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Online Appendix

A1 Computational details

The results were obtained using MATLAB R2014a on a PC with two quad-core processors Intel Xeon E5345
(2.33 GHz) with 32 GB of RAM running Ubuntu 12.04.5 64 bits. The maximization of the log-likelihood was
done using Vaz and Vicente’s (2007) free particle swarm pattern search software PSwarm version 2.11 and the
MATLAB function fmincon available in MATLAB Optimization Toolbox. The Monte-Carlo simulations
have been performed using MATLAB’s default random number generator with the seed set to 1. The
Gaussian quadrature was calculated using a MATLAB’s function from John Burkardt’s website.2 For a
unit normal distribution truncated at five standard deviations, the Gaussian quadrature with 10 nodes has
nodes εn = {±4.4576,±3.3999,±2.3838,±1.4132,±0.4684} and weights πn = {1.9834×10−5,1.2876×
10−3,2.3048×10−2,0.14029,0.33536}.

A2 Small Sample Properties

In this section, we assess using Monte Carlo experiments the small sample properties of the simulated
Unconditional Maximum Likelihood estimator (UML) we developed, and compare them to those of the
Conditional Maximum Likelihood estimator (CML) proposed in Cafiero et al. (2015). From equation (20),
the conditional log-likelihood without trend is obtained by removing the terms corresponding to the marginal
likelihood:
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Following Michaelides and Ng (2000) and Cafiero et al. (2015), we conduct four Monte Carlo experiments
varying the parameterization and the length of the samples. The first set of parameters are a = 1, b =−1,
and k = 0.02, which implies a storage cost of 2% of the mean price and, for supply shocks with a coefficient
of variation of 5%, a demand elasticity of −0.05 in the range of the best estimates obtained by Roberts
and Schlenker (2013) on a caloric aggregate of major crops, but slightly higher in absolute value than our
estimated elasticities. The second parameterization only differs by the value of b, now equal to −2. This
rotation of the slope of the demand function around its mean halves the demand elasticity making this
parameterization more favorable to storage, and closer to the values found in the article. For each set of
parameters, we solve for the equilibrium price function on a grid of 1,000 points, and obtain 3,000 prices
series of length T = 50 and T = 100 from the asymptotic distribution. The price series are obtained by the
simulation of 3,000 trajectories starting from the steady-state availability and discarding the first 50 periods
as burn-in periods.

The numerical methods follow what was described previously, but differ on two aspects. Firstly, to prevent
the availability corresponding to the cutoff price to be below the lower bound of the grid of interpolation
points, the lower bound is changed from being −2 to being −5, the minimum availability. Secondly, since
the log-likelihood optimization behaves better on simulated samples, we use a faster optimization algorithm:
the generalized pattern search algorithm implemented by the MATLAB function patternsearch available
in MATLAB Global Optimization Toolbox. The optimization starts from initial values randomly drawn in
the range between 80% and 120% of the true values. If the optimization solver fails to converge for one of
the two estimators, we discard the corresponding samples for both estimators. The results of valid estimates
obtained on common samples are given in table A1 and A2.

The results of the Monte Carlo experiments are similar to those obtained for the CML in Cafiero et al.
(2015). They show that the two maximum likelihood estimators yield precise estimates of the parameters of
the model, especially for a and b. The storage cost, k, is less precisely estimated with Root Mean Square
Errors (RMSE) always above 26%. For all parameters, the bias is small, most of the RMSE coming from the
standard deviation of the estimations.

For all parameterizations, the estimators perform better when the sample length increases. For the
UML, a doubling of the sample length from 50 to 100 observations reduces the RMSE by 17% for both
parameterizations. The CML benefits slightly more than the UML from an increase in the sample size.
Indeed, they have similar RMSE for the long samples, but the UML performs better on the short samples.
Regarding the influence of the parameterization, we observe that the parameterization more favorable to
storage yields less precise estimates as all the RMSE of table A2 are higher than in table A1.
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Table A1: Comparison of Monte Carlo Experiment Results with Parameterization a = 1, b = −1, and
k = 0.02

UML CML

a b k a b k

T = 50
Mean 0.9930 −0.9720 0.0193 0.9932 −0.9745 0.0194
Standard deviation 0.0650 0.1297 0.0059 0.0668 0.1344 0.0058
Bias −0.0070 0.0280 −0.0007 −0.0068 0.0255 −0.0006

(0.70%) (2.80%) (3.40%) (0.68%) (2.55%) (3.14%)
RMSE 0.0654 0.1326 0.0059 0.0671 0.1368 0.0058

(6.54%) (13.26%) (29.67%) (6.71%) (13.68%) (29.24%)
T = 100
Mean 0.9951 −0.9854 0.0196 0.9944 −0.9875 0.0194
Standard deviation 0.0510 0.1066 0.0053 0.0516 0.1070 0.0052
Bias −0.0049 0.0146 −0.0004 −0.0056 0.0125 −0.0006

(0.49%) (1.46%) (2.17%) (0.56%) (1.25%) (2.75%)
RMSE 0.0512 0.1076 0.0053 0.0519 0.1077 0.0053

(5.12%) (10.76%) (26.70%) (5.19%) (10.77%) (26.26%)

Notes: The price samples for which one estimator does not converge are discarded. For T = 50, the total number of valid replications
is 2,737 for UML and 2,733 for CML. For T = 100, it is 2,841 for UML and 2,846 for CML. The table reports the 2,593 and 2,764
valid estimates obtained on common samples for the short and long samples.

Table A2: Comparison of Monte Carlo Experiment Results with Parameterization a = 1, b = −2, and
k = 0.02

UML CML

a b k a b k

T = 50
Mean 0.9793 −1.9639 0.0194 0.9772 −1.9695 0.0193
Standard deviation 0.1280 0.3202 0.0085 0.1351 0.3250 0.0085
Bias −0.0207 0.0361 −0.0006 −0.0228 0.0305 −0.0007

(2.07%) (1.80%) (3.14%) (2.28%) (1.52%) (3.69%)
RMSE 0.1296 0.3222 0.0085 0.1370 0.3265 0.0085

(12.96%) (16.11%) (42.51%) (13.70%) (16.32%) (42.45%)
T = 100
Mean 0.9848 −1.9838 0.0195 0.9825 −1.9860 0.0194
Standard deviation 0.1055 0.2592 0.0074 0.1090 0.2611 0.0076
Bias −0.0152 0.0162 −0.0005 −0.0175 0.0140 −0.0006

(1.52%) (0.81%) (2.56%) (1.75%) (0.70%) (3.14%)
RMSE 0.1065 0.2597 0.0074 0.1104 0.2615 0.0076

(10.65%) (12.99%) (36.94%) (11.04%) (13.08%) (38.02%)

Notes: The price samples for which one estimator does not converge are discarded. For T = 50, the total number of valid replications
is 2,820 for UML and 2,767 for CML. For T = 100, it is 2,899 for UML and 2,890 for CML. The table reports the 2,674 and 2,839
valid estimates obtained on common samples for the short and long samples.
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A3 Production variation

Table A3: Production variation, 1961–2011

Commodity Production CV (%) Commodity Production CV (%)

Banana 3.67 Palm oil 4.65
Cocoa 7.13 Rice 2.75
Coffee 7.68 Sugar 3.65
Copper 4.46 Tea 2.07
Cotton 7.20 Tin 5.52
Jute 11.35 Wheat 4.34
Maize 5.84

Notes: The coefficients of variation (CV) are obtained by calculating the standard deviation of the detrended logarithm of observed
production, modeling the trend using a restricted cubic splines with five knots.
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A4 Parameters estimates

Table A4: Parameter estimates with 3-knot spline trend

Commodity g1 g2 a b k logL # Stockouts

Banana −0.3323 −1.2359 1.3237 −1.6729 0 170.6770 0
(0.2804) (0.2011) (0.2013) (0.4397) –

Cocoa −1.5599 0.7076 0.3679 −1.7978 0.0002 215.6308 0
(0.8803) (0.3317) (0.1595) (0.9285) (0.0008)

Coffee 0.0925 −0.6813 0.2522 −0.5265 0.0036 194.9321 1
(0.3314) (0.1557) (0.0455) (0.1072) (0.0025)

Copper −0.4176 −0.2464 0.7348 −1.1835 0.0073 122.1660 0
(0.1943) (0.1424) (0.0789) (0.1589) (0.0051)

Cotton −0.6422 −2.0878 1.5367 −3.7632 0.0053 123.0208 0
(0.8240) (0.3217) (0.4016) (1.6051) (0.0065)

Jute −0.3974 −0.9164 0.6917 −0.7573 0.0163 102.1980 4
(0.0756) (0.0554) (0.0481) (0.0401) (0.0062)

Maize −0.6588 −0.8850 0.9504 −1.5377 0.0128 84.9322 3
(0.1101) (0.0815) (0.0816) (0.1432) (0.0075)

Palm oil −1.7887 −1.2443 1.0411 −1.7009 0.0146 119.2428 1
(0.1181) (0.0539) (0.0981) (0.1865) (0.0091)

Rice −1.5405 −1.4251 1.2128 −2.0786 0.0037 127.1550 1
(0.3035) (0.1417) (0.1914) (0.3684) (0.0066)

Sugar −1.2627 −0.2394 0.9701 −1.8482 0.0235 60.7431 8
(0.1028) (0.1652) (0.0809) (0.1738) (0.0098)

Tea −0.9290 −1.1775 1.1089 −1.6789 0.0105 144.1925 0
(0.3585) (0.1357) (0.2085) (0.4149) (0.0053)

Tin 1.7957 −0.7677 0.1940 −0.7567 0 209.3322 0
(0.4707) (0.2843) (0.0244) (0.1185) –

Wheat −1.2473 −0.8441 1.2069 −1.5449 0.0143 104.0772 1
(0.1482) (0.1517) (0.1069) (0.2021) (0.0096)

Note: Asymptotic standard errors in parenthesis.
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Table A5: Parameter estimates with 4-knot spline trend

Commodity g1 g2 g3 a b k logL # Stockouts

Banana −0.5940 −0.2663 −1.5903 1.2033 −1.5061 0 171.7633 0
(0.2995) (0.3033) (0.2712) (0.1735) (0.3602) –

Cocoa 0.2862 −2.6193 0.3417 0.4498 −1.1874 0.0024 219.7236 0
(0.2857) (0.5337) (0.4282) (0.0981) (0.2765) (0.0028)

Coffee 0.1199 0.0281 −0.7565 0.2339 −0.4885 0.0033 194.9185 2
(0.1792) (0.3230) (0.1351) (0.0495) (0.0898) (0.0024)

Copper 0.6214 −0.8595 −0.2444 0.7416 −1.7526 0.0005 123.6516 4
(0.3452) (0.3155) (0.1968) (0.1155) (0.3542) (0.0044)

Cotton −0.2545 −1.1035 −2.2689 1.4300 −3.5214 0.0049 122.8690 0
(0.7621) (0.8597) (0.4857) (0.5264) (2.0232) (0.0069)

Jute −0.0613 −0.6035 −0.9908 0.6967 −0.7614 0.0163 102.1845 8
(0.1039) (0.1805) (0.0710) (0.0797) (0.0715) (0.0066)

Maize 0.0815 −1.1899 −1.1229 0.9358 −0.8819 0.0304 88.8597 12
(0.1073) (0.0887) (0.0576) (0.0481) (0.0508) (0.0068)

Palm oil −0.9208 −1.6398 −1.5053 0.9971 −1.6352 0.0142 119.6359 1
(0.1402) (0.3924) (0.1190) (0.1744) (0.3267) (0.0095)

Rice −0.8285 −1.7697 −1.6808 1.2815 −2.2062 0.0042 127.1070 1
(0.2131) (0.4977) (0.1837) (0.3139) (0.5310) (0.0070)

Sugar −0.6992 −1.3979 −0.3698 1.1136 −2.0999 0.0262 60.8484 16
(0.1369) (0.2635) (0.2479) (0.1329) (0.2176) (0.0106)

Tea −1.4922 −0.4250 −1.8818 1.1959 −1.7916 0.0107 145.6865 0
(0.3475) (0.4818) (0.2257) (0.2308) (0.4785) (0.0051)

Tin 1.7411 1.1081 −0.2441 0.1517 −0.5043 0 210.3823 6
(0.5157) (0.2943) (0.1589) (0.0113) (0.0414) –

Wheat −0.1494 −1.9057 −0.9026 1.3447 −2.3618 0 105.8230 0
(0.1744) (0.3087) (0.1902) (0.1606) (0.3405) –

Note: Asymptotic standard errors in parenthesis.
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A5 Figures of price trends
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Figure A1: Price trends
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