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Introduction

The Hurwitz zeta function is defined by

ζ(s, x) = ∞ n=0 1 (n + x) s
for any s, x such that Re(s) > 1 and x ∈ R \ Z ≤0 . For any fixed integer s, ζ(s, x) is meromorphic in C \ Z ≤0 , with poles of order s at each non-negative integer. For any fixed ε > 0, ζ(s, x) has an asymptotic expansion when x → ∞ in the angular sector | arg(x)| < π -ε:

ζ(s, x) ∼ x 1-s s -1 + ∞ k=1 (s) k-1 k! B k x k+s-1 ,
where (B k ) k≥0 is the sequence of Bernoulli numbers.

In this paper, we address the following problem: Given two integers m, n ≥ 0, determine two polynomials A(x) and B(x) ∈ Q[x], of degree ≤ n, such that

A(x)ζ(4, x) + B(x) = O 1 x m+1 (1) 
as x → ∞ in any angular sector | arg(x)| < π -ε.

Stated in this form, this is an analytic problem. However, using the asymptotic expansion of ζ(s, x) at x = ∞, Eq. ( 1) can also be interpreted as a Padé type problem at x = ∞ for the formal series

2x -3 + ∞ k=0 (k + 2)(k + 3)B k+1 x -k-4 .
See [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF]Sec. 2] for details. This Padé problem amounts to solving a linear system with 2n + 2 indeterminates (the polynomial coefficients) and m + n + 1 equations (the vanishing conditions): provided m ≤ n, this system has at least one non-zero solution. The case m = n corresponds to the usual diagonal Padé approximation. The explicit polynomials obtained below are automatically solutions of the associated Padé type problem. Our main result is the explicit determination of a non-zero analytic solution of (1) when m ≤ n/2 (essentially). Unicity of the solution is obviously not guaranteed.

Theorem 1. For any integer n ≥ 0, consider the following Padé type problem: determine two polynomials Q 0,n (x) and

Q 2,n (x) ∈ Q[x], of degree ≤ 4n, such that S n (x) := 3Q 0,n (x)ζ(4, x) + Q 2,n (x) = O 1 x 2n+3 (2) 
Problem (2) admits the following solution:

S n (x) = - ∞ k=0 ∂ ∂k k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 . (3) 
The series converges for all x ∈ C \ {0, -1, -2, -3, . . .}.

Moreover, for the series on the right-hand side of (3), we have

Q 0,n (x) = n j=0 ∂ ∂ε n 2 -j + ε (x + j -n -ε) 2 n (x -j + ε) 2 n (1 -ε) 4 j (1 + ε) 4 n-j |ε=0 and Q 2,n (x) = - 1 6 n j=0 ∂ ∂ε 3 n 2 -j + ε (x + j -n -ε) 2 n (x -j + ε) 2 n (1 -ε) 4 j (1 + ε) 4 n-j j-1 k=0 1 (x + k -ε) 2 |ε=0 .
Diagonal Padé approximants are known for ζ(2, x) and ζ(3, x): the formulas are given in [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF] and [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF]Theorem 2]. However diagonal Padé approximants are not explicitely known for ζ(4, x) and Theorem 1 offers a weaker alternative. The polynomial Q 0,n (x) can also be written more symbolically in the form

Q 0,n (x) = n j=0 ∂ ∂j n 2 -j n j 4 x + j -1 n 2 x + n -j -1 n 2 .
We now let

Q 1,n (x) = - 1 6 n j=0 ∂ ∂ε 3 n 2 -j + ε (x + j -n -ε) 2 n (x -j + ε) 2 n (1 -ε) 4 j (1 + ε) 4 n-j j-1 k=0 1 x + k -ε |ε=0
which is also a polynomial of degree ≤ 4n. Then, our proof will also show that

R n (x) := Q 0,n (x)ζ(3, x) + Q 1,n (x) = ∞ k=0 k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 . As x → ∞, k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 ∼ 4 n (k + 1) 2 n x 2n+3 (4) 
and this suggests that R n (x) = O( 1 x 2n+3 ) as S n (x). However, this is false and in fact one can not prove anything better than R n (x) = O( 1x 2 ). Therefore, the property

S n (x) = O( 1 x 2n+3
) is a non-trivial property, which is not a simple consequence of (4).

We give the proof of Theorem 1 in Section 2 while we make connections with other results in the literature in Section 3. I warmly thank Pierre Bel for his careful reading of a previous version of this paper, and for pointing out that R n (x) is only O( 1x 2 ) and not O( 1 x 2n+3 ).

Proof of Theorem 1

We follow the method used in [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF] and split the proof in three parts. We also include the case of ζ(3, x) in the first part of the proof. We define the rational function

ρ(t) = t + x + n 2 (t + 1) 2 n (t + 2x) 2 n (t + x) 4 n+1
.

By partial fraction expansion, we have

ρ(t) = 4 s=1 n j=0 E j,n,s (x) (t + x + j) s with E j,n,s (x) = 1 (4 -s)! ∂ ∂t 4-s ρ(t) (t + x + j) 4 |k=-j-x .
Exchanging summations, we thus get

∞ k=0 k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = 4 s=2 n j=0 E j,n,s (x) ζ(s, x) - 4 s=1 n j=0 j-1 k=0 E j,n,s (x) (k + x) s . (5) 
Here we must explain how we have disposed of the divergent series ∞ k=0 1 k+x in (5), i.e. why the first sum over s does not start at s = 1. The series on the left-hand side of (5) being convergent, this forces to assign the value

-n j=0 E j,n,1 (x)) j-1 k=0 1 k+x to the divergent expression ( n j=0 E j,n,1 (x)) ∞ k=0 1
k+x+j . Indeed we have n j=0 E j,n,1 (x) = 0 because this is the sum over the residues at all the finite poles of ρ(k), hence also equal to minus its residue at infinity, which is zero. Formally, one should introduce the Lerch series ∞ k=0 z k (k+x) s with |z| < 1 and eventually to let z → 1; see [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF]Sec. 3.2] for details.

We now observe that ρ

(k) = -ρ(-k -2x -n). Since ρ(-k -2x -n) = 4 s=1 n j=0 E j,n,s (x) (-k -x -n + j) s = 4 s=1 n j=0 (-1) s E n-j,n,s (x) (k + x + j) s ,
we then deduce that E n-j,n,s (x) = (-1) s+1 E j,n,s (x). Therefore

n j=0 E j,n,s (x) = (-1) s+1 n j=0 E j,n,s (x)
which is thus equal to 0 for s = 2 and s = 4, and consequently, the first sum in ( 5) is for s = 3 only:

∞ k=0 k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = n j=0 E j,n,3 (x) ζ(3, x) - 4 s=1 n j=0 j-1 k=0 E j,n,s (x) (k + x) s . (6)
Similarly,

- ∞ k=0 ∂ ∂k k+x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = - 4 s=1 n j=0 E j,n,s (x) ∞ k=0 ∂ ∂k 1 (k + x + j) s = 4 s=1 n j=0 E j,n,s (x) sζ(s + 1, x) - 4 s=1 n j=0 j-1 k=0 sE j,n,s (x) (k + x) s+1 so that - ∞ k=0 ∂ ∂k k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = n j=0 E j,n,3 (x) 3ζ(4, x) - 4 s=1 n j=0 j-1 k=0 sE j,n,s (x) (k + x) s+1 . (7) 

The coefficients are polynomials of degree ≤ 4n

We set Q 0,n (x) := n j=0 E j,n,3 (x) and

Q 1,n (x) := - 4 s=1 n j=0 j-1 k=0 E j,n,s (x) (k + x) s , Q 2,n (x) := - 4 s=1 n j=0 j-1 k=0 sE j,n,s (x) (k + x) s+1
so that the right-hand sides of ( 6) and ( 7) are respectively equal to

Q 0,n (x)ζ(3, x) + Q 1,n (x) and 3Q 0,n (x)ζ(4, x) + Q 2,n (x).
Let us prove that for s ∈ {0, 1, 2}, the Q s,n (x) are in Q[x] and of degree ≤ 4n. We have

Q 0,n (x) = n j=0 ∂ ∂k ρ(k) (k + x + j) 4 |k=-j-x = n j=0 ∂ ∂ 4 ρ( -j -x) | =0 = n j=0 ∂ ∂ n 2 -j + (x + j -n -) 2 n (x -j + ) 2 n ( 1 
-) 4 j (1 + ) 4 n-j | =0 . (8) 
Eq. ( 8)

shows that Q 0,n (x) ∈ Q[x] and deg(Q 0,n ) ≤ 4n. Furthermore, by Leibniz' formula Q 1,n (x) = - 4 s=1 n j=0 1 (4 -s)! ∂ ∂ 4-s 4 ρ( -j -x) × 1 (s -1)! ∂ ∂ s-1 j-1 k=0 1 k -+ x | =0 = - 1 6 n j=0 ∂ ∂ 3 4 ρ( -j -x) j-1 k=0 1 k -+ x | =0 = - 1 6 n j=0 ∂ ∂ 3 n 2 -j + (x + j -n -) 2 n (x -j + ) 2 n ( 1 
-) 4 j ( + 1) 4 n-j j-1 k=0 1 k -+ x | =0
and similarly,

Q 2,n (x) = - 4 s=1 n j=0 (-1) 4-s (4 -s)! ∂ ∂ 4-s 4 R( -j -x) × 1 (s -1)! ∂ ∂ s-1 j-1 k=0 1 (x + k -) 2 | =0 = - 1 6 n j=0 ∂ ∂ 3 4 R( -j -x) j-1 k=0 1 (k -+ x) 2 | =0 = - 1 6 n j=0 ∂ ∂ 3 n 2 -j + (x + j -n -) 2 n (x -j + ) 2 n ( 1 
-) 4 j ( + 1) 4 n-j j-1 k=0 1 (x + k -) 2 | =0 . It follows that Q 1,n (x) and Q 2,n (x) are in Q[x]
and of degree ≤ 4n, because for all j ∈ {0, . . . , n}, k ∈ {0, . . . , j -1} and any , we have that

(x + j -n -) n x + k - ∈ Q[x]. 2.3 Proof that S n (x) = O 1 x 2n+3
We shall prove that S n (x) = O 1 x 2n+3 as x → ∞ in any open angular sector that does not contain the negative real axis. The methods of [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF]Sec. 3.1] can not be used here because they lead to divergent series.

We first observe that it is enough to consider the case x → +∞ on the real axis. Indeed, S n (x) = 3Q 0,n (x)ζ(4, x) + Q 2,n (x) so that we know a priori that S n (x) has an asymptotic expansion in any angular sector that does not contain the negative real axis. Thus the leading power of this expansion can be determined by letting x → +∞ on the real positive axis.

Let N ≥ 0 be an integer. We assume that x ≥ 1. Consider the positively oriented square

C N with sides [-1 2 -iN, N + 1 2 -iN ], [N + 1 2 -iN, N + 1 2 + iN ], [N + 1 2 + iN, -1 2 + iN ], [-1 2 + iN, -1 2 -iN ].
Then by the residues theorem,

1 2iπ C N π 2 sin(πt) 2 ρ(t)dt = N k=0 ∂ ∂k k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 .
(The only poles of the integrand inside C N are those of π 2 sin(πt) 2 because x ≥ 1.) For any fixed real number u, π 2 sin(π(u+iv)) 2 = O(e -2π|v| ) as the real number v → ±∞, and ρ(t) = O(1/t 3 ) as t → ∞. Letting N → +∞, it follows that 1 2iπ

-1 2 +i∞ -1 2 -i∞ π 2 sin(πt) 2 ρ(t)dt = - ∞ k=0 ∂ ∂k k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = S n (x).
Then for any t ∈ [- 

x 2n+3 S n (x) = 4 n 2iπ -1 2 +i∞ -1 2 -i∞ π 2 sin(πt) 2 (t + 1) 2 n dt.
Similarly, we can prove that 1 2iπ

-1 2 -i∞ -1 2 +i∞ π cot(πt)ρ(t)dt = ∞ k=0 k + x + n 2 (k + 1) 2 n (k + 2x) 2 n (k + x) 4 n+1 = R n (x).
However, we can not deduce from this representation that lim x→+∞ x 2n+3 R n (x) is finite by the method above, because

-1 2 +i∞ -1 2 -i∞ π cot(πt)(t + 1) 2
n dt is divergent. In fact, it turns out that lim x→+∞ x 2n+3 R n (x) is not finite when n ≥ 1, because it can be proved that lim x→+∞ x 2 R n (x) is finite and non-zero.

3 Connections with other works

Cohen's continued fraction for ζ(4, x)

In [START_REF] Cohen | Continued fractions for Gamma products[END_REF], Cohen presented certain continued fractions for values of the Riemann zeta function and the Gamma function. In particular he stated the following one (in his notations):

ζ(4, x + 1) ≈ (2x + 1)/3 1P x (1) + 1 8 2x(2x + 2) 3P x (2) + 2 8 (2x -1)(2x + 3) 5P x (3) + • • • (9) 
where

P x ( ) = 2x 4 + 4x 3 + (2 2 -2 + 4)x 2 + (2 2 -2 + 2)x -( -1)( 2 -+ 1).
He wrote that ≈ means "asymptotic expansion as the integer x → ∞", and that it is not an equality.

Maple implementation of Zeilberger's algorithm shows that our sequences (S n (x + 1)) n≥0 , (Q 0,n (x + 1)) n≥0 and (Q 2,n (x + 1)) n≥0 are solutions of the linear recurrence

n 5 U n + (2n -1)P x (n)U n-1 + (n + 1) 3 (n + 2x)(n -2 -2x)U n-2 = 0.
It is then not difficult to prove that Q 2,n (x+1) 3Q 0,n (x+1) are the convergents of Cohen's continued fraction [START_REF] Prévost | Rational approximations to the Hurwitz zeta function[END_REF]. See also Lange's paper [START_REF] Lange | Continued fraction representation for functions related to the Gamma function[END_REF] for many continued fractions related to Hurwitz zeta function, though [START_REF] Prévost | Rational approximations to the Hurwitz zeta function[END_REF] does not seem to be listed.

Cohen then mentioned that Apéry's "continued fraction acceleration" method shows

ζ(4) = 13 C(1) + 2 • 3 • 4 • 1 7 C(2) + 5 • 6 • 7 • 2 7 C(3) + • • • (10) 
where

C(n) = 3(2n -1)(45n 4 -90n 3 + 72n 2 -27n + 4). (11) 
He also wrote that the convergents an bn of the continued fraction [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF] are such that

ζ(4) - a n b n ≈ c(-1) n (2 + √ 3) 6n
for some constant c = 0, which is not enough to prove the irationality of ζ(4). The continued fraction [START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF] had been announced before in [START_REF] Cohen | Accélération de la convergence de certaines récurrences linéaires[END_REF], with details given in [START_REF] Cohen | Accélération de la convergence de certaines récurrences linéaires[END_REF].

To conclude this section, we remark that the polynomials Q j,n,r (x) and series stated after Theorem 1 do not seem to satisfy a linear recurrence of order ≤ 2 when r < n. The case r = n is thus very remarkable.

Zudilin's approximations to ζ(4)

In [12, Section 2], Zudilin showed that for any integer n ≥ 0

Z n := - ∞ k=0 ∂ ∂k k + n 2 (k -n) 2 n (k + n + 1) 2 n (k) 4 n+1 = u n 3ζ(4) + v n
where u n and v n are rational numbers. In particular,

u n = n j=0 ∂ ∂j n 2 -j n j 4 n + j n 2 2n -j n 2
and the expression for v n is more complicated. He also proved that (Z n ) n , (u n ) n and (v n ) n are solutions of the linear recurrence

n 5 U n + C(n)U n-1 -3(3n -2)(3n -4)(n -1) 3 U n-2 = 0
where Q(n) is Cohen's polynomial [START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF]. It can be verified that un vn coincide with the convergents an bn of ( 10 and thus we recover Zudilin's sequence (v n ) n by the identity

v n = Q 2,n (n + 1) -3u n n j=1 1 j 4 .

Prévost's remainder Padé approximants for ζ(s, x)

In [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF], Prévost showed a very original method to prove the irrationality of ζ(2) and ζ(3). We present the slightly modified approach he recently presented in [START_REF] Prévost | Rational approximations to the Hurwitz zeta function[END_REF]. For any integer x ≥ 1, we have For s = 2, the denominators of [n + 1/n](x) are

ζ(s) = x-1 k=1 1 k s + ζ(s, x).
P n (x) = n j=0 n + 1 j + 1 n + j + 2 j + 1 x -1 j , n ≥ 0,
and they satisfy the orthogonality relation

iR P n (x)P m (x) x 2 sin(πx) 2 dx = 0, n = m. For s = 3, the denominators Q n (x) of [n + 2/n](x) are such that Q n (x 2 ) = n j=0 1 j + 1 n + 1 j + 1 n + j + 2 j + 1
x -1 j

x + 1 j , n ≥ 0, and they satisfy the orthogonality relation

iR Q n (x)Q m (x) x 5 cos(πx) sin(πx) 3 dx = 0, n = m.
The two families of orthogonal polynomials (P n ) n and (Q n ) n are specializations of Wilson's orthogonal polynomials [START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF].

Recently, Prévost [START_REF] Prévost | Rational approximations to the Hurwitz zeta function[END_REF] proved that the Padé approximants [n + 1/n](x) of ζ(s, x) at x = ∞ converge to ζ(s, x) for any fixed real number s > 1, but convergence is still an open problem when s is a complex number. Moreover, except for s = 2, 3, no expression of these approximants is known, even for s = 4. In this case, the problem is to find explicit expressions for polynomials A n (x) (of degree n) such that iR A n (x)A m (x)

x 8 (2 + cos(2πx)) sin(πx) 4 dx = 0, n = m.

Unfortunately, the weight function x 8 (2+cos(2πx)) sin(πx) 4 is not of the form studied by Wilson. The sequence (Q 0,n (x)) n is not orthogonal for this weight, but it is bi-orthogonal in the following sense: for any n and m such that 0 ≤ m ≤ 2n -1, we have 
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2. 1

 1 Linear forms in 1, ζ(3, x), respectively 1, ζ(4, x)

1 j 4 ,

 14 ); see [12, Section 2, Theorem 2]. We observe that Z n = S n (n+1) and u n = Q 0,n (n+1). Since ζ(4, n+1) = ζ(4)-n j=1 the specialization of Theorem 1 at x = n + 1: S n (n + 1) = 3Q 0,n (n + 1)ζ(4, n + 1) + Q 2,n (n + 1) becomes Z n = u n 3ζ(4) + Q 2,n (n + 1) -

  He then computed explicitly the Padé approximants [n + 1/n](x) at x = ∞ of ζ(2, x), respectively the Padé approximants [n+2/n](x) at x = ∞ of ζ(3, x). After taking x = n+1, he obtained Apéry's famous sequences for ζ(2) and ζ(3).

  iR x m+5 Q 0,n (x) cos(πx) sin(πx) 3 dx = 0 = iR x m+8 Q 0,n (x) 2 + cos(2πx) sin(πx) 4 dx.

3. 4

 4 Beukers and Bel's p-adic irrationality proofsIn[START_REF] Calegari | Irrationality proofs using modular forms[END_REF], Calegari proved the irrationality of the 2-adic numbers ζ 2 (2) and ζ 2 (3), as well as of the 3-adic numbers ζ 2 (3). His proof used overconvergent p-adic modular forms. Later, Beukers[START_REF] Beukers | Irrationality of some p-adic L-values[END_REF] obtained another proof of these facts, of a more classical flavor. In fact, he essentially used Prévost's Padé approximants for ζ(2, x) and ζ(3, x), though his formulas are written differently. The Padé type approximants constructed in[START_REF]Simultaneous polynomial approximations of the Lerch function[END_REF] for ζ(s, x) contain as initial cases Beukers and Prévost approximants; Bel[START_REF] Bel | Fonction Zêta de Hurwitz p-adique et irrationalité[END_REF] used them to prove certain linear independence results for values of p-adic Hurwitz zeta functions. It would be interesting to know if Theorem 1 or its generalization could be used to prove the irrationality of the numbers ζ p (4) for some p. The arithmetic and asymptotic properties of Zudilin's series Z n are not good enough to imply the irrationality of ζ(4), but a modification of Z n conjecturally proves that ζ(4) / ∈ Q.

  for some constant c n > 0 independent of x and t. Since -1/2+iR | π 2 sin(πt) 2 (t + 1) 2 n ||dt| < ∞ for any n, and lim x→+∞ x 2n+3 ρ(t) = 4 n (t + 1) 2

	n , it follows by the dominated convergence
	theorem that
	lim x→+∞

1 2 -i∞, -1 2 + i∞] and any x ≥ 1, we have |x 2n+3 ρ(t)| ≤ c n |(t + 1) 2 n |