq . p e ekF i r s t ()
i terate (oldTuple != n i l)

i f (oldTuple . t s + range < inTuple . t s)
seq

oldTuple . s i gn := −1
oldTuple . t s := oldTuple . t s + range
output (oldTuple)
cq . removeFirst ()
oldTuple := cq . p e ekF i r s t ()

endseq

pq . enqueue(inTuple)
output (inTuple)

endseq

endseq

Listing 1.2: ASM specification for the time-based window

3 Complex Values Data Model

Our workflow model is complemented by a data model consisting of complex
values and operations to flexibly manipulate them. Due to space restrictions

we only specify two representative operators while the full specification and
semantics of the model is given in [2]. Concretely, we first define complex values
and then present a recursive operator and a nesting operator over them.

The set T of all complex value types over a set A of type names is defined
inductively as follows.

1. if D is a domain, then A : D is an atomic type named A, where A ∈ A;

2. if t̂ is a type, then A : {t̂} is a set type named A;

3. if t̂1, ..., t̂n are types with distinct names, then A : 〈t̂1, ..., t̂n〉 is a tuple type
named A and each t̂i is an attribute type.

3.1 Recursive complex value operators

Inspired in the traditional relational operators, they apply to complex values in a
recursive manner; meaning that through an expression it is possible to apply the
operator to structures nested within a complex value. In particular, we present
next the specification of the projection operator.

Projection Enables to retrieve certain data elements in a complex value
instance. Such data elements may be nested and multivalued. The data elements
to retrieve are specified in a (possibly recursive) projection expression πexp, which
is applied to the input complex value instance s.

– Notation: πexp(s)

Projection expressions πexp are constructed as follows, we use A to represent
type names that occur in the complex value instance

πexp ::= π (list)
list ::= term | term , list

term ::= A | πexp

– Operation type: π : t̂ → t̂′, where t̂′ is defined below

– Semantics : πexp(s) is defined as follows.

First, we define the function eval(A : v, L), where A : v is a tuple complex
value of the form A : 〈..., A′ : v′, ...〉 and L an expression term (as defined by
the notation third rule above).

1. If L is of the form A′ then eval(A : v, L) = A′ : v′

2. If L is of the form π(A′, L′
1, ..., L

′
n) then eval(A : v, L) = π(A′, L′

1, ..., L
′
n)(A

′ :
v′)

The value of πexp(s) is then given by

1. If s = A : 〈A1 : v1, ..., An : vn〉 = A : v, i.e. s is a tuple complex value,
and πexp = π(A,L1, ..., Ln), then
πexp(s) = A : 〈eval(A : v, L1), ..., eval(A : v, Ln)〉 and

t̂′ is A : 〈type(eval(A : v, L1)), ..., type(eval(A : v, Ln))〉

2. If s = A : {A′ : v1, ..., A
′ : vm}, i.e. s is a set complex value, and

πexp = π(A, πexp′) with πexp′ of the form π(A′, L′
1, ..., L

′
n), then

πexp(s) = A : {πexp′(A′ : vi)|A
′ : vi ∈ val(s)} and

t̂′ is A : {type(πexp′(A′ : vj))} for an arbitrary A′ : vj ∈ val(s)

Consider the following complex value

s = person:〈 sex:‘M’, nick:‘Charles’, email:‘charles@gmail.com’, age:40,

interests:{stag:〈 tag:‘art’, score:6.5 〉, stag:〈 tag:‘sports’, score:7.5 〉}〉

The expression π(person, nick, age, π(interests, π(stag, score)))(s) produces the
value

person:〈 nick:‘Charles’, age:40,interests:{stag:〈 score:6.5 〉, stag:〈score:7.5 〉}〉

3.2 Nesting and unnesting operations

These operators take into consideration common values occurring in several tu-
ples, therefore facilitating grouping or ungrouping them (which gives the opera-
tors their names). The specification of the group operator is presented next.

Group. Intuitively, grouping a set of tuple complex values R over a set of at-
tributes X implies aggregating the tuples that are equal in all attributes except
those in X to create a single tuple. This tuple will contain a new set attribute
with new tuples containing all of the X-values of the aggregated input tuples.
This set attribute is given a new name, as are the tuples built from the X

attributes that are contained in it; both of which are specified in the group
expression.

– Notation: groupexp(R)
Group expressions exp are constructed as follows, we use A to represent
the type names that occur in the complex value instances, and B and B′ to
represent the new names of the grouped tuples set and its constituent tuples,
respectively

exp ::= group (A, B : list [B′])
list ::= A | A , list

– Operation type:
group : {A : 〈â1, ..., âm, b̂1, ..., b̂n〉} → {A : 〈â1, ..., âm, B : {B′ : 〈b̂1, ..., b̂n〉}〉}

– Semantics :
groupexp(R) =
{A : 〈A1 : v1, ..., Am : vm, B : w〉 | (
∃t ∈ R | ∀i|1≤i≤m t.Ai = vi ∧ w =
{B′ : 〈B1 : u1, ..., Bn : un〉|A : 〈A1 : v′1, ..., Am : v′m, B1 : u1, ..., Bn : un〉
{B′ : 〈B1 : u1, ..., Bn : un〉|A : 〈A1 : v′1, ..., Am : v′m, B1 : u1, ..., Bn : un〉
∈ R ∧ ∀i|1≤i≤m t.Ai = v′i}

) }
where all values Ai : vi and Ai : v

′
i are of type âi and all values Bi : ui are

of type b̂i.

Consider the following set of tuple complex values

R = { person:〈 nickname:‘Bob’, tag:‘sports’, score:6.5 〉
person:〈 nickname:‘Bob’, tag:‘cars’, score:8.0 〉
person:〈 nickname:‘Alice’, tag:‘fashion’, score:7.0 〉
person:〈 nickname:‘Alice’, tag:‘novels’, score:8.5 〉 }

The expression group(person, interests : tag, score[s tag])(R) thus yields:

R′ = { person:〈 nickname:‘Bob’,

interests:{s tag:〈 tag:‘sports’, score:6.5 〉,
s tag:〈tag:‘cars’, score:8.0 〉 },

person:〈 nickname:‘Alice’,

interests:{s tag:〈 tag:‘fashion’, score:7.0 〉,
s tag:〈tag:‘novels’, score:8.5 〉 } }

4 Workflow enumeration

This section decribes the process of enumerating all the equivalent workflows
that satisfy the same functional requirements given by an ASASEL specification.
The enumeration leads to a search space of workflows with increasing levels of
parallelism in their structure. The levels of parallelism can privilege the cost
preferences such as response time or the communication cost. The enumeration
is subject to constraints for composing the required activities by the ASASEL
specification. In order to make a proof of concept, we model these constraints as
action rules in the language DLV-K5.

In DLV-K, planning problems have a set of facts that represent the problem
domain named background knowledge. The facts are predicates of static know-
ledge and are the input of the planning problem. Planning problems are modeled
as state machines described by a set of fluents and a set of actions. A fluent is a
property of an object in the world and is part of the states of the world. Fluents
may be true, false or unknown. An action is executable if a precondition holds
in the current state. Once an action is executed, the fluents and thus the state
of the plan are modified. The action rules define the subset of fluents that must
be held before the execution of an action (i.e. pre-conditions) and the subset of
fluents to be held after the execution (i.e. post-conditions). Finally, a goal is a
set of fluents that must be reached at the end of the plan. A goal is expressed
by the conjunction of fluents and by a plan length l ∈ Z

+.

The mapping from workflow enumeration to a planning problem is shown in
Table 1. The APIs and the required activities by the ASASEL specification are
modeled as facts of the background knowledge. The execution state of a workflow
is modeled as fluents and the activities to perform as actions.

Next we show, through an example, how we represent the background know-
ledge for workflow enumeration. Afterwards, we show how the workflow state

5 http://www.dbai.tuwien.ac.at/proj/dlv/k

Workflow Planning problem

APIs, required activities Facts (background knowledge)

Workflow states Fluents

Workflow activities Actions

Result delivery Goal: finished?(l ∈ Z
+)

Table 1: Mapping to a planning problem

and activities are expressed in DLV-K rules. Given such rules, the DLV-K en-
gine performs the workflow enumeration.

4.1 Background knowledge

The background knowledge contains a set of facts of the form fact/# where #
is the arity of the fact. Facts serve as the input for the workflow enumeration.
It includes (1) the service methods and (2) the required activities derived from
the ASASEL specification.

Service methods are represented by the facts method/2. The bound and free
attributes associated to such a method are represented by the facts bound p/4

and free p/4. The rule att/4 represents the normal form of an attribute.

method (p , p r o f l) .
bound a(p , p ro f l , nickname , s t r) .
f ree a (p , p ro f l , age , i n t) .
f ree a (p , p ro f l , sex , s t r) .
f ree a (p , p ro f l , email , s t r) .

a t t (DSN,ON,PN,T) :− bound a(DSN,ON,PN,T) .
a t t (DSN,ON,PN,T) :− f ree a (DSN,ON,PN,T) .

Required activities are derived from the ASASEL workflow specification and
represented through facts (with the underscore at the end). The required activi-
ties derived from a workflow implementing “What are the interests of my friend

Joe?” are represented by the following facts.

pro j ec t (p1 , nickname , n) .
pro j ec t (i1 , score , s) .
p ro j ec t (i1 , tag , t) .
r e t r i e v e (p , p ro f l , p1) .
r e t r i e v e (i , i n t e r e s t s , i 1) .
f i l t e r (p1 , nickname) .
join (p1 , nickname , i1 , nickname) .

These required activities express the need over the methods p:profl and
i:interests. Both data are retrieved by retrieve /3 and represented by p1

and i1. The nickname attribute of the profile is filtered by filter /2 and
correlated by join /4 interests through the nickname attribute. The attributes
nickname, score and tag are projected. Observe that the filter over the nickname
attribute is only indicated as the equality operators are not relevant for the
workflow transformation.

4.2 Workflow activities

Workflow activities are represented as actions in DLV-K. Such actions are pred-
icates that require facts from the background knowledge to be true. There are
also activities that are independent from facts.

init and finish These activities have the special purpose to initialize and ter-
minate the workflow execution. Thus their semantics is not associated with the
application and there is no dependency with the background knowledge.

data service establishes a connection with a data service method. It requires
from the knowledge base a service method and the expressed need to retrieve
data from it.

data se rv i c e (DS) r e qu i r e s method (DSN,ON) , r e t r i e v e (DSN,ON,DS) .

bind selection invokes a service method and retrieves data from it. The invo-
cation is done by providing a bound attribute.

b ind se l e c t i on (DS,BP) r equ i r e s method (DSN,ON) ,
r e t r i e v e (DSN,ON,DS) , bound a(DSN,ON,BP,) , f i l t e r (DS,BP) .

bind join correlates data from two service methods w.r.t. an attribute from
each one. The attribute from the outer method must be bound. This activity
is analogous to bind selection but it takes the value from another method
attribute.

bind join (DS1 ,P1 ,DS2 ,BP2) r equ i r e s
method (DSN1,ON1) , r e t r i e v e (DSN1,ON1,DS1) ,
a t t (DSN1,ON1, P1 ,) , method (DSN2,ON2) , r e t r i e v e (DSN2,ON2,DS2) ,
bound a(DSN2,ON2,BP2 ,) , jo in (DS1 , P1 ,DS2 ,BP2) .

filter performs the filtering over an attribute of a required service method.

f i l t e r (DS,P) r e qu i r e s method (DSN,ON) , r e t r i e v e (DSN,ON,DS) ,
a t t (DSN,ON,P,) , f i l t e r (DS,P) .

project projects an attribute of a service method.

p r o j e c t (DS,P) r e qu i r e s pro j ec t (DS,P,) .

The semantics of these activities is completed with constraints that define their
pre-conditions and post-conditions.

4.3 Workflow constraints

The workflow constraints define the pre-conditions and post-conditions associ-
ated to the execution of the workflow activities. A condition is a state of know-
ledge modifiable by the execution of activities. Through the satisfaction of such
conditions, the workflows are transformed. In the following, we present the in-
tuition of these constraints along with their rules in DLV-K.

init and finish The init activity has no previous activity and its pre-condition
is that the workflow has not been initiated. As post-condition, it produces the
state initiated. The last activity is finish and there is no other activity to
be executed afterwards. Its pre-condition is that there is not evidence that the
workflow is finished and the result has been delivered (See output activity

below for details about delivered). The post-condition of finish is finished
and this is the goal to be reached for the workflow transformation.

executab le i n i t i f − i n i t i a t e d .
caused i n i t i a t e d a f t e r i n i t .
executab le f i n i s h i f not f i n i sh ed , d e l i v e r ed .
caused f i n i s h ed a f t e r f i n i s h .

data serviceOnce initiated the workflow, the data services must be connected(DS).
This fluent is produced by the execution of the data service(DS) activity.

executab le data se rv i c e (DS) i f i n i t i a t e d .
caused connected (DS) a f t e r data se rv i c e (DS) .

In order to retrieve all the required data, all data services should be connected.
The fluent all connected that is false if there is not evidence that a data
service is connected. Otherwise, it is true.

caused −a l l connec ted i f not connected (DS) .
caused a l l connec ted i f not −a l l connec ted .

bind selection It is only executable if there is not evidence that data from the
data service DS have been retrieved and if there is a connection with DS. Once
the bind selection is executed, the fluent retrieved(DS) is true.

executab le b ind se l e c t i on (DS,BP) i f not r e t r i e v ed (DS) , connected (DS) .
caused r e t r i e v e d (DS) a f t e r b ind se l e c t i on (DS,BP) .

filter It is executable if there is not evidence that the attribute P of DS has been
filtered. It is required that the data from DS have been retrieved and the activity
select (DS,P) must be required. The execution of the filter makes the fluent
filtered(DS,P) true.

executab le f i l t e r (DS,P) i f not f i l t e r e d (DS,P) ,
r e t r i e v e d (DS) , f i l t e r (DS,P) .

caused f i l t e r e d (DS,P) a f t e r f i l t e r (DS,P) .

As might several filter activities over DS are required, the all filtered from

becomes true if there is no other attribute pending to be filtered.

caused −a l l f i l t e r ed f r om (DS) i f not f i l t e r e d (DS,P) , f i l t e r (DS,P) .
caused a l l f i l t e r ed f r om (DS) i f not −a l l f i l t e r ed f r om (DS) ,

r e t r i e v ed (DS) .

There is the fluent all filtered that becomes true if there is no other attribute
of the method DS pending to be filtered.

caused −a l l f i l t e r e d i f −a l l f i l t e r ed f r om (DS) , f i l t e r (DS,P) .
caused −a l l f i l t e r e d i f −a l l f i l t e r ed f r om (DS) , not f i l t e r (DS,P) ,

a t t (DSN,ON,P,) , r e t r i e v e (DSN,ON,DS) .

project This activity is executable if there is not evidence that the attribute P of
DS has been projected. The execution of projection makes the fluent projected
true.

executab le p r o j e c t (DS,P) i f not p ro j e c t ed (DS,P) , r e t r i e v e d (DS) ,
pro j ec t (DS,P,) .

During the workflow execution, all the projection activities have to be performed.
For the method DS, the fluent all projected from is true if there is no other
attribute from DS pending to be projected. The fluent all projected is true if
there is no other DS with an attribute pending to be projected.

caused −a l l p ro j ec ted f rom (DS) i f not p ro j e c t ed (DS,P) , pro j ec t (DS,P,) .
caused a l l p ro j ec ted f rom (DS) i f not −a l l p ro j ec ted f rom (DS)

a f t e r p r o j e c t (DS,P) .
caused −a l l p ro j e c t ed i f −a l l p ro j ec ted f rom (DS) , pro j ec t (DS,P,) .

output Once all the required activities are performed, the result is delivered by
the activity output. To model this pre-condition, the fluent activities performed

is true if all the required activities have been processed. Otherwise, the fluent is
false -activities performed.

caused a l l p ro j e c t ed i f not −a l l p ro j e c t ed .
caused −ac t i v i t i e s p e r f o rmed i f not al l connected , not a l l r e t r i e v ed ,

not a l l f i l t e r e d , not a l l p ro j e c t ed .
caused ac t i v i t i e s p e r f o rmed i f not −ac t i v i t i e s p e r f o rmed .

Once the result is delivered by output, the fluent delivered becomes true and
the workflow can be finished (cf. finish pre-conditions).

executab le output i f a c t i v i t i e s p e r f o rmed , not d e l i v e r e d .
caused de l i v e r ed a f t e r output .

5 Experiments

We performed experiments to measure the amount of alternative workflows with
sequential compositions and with parallel compositions for a given ASASEL
workflow. We setup seven different ASASEL workflows WF 1, ...,WF 7 with in-
creasing number of activities and different potential grades of parallelism.

. . .

. . .

. . .

Independent

activities

Dependent

activities

(a) par+ workflow

. . .

(b) seq+ workflow

Fig. 2: Classification of alternative workflows

The generated workflows were classified by analyzing the data dependencies
among activities and their structures. A workflow whose independent activities
are composed in parallel is classified as par+, cf. Figure 2a; otherwise it is clas-
sified as seq+, cf. Figure 2b. The charts in Figure 3 show the search spaces with
the classification of workflows and the required time for each ASASEL workflow
WF 1, ...,WF 7.

In Figure 3a, the search spaces of the workflows WF 1 −WF 3 only contain
par+ workflows because they have few activities and there are no independent
activities. The search spaces of the workflows WF 4 −WF 7 have ∼1/3 of par+

workflows and ∼2/3 seq+ workflows. This correspondence is not constant and
depends on the data dependencies among activities, e.g. a workflow with many
activities may have only sequential alternatives if there are no independent ac-
tivities.

1 2 3

5 20 723 824

10 40 1374 1446

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WF1 WF2 WF3 WF4 WF5 WF6 WF7

seq+

par+

(a) Clasification of the search spaces

0

100

200

300

400

500

600

700

800

WF1 WF2 WF3 WF4 WF5 WF6 WF7

ti
m
e(
s)

(b) Required time

Fig. 3: Enumeration of the space of alternative workflows with different grade of
parallelism

The par+ workflows represent good opportunities for improving time related
costs while the seq+ ones privilege the resource usage. This classification can be
used for improving the enumeration performance (cf. Figure 3b) by incorporating
user’s preferences over the costs or QoS measures associated to the workflow
execution.

6 System Implementation

The ASASEL system was developed on the Java platform. Workflows are en-
tered textually via a GUI illustrated in Figure 4. For a given ASASEL service
coordination, the GUI provides the user a workflow visualization by applying
the construction rules outlined in Section 2.1.

The system interacts with DLV-K through intermediate input and output
files generated and parsed as required. The enactment of a selected workflow is
supported by two main components. First, a scheduler determines which service
is executed at a given time according to a predefined policy. Second, composite
services are executed by an interpreter that implements the full ASASEL lan-
guage. Computation service workflows can also be visualized through the GUI,
as shown at the right part of the screenshot in Figure 4.

During the execution of a workflow, data flows from the data services to
complex value operators as well as several computation services via queues, as
determined by the ASASEL specification. These computation services run on a
Tomcat container supported by the JAX-WS reference implementation, which
enables to create stateful services. Additional output services can be specified to
output data in textual form in the GUI or to transmit it to another application.
For instance, in our example application we output as a result a data stream
that denotes the tuples that are added and the tuples that are removed from the
result dataset.

We implemented two test scenarios and their corresponding data and com-
putation services. The first one is the location-based application introduced in

Section 2. The second scenario is an adaptation of the online auctions NEXMark
benchmark6 for XML stream query processing which we employed to obtain per-
formance measurements. In brief, the measurements indicated a tolerable over-
head for the use of services, which we consider outweighed by the advantages.

6

7

Fig. 4: Caption of the ASASEL GUI

7 Related work

Data-centric workflows involving services share some similarities with queries
over Web services as presented in [9]. There the authors propose an optimization
approach by ordering the service calls in a pipelined fashion and by tuning
the size of service call batches. An algebraic approach for the optimization of
workflows with relational and map-reduce operations is presented in [7]. Our
approach is to enable workflows with a broader variety of operations defined
through service compositions, thus requiring alternative optimization techniques.

Planning techniques have been applied for automatic service composition, for
instance in [6] and [8]. The problem addressed in those works is to create a service
composition from atomic actions (services) based on a propositional goal. The
Roman Model [1] alternatively employs finite state transition system descriptions
for the available and target services, but with the same basic objective in mind.
However, we use planning techniques instead for the optimization of a workflow
that includes possibly composite computation services.

Alternative formalisms for the specification of workflows include, for example,
process algebras [3] and petri nets [5]. The use of ASMs provides a formal se-
mantics, as in the aformentioned formalisms, but also fully compatible text and
workflow representations that are easy to specify. Although ASMs have been

6 http://datalab.cs.pdx.edu/niagara/NEXMark/

used to study and model the properties of workflows, less effort has been given
to using them in a fully operational manner.

8 Conclusions and future work

In this paper we presented a language and system for the specification and en-
actment of data-centric workflows based on service composition. In addition, we
introduced a planning-based approach for the enumeration of the search space
of workflows implementing requirements specifications. Concretely, we proposed
a set of constraints modeled in an action language, specifically DLV-K, in or-
der to characterize the transformation of workflows with sequential and parallel
compositions. This work is envisaged to be a foundation for incorporating a full
cost model that covers the specification of composite computation services, lead-
ing to the selection of the most suitable workflow w.r.t. the user’s preferences.
Future work also includes validating the practicality of ASASEL for the speci-
fication of data-centric workflows for diverse users, which would require a more
sophisticated GUI-based editing tool than our current prototype.

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

2. Cuevas-Vicentt́ın, V.: Evaluation of hybrid queries based on service coordination.
Ph.D. thesis, University of Grenoble (May 2005), http://tel.archives-ouvertes.
fr/tel-00630601

3. Curcin, V., Missier, P., De Roure, D.: Simulating taverna workflows using stochastic
process algebras. Concurr. Comput. : Pract. Exper. 23(16), 1920–1935 (Nov 2011)

4. Gurevich, Y.: Specification and validation methods. chap. Evolving Algebras 1993:
Lipari Guide, pp. 9–36. Oxford University Press, Inc., New York, NY, USA (1995)

5. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: Dfl:
A dataflow language based on petri nets and nested relational calculus. Inf. Syst.
33(3), 261–284 (May 2008)

6. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services.
In: Proceedings of the Eights International Conference on Principles and Knowledge
Representation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002. pp.
482–496 (2002)

7. Ogasawara, E.S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., Mattoso, M.: An
algebraic approach for data-centric scientific workflows. PVLDB 4(12), 1328–1339
(2011)

8. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Web Semant. 1(4), 377–396 (Oct 2004)

9. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over
web services. In: Proceedings of the 32Nd International Conference on Very Large
Data Bases. pp. 355–366. VLDB ’06, VLDB Endowment (2006)

