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in a flow of a Newtonian fluid was obtained in the pio-
industrial interest usually involve particles with a variety

rods (a limit case of an ellipsoid) aggregate, leading to
en immersed in a flow, an almost rigid motion. In this

ilute suspensions of rigid particles and derive an expres-
f general shape immersed in a flow of a Newtonian fluid.

depends on a symmetric tensor c with unit trace that can
tensor for describing cluster kinematics.
1. Introduction

Suspensions involving particles can be described at the micro-
scopic scale by tracking the motion of each one of the particles
involved in the system. This approach is based on three main ele-
ments: (i) the knowledge of the equation governing the particle
motion in the fluid flow; (ii) the introduction of the particle effects
on the flow kinematics if coupled simulations are envisaged; and
(iii) the availability of computational resources for tracking effi-
ciently millions of particles.

In dilute suspensions, the motion of ellipsoidal particles can be
accurately described by using Jeffery’s equation [29]. When the
concentration becomes large enough, interactions cannot be
neglected any longer and the calculation becomes more complex
from the computational point of view. At this scale, currently
available simulations remain quite far from the scenarios of indus-
trial interest.

For circumventing the difficulties related to simulations at the
microscopic scale, these being more computational than concep-
tual, coarser models were introduced. The interested reader can
refer to [31] and the references therein for a review on multiscale
approaches in the context of computational rheology.

Mesoscopic kinetic theory models result from coarsening
microscopic descriptions. In kinetic theory models the individual-
ity of the particles is lost in favor of a statistical description that
substitutes the entities by a series of conformation coordinates
[21,7]. For example, when considering a suspension of rods, the
mesoscopic description consists in giving the fraction of rods that
at position x and time t are oriented along direction p. This infor-
mation is contained in the probability distribution function –pdf–
whose conservation balance results in the so-called Fokker-Planck
equation governing its evolution. Fokker-Planck equations involve
the flow induced conformation evolution. In the case of a suspen-
sion of rods, the flow induced conformation (orientation) evolution
is given, as indicated above, by Jeffery’s equation. Since the pdf
depends on the physical coordinates (space and time) and a series
of conformational coordinates, the associated Fokker-Planck



equation is multidimensional. Standard mesh-based discretization
techniques fail when addressing multidimensional models. This
issue is known as the curse of dimensionality and it justifies the
few number of existing works addressing the solution of kinetic
theory models within the Fokker-Planck framework.

For circumventing the curse of dimensionality at the mesoscop-
ic scale, several techniques based on the use of particles were pro-
posed and widely employed. Here the particles are not real
particles, but rather should viewed as computational particles that
allow one to describe the main suspension features (rheology,
properties related to the particles conformation, etc.). Despite the
fact of considering a discrete description, the level of detail in the
description and the richness of the physics are exactly the same
that the ones associated with the use of Fokker-Planck descrip-
tions, and obviously the solutions computed by using both descrip-
tions are in the limit of convergence exactly the same.

The use of the continuous description based on the solution of
the Fokker-Planck equation remains challenging because of the
high dimensionality that it involves. On the other hand, when
employing its discrete counterpart, the main difficulty is related
to the extremely large number of particles to be considered. This
number depends on the model output of interest. When only the
moments of the distribution are concerned, a moderate number
of particles is enough. However, when one is interested in the
pdf itself, the number of computational particles could become
extremely large.

Solution procedures based on the use of particles at the meso-
scopic scale have been extensively employed by many authors
[38,11,42,14,19,20]. On the other hand, there are few works focus-
ing on the solution of Fokker-Planck equations by using standard
discretization techniques [33,12]. We proposed some years ago a
new solution technique called Proper Generalized Decomposition
based on the use of separated representations in order to ensure
that the complexity scales linearly with the model dimensionality
[4,5]. This technique consists in expressing the unknown field as a
finite sum of functional products, i.e. expressing a generic multidi-
mensional function uðx1; . . . ; xdÞ as:

uðx1; . . . ; xdÞ �
Xi¼N

i¼1

F1
i ðx1Þ . . . Fd

i ðxdÞ: ð1Þ

The interested reader can refer to [37,15,17] and the references
therein for a deep analysis of this technique and its applications
in computational rheology.

At the macroscopic scale, the pdf is substituted by some of its
moments. Here the level of detail and the involved physics are sac-
rificed in favour of computational efficiency. The equations govern-
ing the time evolution of these moments usually involve closure
approximations whose impact on the results is unpredictable
[30,13]. Alternatively, macroscopic equations are carefully postu-
lated, within a top-down approach, in order to guarantee the
model objectivity and its thermodynamical admissibility.

In the case of dilute suspensions involving ellipsoidal particles,
the three scales have been extensively considered starting from the
pioneer work by Jeffery in 1922 [29] (see the review by Petrie
[39,24,6,23,25–27]). The multiscale modeling involves in this case
nine main conceptual bricks [16]:

1. Particle conformation. Choice of the coordinate describing the
particle conformation. For ellipsoidal particles, it is usual to
consider the unit vector p aligned along the ellipsoid axis.

2. Particle conformation evolution. Derivation of the equation gov-
erning the time evolution _p of the particle conformation. For
an ellipsoid suspended in a Newtonian viscous fluid, whose
kinematics is described by the gradient of velocity rv, one
obtains Jeffery’s equation [29]:
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_p ¼ X � pþ kðD � p� ðrv : ðp� pÞÞ pÞ; ð2Þ

where X ¼ 1
2 rv � ðrvÞT
� �

and D ¼ 1
2 rv þ ðrvÞT
� �

are respec-
tively the skew-symmetric and symmetric components of the
gradient of velocity tensor, and k is a coefficient that depends
on the ellipsoid aspect ratio r (ratio of length 2L to diameter
/): k ¼ r2�1

r2þ1. In view of the symmetry of the strain rate tensor
D, the equality rv : ðp� pÞ ¼ D : ðp� pÞ applies.
Three special cases can be considered:
� Slender body theories result for infinite aspect ratio

ellipsoids, implying r !1 and then k! 1. Thus Jeffery’s
equation reduces to:

_p ¼ rv � pþ ð$v : ðp� pÞÞ p: ð3Þ

� When the ellipsoid length 2L coincides with the diameter of
its circular cross section / the ellipsoid reduces to a sphere
and in that case r ¼ 1 and k ¼ 0, implying that the sphere
rotates according to the fluid flow vorticity X, that is

_p ¼ X � p: ð4Þ

� Finally, when the ellipsoid length reduces to zero with
respect to its cross section diameter, the ellipsoid becomes
a flat and thin disk. In that case r ! 0 and k! �1. The disk
kinematics is then given by

_p ¼ X � p� D � p� ðrv : ðp� pÞÞ p; ð5Þ

where p is the unit vector normal to the disk surface.
3. Particle contribution to the stress.
4. Population description. Description of a population of N ellipsoi-

dal particles located at position x. Note that these particles have
a computational nature and do not correspond to the ones that
would have been concerned by a purely microscopic descrip-
tion. Thus, the mesoscopic description can be done from the
specification of the conformation of each one, that is
pi; i ¼ 1; . . . ;N (discrete description); or from the introduction
of a probability distribution function –pdf– wðx; t;pÞ that gives
the fraction of particles that at position x and time t are aligned
along the direction p (continuous description). In the case of
homogeneous distributions, the space dependence can be
ignored and then wðt;pÞ.

5. Description of the population evolution. The microstructure evo-
lution can be described from the time evolution of each particle,
i.e. from the integration of _pi according to Jeffery’s equation for
each particle i ¼ 1; . . . ;N , or from the integration of the Fokker-
Planck equation governing the evolution of the pdf wðx; t;pÞ.
This equation expresses conservation of probability. It reads:
@w
@t
þrx � _x wð Þ þ rp � _p wð Þ ¼ 0; ð6Þ

where rx and rp refer respectively to the gradients in spatial
and conformational coordinates. If the vector p is defined from
the ellipsoid center of gravity G and inertia effects are neglected,
_x ¼ v as it can be shown that the particle center of gravity G
moves with the fluid velocity. We come back to this point later.

6. Contribution of the particle population to the stress.
7. Microstructural macroscopic description. Microstructural macro-

scopic descriptions are usually based on the use of some pdf
moments [2]. In view of the symmetry of the pdf
(wðpÞ ¼ wð�pÞ) in the case of rigid rods addressed here, odd-
order moments vanish, and the first non-vanishing moment is
the so-called second-order orientation tensor defined as:
a ¼
Z
S

p� p wðpÞ dp; ð7Þ

where S refers to the surface of the unit sphere (unit circle in
2D).



The next non-zero moment is the fourth-order orientation ten-
sor A defined as:

A ¼
Z
S

p� p� p� p wðpÞ dp: ð8Þ

8. Microstructural macroscopic evolution. Finally, the micro-
structural macroscopic evolution can be described from
the time derivative of the different moments. One could
expect that by taking the time derivative of Eq. (7) and
substituting the time derivative of p by the expression given
by Jeffery’s Eq. (2), one could obtain an equation for _a.
Indeed, it is the case as we illustrate later, but unfortunately
the evolution of tensor a does not only depend on a itself,
but also on A.
The evolution equation for A itself depends on the sixth-
order orientation tensor and so on. The model must be
closed and for that purpose one must invoke approximate
closure relations between higher and lower-order moments,
for example A ¼ AðaÞ. The pertinence and impact of such
closures motivated many works [3,22,32,40].

9. Moment based stress.

The above conceptual bricks can be extended to Brownian par-
ticles, to semi-dilute or semi-concentrated regimes, and even to
concentrated and highly-concentrated regimes involving aggre-
gates. In this work, we address dilute suspensions of non-Brownian
rigid clusters composed of rods.

First, we propose an original methodology for the above
framework in the case of dilute suspensions of non-Brownian rods
(ellipsoids with infinite aspect ratio). In Section 3, we extend that
methodology to rigid clusters composed of rods of arbitrary shape.
In Section 4, the resulting models are validated in the case of
ellipsoids, spheres, disks and cylinders by comparison with
existing analytical or numerical solutions. Finally, we conclude in
Section 5 and give an overview of perspectives on the above
multiscale approach, most of them being work in progress within
our group.

Remark 1. In this paper we consider the following tensor prod-
ucts, where Einstein’s summation convention is assumed:
Fig. 1. Hydrodynamic forces applied on a rod immersed in a Newtonian fluid.
� if a and b are first-order tensors, the single contraction � reads
ða � bÞ ¼ aj bj ();
� if a and b are first-order tensors, the dyadic product � reads
ða� bÞjk ¼ aj bk;
� if a and b are first-order tensors, the cross product � reads
ða� bÞj ¼ �jmn am bn, where �jmn are the components of the
Levi-Civita tensor � (also known as permutation tensor);
� if a and b are respectively second and first-order tensors, the

single contraction � reads ða � bÞj ¼ ajm bm;
� if a and b are second-order tensors, the single contraction �

reads ða � bÞjk ¼ ajm bmk;
� if a and b are second-order tensors, the double contraction ‘‘:’’

reads ða : bÞ ¼ ajk bkj.

2. Multiscale modeling of dilute suspensions of non-Brownian
rods

We consider a suspending medium consisting of a Newtonian
fluid of viscosity g in which there are suspended rigid and non-
Brownian rods. We assume as first approximation that their pres-
ence and orientation do not affect the flow kinematics that is
defined by the velocity field vðx; tÞ, with x 2 X 2 Rd; d ¼ 2;3. In
what follows we consider in detail the different conceptual bricks
previously introduced.
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2.1. Particle conformation

The conformation of each rod of length 2L can be described
from its orientation given by the unit vector p located at the rod
center of gravity G and aligned along the rods axis. Inertial effects
are neglected in the sequel.

2.2. Particle conformation evolution

The orientation evolution of an ellipsoidal particle is described
by Jeffery’s Eq. (2), that in the case of rods with infinite aspect ratio
reduces to Eq. (3).

Eq. (3) can be derived in a very simple way illustrated in Fig. 1.
We consider a system consisting of a rod and two beads located at
both rod ends where we assume that hydrodynamic forces apply.
We assume that the forces that apply on each bead F depend on
the difference of velocities between the fluid and the bead, the first
one given by v0 þrv � pL and the second one by vG þ _pL. Thus, the
force FðpLÞ reads:

FðpLÞ ¼ nðv0 þrv � pL� vG � _pLÞ; ð9Þ

where n is the friction coefficient, v0 the fluid velocity at the rod
center of gravity, and vG the velocity of the center of gravity.

If F applies on the bead at pL, then the force on the opposite
bead at �pL reads

Fð�pLÞ ¼ nðv0 �rv � pL� vG þ _pLÞ: ð10Þ

By adding Eqs. (9) and (10), and neglecting inertial effects, we
obtain the force balance

FðpLÞ þ Fð�pLÞ ¼ 2nðv0 � vGÞ ¼ 0; ð11Þ

which implies v0 ¼ vG, that is, the rod center of gravity is moving
with the fluid velocity. For simplicity of notation, we shall write
F ¼ FðpLÞ and Fð�pLÞ ¼ �F.

As the resulting torque must also vanish, the only possibility is
that force F acts along p, that is F ¼ kp, with k 2 R. Thus, we can
write

kp ¼ nLðrv � p� _pÞ: ð12Þ

Premultiplying Eq. (12) by p and taking into account that p � p ¼ 1
and consequently p � _p ¼ 0, we have

k ¼ nL rv : ðp� pÞð Þ; ð13Þ

which gives

nL rv : ðp� pÞð Þp ¼ nLðrv � p� _pÞ: ð14Þ

We have thus obtained Jeffery’s Eq. (3),

_p ¼ rv � p� rv : ðp� pÞð Þp: ð15Þ



Remark 2. As the factor nL appears in both sides of Eq. (14), the
rod kinematics does not contain size effects.
2.3. Particle contribution to the stress

The forces applied at the rod ends pL and �pL are respectively
kp and �kp, i.e. directed along the rod and in equilibrium by
construction.

With k given by Eq. (13), we have

FðpLÞ ¼ nLðrv : ðp� pÞÞ p: ð16Þ

By applying Kramers’ formula, the corresponding contribution to
the stress is given by

sp ¼ nL2ðrv : ðp� pÞÞ p� p; ð17Þ

which can be rewritten as

sp ¼ nL2 rv : ðp� p� p� pÞ: ð18Þ

Remark 3. From Eq. (18), one could infer that rheology contains
size effects in view of the presence of factor L2 in the particle
contribution to the stress. To prove that size effects also disappears
when addressing rheology, we consider the traction T applied on
the rod end. Considering Newtonian behavior, we have T ¼ 2gD � p.
By writing the objective stress related to the rod rotation
2gð _p�X � pÞ and enforcing that the resulting force aligns along
the direction p, we obtain again Jeffery’s equation. In order to
obtain the same expression for the stress, it suffices to consider
n / g

L2. Thus, we can conclude that size effects are absent in Eq. (18).
2.4. Population description

As previously mentioned, there are two natural descriptions of a
population of rods.

� The first one consists in specifying each rod orientation by con-
sidering the unit vector aligned along its axis, that is, by consid-
ering pi; i ¼ 1; . . . ;N . As discussed in the next section, the main
drawback of this approach lies in the necessity of tracking the
evolution of each ‘‘computational’’ rod by solving the corre-
sponding Jeffery equation, and even if conceptually there is no
major difficulty, the computing cost could be excessive in most
practical applications.
� The second approach is the introduction of the pdf wðx; t;pÞ that

gives the fraction of rods that a position x and time t are ori-
ented along direction p.

Despite the fact that both mesoscopic models involve the same
physics and richness of description, the main advantage of the sec-
ond one is the manipulation of a scalar continuous function instead
of the discrete description involved in the first approach. The price
to be paid when using the description based on the use of the pdf is
its inherent multidimensionality, because in that framework the
pdf depends on the standard space and time coordinates and also
on the conformation coordinates that the microstructural descrip-
tion involves, i.e. p in the present case.

2.5. Description of the population evolution

� When the population is described from the individuals compos-
ing it, whose conformation is given by vectors pi; i ¼ 1; . . . ;N ,
the evolution of each one is given by Jeffery’s equation:
_pi ¼ rv � pi þ ð$v : ðpi � piÞÞ pi; 8i ¼ 1; . . . ;N : ð19Þ
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� The alternative description consists of using the pdf wðx; t;pÞ
that satisfies the normalization condition:Z
S

wðx; t;pÞ dp ¼ 1; 8x; 8t: ð20Þ

Conservation of probability yields

@w
@t
þrx � _x wð Þ þ rp � _p wð Þ ¼ 0; ð21Þ

where, for inertialess rods, _x ¼ vðx; tÞ, and the rod rotary veloc-
ity is given by Jeffery’s equation:

_p ¼ rv � p� rv : ðp� pÞð Þp: ð22Þ

The price to pay is the increase of the model dimensionality, as
the orientation distribution is defined in a 6-dimensional
domain, i.e. w : x; t;pð Þ ! Rþ where
x 2 X � Rd;d ¼ 3; t 2 I � Rþ;p 2 S.

2.6. Contribution of the particle population to the stress

Again, we consider the two alternative descriptions:

� When the population is described in a discrete manner by
means of the pi vectors, the contribution of rods to the suspen-
sion stress is calculated by adding their individual effects given
by Eq. (18), that is:
sðx; tÞ ¼
XNðx;tÞ
i¼1

si ¼
XNðx;tÞ
i¼1

nL2 rv : ðpi � pi � pi � piÞ; ð23Þ

where Nðx; tÞ refers to the number of computational rods
located at time t in the neighborhood of x.
� When the population is described from the pdf, the sum in Eq.

(23) is replaced by an integral in the conformation space S:
sðx; tÞ ¼
Z
S
sp wðx; t;pÞ dp

¼ 2gNp

Z
S
rv : ðp� p� p� pÞ wðx; t;pÞ dp: ð24Þ

Here, the particle number Np accounts for the particle concentra-
tion and the viscosity is used instead of the friction coefficient to
be consistent with the usual notation.
In terms of the fourth-order orientation tensor (8), we obtain:

s ¼ 2gNpðA : rvÞ; ð25Þ

which in view of the symmetry of A can be rewritten as

s ¼ 2gNpðA : DÞ: ð26Þ

2.7. Macroscopic description

As just discussed, discrete descriptions are computationally
expensive because of the large number of rods that must be con-
sidered in order to derive accurate-enough model outputs. On
the other hand, Fokker-Planck descriptions are rarely considered
in view of the curse of dimensionality that introduction of confor-
mation coordinates implies. Thus, standard mesh-based discretiza-
tion techniques, as finite differences, finite elements or finite
volumes, fail when addressing models defined in high-dimensional
spaces.

For these reasons, mesoscopic models were coarsened to derive
macroscopic models defined in standard physical domains, involv-
ing space and time. At the macroscopic scale, the orientation distri-
bution function is substituted by its moments for describing the
microstructure. Usually, macroscopic descriptions of rod suspen-
sions are based on the use of the first two non-zero moments, i.e.



the second and the fourth-order moments defined in Eqs. (7) and
(8) respectively.

2.8. Microstructural macroscopic evolution

The microstructural evolution described at the macroscopic
scale considers the time evolution of the pdf moments. The time
evolution of the second-order orientation tensor is given by:

_a ¼
Z
S

_p� pþ p� _pð Þ w dp

¼
Z
S
rv � p� rv : ðp� pÞð Þ pð Þ � p w dp

þ
Z
S

p� rv � p� rv : ðp� pÞð Þ pð Þ w dp

¼ rv � aþ a � ðrvÞT � 2 A : rv: ð27Þ

As discussed previously, this equation involves the fourth-order
moment A. The time derivative of the fourth-order moment, using
the same rationale, involves the sixth-order moment A, and so on.

Thus, an approximate closure relation is needed in order to
express the fourth-order moment A as a function of the lower-
order moment a. Different closure relations have been intro-
duced and widely used [3,22,40,32]. With the quadratic closure
relation (that is only exact when all rods are locally aligned in
the same direction), the fourth-order moment is approximated
as follows:

A � a� a: ð28Þ

This gives

_a � rv � aþ a � ðrvÞT � 2 ðrv : aÞ a; ð29Þ

and invoking again symmetry considerations,

_a � rv � aþ a � ðrvÞT � 2 ðD : aÞ a: ð30Þ
Fig. 2. Rigid cluster composed of rods.
2.9. Moment based stress

We obtained previously the expression of the rod population
contribution to the stress:

s ¼ 2gNpðA : rvÞ; ð31Þ

which involves the fourth-order moment A. There is no closure
issues when A is calculated from the pdf w by using (8). When
one proceeds at the macroscopic scale, however, wherein the pdf
is not available, a closure relation must be considered for either

� writing A from the knowledge of a, itself being calculated by
integrating (27) with an appropriate closure relation (e.g. Eq.
(29) when considering the quadratic closure),

or

� calculating A by solving the equation that governs its time evo-
lution in which, as just commented, the sixth-order moment
appears requiring again an appropriate closure.

The first route is the simplest one and the most used in practice.
It leads to

s ¼ 2gNpðAcrðaÞ : rvÞ; ð32Þ

where the superscript cr refers to the use of an appropriate closure
relation.

With the quadratic closure, the stress reads:
5

s ¼ 2gNpða : rvÞa 	 2gNpða : DÞa: ð33Þ
3. Extension to non-Brownian rigid clusters of general shape
and composed of rods

After having considered rods immersed in a flow, we extend the
above approach to more complex configurations. Suspensions of
industrial interest composed of rods (a limit case of an ellipsoid)
aggregate, leading to clusters with particular shapes that exhibit,
when immersed in a flow, an almost rigid motion. These situations
are currently encountered when considering carbon nanotubes
suspensions as discussed in [34–36].

We represent rigid clusters of general shape in both a discrete
manner, assuming they are all composed of N=2 rods (N being an
even integer) involving N beads, and in a continuous manner from
the continuous pdf describing the configuration of those rod beads.
In a rigid cluster, there is no relative motion between the rods com-
posing it.

3.1. Discrete description

First, we consider a 3D rigid cluster consisting of N=2 rods Rj of
length Qj. We assume that each rod Rj contains two beads at its
ends on which hydrodynamic forces apply. Thus, the cluster con-
tains N beads Bi; i ¼ 1; . . . ;N. The location of each bead Bi with
respect to the cluster center of gravity G is represented by Lipi,
where pi is the unit vector pointing from G to Bi. The cluster is
sketched in Fig. 2.

Brownian effects are neglected and then only flow-induced
hydrodynamic forces must be considered (rod–rod hydrodynamic
interactions are not considered in this work). Forces Fi apply on
each bead located at position Lipi (Fig. 2) and are proportional to
the difference of velocity between the one of the flow unperturbed
by the presence of the cluster at the bead location and the one of
the bead itself:

Fi ¼ n ðv0 þrv � pi Li � vG � _pi LiÞ; ð34Þ

where n is the friction coefficient, v the flow velocity field, v0 the
fluid velocity at position G and vG the velocity of the center of
gravity.

By adding all the forces we obtain

0 ¼
Xi¼N

i¼1

Fi ¼ Nðv0 � vGÞ þ rv �
Xi¼N

i¼1

Lipi

!
�

Xi¼N

i¼1

Li _pi

!
: ð35Þ

Both sums in Eq. (35) vanish, the first one as a direct consequence of
the definition of the center of gravity, and the second because the
cluster is assumed rigid. Thus, Eq. (35) becomes

v0 ¼ vG; ð36Þ

implying that the cluster center of gravity is moving with the fluid
velocity at that position.



The torque created by forces applied on bead i is given by

Mi ¼ Li pi � Fi: ð37Þ

Neglecting inertial effects, the resulting torque for the whole cluster
must vanish:

Xi¼N

i¼1

Mi ¼ 0: ð38Þ

Taking Eqs. (37) and (34) into account, we have

Xi¼N

i¼1

L2
i pi � ðrv � piÞ ¼

Xi¼N

i¼1

L2
i pi � _pi: ð39Þ

If we define the cluster angular velocity x such that

_pi ¼ x� pi; ð40Þ

torque equilibrium reads

Xi¼N

i¼1

L2
i pi � ðrv � piÞ ¼

Xi¼N

i¼1

L2
i pi � ðx� piÞ: ð41Þ

Now, by using the vector triple product relationship a� ðb� cÞ ¼
b ða � cÞ � c ða � bÞ, the right-hand side reads

Xi¼N

i¼1

L2
i pi � ðx� piÞ ¼

Xi¼N

i¼1

L2
i x ðpi � piÞ � pi ðpi �xÞð Þ; ð42Þ

which, taking into account the normality of vectors pi and the fact
that piðpi �xÞ ¼ ðpi � piÞ �x, becomes

Xi¼N

i¼1

L2
i pi � ðx� piÞ ¼

Xi¼N

i¼1

L2
i I� ðpi � piÞð Þ �x: ð43Þ

with I the unit matrix.
Now, the left-hand side of Eq. (41) can be rewritten by using the

third-order Levi-Civita permutation tensor � such that
ðu� vÞ ¼ � : ðv � uÞ. We obtain

Xi¼N

i¼1

L2
i pi � ðrv � piÞ ¼

Xi¼N

i¼1

L2
i � : rv � ðpi � piÞð Þ; ð44Þ

which finally yields

Xi¼N

i¼1

L2
i � : rv � ðpi � piÞð Þ ¼

Xi¼N

i¼1

L2
i I� ðpi � piÞð Þ �x: ð45Þ

Expressed in a more compact form, we have

� : rv �
Xi¼N

i¼1

L2
i ðpi � piÞ

!!

¼
Xi¼N

i¼1

L2
i

 !
I�

Xi¼N

i¼1

L2
i ðpi � piÞ

!!
�x: ð46Þ
3.2. Continuous description

The continuous description considers the pdf !ðp; LÞ giving the
fraction of rod beads located at position pL, that can be expressed
as

!ðp; LÞ ¼ wðp; LÞ CðLÞ; ð47Þ

where wðp; LÞ is the angular distribution of beads located at dis-
tance L from the cluster center of gravity G, and CðLÞ is the frac-
tion of beads located at that distance L. The normality condition
readsZ
S

wðp; LÞ dp ¼ 1; 8L: ð48Þ
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By defining the conformation tensor cL related to the population of
beads located at distance L with respect to the cluster center of
gravity G as

cL ¼
Z
S

p� p wðp; LÞ dp; ð49Þ

all sums in the previous expressions must be substituted by the cor-
responding integrals in the length and orientation domains, L and S
respectively, weighted by the distribution function wðp; LÞ CðLÞ.

In particular Eq. (46) becomes:

� : rv �
Z
L

L2
Z
S
ðp� pÞwðp; LÞ dp

� �
CðLÞ dL

� �� �

¼
Z
L

L2 CðLÞ dL
� �

I�
Z
L

L2
Z
S
ðp� pÞwðp; LÞ dp

� �
CðLÞ dL

� �� �
�x;

ð50Þ

which gives, using definition (49),

� : rv �
Z
L

L2 cL CðLÞ dL
� �� �

¼
Z
L

L2 CðLÞ dL
� �

I�
Z
L

L2 cL CðLÞ dL
� �� �

�x: ð51Þ

By introducing the mean square length b and tensor ~c according to

b ¼
Z
L

L2 CðLÞ dL; ð52Þ

and

~c ¼
Z
L

L2 cL CðLÞ dL; ð53Þ

and due to the fact that trðcLÞ ¼ 1, we can infer that b is in fact the
trace of ~c, that is b ¼ trð~cÞ.

Thus, the particle kinematics finally results:

� : rv � ~cð Þ ¼ trð~cÞI� ~cð Þ �x; ð54Þ

or dividing by trð~cÞ,

x ¼ I� cð Þ�1 � � : rv � cð Þð Þ; ð55Þ

where the conformation tensor c is given by

c ¼
~c

trð~cÞ : ð56Þ

Remark 4. In the 2D case, c �x ¼ 0 and then x ¼ � : rv � cð Þð Þ.
Moreover, if all beads are located at the same distance L, we
recover the expression introduced in [1].

An extremely important consequence of this analysis is that
rigid clusters composed of rods having the same conformation
tensor c rotate at the same angular velocity.

As the conformation tensor c is symmetric and positive definite,
it has real eigenvalues and eigenvectors. In 3D, the three mutually
perpendicular eigenvectors will be denoted by u1;u2 and u3, with
the associated eigenvalues s1; s2 and s3 respectively.

Imagine a rigid cluster composed of three rods oriented in
directions u1;u2 and u3 with respective lengths

ffiffiffiffiffi
s1
p

;
ffiffiffiffiffi
s2
p

and
ffiffiffiffiffi
s3
p

.
The conformation tensor of such a three-rod cluster coincides with
c and then both tensors have the same rotary velocity.

If two eigenvalues are identical, e.g. s2 ¼ s3, it can be shown
using the same rationale as in Appendix B that the three-rod
cluster rotary velocity coincides with the one associated to an

ellipsoid of aspect ratio r ¼
ffiffiffiffi
s1
s2

q
given by Jeffery’s Eq. (2).
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4. Numerical results

4.1. Ellipsoidal clusters

We prove in Appendix B that the motion of a 2D cluster com-
posed of two perpendicular rods of lengths L1 and L2 coincides with
the Jeffery motion of an ellipse of aspect ratio L1=L2. This results
can be easily generalized to 3D. In that case the motion of a cluster
composed of three mutually perpendicular rods of lengths L1 and
L2 for two of them, coincides with the motion predicted by Jeffery
for an ellipsoid [29]. This equivalence can be verified for any aspect
ratio, for r ¼ L1

L2
ranging from r ¼ 0 to 1 : r !1 (rods), r > 1 (pro-

lates), r ¼ 1 (sphere), 0 < r < 1 (oblates) and r ! 0 (disks). We
would like to emphasize that this is not an approximate result, it
is a formal equivalence.

In the case of a non-axisymmetric ellipsoid, the motion of a
cluster composed of three mutually perpendicular rods of lengths
L1; L2 and L3 coincides with the one predicted by Hinch and Leal
[28] for a non-axisymmetric ellipsoid having the same axis
lengths.

As shown previously, the cluster rotary velocity only depends
on the conformation tensor, which is symmetric and with unit
trace. The cluster can be reduced to two or three rods, in 2D and
3D respectively, whose lengths and orientations are given by the
eigenvalues and eigenvectors of the conformation tensor c.

This equivalence between the motion of an ellipsoid and of an
equivalent three-rod cluster may appear strange to some and nat-
ural to others. Now the question is: what happens if starting from
the three-rod cluster (representing its equivalent ellipsoid) we add
new rods to it?

Imagine that the added rods have a length such that their ter-
minal beads are located on the surface of the associated ellip-
soid. One could expect that in such circumstance the cluster
motion remains unchanged. However, it is easy to understand
that the addition of the new rods will modify the conformation
tensor c and then its kinematics. The motion of the new result-
ing cluster will be the same as that of an equivalent ellipsoid
(defined from the eigenvalues and eigenvectors of c) but which
is no longer the imaginary-one on which the beads of the cluster
are located.

There is however a particular case that is quite curious. Imagine
a (non necessarily axisymmetric) ellipsoid filled by a uniform dis-
tribution of beads. This situation is not very physical because in
such circumstances the flow will be extremely perturbed at the
bead positions located inside due to the screening of more external
layers of beads. Now, the motion associated with the resulting con-
formation tensor c coincides with Jeffery’s motion of that ellipsoid.
Again, this is not an approximate result: there exists a formal
equivalence for any ellipsoid.
Table 1
Comparison of the resulting ellipsoid aspect ratios with the ones predicted by Zhang
et al. [43] for cylinders.

N M r re rzh
e

4 3 1 1.15 1.04
4 4 1 1.05 1.04
4 5 1 1.00 1.04
4 6 1 0.97 1.04

6 3 1 1.15 1.04
8 3 1 1.15 1.04

4 3 5 5.77 4.53
4 6 5 4.83 4.53

4 3 10 11.54 8.66

7

4.2. Cylindrical clusters

In this section, we consider the case of more general clusters
shapes.

First, we consider an hypothetical cylinder of diameter D and
height H, with aspect ratio r ¼ H

D. Many authors tried to define
equivalent ellipsoid aspect ratios for cylinders [10,9,18,8,25,41].
The interested reader can refer to Section 2.2 in [39]. Different
equivalent ellipsoid aspect ratios were given for shape-ended and
blunt-ended cylinders.
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Fig. 3. Angular velocity distribution for r ¼ 1 and M ¼ 3;4;6.
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Fig. 5. Angular velocity distribution for r ¼ 10 and M ¼ 3.
An interesting recent work was carried out by Zhang et al. [43].
The authors determined by using 3D finite element simulations the
equivalent ellipsoid aspect ratio re for cylinders with different
aspect ratio r. They proposed the relationship:

rzh
e ¼ 0:000035 � r3 � 0:00467 � r2 þ 0:764 � r þ 0:404: ð57Þ

We consider now different rigid clusters composed of rods with
their center of gravity located at G ¼ ð0; 0;0Þ, and their terminal
beads located on the surface of an hypothetical cylinder. Thus, we
consider N �M beads Bi;j, with coordinates xi ¼ D

2 � cosðuiÞ; yi

¼ D
2 � sinðuiÞ and zj ¼ � H

2 þ hz � ðj� 1Þ (i ¼ 1; . . . ;N and j ¼ 1; . . . ;M),
with ui ¼ hu � ði� 1Þ; hu ¼ 2p

N and hz ¼ H
M�1.

We study different configurations by selecting different values
of N and M, computing the associated conformation tensors c from

c ¼
Pi¼N

i¼1 L2
i ðpi � piÞPi¼N

i¼1 L2
i

; ð58Þ

and from them the equivalent ellipsoid aspect ratios re that will be
compared with the predictions given by Eq. (57). Results are sum-
marized in Table 1. Then, we compare motions predicted by Jeff-
ery’s model for ellipsoids having equivalent aspect ratios given by
the Zhang et al. model (57) and from the cluster model (46).

Fig. 3 illustrates the case of a simple shear flow vT ¼ ð0; _cz;0Þ
with _c ¼ 1s�1. We show the angular velocity xx for different cylin-
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Fig. 4. Angular velocity distribution for r ¼ 5 and M ¼ 3;6.
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der orientations pðhÞ ¼ ð0; cosðhÞ; sinðhÞÞ for r ¼ 1;N ¼ 4 and
M ¼ 3;4;6.

Table 1 shows that N does not influence the results. This fact can
be easily understood because the circular shape of the ellipsoid
cross section is perfectly described with 3 uniformly distributed
beads. Considering more beads, uniformly distributed, does not
affect the conformation tensor.

Fig. 4 compares two different configurations for r ¼ 5 and Fig. 5
depicts the angular velocity distribution for r ¼ 10. From these fig-
ures it can be noticed that despite the fact that the equivalent ellip-
soid aspect ratio seems quite different, the angular velocity
distributions are very close because k becomes very close to one
when the aspect ratio is large enough (r > 5). In fact, for high
aspect ratios, the angular velocity becomes quite insensitive to
the aspect ratio itself. This means that inverse identification from
finite element solutions could become inaccurate and then the
noticed gap in predictions must be relativized. In any case, as soon
as the actual aspect ratio becomes large enough (r > 5), the angular
velocity distribution approaches the one characteristic of rods
(r !1).

5. Conclusions and perspectives

In this paper, we have proposed an original multiscale descrip-
tion of dilute suspensions of rigid particles consisting of nine con-
ceptual bricks: the first three focus on the particle itself (definition
of conformation, evolution of conformation and induced stress);
the next three on the population (description, evolution and contri-
bution to the stress); and the last three on the microstructural
macroscopic description, its evolution and the associated stress
expression.

We have illustrated this micro-to-macro description in the case
of dilute suspensions of rigid rods in a Newtonian fluid, where
there exist numerous works focusing on each one on these bricks.
This description being general, however, we propose to consider it
for describing any kind of suspension of rigid particles, and in par-
ticular dilute suspensions of rigid clusters composed of rigid rods
which we addressed here.

At the level of the particle, here the rigid cluster composed of
rigid rods, we proved that the rotary velocity only depends on a
symmetric tensor c with unit trace that can be considered as the
appropriate conformation tensor for describing cluster kinematics.
When the conformation tensor c has two identical eigenvalues, we
proved that the resulting kinematics is that of an equivalent ellip-
soid expressed by Jeffery’s equation. To check the proposed model



it was applied numerically to different configurations of ellipsoidal
clusters and then generalized to more complex shapes, for example
cylindrical clusters. The predicted angular velocity was compared
to the one obtained by existing models for cylindrical particles,
where an excellent agreement was found for large and small
cylinder aspect ratios (representing rods and disks respectively);
small deviations were noticed when r � 1 that depend on the
particular cluster configuration. Kinematics of rigid clusters with
arbitrary shape were compared in the 2D case with direct
numerical simulations in [1] and both predictions were in excel-
lent agreement.

In the present paper, we have only addressed the first brick of
the proposed approach to the multiscale modeling of suspensions
involving rigid clusters composed of rigid rods. In way of perspec-
tives for future work, we conclude with an overview of the com-
plete nine-step approach to be followed:

1. The cluster conformation has been successfully described by
tensor c given in Eq. (56). This choice was motivated by the fact
that all clusters having the same conformation tensor c have the
same kinematics as proved Section 3.

2. Cluster conformation evolution. Knowing the cluster kinematics
x, we can obtain the expression of _p in order to define the con-
formation evolution from _c.

3. Cluster contribution to the stress. The force acting on each rod
bead involved in the rigid cluster must be taken into account
by invoking Kramers’ rule.

4. Population description. The population of rigid clusters at the
mesoscopic scale can be represented by means of either a dis-
crete or a continuous description. In the discrete framework,
the population is described from different computational indi-
viduals, each one characterized by its conformation tensor
ci; i ¼ 1; . . . ;N . Within the continuous framework, the suspen-
sion is characterized by the pdf W, which now depends on the
physical coordinates (space x and time t) and the conformation
coordinate c. Thus, the pdf reads Wðx; t; cÞ. It gives the fraction
of clusters that at position x and time t have a conformation
given by c.

5. Description of the population evolution. Within the discrete
framework, the population evolution is obtained by integrating
the evolution equation for each cluster conformation _ci. Within
the continuous framework, the pdf Wðx; t; cÞ evolves according
to its associated Fokker-Planck equation, with the knowledge
of _c.

6. Contribution of cluster population to the stress requires adding
the contribution of all computational clusters, within the dis-
crete framework, or to integrate in conformation space when
proceeding within the continuous framework.

7. The macroscopic description uses a coarser description based
on the moments of the pdf. Here, the simplest choice consists
of the first moment Cðx; tÞ defined as
Cðx; tÞ ¼
Z
C

c Wðx; t; cÞ dc: ð59Þ

8. Microstructural macroscopic evolution. In order to derive
the time evolution of the first moment C, we should
consider its time derivative and propose adequate closure
relations.

9. The moment-based stress requires consideration of the stress
expression obtained in step (6) above. Here again, introduction
of a suitable closure relation is required.

The remaining bricks (2)–(9) constitute work in progress within
our group.
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Appendix A. On the cluster rotary velocity

The expression of the inverse in Eq. (55) deserves some addi-
tional comments. If for a while we define tensor m according to
m ¼ I� c, as matrix m is 3� 3 it satisfies its characteristic polyno-
mial (according to the Cayley-Hamilton theorem):

m3 � trðmÞm2 þ ðtrðmÞÞ
2 � trðm2Þ
2

m� detðmÞI ¼ 0; ðA:1Þ

where detðmÞ refers to the matrix determinant.
Now we can write Eq. (A.1) in the form

m m2 � trðmÞmþ ðtrðmÞÞ
2 � trðm2Þ
2

I

!
¼ detðmÞI; ðA:2Þ

from which we can infer that m�1 is given by

m�1 ¼ 1
detðmÞ m2 � trðmÞmþ ðtrðmÞÞ

2 � trðm2Þ
2

I

!
: ðA:3Þ

By developing the expression of m�1 and taking into account that
m ¼ I� c, we obtain

ðI� cÞ�1 ¼ a1Iþ a2c2; ðA:4Þ

where the coefficients a1 and a2, that depend on the invariants of c,
are given by

a1 ¼
1
2 ð1� c : cÞ

1
2 ð1� c : cÞ � detðcÞ

; ðA:5Þ

and

a2 ¼
1

1
2 ð1� c : cÞ � detðcÞ

: ðA:6Þ

Thus, finally Eq. (55) reads

x ¼ a1Iþ a2c2� �
� � : rv � cð Þð Þ: ðA:7Þ
Appendix B. Jeffery revisited

Until now, we addressed Jeffery’s solution for infinite aspect
ratio ellipsoids, i.e., slender bodies or rods. Jeffery’s solution for
an ellipsoid immersed into a Newtonian fluid flow whose unper-
turbed velocity field is described by the velocity field v is given
by [29]:

_p ¼ X � pþ k � D � p� k pT � D � p
� �

� p; ðB:1Þ

where k depends on the ellipsoid aspect ratio r (the length to diam-
eter ratio):

k ¼ r2 � 1
r2 þ 1

; ðB:2Þ

and where for the sake of clarity we write the term D : ðp� pÞ in the
matrix algebra format, by using the equivalence D : ðp� pÞ 	
pT � D � p.

We now prove that in order to represent finite aspect ratio 2D
particles it suffices to consider a rigid system composed of two
rods, aligned perpendicularly to each other, and having lengths
2L1 and 2L2; L1 P L2, as depicted in Fig. 6, such that the parameter
k in Jeffery’s Eq. (B.1) results from r ¼ L1

L2
,

k ¼ L2
1 � L2

2

L2
1 þ L2

2

: ðB:3Þ



Fig. 6. Two-rod rigid cluster representing an ellipsoidal 2D particle.
In the present configuration the forces applied on bead L1p1 and
L2p2 are

F1 ¼ nL1ðrv � p1 � _p1Þ; ðB:4Þ

and

F2 ¼ nL2ðrv � p2 � _p2Þ; ðB:5Þ

respectively, with

_p1 ¼ x� p1

_p2 ¼ x� p2:

	
ðB:6Þ

Torque balance implies:

L2
1 p1 � ðrv � p1 � _p1Þ þ L2

2 p2 � ðrv � p2 � _p2Þ ¼ 0: ðB:7Þ

Introducing (B.6) into (B.7) and taking into account that
p1 �x� p1 ¼ x and p2 �x� p2 ¼ x, we obtain

x ¼ L2
1

L2
1 þ L2

2

p1 � ðrv � p1ð ÞÞ þ L2
2

L2
1 þ L2

2

p2 � ðrv � p2Þð Þ: ðB:8Þ

Now, the ellipsoid rotary velocity is given by

_p1 ¼ x� p1

¼ L2
1

L2
1 þ L2

2

ðp1 � ðrv � p1ð ÞÞ � p1Þ

þ L2
2

L2
1 þ L2

2

ðp2 � ðrv � p2Þ � p1Þð Þ: ðB:9Þ

It is easy to verify that _p1 � p1 ¼ 0 as expected, i.e. the variation of p1

is directed along its perpendicular direction, which in this case cor-
responds to p2.

Now, applying again the triple vector product formula
ða� bÞ � c ¼ �a � ðb � cÞ þ b � ða � cÞ, Eq. (B.9) reads

_p1 ¼
L2

1

L2
1 þ L2

2

rp1 � pT
1 � rv � p1

� �
p1

� �

� L2
1

L2
1 þ L2

2

pT
1 � rv � p2

� �
p2

� �
: ðB:10Þ

We develop the last term of Eq. (B.10) to obtain an equation that
only contains p1 in order to compare with Jeffery’s expression (B.1).

First, we apply the decomposition rv ¼ DþX from which the
last term in Eq. (B.10) reads

pT
1 � rv � p2

� �
p2 ¼ pT

1 � D � p2

� �
p2 þ pT

1 �X � p2

� �
p2: ðB:11Þ
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We proceed from the first term in the right-hand side of Eq. (B.11),
using the fact that D is symmetric:

pT
1 � D � p2

� �
p2 ¼ p2 pT

1 � D � p2

� �
¼ p2 pT

2 � D � p1

� �
¼ ðp2 � p2Þ � D � p1: ðB:12Þ

Since p1 and p2 are mutually perpendicular, we have

ðp2 � p2Þ þ ðp1 � p1Þ ¼ I; ðB:13Þ

and Eq. (B.12) can then be written as

pT
1 � D � p2

� �
p2 ¼ ðI� p1 � p1Þ � D � p1: ðB:14Þ

Finally, we consider the second term in the right-hand side of Eq.
(B.11), using the fact that X is skew-symmetric:

pT
1 �X � p2

� �
p2 ¼ p2 pT

1 �X � p2

� �
¼ �p2 pT

2 �X � p1

� �
¼ �ðp2 � p2Þ �X � p1; ðB:15Þ

which finally becomes

pT
1 �X � p2

� �
p2 ¼ �ðI� p1 � p1Þ �X � p1: ðB:16Þ

Now, coming back to Eq. (B.10), we obtain

_p1 ¼ X � p1 þ
L2

1 � L2
2

L2
1 þ L2

2

D � p1 �
L2

1 � L2
2

L2
1 þ L2

2

pT
1 � D � p1

� �
p1; ðB:17Þ

which corresponds exactly to Jeffery’s expression for a 2D ellipsoid
of aspect ratio L1

L2
.

For circular particles characterized by a unit aspect ratio L1 ¼ L2,
we obtain as expected

_p ¼ X � p: ðB:18Þ
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