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Introduction

Systems of competing Brownian particles interacting through their rank dependent drift and diffusion coefficient vectors have received much recent attention (for example, in stochastic portfolio theory, where they appear under the name first-order market model, see [START_REF] Fernholz | Stochastic portfolio theory: an overview[END_REF] and the references therein). For a fixed number of particles m ∈ N, such system corresponds to the unique weak solution of

dY i (t) = j≥1 γ j 1 {Y i (t)=Y (j) (t)} dt + j≥1 σ j 1 {Y i (t)=Y (j) (t)} dW i (t) , (1.1) 
for i = 1, . . . , m, where γ = (γ 1 , . . . , γ m ) and σ = (σ 1 , . . . , σ m ) are some constant drift and diffusion coefficient vectors and (W i (t), t ≥ 0), i ≥ 1 are independent standard Brownian motions. Here Y (1) (t) ≤ Y (2) (t) ≤ . . . ≤ Y (m) (t) are the ranked particles at time t and the R m-1 + -valued spacings process Z(t) = (Z 1 (t), Z 2 (t), . . . , Z m-1 (t)), t ≥ 0, is given by

Z k (t) := X k+1 (t) -X k (t) := Y (k+1) (t) -Y (k) (t) , k ≥ 1 . (1.2)
The variables X k (•) and Z k (•) correspond to the k-th ranked particle and kth spacing, respectively, with X 1 = min i Y i denoting the leftmost particle. In particular, existence and uniqueness of such weak solution to (1.1) has been shown already in [START_REF] Bass | Uniqueness for diffusions with piecewise constant coefficients[END_REF]. The corresponding ranked process X(t) solves the system dX j (t) = γ j dt + σ j dB j (t) + dL j-1 (t) -dL j (t) , j = 1, . . . , m

for independent standard Brownian motions (B j (t), t ≥ 0), where L j (t) denotes the local time at zero of the non-negative semi-martingale Z j (•), during [0, t], with L 0 ≡ 0 and L m ≡ 0. The spacing process Z(t) is thus a reflected Brownian motions (rbm) in a polyhedral domain. That is, the solution in R m-1 + of dZ j = (γ j+1γ j )dt + σ j+1 dB j+1σ j dB j + 2dL j -dL j+1 -dL j-1 .

(1.4)

The general theory of such rbm (due to [START_REF] Harrison | Multidimensional reflected Brownian motions having exponential stationary sistributions[END_REF][START_REF] Williams | Reflected Brownian motion with skew symmetric data in a polyhedral domain[END_REF], c.f. the survey [START_REF] Williams | Semimartingale reflecting Brownian motions in the orthant. Stochastic networks[END_REF]), characterizes those (γ, σ) for which the stationary distribution of Z(t) is a product of exponential random variables. Further utilizing this theory, [START_REF] Sarantsev | Comparison techniques for competing Brownian particles[END_REF] deduces verious stochastic comparison results, whereas [START_REF] Ichiba | Convergence rates for rank-based models with applications to portfolio theory[END_REF] and the references therein, estimate the rate t m , m ≫ 1 of convergence in distribution of the spacing process Z(t).

In particular, the Atlas model of m particles, denoted by atlas m (γ) (or atlas m when γ = 1), corresponds to σ j ≡ 1 and γ j = γ1 j=1 . For atlas m (γ) it is shown in [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF]Corollary 10] that the spacing process Z(t) has the unique invariant measure

µ (m,2γ) ⋆ := m-1 k=1 Exp 2γ(1 -k/m)) , m ∈ N , (1.5) 
out of which [15, Theorem 1] deduces that

µ (∞,2γ) ⋆ := ∞ k=1 Exp(2γ), (1.6) 
is an invariant measure for the spacings process of atlas ∞ (γ) (see also [START_REF] Rost | Hydrodynamics of a one dimensional nearest neighbor model[END_REF] for invariant measures of spacings when the particles follow linear Brownian motions which are repelled by their nearest neighbors through a potential). By time-space scaling we hereafter set γ = 1 wlog and recall in passing that to rigorously construct the atlas ∞ we call y = (y i ) i≥1 ∈ R ∞ rankable if there exists a bijective mapping to the ranked terms y (1) ≤ y (2) ≤ y (3) ≤ . . . of y. The solution of (1.1) starting at a fixed y ∈ R ∞ is then well defined if a.s. the resulting process Y = (Y 1 (t), Y 2 (t), . . .) is rankable at all t (under some measurable ranking permutation). The atlas ∞ process is unique in law and well defined, when

P i≥1 e -αY i (0) 2 < ∞ = 1 , for any α > 0 (1.7)
(see [START_REF] Shkolnikov | Competing particle systems evolving by interacting Lévy processes[END_REF]Prop. 3.1]), and [14, Theorem 2] further constructs a strong solution of (1.1) in this setting (more generally, whenever σ 2 0 = 0, j → σ 2 j+1 is concave and eventually, both σ 2 j = 1 and γ j = 0). We focus here on atlas ∞ , where wlog all atlas m , m ∈ N ∪ {∞}, evolutions considered, start at a ranked configuration Y (0) = X(0) having leftmost particle at zero (i.e. X 1 (0) = 0), and which satisfies (1.7). For example, this applies when Z(0) is drawn from the product measure

µ (∞,λ,a) ⋆ := ∞ k=1 Exp(λ + ka) , λ > 0, a ≥ 0 . (1.8)
The natural conjecture made in [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF] that µ

(∞,2) ⋆
is the only invariant measure for spacing of atlas ∞ , has been refuted by [START_REF] Sarantsev | Stationary gap distributions for infinite systems of competing Brownian particles[END_REF] showing that {µ (∞,2,a) ⋆ , a ≥ 0}, forms an infinite family of such invariant measures (similar invariant spacings measures appeared earlier, in the non-interacting discrete model studied by [START_REF] Ruzmaikina | Characterization of invariant measures at the leading edge for competing particle systems[END_REF][START_REF] Shkolnikov | Competing particle systems evolving by i.i.d. increments[END_REF]).

As for the behavior of the leading particle of atlas ∞ , [START_REF] Dembo | Equilibrium fluctuation of the Atlas model[END_REF] verifies [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF]Conj. 3], that starting with spacing at the translation invariant equilibrium law µ

(∞,2) ⋆ results with t -1/4 X 1 (t) d → N (0, c) , when t → ∞ , some c ∈ (0, ∞) .
(1.9)

Similar asymptotic fluctuations at equilibrium were established in [START_REF] Dürr | Asymptotics of particle trajectories in infinite one-dimensional systems with collisions[END_REF][START_REF] Harris | Diffusion with "collisions" between particles[END_REF] for a tagged particle in the doubly-infinite Harris system (the non-interacting model with γ j ≡ 0, σ j ≡ 1), for the symmetric exclusion process associated with the srw on Z (starting with [START_REF] Arratia | The motion of tagged particle in the simple exclusion system in[END_REF]), and for a discrete version of the Atlas model (see [START_REF] Hernández | Equilibrium fluctuations for a discrete Atlas model[END_REF]).

In contrast, initial spacing of law µ (∞,2,a) ⋆ for a > 0, induces a negative ballistic motion of the leading particle. Specifically, [START_REF] Tsai | Stationary distributions of the Atlas model[END_REF] and [START_REF] Sarantsev | Stationary gap distributions for infinite systems of competing Brownian particles[END_REF] show respectively, that {X 1 (t) + at} is then a tight collection, of zero-mean variables.

Little is known about the challenging out of equilibrium behavior of atlas ∞ . From [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF]Theorem 1] we learn that at critical spacing density λ = 2 the unit drift to the leftmost particle compensates the spreading of bulk particles to the left, thereby keeping the gaps at equilibrium. Such interplay between spacing density and drift is re-affirmed by [START_REF] Cabezas | Brownian particles with rank-dependent drifts: out-of-equilibrium behavior[END_REF], which shows that initial spacing law µ (∞,λ) ⋆ induces the a.s. convergence t -1/2 X 1 (t) → κ with sign(κ) = sign(2λ). From [19, Theorem 4.7] it follows that if atlas ∞ starts at spacing law ν 0 which stochastically dominates µ Theorem 1.1. Suppose the atlas ∞ process starts at Z(0) = (z j ) j≥1 such that for eventually non-decreasing θ(m) with inf m {θ(m -1)/θ(m)} > 0 and β ∈ [1, 2), lim sup

m→∞ 1 m β θ(m) m j=1 z j < ∞ , (1.10) lim sup m→∞ 1 m β θ(m) m j=1 (log z j ) -< ∞ , (1.11) lim inf m→∞ 1 m β ′ θ(m) m j=1 z j = ∞ , β ′ := β 2 /(1 + β), (1.12) 
further assuming in case β = 1 that θ(m) ≥ log m. Then, the fdd of Z(t) for the atlas ∞ converge as t → ∞ to those of µ (∞,2) ⋆

.

For example, if λ j ∈ [c -1 , c] and λ j z j are i.i.d. of finite mean such that E(log z 1 ) -< ∞, then taking θ(m) ≡ 1 and β > 1 small enough for β ′ < 1, it follows by the slln that (1.10)-(1.12) hold a.s. Namely, when ν 0 is any such product measure, Z(t) converges in fdd to µ (∞,2) ⋆ . For independent z j ∼ Exp(λ j ) this applies even when λ j ↑ ∞ slow enough so m j=1 λ -1 j /( √ m log m) diverges (and hence (1.12) holds a.s.), or when λ j ↓ 0 slow enough to have m -β m j=1 λ -1 j bounded (for some β < 2, so (1.10) holds).

Remark 1.2. As matter of comparison, note that if z j decays to zero slower than j -1/2 log j, then {z j } satisfies the hypothesis of Theorem 1.1 (for β = 1), while for measures of the form (1.8), generically z j decays like j -1 .

The key to proving Theorem 1.1 is a novel control of the atlas m particle spacing distance from equilibrium at time t, in terms of the relative entropy distance of its initial law from equilibrium. 

(∂ z j-1 -∂ z j ) √ g t 2 m-1 j=1 2e -2z j dz j ≤ 1 2t H(ν (m) 0 |µ (m,2) ⋆ ) + 1 m . (1.13)
Combining Proposition 1.3 with Lyapunov functions for finite atlas systems (constructed for example in [START_REF] Dupuis | Lyapunov functions for semimartingale reflecting Brownian motions[END_REF][START_REF] Ichiba | Convergence rates for rank-based models with applications to portfolio theory[END_REF]), yields the following information on convergence of the atlas m particle spacing fdd at times t m → ∞ fast enough.

Corollary 1.4. Starting the atlas m system at initial spacing law ν (m) 0 of finite second moment, for any fixed k ≥ 1, the joint density of (Z 1 (t m ), . . . , Z k (t m )) with respect to the corresponding marginal of µ

(∞,2) ⋆ , converges to one, provided t m is large enough so both t -1 m H ν (m) 0 |µ (m,2) ⋆ → 0, and t -1 m k j=1 Z j (0) → 0 (in ν (m) 0 -probability), as m → ∞. Remark 1.5.
For concreteness we focused on the atlas ∞ process, but a similar proof applies for systems of competing Brownian particles where σ 2 j ≡ 1, γ 1 > 0 and j → γ j is non-increasing and eventually zero. We further expect this to extend to some of the two-sided infinite systems considered in [START_REF] Sarantsev | Two-sided infinite systems of competing Brownian particles[END_REF]Sec. 3], and that such an approach may help in proving the attractivity of µ

(∞,2,a) ⋆ in the atlas ∞ system.
In Section 2 we prove Proposition 1.3 and Corollary 1.4, whereas in Section 3, we deduce Theorem 1.1 from Corollary 1.4 by a suitable coupling of the atlas m system and the left-most k particles of atlas ∞ up to time t m .

Entropy control for atlas

m : Proposition 1.3 and Corollary 1.4 Recall (1.3), which for atlas m is X j (t) = X j (0) + 1 {j=1} t + B j (t) + L j-1 (t) -L j (t) j = 1, . . . , m , (2.1) 
where L j (t) denotes the local time on {s ∈ [0, t] :

Z j (s) = 0} for 1 ≤ j < m, with L 0 (t) = L m (t) ≡ 0. Let X m := {x : x 1 ≤ x 2 . . . ≤ x m } ⊂ R m . The generator of the X m -valued Markov process X(t) is then ( L m g)(x) := 1 2 m j=1 ∂ 2 x j + ∂ x 1 (2.2)
defined on the core of smooth bounded functions g(•) on X m satisfying the Neumann boundary conditions

∂ x j -∂ x j+1 g x j =x j+1 = 0, j = 1, . . . , m -1 . Specializing (1.4) the corresponding R m-1 + -valued spacings Z j (t) = X j+1 (t)-X j (t) are then such that for 1 ≤ j ≤ m -1, Z j (t) = Z j (0) -1 {j=1} t + B j+1 (t) -B j (t) + 2L j (t) -L j+1 (j) -L j-1 (t) . (2.3)
Let ∆ (m) denote the discrete Laplacian with Dirichlet boundary conditions at 0 and m. Hence, using hereafter the convention of

∂ z 0 = ∂ zm ≡ 0, ∆ (m) ∂ z j := ∂ z j-1 -2∂ z j + ∂ z j+1 , j = 1, . . . , m -1 . (2.4)
Following this convention, in combination with the rule

∂ x j = ∂ z j-1 -∂ z j , j = 1, . . . , m , the generator of the R m-1 + -valued Markov process Z(t) is thus L m = 1 2 m j=1 ∂ z j-1 -∂ z j 2 -∂ z 1 = - 1 2 m-1 j=1 ∂ z j (∆ (m) ∂ z j ) -∂ z 1 (2.5) defined on the core C m of local, smooth functions h(z) such that (∆ (m) ∂ z j )h z j =0 = 0, j = 1, . . . , m -1 . (2.6) Recall that µ (m,2) ⋆ (•)
is the (unique) stationary law of Z(t) for atlas m . In fact, for the density on R m-1

+ of µ (m,2) ⋆ (•), p m (z) := m-1 j=1 α j e -α j z j , α j := 2(1 -j/m) , (2.7) 
a direct calculation shows that

1 2 m-1 j=1 α j ∆ (m) ∂ z j = -∂ z 1 . (2.8) 
Combining the lhs of (2.5) with (2.8) yields the symmetric form of the generator

L m = - 1 2p m m-1 j=1 ∂ z j p m ∆ (m) ∂ z j (2.9)
Using (2.9) and integration by parts, we have for bounded, smooth g, h satisfying (2.6)

g(-L m h)dµ (m,2) ⋆ = h(-L m g)dµ (m,2) ⋆ = 1 2 m j=1 [(∂ z j-1 -∂ z j )g][(∂ z j-1 -∂ z j )h] dµ (m,2) ⋆ := D m (g, h) .
(2.10)

We see that dµ 

D m (h) = 1 2 m j=1 ∂ z j-1 -∂ z j h 2 p m (z)dz , (2.11) 
to the Sobolev space W 1,2 (µ

(2,m) ⋆ ) of functions on R m-1 + with L 2 (µ (2,m) ⋆ )-derivatives.
We also consider the Markov dynamics on R m-1 + for the spacing process of an atlas m whose m-th particle X m (s) = X m (0) is frozen. Under the same convention as before, the generator for this, right-anchored dynamics, is

L m = 1 2 m-1 j=1 ∂ z j-1 -∂ z j 2 -∂ z 1 (2.12)
for the core C m of local, smooth functions h(z) such that

( ∆ (m) ∂ z j )h z j =0 = 0, j = 1, . . . , m -1 , (2.13) 
where ∆ (m) is the discrete Laplacian with mixed boundary conditions. Specifically,

∆ (m) ∂ z j = ∂ z j-1 -2∂ z j + ∂ z j+1 , 1 ≤ j ≤ m -2 , ∆ (m) ∂ z m-1 = ∂ z m-2 -∂ z m-1
(2.14) For the remainder of this section we identify µ (∞,2) ⋆ with its marginal on z = (z 1 , . . . , z m-1 ), whose density on R m-1

+ is q m (z) := m-1 j=1 2e -2z j .
(2.15)

Analogously to (2.9) we find that

L m = - 1 2q m m-1 j=1 ∂ z j q m ∆ (m) ∂ z j .
(2.16)

This (marginal of) µ (∞,2) ⋆
is thus reversible (stationary and ergodic) for the rightanchored dynamics, and similarly to (2.10)-(2.11) for bounded, smooth h satisfying (2.13), the associated Dirichlet form is given (on W 1,2 (q m dz)) by

D m (h) = 1 2 m-1 j=1 (∂ z j-1 -∂ z j )h 2 q m (z)dz . (2.17)
Indeed, this reversible measure corresponds to starting the right-anchored dynamics with X 1 (0) = 0 and a Gamma(2, m -1) law for the frozen X m , with the remainder m -2 initial particle positions chosen independently and uniformly on [0, X m ].

Proof of Proposition 1.3. Fixing m ≥ 2, we start the finite particle dynamics of generator L m of (2.9), with initial law ν

(m) 0 on R m-1 +
whose density

f 0 := dν (m) 0 dµ (m,2) ⋆ , (2.18) 
has the finite entropy

H(ν (m) 0 |µ (m,2) ⋆ ) = [f 0 log f 0 ](z)p m (z)dz =: H m (f 0 ) . (2.19)
Recall [START_REF] Savaré | Gradient flows of probability measures[END_REF] that a Wasserstein solution of the Fokker-Planck equation

∂ t f t = L m f t , (2.20) 
starting at f 0 , is a continuous (in the topology of weak convergence) collection of probability measures t → f t µ

(2,m) ⋆

such that for any s, the derivatives (∂

z j-1 - ∂ z j ) √ f s exist a.e. in R m-1 + , with t 0 D m ( f s )ds < ∞ ∀t < ∞ (2.21)
and moreover for any fixed compactly supported smooth function

ζ(t, z) on R + × R m-1 + , ∞ 0 D m (f t , ζ(t, •)) -∂ t ζ(t, z)f t (z)p m (z)dz dt = 0 . (2.22) 
By [1, Theorem 6.6], the law ν (m) t that corresponds to a starting measure ν (m) 0 of finite entropy and finite second moment, is a Wasserstein solution ν

(m) t = f t µ (m,2) ⋆
of (2.20). 1 From [1, Theorem 6.6] we further have that then

√ f t ∈ W 1,2 (µ (2,m) ⋆ ) and D m f t < ∞ ∀t > 0 , (2.23) 
with t → D m √ f t non-increasing and

H m (f t ) -H m (f 0 ) = -4 t 0 D m f s ds . (2.24) 
Consequently, for any t ≥ 0,

4t D m f t ≤ 4 t 0 D m f s ds = H m (f 0 ) -H m (f t ) ≤ H m (f 0 ) . (2.25)
Next, comparing (2.7) with (2.15), notice that q m = p m h m for the strictly positive

h m (z) := m-1 j=1 2 α j e -2j m z j , such that (∂ z j-1 -∂ z j ) h m = 1 m -1 {j=m} h m . (2.26)
Hence, for f t = h m g t , using that m j=1 ∂ z j-1 -∂ z j = 0 and g t q m dz = 1, we arrive at where the supremum is also over all initial configurations.

2D m ( f t ) = m j=1 ∂ z j-1 -∂ z j √ g t + 1 m -1 {j=m} √ g t 2 q m (z)dz =2 D m ( √ g t ) - 1 m + √ g t -∂ z m-1 √ g t 2 q m (z)dz . ( 2 
Proof. Building on the construction in [START_REF] Dupuis | Lyapunov functions for semimartingale reflecting Brownian motions[END_REF]Sec. 3] of Lyapunov functions for rbm in polyhedral domains, while proving [13, Thm. 3] the authors show that for the atlas k+1 (and more generally, for the spacing associated with (1.1), whenever j → γ j is non-increasing and j → σ 2 j forms an arithmetic progression), one has

E[V (Z(t))] ≤ e -t [V (Z(0))] + c 2 , ∀t ≥ 0 , (2.30) 
where V (z) = e v,z for some strictly positive v and c 2 < ∞ (see [13, inequality (51)]). Noting that v, Z(t) /D(t) ∈ [c -1 1 , c 1 ] (with c 1 := max j {v j ∨ v -1 j }), we get upon combining (2.30) with Markov's inequality that for any initial configuration Z(0),

P(D(t) ≥ x) ≤ P( v, Z(t) ≥ x/c 1 ) ≤ e -x/c 1 [e -t e c 1 D(0) + c 2 ] .
(2.31)

For t ≥ c 1 D(0) the rhs of (2.31) is at most e -x/c 1 (1 + c 2 ), yielding (2.29).

Proof of Corollary 1.4. Fix probability densities h

0 = h 1 wrt the law q m dz on R m-1 + , such that √ h 0 , √ h 1 ∈ W 1,2
(q m dz). Both properties then apply for h λ := λh 1 + (1λ)h 0 , any λ ∈ (0, 1), and it is not hard to verify that

d 2 D m ( √ h λ ) d 2 λ = m-1 j=1 √ α 0 (∂ z j-1 -∂ z j ) h 1 - √ α 1 (∂ z j-1 -∂ z j ) h 0 2 α 0 α 1 q m dz ,
where the non-negative α 0 := h 0 /h λ , α 1 := h 1 /h λ are uniformly bounded (per λ).

Consequently, the map h → D m ( √ h) is convex on the set of probability densities h with respect to the product law q m dz on R m-1 + . The marginal density on (z 1 , . . . , z k ) (wrt the k-th marginal of µ

(∞,2) ⋆ ), is given for ν (m) t (dz) = g t q m dz and 1 ≤ k < m, by g t,k (z 1 , . . . , z k ) := g t (z) m-1 j=k+1 2e -2z j dz j .
(2.32) Thus, by the convexity of D m ( √ •) and the formula (2.17), we have that

D m ( √ g t ) = D m ( √ g t ) m-1 j=k+1 2e -2z j dz j ≥ D m ( √ g t,k ) ≥ D k+1 ( √ g t,k ) . (2.33)
In particular, fixing k ≥ 1 and choosing t m → ∞ as in the statement of the corollary, we deduce from (1.13) and (2.33) that lim m→∞ D k+1 √ g tm,k = 0 .

(2.34)

For r ≥ 2 and the Markov generator L r of (2.12) consider the functional on the collection of probability measures ν on R r-1 + defined by

I r (ν) := sup h≫0 h -1 (-L r h) dν , (2.35)
where the supremum is taken over all bounded away from zero, twice continuously differentiable functions having the boundary conditions (2.13) at m = r. With h -1 (-L r h) then continuous and bounded, clearly I r (•) is l.s.c. in the weak topology on probability measures in R r-1 + . Further, recall from [6, Thm. 5] that I r (ν) = ∞ unless ν = gq r dz for a probability density g such that √ g ∈ W 1,2 (q r dz),

or equivalently D r ( √ g) < ∞, in which case I r (ν) = D r ( √ g).
Hence, (2.34)

amounts to I k+1 (ν (m,k) tm
) → 0 for the joint law ν (m,k) tm of (Z 1 (t m ), . . . , Z k (t m )) and any weak limit point of these laws must have a density g wrt q k+1 dz such that D k+1 ( √ g) = 0. From (2.17) it is thus necessarily that throughout

R k + , ∂ z 1 √ g = 0, ∂ z j-1 -∂ z j √ g = 0, j = 2, . . . , k ,
so as claimed, the only possible limit point is g ≡ 1. By Prohorov's theorem, it remains to verify that {ν (m,k) tm } are uniformly tight, namely, to provide a uniform in m tail-decay for k j=1 Z j (t m ) in the corresponding atlas m system. To this end, recall [START_REF] Sarantsev | Infinite systems of competing Brownian particles[END_REF]Cor. 3.10(ii)] that under the same driving Brownian motions {B j (s)} and initial configuration, the first k spacings increase when all particles to the right of X k+1 (0) are removed. Consequently, it suffices to provide a uniform in m tail decay for the diameter D(t m ) of an atlas k+1 system of initial spacing distribution ν (m,k) 0

. Fixing ǫ > 0 we have from (2.29) the existence of finite c 1 = c 1 (k) and x = x(ǫ) such that for a given initial configuration, if t ≥ c 1 D(0) then

P(D(t) ≥ x) ≤ ǫ. By our assumption that t -1 m ρ m → 0 in ν (m,k) 0
-probability, for the (random) initial diameter ρ m := X k+1 (0) -X 1 (0), we have that P(c 1 ρ m ≥ t m ) ≤ ǫ for all m ≥ m 0 (ǫ), in which case

P(D(t m ) ≥ x) ≤ P(D(t m ) ≥ x, t m ≥ c 1 ρ m ) + P(c 1 ρ m ≥ t m ) ≤ 2ǫ .
With ǫ > 0 arbitrarily small and x = x(ǫ) independent of m, we have thus established the required uniform tightness.

Remark 2.2. The proof of Proposition 1.3 is easily adapted to deal with the right-anchored dynamic (of the generator L m given in (2.12)). It yields for the latter dynamic the bound of (1.13), now with (2t) -1 H(ν

(m) 0 | ⊗ m-1 k=1 Exp(2)
) in the rhs. The proof of Lemma 2.1 also adapts to right-anchored dynamics, hence the conclusion of Corollary 1.4 applies for sequences of right-anchored dynamics when the latter expression decays to zero at t = t m → ∞ such that t -1 m k j=1 Z j (0) → 0.

Coupling to atlas

∞ : Proof of Theorem 1.1 Let G(a) = (2π) -1/2 ∞
a e -x 2 /2 dx and consider the atlas ∞ process Y (t) = {Y i (t)}, denoting by X(t) = {X j (t)} the corresponding ranked configuration. We first provide three elementary bounds for this process that are key to the proof of Theorem 1.1. Lemma 3.1. For any initial condition X(0), ℓ ≥ 1 and t, Γ > 0,

P sup s∈[0,t] {X 1 (s)} ≥ Γ ≤ 2G ℓ Γ -t -ℓ j=1 X j (0) √ ℓt . (3.1) 
Proof. Starting wlog at Y (0) = X(0), we have that for any s ≥ 0,

X 1 (s) ≤ 1 ℓ ℓ i=1 Y i (s) ≤ s ℓ + 1 ℓ ℓ j=1 X j (0) + 1 √ ℓ W (s) ,
where W (s) := ℓ -1/2 ℓ i=1 W i (s) is a standard Brownian motion. Thus, by the reflection principle,

P sup s∈[0,t] {X 1 (s)} ≥ Γ ≤ P sup s∈[0,t] { 1 √ ℓ W (s)} ≥ Γ - t ℓ - 1 ℓ ℓ j=1 X j (0) = 2P W (t) ≥ √ ℓ Γ - t √ ℓ - 1 √ ℓ ℓ j=1 X j (0) ,
which upon Brownian scaling yields the stated bound of (3.1).

Lemma 3.2. For X 1 (0) ≥ 0, Γ and k ≥ 2 such that Γ (k) := (Γ -X k (0))/3 > 0, any ℓ ≥ 1 and t > 0, we have that

P sup s∈[0,t] {X k (s)} ≥ Γ ≤ 2G ℓ Γ (k) -t -ℓ j=1 X j (0) √ ℓt + 4kG Γ (k) √ t . (3.2) 
Proof. Recall [START_REF] Sarantsev | Infinite systems of competing Brownian particles[END_REF]Cor. 3.12(ii)] that keeping the same driving Brownian motions {B j (s)} and initial configuration X(0), the spacing vector Z(t) is pointwise decreasing in γ. Further, by [START_REF] Sarantsev | Infinite systems of competing Brownian particles[END_REF]Cor. 3.10(ii)], the first k -1 spacings increase when all particles to the right of X k (0) are removed. Consequently, that value of X k (t)-X 1 (t) at the drift γ = 1 of atlas ∞ is bounded by its value for a k-particle Harris system (of γ = 0), starting at same positions as the original atlas ∞ process left-most k particles. In the latter case, letting V k (s) := max k j=1 {B j (s)} and the identically distributed V ′ k (s) := max k j=1 {-B j (s)}, our assumption that X 1 (0) ≥ 0 results with

X k (s) -X 1 (s) ≤ X k (0) + V k (s) + V ′ k (s) .
Thus, with Γ (k) = (Γ -X k (0))/3 and { B(s)} denoting a standard Brownian motion, we get by the union bound that

P sup s∈[0,t] {X k (s)} ≥ Γ ≤ P sup s∈[0,t] {X 1 (s) + V k (s) + V ′ k (s)} ≥ Γ -X k (0) ≤ P sup s∈[0,t] {X 1 (s)} ≥ Γ (k) + 2kP sup s∈[0,t] { B(s)} ≥ Γ (k) .
Consequently, by (3.1) and the reflection principle,

P sup s∈[0,t] {X k (s)} ≥ Γ ≤ 2G ℓ Γ (k) -t -ℓ j=1 X j (0) √ ℓt + 4kG Γ (k) √ t ,
as claimed.

Lemma 3.3. For any m ≥ 0, t, Γ > 0 and initial configuration Y (0) = X(0),

P inf s∈[0,t] inf i>m {Y i (s)} ≤ Γ ≤ 2 i>m G X i (0) -Γ √ t . (3.3) 
Proof. Removing the drift in the atlas model decreases all coordinates of Y (s) and correspondingly increases the lhs of (3.3). Thus,

P inf i>m inf s∈[0,t] {Y i (s)} ≤ Γ ≤ i>m P inf s∈[0,t] {W i (s)} ≤ Γ -X i (0) = 2 i>m P W (1) ≤ Γ -X i (0) √ t = 2 i>m X i (0) -Γ √ t ,
as claimed.

Proof of Theorem 1.1. Given initial spacing configuration z that satisfies (1.10) and (1.11), consider the following two sequences of initial distributions for the finite increment vectors Z m (0) := (Z 1 (0), . . . , Z m-1 (0)) of the atlas m process, m ≥ 2. Starting at the measure ν (m,-) 0

(•) = µ (m,2) ⋆ (•|Z m (0) ≤ z m )
for the given z m = (z 1 , . . . , z m-1 ) yields for same driving Brownian motions an atlas m spacing process Z - m (s) which is dominated at all times s ≥ 0 by the corresponding process that started at spacing z m , whereas ν (m,+) 0

(•) = µ (m,2) ⋆ (•|Z m (0) ≥ z m )
similarly yields a spacing process Z + m (s) that dominates the spacing for the original process which started at z m . The corresponding relative entropies are then ). For ψ(m) ↑ ∞, with inf m {ψ(m -1)/ψ(m)} > 0, let

H + m := H(ν (m,+) 0 |µ (m,2) ⋆ ) = -log µ (m,2) ⋆ ({ m-1 j=1 [z j , ∞)}) = m-1 j=1 α j z j ≤ 2 m-1 j=1 z j (3.4) H - m := H(ν (m,-) 0 |µ (m,2) ⋆ ) = -log µ (m,2) ⋆ ({ m-1 j=1 [0, z j ]}) = m-1 j=1 -log(1 -e -α j z j ) ≤ m-1 j=1 1 + (log α j z j ) -≤ 2m log m + m-1 j=1 (log z j ) -, (3.5 
t m := 2m β θ(m)ψ(m) . (3.6) 
Setting m n = m n (s) := inf{m ≥ 2 : t m ≥ s n }, our constraints on θ(•) and ψ(•) yields for t m of (3.6) and any s n ↑ ∞,

inf n≥1 s n t mn ≥ inf m≥2 t m-1 t m > 0 .
Thus, by the preceding, upon applying Corollary 1.4 to the atlas m model initialized at ν (m,±) 0

we have that the joint law of the first k coordinates of Z ± mn (s n ), converges as n → ∞ to the corresponding marginal of µ (∞,2) ⋆ . The same limit in distribution then applies for the spacing (Z 1 (s n ), . . . , Z k (s n )) of atlas mn started at z mn (which is sandwiched between the corresponding marginals of Z - mn (s n ) and Z + mn (s n )). Assuming further that sup m {ψ(m)/m} ≤ 1, we claim that for X 1 (0) = 0 and the given initial spacing Z(0) = z, the rhs of (3.2) is summable over m, at t = t m of (3.6) and and recalling that θ(ℓ m ) ≥ 1 2 log m when β = 1, it is easy to verify that the preceding bound is summable in m. Next, utilizing (1.12), we can further make sure that ψ(m) ↑ ∞ slowly enough so that for any fixed κ < ∞, X m (0) ≥ (κ + 1)Γ m , ∀m ≥ m κ (3.9) so that for m ≥ m κ the rhs of (3. occur for all m large enough. Note that A m implies that throughout [0, t m ] the k left-most particles of the atlas ∞ process are from among the initially left-most m particles. From this it follows that under A mn the spacing (Z 1 (s n ), . . . , Z k-1 (s n )) for the atlas mn coincide with those for the atlas ∞ , when using the same initial configuration z and driving Brownian motions {W i (s)}. Having proved already the convergence in distribution when n → ∞, of the first k -1 spacing for atlas mn at time s n and that the events A m occur for all m large enough, we conclude that the fdd of spacing for atlas ∞ converge to those of µ (∞,2) ⋆

, along any (non-random) sequence s n ↑ ∞, as claimed.

Proposition 1 . 3 .

 13 Start the atlas m system at initial spacing law ν , for any t > 0 the spacing law ν (m) t is absolutely continuous with respect to the marginal of µ (∞,2) ⋆ and the Radon-Nikodym derivative g t satisfies m-1 j=1

(m, 2

 2 ) ⋆ = p m (z)dz is reversible for this dynamic, and the corresponding Dirichlet form D m (h) := D m (h, h), extends from C m , now only as

Lemma 2 . 1 .

 21 For atlas k+1 , some c 1 = c 1 (k) finite and D(t) := k j=1 Z j (t), lim x→∞ sup t≥c 1 D(0) { P(D(t) ≥ x) } = 0 , (2.29)

Fixing k ≥ 2 ,

 2 ) sincelog(1e -u ) ≤ 1 + (log u) -for all u ≥ 0, while α j ≥ 2/m (see (2.7)), hence log(e/α j ) ≤ 2 log m. By (1.10) and(3.4),lim sup m→∞ H(ν (m,+) 0 |µ (m,2) ⋆ ) m β θ(m) < ∞ .With θ(m) ≥ log m in case β = 1, we similarly deduce from (1.11) and (3the uniform over m ≥ 2k first moment bound, any t m → ∞. Further, the second moment of ν (m,-) 0 is finite (being at most z 2 ), as is the second moment of ν (m,+) 0 (being at most the product of e H + m and the finite second moment of µ (m,2) ⋆

Γ

  m := 36m β ′ θ(m)ψ(m) β/(1+β) , ℓ m := [m β/(1+β) ψ(m) 1/(1+β ] . (3.7)Indeed, since θ(•) is eventually non-decreasing, we have then that1 12 Γ m ℓ m ≥ t m ≥ ℓ 1+β m θ(ℓ m ) , ∀m ≥ m ⋆ (3.8)Further, with k fixed and Γ m ↑ ∞, necessarily X k (0) ≤ Γ m /8 for all m ≥ m ⋆ large enough, in which case from (3.8), the rhs of (3.2) is bounded above for such m, t m , Γ m and ℓ m , by 2G ℓ β m θ(ℓ m ) + 4kG 3 ℓ β-1 m θ(ℓ m )

3 ) 2 ∞ j=1 G 2 ∞ j=1 G

 32j=12j=1 is bounded above, at t = t m and Γ = Γ m , by κΓ m+j / √ t m . (3.10) Note that β ′ ≥ 1/2 and δ := β/(1 + β) -1/2 ≥ 0 is strictly positive when β > 1. Thus, β ′β/2 = δβ ≥ 0 and setting κ ′ := (18κ) 2 , we deduce from (3.6) and (3.7) that κ Γ m √ t m Γ m+j Γ m ≥ m βδ θ(m) 1/2 2κ ′ (1 + j/m) .Increasing m κ if needed, we have that m 2βδ θ(m) ≥ log m for all m ≥ m κ , in which case for b m := m -1 log m, the expression (3.10) is further bounded by 2κ′ (1 + j/m) log m ≤ 2m -κ ′ ∞ j=1 e -κ ′ jbm ≤ 2 κ ′ b m m -κ ′(recall the elementary bound G(x) ≤ e -x 2 /2 for x ≥ 0). Thus, for any κ ′ > 2, such choices of t m and Γ m guarantee that the rhs of (3.3) is also summable over m. Combining Lemma 3.2, Lemma 3.3 and the Borel-Cantelli lemma we deduce that almost surely, the events A m := sup s∈[0,tm] {X k (s)} < Γ m ≤ inf s∈[0,tm],i>m {Y i (s)} ,

(∞,2) ⋆ (e.g. when ν 0 = µ (∞,λ) ⋆ any λ ≤ 2), then the finite dimensional distributions (fdd) of Z(t) converge to those of µ (∞,2) ⋆ as t → ∞. However, nothing else is known about the domain of attraction of µ (∞,2) ⋆ (or about those of {µ (∞,2,a) ⋆ , a > 0}). For example, what happens when ν 0 = µ (∞,λ) ⋆ with λ > 2? Our main result, stated next, answers this question by drastically increasing the established domain of attraction of µ (∞,2) ⋆ spacing for atlas ∞ .

Though we could not find a reference for it, we expect f t to be also a strong solution of (2.20) which satisfies the boundary conditions of (2.6).
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