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Abstract

We present a method to estimate jointly the parameters of a standard commodity storage model and
the parameters characterizing the trend in commodity prices. This procedure allows the influence
of a possible trend to be removed without restricting the model specification, and allows model and
trend selection based on statistical criteria. The trend is modeled deterministically using linear
or cubic spline functions of time. The results show that storage models with trend are always
preferred to models without trend. They yield more plausible estimates of the structural parameters,
with storage costs and demand elasticities that are more consistent with the literature. They imply
occasional stockouts, whereas without trend the estimated models predict no stockouts over the
sample period for most commodities. Moreover, accounting for a trend in the estimation imply
price moments closer to those observed in commodity prices. Our results support the empirical
relevance of the speculative storage model, and show that storage model estimations should not
neglect the possibility of long-run price trends.
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1 Introduction

Gustafson’s (1958) commodity storage model is fundamental for explaining the annual behavior of
commodity prices. It features forward-looking speculators that maximize profit by stockpiling a
commodity based on the difference between the expected price and the current price. The source
of volatility in the commodity storage model is the occurrence of unexpected supply shocks. The
model has proven capable of reproducing many features of commodity prices such as sharp spikes,
volatility clustering, positive skewness, and excess kurtosis (Deaton and Laroque, 1992). However, in
early estimations of this model, Deaton and Laroque (1992, 1996) show that it could not explain the
high degree of serial correlation observed in the price series. This finding was challenged. Cafiero
et al. (2011b) show that using a finer grid to approximate the policy function and a different model
specification, the storage model is able to generate the observed serial correlation for seven of the twelve
commodities analyzed in Deaton and Laroque (1996). Since Cafiero et al. (2011b), several papers
provide positive evidence for the role of storage arbitrage in price behavior (Bobenrieth et al., 2013,
2014; Cafiero et al., 2015; Guerra et al., 2015). However, if the model is estimated on untransformed
real price indexes (as in Cafiero et al., 2011b), discretionary stocks are always strictly positive (i.e.,
there are no “stockouts”) for most commodities over the sample interval. This result casts doubt on the
appropriateness of using for estimation a nonlinear model with two regimes (with and without stocks)
if, over long samples and for most commodities, the estimations imply that only one regime is active.

The absence of predicted stockouts in the sample indicates a possible model misspecification. This
misspecification may arise from the attempt to fit with the storage model a serial correlation that is
artificially high, due to a possible non-stationarity in the price series. Commodity prices are unlikely
to be stationary over long periods. Starting with the work by Prebisch (1950) and Singer (1950), a
large literature has been devoted to characterizing the nature of this non-stationarity: whether trends
are stochastic or deterministic, the existence of long-run cycles, or secular decline of commodity
prices relative to those of manufactures (e.g., Grilli and Yang, 1988; Cashin and McDermott, 2002;
Ghoshray, 2011; Harvey et al., 2010). As illustrated in figure 1, the nature of the trends (or their
absence) tends to be specific to each commodity (e.g., mostly trendless behavior after a decreasing
interval for copper, hump-shape behavior for cotton, monotonically decreasing for rice). Removing the
trends using an Hodrick-Prescott filter reduces the one-year autocorrelation in commodity prices by
one-third from about 0.85 to 0.5 (see table A3 in the online appendix). We show below in the article
that to generate with the storage model an autocorrelation in prices as high as 0.85 requires extreme
parameter values, corresponding to very low storage costs along with very inelastic demand thereby
implying extremely rare stockouts, while a smaller autocorrelation is compatible with more plausible
parameters and occasional stockouts. Low storage costs are needed to match a high autocorrelation
because they ensure there are always stocks to connect one period to the next. So estimating the storage
model, which features prices converging to a stationary distribution, with untransformed prices (as in
Deaton and Laroque, 1992, 1996; Cafiero et al., 2011b) is likely to lead to biased parameter estimates if
prices are non-stationary. The present article assesses the role of potential non-stationary price series in
estimations of the storage model, and proposes an approach that statistically accounts for a trend in the
price series.

How to estimate dynamic stochastic rational expectations models that are defined to be stationary
around a steady state using non-stationary data is a very important question in the related literature on
the estimation of DSGE models. In a recent paper, Canova (2014) summarizes the various strategies
used in this literature. Most apply also to the storage model. Most DSGE models are estimated
on transformed data in two steps. First, a statistical filter (linear detrending, first-order differencing,
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Figure 1: Real prices and Hodrick-Prescott trend (smoothing parameter 400)

Hodrick-Prescott or band-pass filters) is applied to the raw data, then the structural model is estimated
using the transformed data. This approach is convenient but is known to involve problems. The business
cycle facts will depend on the choice of filter which is arbitrary (Harvey and Jaeger, 1993; Canova,
1998), due to lack of formal tests to select the most appropriate trend specification. For the storage
model, the two-step approach is applied in Cafiero et al. (2011a), Bobenrieth et al. (2013), and Guerra
et al. (2015) where prices are detrended ex-ante using a log-linear trend.

Another approach involves the construction of a model that includes transitory and permanent
shocks, the latter aimed at capturing non-cyclical fluctuations. The model is made stationary by scaling
the variables by the permanent shocks, and is fitted to the raw data. This approach has the appeal of
theoretical consistency but introduces the risk of misspecification. Because it is not possible to make
every model stationary for all possible specifications of permanent shocks, the model design and the
nature of the shocks may be driven more by computational than economic motives. This approach is
applied in Zeng (2012) and Bobenrieth et al. (2014) with storage models in which storers internalize
the downward trend in commodity prices and adjust their behavior accordingly, and in Dvir and Rogoff
(2014) where quantities are non-stationary, but not prices. However, to obtain stationary equations while
accounting for a trend in prices, various restrictions must be satisfied: the trend must be multiplicative
and the logarithm of the trend is restricted to take the form of a random walk with drift; the demand
function has to be isoelastic, but not linear as commonly adopted for numerical simplicity; and storage
costs must either be zero or have the same trend as prices.

Canova (2014) proposes an alternative method to estimate DSGE models using raw data.1 In
this approach, the econometrician defines a statistical model which is a combination of a DSGE and
a reduced-form model; the reduced-form is aimed at capturing the component in the data that the
structural model is unable to explain. This statistical model can be estimated using raw data, which
leads to joint estimation of the structural and reduced-form parameters. Interestingly, this one-step
approach allows to select the most likely trend specification based on a statistical criterion for model
selection. Furthermore, it presents the benefit of not restricting the trend and model specifications, but

1See also Ferroni (2011) for an application.
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at the cost of the agents neglecting the trends in their decisions.
The choice between the approaches amounts to a trade-off between theory and empirics. If the

conditions under which a storage model can be made stationary are too restrictive with respect to
the prevailing trends, it may not be possible to properly capture them in the model. The most severe
restriction for a storage model with trending prices is probably that the trend has to be the exponential
of a random walk with drift, possibly collapsing to a simple linear trend if the random walk step has
zero length. It is unlikely to be satisfied for most commodities. In the literature on long-run trends
in commodity prices, a consensus has emerged (Kellard and Wohar, 2006; Balagtas and Holt, 2009;
Harvey et al., 2010; Ghoshray, 2011; Cuddington and Nülle, 2014; Yamada and Yoon, 2014): (i)
one can exclude a positive upward trend for commodity prices, (ii) there is no general support for
the Prebisch-Singer hypothesis of a secular deterioration with respect to manufactured goods for all
commodities, with most commodity prices actually better characterized by discontinuous, deterministic,
and non-monotonic long-term trends, possibly negative over some intervals, and (iii) the remaining
commodity prices displaying a unit root, possibly with breaks. In sum, if most commodities are found
to be trend stationary, it is by segments divided by infrequent shifts. Since a random walk with drift
would not be a satisfactory trend specification for most commodities, we adopt Canova’s approach by
jointly estimating a storage model and a reduced-form trend that describes the non-cyclical component
of price. Our approach implies that the storers neglect the existence of a trend in prices and arbitrate
prices only on the basis of their cyclical component. This issue is likely to be of second order compared
to the gains from making the prices more stationary (as confirmed in Zeng, 2012, who finds little
differences in estimations on small sample whether storers account for trend or not).

The estimation procedure starts from the Maximum Likelihood estimator proposed for the storage
model by Cafiero et al. (2015), and which was proved to have better small sample properties than
Deaton and Laroque’s (1996) Pseudo-Maximum Likelihood estimator. We extend the Maximum
Likelihood estimator to account for a potential trend in prices and to exploit the information available
from the first observation. This leads to the development of a new simulated unconditional Maximum
Likelihood estimator. Following the finding that most commodity prices are best characterized as trend
stationary with breaks, we consider only deterministic trend specifications. This assumption simplifies
the analysis by allowing the likelihood to be expressed analytically,2 at the cost of being inadequate for
the commodity prices best characterized as difference stationary. As well as the case without trend, we
consider a multiplicative trend, in which the logarithm of the trend can be linear as in Cafiero et al.
(2011a), Bobenrieth et al. (2013, 2014), and Guerra et al. (2015), or represented by a restricted cubic
spline as in Roberts and Schlenker (2013). We believe that by using for the trend a restricted cubic
spline with up to four knots we are able to capture in a tractable way the deterministic trends with breaks
identified in the literature. For the thirteen storable commodities considered in Deaton and Laroque
(1992), there is a model with trend which presents a lower Akaike information criterion than the model
without trend. Our estimates for the preferred models more closely replicate the key features of the data
and allow for the occurrence of stockouts in line with the observed two-regime structure of long periods
of stable prices interrupted by isolated spike episodes.

The remainder of the paper is organized as follows. Section 2 describes the competitive storage
model discussed and estimated in Deaton and Laroque (1992, 1996) and Cafiero et al. (2011b). Section 3
presents the econometric procedure used to estimate the storage model with multiplicative deterministic
trend, and describes how the unconditional maximum likelihood estimator is constructed. Section 4

2Stochastic trends would require a non-linear state-space approach and the use of particle filters (Fernández-Villaverde and
Rubio-Ramírez, 2007), a promising but challenging approach for a model as non-linear as the storage model.
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presents the empirical results, and section 5 concludes.

2 The model

2.1 Model equations

We adopt the standard competitive storage model with no supply response, constant marginal storage
cost, and no stock deterioration in line with Cafiero et al. (2011b). The exogenous supply is modeled by
i.i.d. random production shocks εt following a normal distribution with mean µ and standard deviation
σ truncated at five standard deviations. The demand for commodities consists of a demand for current
consumption Ct associated with the inverse demand function D−1 (Ct ) = a + bCt , which is assumed to
be linear with fixed parameters a and b < 0, and a speculative demand from competitive risk-neutral
storers. Storers carry over St ≥ 0 units of the commodity into the next period whenever they expect
a positive return to storage over the interest and physical storage costs, and otherwise sell their past
inventories. Assuming rational expectations and taking account of the non-negativity constraint on
storage yields the following arbitrage condition:

β Et Pt+1 − Pt − k ≤ 0, = 0 if St > 0, (1)

where β = 1/(1 + r) is the discount factor which is assumed to be fixed, k ≥ 0 is the constant per
unit physical cost of storage, Pt is the price, and Et is the expectation operator conditional on period t
information. In equilibrium, supply equals total demand such that

At = St + D (Pt ) , (2)

where the amount on hand At at time t is the sum of the past inventories and the stochastic production
εt written as

At ≡ St−1 + εt, (3)

with At ∈ A ≡ [−5σ,∞).
Combined with the market clearing condition, the arbitrage condition (1) leads to two regimes in

the price dynamics:
Pt = max

[
β Et Pt+1 − k,D−1 (At )

]
. (4)

The first regime holds when speculators stockpile expecting the future price to cover the purchasing and
full carrying costs. The second regime defines the stockout situation with empty inventories, where the
market price is determined only by the final demand for consumption and the amount on hand in the
market.

For this problem, a stationary rational expectations equilibrium is a price function P : A → R
which describes price as a function of contemporaneous availability. From equation (4), this price
function satisfies for all At

P(At ) = max
[
β Et P (St + εt+1) − k,D−1 (At )

]
, (5)

where, from (2), St is given by
St = At − D (P (At )) . (6)

Building on Deaton and Laroque (1992), Cafiero et al. (2011b) prove that for this model there is a
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unique stationary rational expectations equilibrium P in the class of continuous strictly decreasing
functions.3 If we define P∗ ≡ β EP (ε) − k, the cutoff price for no storage, the price function has the
following properties:

P (A) = D−1 (A) , for A ≤ D (P∗) , (7)
P (A) > D−1 (A) , for A > D (P∗) . (8)

So P∗, which depends on the price function, defines the threshold between the two regimes. Prices
above P∗ are too high to make storage profitable, while for prices below P∗ some stocks are carried over.

There is no closed-form solution for the equilibrium price function, which has to be approximated
numerically. The numerical method follows the fixed-point approach proposed by Deaton and Laroque
(1992) and is described in section A1 of the online appendix.

2.2 How can storage generate high serial correlation?

The debate over the empirical relevance of the storage model revolves around its ability to generate the
high serial correlation observed in the data. Here, we explore the combination of parameters that allows
the model to generate high serial correlation. Our storage model has six parameters, {a, b, k, r, µ, σ}. In
the remainder of this paper, we follow Deaton and Laroque (1996) and Cafiero et al. (2015) by fixing r
at 5%. Deaton and Laroque (1996, Proposition 1) prove that it is not possible to identify separately the
demand function and the distribution of supply shocks. So in this section, we set the mean and standard
deviation of the harvest at 1 and 0.05.4 The mean price over the model asymptotic distribution is set to
1, which implies a + b = 1. Two degrees of freedom remain: storage cost and demand elasticity. We
vary them to see how this affects the serial correlation. Given our assumptions, k can be interpreted as
the ratio of storage costs with respect to the mean price, and the demand elasticity calculated at the
mean price is simply equal to 1/b.

To analyze the effect of storage cost on serial correlation, we set demand elasticity at −0.05,
corresponding to Roberts and Schlenker’s (2013) best estimate of the elasticity of a caloric aggregate of
the major crops. We vary storage costs between 0 and 20 percent of the mean price, and for every value
of storage cost we solve and simulate the model. We calculate the first-order autocorrelation for 100,000
series of 100 periods on the asymptotic distribution. As noted by Cafiero et al. (2011b), simulating
the storage model generates time series with very volatile moments when the series length is around
the number of observable annual prices (close to one hundred years). Therefore, it is not sufficient to
compare the serial correlation of observable price to the average simulated first-order autocorrelation, we
need also to compare it to the quantiles of the distribution of simulated first-order autocorrelation. The
left panel of figure 2 displays the 5th, 50th, and 95th percentiles of the distribution of simulated first-order
autocorrelation when we vary the storage cost. Serial correlation is a monotonically decreasing function
of storage cost. This can be explained by the fact that the storage model displays two regimes. In one
regime, there are positive stocks and prices are serially correlated. In the other, stocks are zero and
prices are not serially correlated. The more time that is spent in the stockout regime, the lower will be
the overall serial correlation generated by the model. Decreasing the storage cost makes storage more

3Cafiero et al. (2015) extend the proof to a model with free disposal and with a production support that may be unbounded.
Free disposal has the advantage to prevent the realization of negative equilibrium prices, but increases significantly the time
required to solve the model numerically preventing us from implementing it in this paper.

4A coefficient of variation of 5% for supply shocks is close to what is observed for the commodities considered in this
paper (see table A5 in the online appendix).
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profitable, increases stock levels, thereby decreasing the likelihood of a stockout and increasing the serial
correlation. With this calibration, even for a zero storage cost, the median first-order autocorrelation is
well below the very high correlation observed in the price series (above 0.82 for all commodities except
sugar). Even the 95th percentile is below 0.8.
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Figure 2: First-order autocorrelation implied by the storage model over 100 periods for several values
of storage cost (with demand elasticity set at −0.05) and demand elasticity (with storage cost set at 0)

This failure of the storage model to induce sufficient serial correlation in prices calls for a
parameterization that is even more favorable to storage. This can be achieved by rotating the slope of
the demand function around its mean. Indeed, in absence of inventories to buffer against short supply,
the price adjustments are dictated only by the final demand for consumption. So the more inelastic the
demand, the steeper the variations in prices and the greater the incentive to store. We set the storage
cost at its zero lower bound and vary the demand elasticity between −0.4 and −0.005 (right panel of
figure 2). Only for a very inelastic demand curve is the median of simulated first-order autocorrelation
close to 0.8. The 95th percentile can be compatible with a first-order autocorrelation of 0.8 for a demand
elasticity above −0.037.

In the storage model with i.i.d. supply shocks, stockpiling is the sole source of time-dependency in
prices, so only a model parameterization in which storage arbitrage is often active can generate high
serial correlations. The model can generate high serial correlation only by decreasing the occurrence of
stockouts which requires a parameterization of very low storage cost and very inelastic demand. So in
the estimations that follow, we should expect that a storage model able to replicate the characteristics of
the raw price series will be characterized by low storage costs and inelastic demand functions. Even
with this combination, high first-order autocorrelation is achieved only by the high percentiles of the
asymptotic distribution.

3 Econometric procedure

In this section, following Canova (2014), we propose an econometric procedure to estimate the
storage model and the trend in prices jointly. The idea behind this procedure is to capture in the
trend the component of prices that cannot be accounted for by the storage model, in particular the
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non-cyclical fluctuations. As a result, the storage model has to account only for cyclical fluctuations
in the observed data. We assume that observed prices, Pobs

t , can be decomposed into a multiplicative
trend exp

[
Γ

(
t, θΓ

) ]
and a cyclical component denoted Psto

t to be explained by the storage model:

Pobs
t = eΓ(t,θΓ) Psto

t . (9)

The vector of the parameters to be estimated θ can be split into two groups: the trend parameters θΓ,
and the structural parameters of the storage model, θsto. In addition to the baseline case where any trend
is ignored we consider three deterministic time trend specifications. In none of the trend specifications
do we introduce an intercept because it would not be possible to identify separately the intercept of the
trend from the intercept of the inverse demand function since both would be determined by the mean
level of observed prices.

3.1 Trend specifications

No trend Our benchmark situation is where observed prices are assumed to be without trend. In this
case, Γ

(
t, θΓ

)
= 0, Pobs

t = Psto
t , and θΓ is empty.

Linear trend Here we assume the trend is a deterministic linear time trend:

Γ

(
t, θΓ

)
= g1t . (10)

In this case θΓ = {g1}. For numerical stability, the time variable, t, is taken to vary between −1 and 1.

Restricted cubic splines While the linear trend allows us to capture the overall long-run trend, it
may not capture all the non-cyclical fluctuations that the storage model is unable to explain. It is often
considered that trends in commodity prices might be non-constant (a feature captured, e.g., in Arezki
et al., 2014, by a piecewise linear trend with structural breaks). For a more flexible trend than in
the linear case, we use restricted cubic splines. Cubic splines are piecewise cubic polynomials with
continuous first and second derivatives. “Restricted” splines are splines that are constrained to be linear
beyond the boundary knots which avoids a poor behavior in the tails, a feature common to polynomial
trends. A restricted cubic spline with three knots has two parameters. With four knots, it has three
parameters. So restricted cubic splines with three and four knots have the same degrees of freedom as
quadratic and cubic polynomials but tend to be slightly more flexible. A spline with two knots would be
the same as the linear trend above. Restricted cubic splines with three to five knots are also used in
Roberts and Schlenker (2013) to capture trends in prices and quantities of agricultural commodities.

When represented by restricted cubic splines, the trend is expressed as

Γ

(
t, θΓ

)
=

I∑
i=1

giBi (t) , (11)

where I and Bi (·) are the degree of freedom and the basis functions of the spline,5 and gi are the trend
parameters to be estimated. The Bi (·) are functions of the knots, but once the knots are fixed the
trend is linear in its parameters. Following the heuristics proposed in Harrell (2001), the knots for the

5For numerical stability, the splines are expressed in B-spline form and their basis matrices come from the command ns in
the R package splines.
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cubic spline with three knots are located at the 10th, 50th, and 90th quantiles of the covariate, which
correspond in our 1900–2011 sample to the years 1911, 1956, and 2000. The spline with four knots
uses as knots the 5th, 35th, 65th, and 95th quantiles (1905, 1939, 1970, and 2006).

Since the knots are fixed before the estimation, only the slope parameters have to be estimated:
θΓ = {gi}Ii=1.

3.2 The likelihood estimator

Given that the price function P is strictly decreasing (Cafiero et al., 2011b), we can invert it to obtain
the amount on hand from the price. Using the inverse of the price function, the cyclical component of
prices, Psto, follows a first-order Markov process with the transition equation defined by equations (3)
and (6) as

Psto
t = P

(
P−1 (

Psto
t−1

)
− D

(
Psto
t−1

)
+ εt

)
. (12)

It is possible to link Psto
t to observed prices, Pobs

t , using equation (9). So, given the price function P,
equations (9) and (12) define a mapping from the supply shocks εt to Pobs

t , conditional on Pobs
t−1 and t.

Given a set of model parameters θ and a sample of observed prices of length T , noted Pobs
1:T ≡{

Pobs
1 , . . . , Pobs

T

}
, and using the Markov structure of the problem, the likelihood function can be

expressed as

L
(
θ; Pobs

1:T

)
= f

(
Pobs

1 ; θ
) T∏
t=2

f
(
Pobs
t |Pobs

t−1; θ
)
. (13)

Using the mapping between observables and shocks, Miranda and Rui (1999) and Cafiero et al. (2015)
obtain the conditional density f

(
Pobs
t |Pobs

t−1; θ
)
from the variable transformation method. Identification

of the parameters of the demand function requires the parameters of the distribution of shocks to be
set to arbitrary values. From here, the distribution of ε is assumed to be the unit normal distribution
truncated at five standard deviations, with probability density function fε (ε) = φ (ε) /[Φ (5) − Φ (−5)]
for ε ∈ [−5, 5] and fε (ε) = 0 otherwise. We can write the conditional density of Pobs

t as:

f
(
Pobs
t |Pobs

t−1; θ
)
= fε (εt ) |Jt | , (14)

where |Jt | is the determinant of the Jacobian of the mapping Pobs
t 7→ εt .

Based on equations (9) and (12), this mapping is

εt = P−1 (
Psto
t

)
−

[
P−1 (

Psto
t−1

)
− D

(
Psto
t−1

) ]
,

= P−1
(
e−Γ(t,θΓ) Pobs

t

)
−

[
P−1

(
e−Γ(t−1,θΓ) Pobs

t−1

)
− D

(
e−Γ(t−1,θΓ) Pobs

t−1

)]
,

(15)

which gives the expression of Jt :

Jt = e−Γ(t,θΓ) P−1′
(
e−Γ(t,θΓ) Pobs

t

)
. (16)

The probability of any element of Psto
1:T being equal to P∗ is zero, so the derivative of P−1 exists almost

everywhere.
In this paper we extend the Conditional Maximum Likelihood Estimator pioneered by Cafiero et al.

(2015) to its unconditional counterpart. The aim is to use all the available information from the first
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observation by accounting for the marginal density f
(
Pobs

1 ; θ
)
in equation (13). The marginal density

f
(
Pobs

1 ; θ
)
can be expressed as the following integral over the steady-state distribution:

f
(
Pobs

1 ; θ
)
=

∫
P0

f
(
Pobs

1 |P0; θ
)

f (P0; θ) d P0. (17)

This integral is intractable, because there is no closed-form solution for the steady-state distribution of
the storage model. However, we can draw from the distribution with density f (P0; θ), which is the
unconditional probability density function of price in the storage model. Therefore, we can use Monte
Carlo integration to estimate f

(
Pobs

1 ; θ
)
by simulating the model on the stationary distribution:

f
(
Pobs

1 ; θ
)
≈ M−1

M∑
m=1

f
(
Pobs

1 |P
(m)
0 ; θ

)
, (18)

where m = {1, . . . , M} indexes random draws from the unconditional price distribution. We set the
number of draws M to 1,000,000 and obtain them by simulating 10,000 trajectories starting from
the steady state for 120 periods and discarding the first 20 periods as burn-in periods. The random
production shocks that generate the price simulations are drawn at the beginning of the estimation
procedure and remain fixed throughout. Because of this simulation step, the Unconditional Maximum
Likelihood Estimator falls within the class of simulated estimators.

As is well known in time-series econometrics (Hamilton, 1994, Ch. 5), if the sample size is
sufficiently large the contribution of the first observation to the likelihood is negligible, while it is
often much more complex to calculate the unconditional likelihood than the conditional likelihood.
In the case of the storage model, it is true that the simulations necessary to calculate the marginal
density make the likelihood evaluation much more costly. In Monte Carlo experiments designed
following Michaelides and Ng (2000) and Cafiero et al. (2015), the unconditional likelihood performs
only marginally better than the conditional likelihood.6 However, when using an actual sample, the
unconditional likelihood has benefits which in our view outweigh its costs. For observed prices the
conditional likelihood presents many local optima. The unconditional likelihood helps to select an
optimum with an unconditional price distribution not too far from the price sample which may not
be the case for a conditional likelihood. Indeed, in order to fit the high serial correlation of the data,
the Conditional Maximum Likelihood Estimator often leads to parameter estimates for which the
availabilities corresponding to observed prices (calculated using P−1) are set at very high levels which
would correspond to very high stock levels. Observing large stock levels may have a high probability
conditional on having large stocks in the previous period, but the unconditional probability of such a
situation is very low. So, the Unconditional Maximum Likelihood Estimator helps to filter out some of
these situations.

Based on all the previous elements, we can write the log-likelihood as

log L
(
θ; Pobs

1:T

)
= −T

2
log 2π−T log [Φ (5) − Φ (−5)]+

T∑
t=1

[
−Γ

(
t, θΓ

)
+ log

���P−1′
(
e−Γ(t,θΓ) Pobs

t

)���]
−

T∑
t=2

(
1 |εt | ≤5 · ε2

t + 1 |εt |>5 · ∞
) /

2 + log

(
M−1

M∑
m=1

1|ε (m) |≤5 · exp
(
−ε (m)2

/
2
))
, (19)

6Results available in section A3 of the online appendix.
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where 1 is the indicator function and ε (m) = P−1 (
exp

(
−Γ

(
1, θΓ

) )
Pobs

1
)
− S(m)0 . Given that the interest

rate and the parameters of the distribution of production shocks have been fixed, there are three
parameters that we need to estimate for the storage model θsto = {a, b, k}, in addition to the parameters
characterizing the trend, θΓ, defined above. From a set of parameters θ provided by the optimization
algorithm, we calculate the detrended price Psto and solve for the policy function of the storage model
P (·). Using this policy function, we can simulate the model to calculate the marginal probability and
evaluate the likelihood for this set of parameters.

Evaluated on the observed prices, the above log-likelihood behaves badly. It displays many local
optima. Gradient-based solvers and derivative-free local search methods converge only to local optima
which are very sensitive to first guesses. Thus, we need to apply a global search algorithm to increase
the likelihood of obtaining a global solution. Following a recent review of derivative-free algorithms
(Rios and Sahinidis, 2013), and some tests on our problem, we choose a global solver, the particle
swarm pattern search algorithm proposed by Vaz and Vicente (2007), and refine the solution it delivers
with a local solver using a sequential quadratic programming approach (Nocedal and Wright, 2006,
Ch. 18). Parameters are constrained to remain within bounds (this is required by the global solver).
b is constrained to be strictly negative (≤ −0.001) and k to be positive or null. All the other bounds
are chosen to be low enough or high enough to avoid them being binding. The particle swarm solver
is initialized with 700 vectors of first-guess parameters, a combination of educated guesses, random
draws, and vectors of previous solutions (e.g., the estimation without trend serves as a first guess for the
linear trend). The tolerance for both optimization solvers is fixed at 10−6.

Once a maximum has been identified, we estimate the asymptotic variance-covariance matrix of the
parameters as the inverse of the outer product of the scores. If the highest log-likelihood is obtained
with k constrained at its zero lower bound, calculating the variance-covariance matrix using the scores
is inappropriate, and other methods such as bootstrap should be used. However, the number of our
estimations prevents us from using the bootstrap method. For the estimates with k at zero, we do not
report the standard errors for k but report the standard errors of the other parameters obtained using the
inverse of the outer product of the scores by maintaining k at zero.

4 Estimation results

4.1 Data

Our data set is composed of the thirteen commodities analyzed in Deaton and Laroque (1992) (banana,
cocoa, coffee, copper, cotton, jute, maize, palm oil, rice, sugar, tea, tin, and wheat). The original price
series from Grilli and Yang (1988) is extended by Pfaffenzeller et al. (2007) and cover the period 1900 to
2011. The data were downloaded from Stephan Pfaffenzeller’s personal website.7 The data are annual
price indexes calculated by averaging the monthly price data provided by the World Bank Development
Prospects Groups over the calendar year, and normalizing them with respect to the 1977–79 mean price.
We deflated the nominal price indexes by the US CPI.

We use only price data to estimate the storage model but we also rely on shorter series of production
data to illustrate the consequence of our estimations in terms of demand elasticities. The production data
are from the FAOSTAT food balance sheets in the case of the agricultural commodities,8 from the British
Geological Survey in the case of tin,9 and from the 2014 World Copper Factbook of the International

7http://www.stephan-pfaffenzeller.com
8http://faostat.fao.org/
9http://www.bgs.ac.uk/mineralsuk/statistics/home.html
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Copper Study Group for copper.10 They cover the period 1961 to 2011. For each commodity, the
logarithm of production is detrended by modeling the trend by a restricted cubic spline with five knots
(as in Roberts and Schlenker, 2013).11

4.2 Model selection

Joint estimation of the structural and trend parameters allows us to select the preferred trend specification
using model selection criteria. We select the preferred trend specification using the Akaike Information
Criterion (AIC). The results are reported in table 1 which presents the values for the preferred models
in boldface. For the model without trend the AIC is given in level, while for the three models with trend
they are given in ratios to the AIC of the model without trend so that a value above unity means a lower
AIC than the model without trend. According to the AIC, the model without trend is never retained for
any of the commodities. The model with a linear trend is preferred for copper, palm oil, and wheat.
The model with a three-knot spline trend (RCS3) is preferred for coffee, cotton, jute, rice, and sugar.
The model with a four-knot spline trend (RCS4) is preferred for banana, cocoa, maize, tea, and tin.

Table 1: Model Selection Using the Akaike Information Criterion

Commodity No trend Linear RCS3 RCS4

Banana −309.823 1.030 1.069 1.070
Cocoa −417.014 0.998 1.010 1.025
Coffee −377.997 0.995 1.005 1.000
Copper −236.051 1.000 0.993 0.997
Cotton −231.181 0.992 1.021 1.011
Jute −184.036 1.015 1.056 1.045
Maize −159.578 0.998 1.002 1.038
Palm oil −219.800 1.042 1.040 1.034
Rice −219.357 1.105 1.114 1.104
Sugar −93.022 1.189 1.198 1.179
Tea −275.557 1.011 1.010 1.014
Tin −406.411 0.996 1.006 1.006
Wheat −189.445 1.054 1.046 1.054
Notes: For the “No trend” column, the AIC are given in levels while for the other columns they are reported in ratios to the
“No trend” column so that a value above unity means a lower AIC than the model without trend. The preferred model for each
commodity is in boldface.

For the estimations where storage costs are not constrained on their lower bound we also perform
likelihood ratio tests to confirm whether the model without trend is rejected (table A4 in online
appendix). The model selection is confirmed by the likelihood ratio test: for almost all the selected
models with trend the test rejects the null of a model without trend. This is not the case for coffee
and copper for which we cannot reject the null at the 5% threshold, in line with values of AIC that
barely exceed under the preferred trends the values without trend. In what follows, to maintain the
comparability with the commodities for which the same test cannot be done, we retain as preferred
models for coffee and copper those with trend selected by the AIC, but when interpreting the results it

10http://www.icsg.org/index.php/statistics/selected-data
11The knots are located at 1964, 1975, 1986, 1998, and 2008 as suggested by Harrell (2001).
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has to be kept in minds that they do not pass the likelihood ratio test.

4.3 No trend

The parameter estimates for the model without trend are given in table 2. In this setting without stock
deterioration, estimates of a in the first column are directly interpretable as the ergodic means of the
models. Thus, it would be reasonable to expect a to be not too far from the observed sample means
reported in table 3, even if the sample mean is not the maximum likelihood estimator of a. However,
this is not the case. With the exception of sugar, a is systematically higher than the sample mean, and
for some commodities by a large margin. For example, a exceeds the sample mean by 255 percent for
banana, 227 for cotton, 122 for rice, or 80 for wheat. This “bias” could be related to the presence of a
trend in the observables. A trend would generate a serial correlation higher than expected from storage
alone. Estimating the ergodic mean of the model at above the sample mean implies that the sample is
located in a region of larger than normal availabilities, and with large availabilities there are important
stocks, and prices are more positively correlated than if availabilities are close to normal.

The limited number of stockouts confirms that the estimations localize all the samples in regions
with large availability. With the exception of palm oil and sugar for which the respective number of
periods without stocks over the sample are 1 and 3, commodity prices are always under their respective
cutoff price P∗ implying that inventories were carried over the whole 112 years of the sample. This
feature is present also in the estimations in Cafiero et al. (2011b), where only sugar displays stockouts.
In the model, stockouts occur when prices exceed P∗. Our estimations show that on average over all
commodities, P∗ exceeds its corresponding sample means by 4.5 times, making stockouts unlikely.12

The small number of stockouts, and localization of the samples in regions with large availabilities
question the empirical relevance of the storage model. This model is supposed to alternate between two
regimes with relatively stable prices when there are stocks, and spikes during stockouts. If there are
no stockouts, price spikes are explained by adverse production shocks only. They do not correspond
to a much steeper part of the demand function and should be as likely as price troughs, which is not
consistent with the stylized facts. Most commodity prices present a positive skewness (table 3) and
there are few downward spikes to match the upward spikes (Deaton and Laroque, 1992).

Section 2.2 showed that the storage model can generate high serial correlation only with parame-
terization of very low storage cost and very inelastic demand. We next examine the magnitude of the
estimated storage costs and demand elasticities. k/a is the ratio of storage cost to the ergodic mean
price, so it is unit-free and directly interpretable. Because we assumed that supply shocks follow a
truncated unit normal, it is not possible to recover the demand elasticity only from the demand function.
To calculate the demand elasticity, we use Deaton and Laroque’s (1996) Proposition 1 which shows that
re-scaling the distribution of supply shocks to have mean and standard deviation µ and σ while adjusting
the inverse demand function to D̃−1 (Ct ) = (a − bµ/σ) + bCt/σ does not affect the distribution of
prices. Using this adjusted demand function, the demand elasticity evaluated at the model’s ergodic
mean price is given by aσ/(bµ).13 The coefficient of variation of the supply shocks, σ/µ, is obtained
by calculating the standard deviation of the detrended logarithm of production, and is provided in the
online appendix.14

12See section A4 in the online appendix for a graphical illustration.
13A similar approach is used in Guerra et al. (2015).
14While reformulating the estimates as unit-free parameters is necessary to compare them between trend specifications, the

expression as a demand elasticity relies on a literal interpretation of the storage model. In this specification of the storage
model, additive demand shocks are equivalent to additive negative supply shocks, and thus the supply shocks in the model
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Table 2: Parameter Estimates Without Trend

Commodity a b k log L P∗ # Stockouts

Banana 1.9078 −3.8117 0.0011 157.9117 3.6291 0
(0.6159) (2.3678) (0.0037)

Cocoa 0.1826 −0.8604 0.0002 211.5072 0.6149 0
(0.0383) (0.0930) (0.0009)

Coffee 0.2571 −0.8959 0.0015 191.9984 0.6876 0
(0.0259) (0.0656) (0.0009)

Copper 0.6339 −1.1740 0.0046 121.0254 1.1461 0
(0.0540) (0.1382) (0.0034)

Cotton 1.7832 −6.1122 0.0029 118.5906 4.7461 0
(0.7019) (3.9400) (0.0027)

Jute 0.6934 −1.7440 0.0050 95.0180 1.4927 0
(0.0970) (0.2308) (0.0049)

Maize 0.7058 −2.3422 0.0009 82.7891 1.8374 0
(0.0816) (0.1738) (0.0030)

Palm oil 0.7311 −1.5067 0.0097 112.8999 1.3887 1
(0.0802) (0.1708) (0.0046)

Rice 1.1766 −5.2418 0 112.6784 3.8021 0
(0.3604) (2.2061) –

Sugar 0.5362 −1.9907 0.0050 49.5109 1.4926 3
(0.0521) (0.1123) (0.0026)

Tea 1.0839 −3.6411 0 140.7786 2.8518 0
(0.4672) (2.2116) –

Tin 0.3606 −1.0371 0.0023 206.2057 0.8462 0
(0.0509) (0.2022) (0.0015)

Wheat 1.0926 −3.9100 0 97.7225 3.0058 0
(0.1819) (1.0561) –

Notes: Asymptotic standard errors in parentheses. Column # Stockouts indicates the number of times the observed prices are
greater than or equal to the cutoff price for no storage:

∑T
t=1 1Pobs

t ≥P∗
.

The estimated storage costs and price elasticities of demand are consistent with the results in
section 2.2: both are low (table 4). The estimated storage costs are below 1 percent of the ergodic
price for all commodities except palm oil, and are null for three commodities: rice, tea, and wheat.
Information on storage costs to which we could compare these estimates are not readily available for
all commodities. However, in a study of the grain chain in Middle East and North African countries,
World Bank and FAO (2012, figure 2-4) report that the storage cost of wheat in the US was equal to
US$ 24.24 per ton in 2009, which would represent around 10% of the recent price of wheat. So, at least
for cereals, the estimates of storage costs appear to be low.

In the model without trend, our implied price elasticities of consumption are comparable to those

should be interpreted as net-supply shocks. If we assume that demand and supply shocks are uncorrelated, the elasticities
calculated using only the coefficient of variation of supply will be downward biased. For staple food markets, where price
volatility is often believed to be primarily driven by supply shocks the bias may be small, but it may be larger for commodities
more subject to demand shocks such as metals.
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Table 3: Comparisons of Data Features and Predictions of the Model Without Trend

One-year Two-year Coefficient Excess
Commodity Variable Mean a-c a-c of variation Skewness kurtosis

Banana Observed moments 0.54 0.95 0.90 0.23 −0.27 −0.77
Model percentiles 0.00 99.99 99.97 0.09 0.00 0.15

Cocoa Observed moments 0.17 0.86 0.71 0.60 1.24 1.64
Model percentiles 44.65 79.86 70.05 23.67 17.34 19.25

Coffee Observed moments 0.20 0.84 0.68 0.50 1.61 3.89
Model percentiles 24.01 83.94 76.14 10.45 25.41 28.47

Copper Observed moments 0.47 0.83 0.64 0.40 0.90 0.56
Model percentiles 6.22 96.47 87.84 10.72 4.30 3.92

Cotton Observed moments 0.55 0.94 0.85 0.51 0.20 −0.61
Model percentiles 0.55 99.74 97.75 16.38 0.19 0.71

Jute Observed moments 0.52 0.84 0.70 0.44 0.41 −0.23
Model percentiles 13.15 92.75 89.26 8.31 0.62 1.49

Maize Observed moments 0.61 0.86 0.73 0.51 0.84 1.22
Model percentiles 31.96 89.21 84.45 18.51 5.54 13.10

Palm oil Observed moments 0.46 0.82 0.65 0.60 2.43 11.84
Model percentiles 2.34 95.05 89.66 48.31 50.03 71.20

Rice Observed moments 0.53 0.91 0.79 0.50 0.42 −0.39
Model percentiles 5.81 94.03 87.47 12.04 0.89 1.88

Sugar Observed moments 0.61 0.70 0.51 0.69 1.62 3.45
Model percentiles 66.50 48.82 40.01 33.70 25.65 26.31

Tea Observed moments 0.45 0.90 0.81 0.38 −0.02 −0.80
Model percentiles 1.63 95.84 95.15 3.18 0.03 0.31

Tin Observed moments 0.20 0.90 0.78 0.47 1.48 2.84
Model percentiles 3.87 98.21 95.47 9.35 19.40 20.00

Wheat Observed moments 0.61 0.91 0.79 0.47 0.82 0.39
Model percentiles 6.73 96.97 91.36 12.58 5.42 6.80

Note: There are two variables for each commodity: the moments calculated on the observed prices, Pobs, and below the
percentiles corresponding to these moments calculated from the estimated model using 1,000,000 samples of the same size as
the data.

derived from other estimations of the storage model (see table 4 in Guerra et al., 2015). If we focus on
the cereals, although these elasticities are plausible, in absolute value they appear to be in the low range
of the elasticities in the literature (e.g., Seale and Regmi, 2006; Adjemian and Smith, 2012; Roberts
and Schlenker, 2013). We would expect smaller elasticities than in most of the literature because
most estimation methods do not account for the presence of stocks which tend to create a positive
bias. Nevertheless, even Roberts and Schlenker (2013) who control for the effect of storage using
instrumental variables find higher elasticities of demand, between −0.066 and −0.028 for aggregate
calories from maize, rice, soybeans and wheat, and even higher values for each commodity individually.

4.4 Models with a time trend

For the specifications with trend, since the structural parameters are not directly interpretable, the
complete results are not displayed here. They are provided in the online appendix, along with a figure
plotting the various trends with real prices. With a linear trend (table A6 in the online appendix), for all
commodities except tin, the annual growth rate is negative, which is consistent with the Prebisch-Singer
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Table 4: Estimated Values of Storage Costs and Demand Elasticities

Storage costs: 100 · k/a Price elasticity of demand: aσ/(bµ)
Commodity No trend Linear RCS3 RCS4 No trend Linear RCS3 RCS4

Banana 0.06 0 0 0 −0.018 −0.033 −0.029 −0.029
(0.19) – – – (0.013) (0.004) (0.009) (0.008)

Cocoa 0.11 0.19 0.05 0.53 −0.015 −0.015 −0.015 −0.027
(0.51) (0.54) (0.23) (0.63) (0.004) (0.004) (0.010) (0.009)

Coffee 0.59 0.59 1.41 1.41 −0.022 −0.022 −0.037 −0.037
(0.35) (0.35) (1.01) (1.07) (0.003) (0.003) (0.010) (0.010)

Copper 0.72 1.09 0.99 0.07 −0.024 −0.028 −0.028 −0.019
(0.54) (0.67) (0.70) (0.59) (0.004) (0.004) (0.005) (0.005)

Cotton 0.16 0.19 0.34 0.34 −0.021 −0.022 −0.029 −0.029
(0.17) (0.43) (0.43) (0.50) (0.016) (0.038) (0.015) (0.020)

Jute 0.72 0.42 2.35 2.34 −0.045 −0.045 −0.104 −0.104
(0.71) (0.96) (0.91) (0.99) (0.009) (0.008) (0.009) (0.015)

Maize 0.13 1.07 1.34 3.25 −0.018 −0.030 −0.036 −0.062
(0.43) (0.83) (0.80) (0.75) (0.002) (0.004) (0.005) (0.005)

Palm oil 1.33 1.20 1.40 1.43 −0.023 −0.027 −0.028 −0.028
(0.64) (0.91) (0.88) (0.98) (0.004) (0.004) (0.004) (0.008)

Rice 0 0.28 0.30 0.33 −0.006 −0.014 −0.016 −0.016
– (0.51) (0.54) (0.55) (0.003) (0.002) (0.004) (0.005)

Sugar 0.94 2.27 2.43 2.35 −0.010 −0.020 −0.019 −0.019
(0.49) (0.81) (1.03) (0.99) (0.001) (0.002) (0.002) (0.003)

Tea 0 0.57 0.95 0.89 −0.006 −0.011 −0.014 −0.014
– (0.36) (0.51) (0.46) (0.005) (0.002) (0.004) (0.005)

Tin 0.63 0.26 0 0 −0.019 −0.015 −0.014 −0.017
(0.43) (0.21) – – (0.005) (0.005) (0.003) (0.002)

Wheat 0 1.11 1.18 0 −0.012 −0.033 −0.034 −0.025
– (0.77) (0.80) – (0.004) (0.005) (0.005) (0.005)

Notes: The preferred model values are in boldface and in parentheses the asymptotic standard errors obtained using the delta
method. Storage costs are expressed unit-free as a percentage of the ergodic mean price: a. The price elasticity of demand is
evaluated at the ergodic mean price using the coefficient of variation of production (table A5 in the online appendix).

hypothesis of a long-run downward trend in commodity prices. If we exclude coffee and tin, the values
range from an annual decline of 0.4 percent for copper to 1.94 percent for rice. The significance of
many trend coefficients indicates that the model without trend is likely to be misspecified.

Table 4 presents the parameters estimates expressed in a way that makes them comparable across
trend specifications. The presence of a deterministic time trend in the model estimation can lead to
large effects in terms of the key parameter estimates. Storage costs tend to increase when there is a
trend, and also price elasticity of demand in absolute value. With the preferred model (in boldface) ten
out of the thirteen commodities present higher storage costs than if there is no trend. With the exception
of tin, all price elasticities are higher with the preferred model. The differences between the elasticities
estimated with the models without trend and with the preferred models with trend are important. The
elasticities double in the case of cocoa, coffee, jute, rice, sugar, and tea, and increase three-fold for
maize and wheat.

For cereals, the elasticities of the preferred model although still low appear to be more consistent
with the literature. Similarly, the increase in storage costs for cereals leads to more plausible parameters
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which nevertheless are low compared to some published figures.
For sugar, we can compare the parameter estimates to the Conditional Maximum Likelihood

estimates of Cafiero et al. (2015). They estimate their model on data from 1921 to 2009, because of a
possible structural break between 1920 and 1921. On this subsample, the stationarity of deflated prices
is more likely to hold (see figure A2 in the online appendix) and the first-order autocorrelation at 0.63 is
lower than the 0.70 obtained over our extended sample. The purpose of our joint estimation approach is
precisely to accommodate for such possible breaks. The preferred model for sugar is the model with a
three-knot spline trend. The estimated trend is decreasing at the beginning of the sample and roughly
constant after 1930 (figure A2 in the online appendix). We express the parameters in ratios to make
them comparable across specifications. For 100 · k/a, our estimation is 2.43 (table A7 in the online
appendix) and theirs is 2.23 (Cafiero et al., 2015, Table 3, ML setting d = 0). For a/b, our estimation is
−0.52 and theirs is −0.49. The estimations are very close, while they are very different if we use our
estimation without trend (100 · k/a = 0.94 and a/b = −0.27). This could indicate that for sugar our
strategy succeeds in removing a source of non-stationarity in the original series.

4.5 Model predictions

Since one of the main critiques of the storage model is its inability to reproduce the observed serial
correlation, one way to assess our new estimates is to compare the model predictions to the features of
the data. For samples of the same length of the observables, a storage model generates moments that are
highly volatile, so comparing the ergodic moments and observed moments would be inappropriate. We
adopt the approach in Cafiero et al. (2011b): we match the observed moments to their corresponding
percentiles in the ergodic distribution of the estimated model. The model predictions are consistent
with the data when the percentiles are neither too low nor too high. We calculate the mean, first- and
second-order autocorrelations, coefficient of variation, skewness, and kurtosis for the observations. For
the model with trend, the moments are calculated on the cyclical component of prices, Psto, which is the
component that the storage model is supposed to explain. We calculate the corresponding percentiles
using 1,000,000 series of 112 periods from the asymptotic distribution.

The moments and their localization with respect to simulated percentiles are given in table 3 for
the model without trend and in table 5 for the preferred model with trend. All moments from the
observations are located within the implied empirical distribution of the models without and with trend.
As already noted by Cafiero et al. (2011b), if the model without trend is solved and estimated with a
sufficiently precise grid, it is able to generate first-order autocorrelation similar to the observations for
several commodities (table 3), but except for sugar the observed autocorrelation corresponds to high
model percentiles. The storage model even appears to fail more often to reproduce the skewness and
kurtosis, with observed moments which are frequently below the 0.5 and 2.5 percentiles calculated from
the estimated model. It should be noted that the banana and tea price series present negative skewness,
which makes them nearly impossible to reproduce with a storage model which on average generates
positive skewness. When a commodity presents negative excess kurtosis, which is the case of banana,
cotton, jute, rice and tea, it seems that the estimated model has difficulty reproducing it. Deaton and
Laroque (1992, section 2.1) note that the storage model can produce negative excess kurtosis but only
from a calibration with low price volatility and a limited role for storage, which does not correspond to
our estimations.

We turn next to the predictions of the preferred model with trend (table 5). Compared to the
model without trend, several commodities show an improvement in the model predictions with many
moments closer to central percentiles. However, the predictions for some commodities – banana,
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Table 5: Comparisons of Data Features and Predictions of the Preferred Models

One-year Two-year Coefficient Excess
Commodity Variable Mean a-c a-c of variation Skewness kurtosis

Banana Observed moments 0.66 0.89 0.81 0.41 1.66 3.25
Model percentiles 0.00 99.91 99.85 52.12 16.70 14.11

Cocoa Observed moments 0.43 0.82 0.65 0.61 1.76 3.00
Model percentiles 41.42 87.37 78.94 43.42 25.63 19.62

Coffee Observed moments 0.21 0.78 0.59 0.47 1.86 5.97
Model percentiles 17.51 89.71 79.53 12.28 24.70 34.73

Copper Observed moments 0.47 0.80 0.58 0.38 0.81 0.32
Model percentiles 4.15 96.49 85.48 8.47 2.51 2.07

Cotton Observed moments 0.79 0.66 0.43 0.45 3.38 19.96
Model percentiles 1.10 50.83 30.57 14.14 78.57 86.69

Jute Observed moments 0.62 0.69 0.40 0.31 0.62 0.17
Model percentiles 16.66 94.09 66.04 1.86 0.34 0.32

Maize Observed moments 0.85 0.69 0.46 0.36 1.47 2.79
Model percentiles 14.25 97.76 89.60 11.28 13.80 20.66

Palm oil Observed moments 0.42 0.72 0.47 0.39 0.99 1.38
Model percentiles 23.12 82.59 57.23 7.25 4.54 5.59

Rice Observed moments 0.97 0.76 0.46 0.38 2.17 7.07
Model percentiles 9.98 85.62 48.62 13.20 37.65 43.28

Sugar Observed moments 0.93 0.62 0.35 0.67 3.00 13.73
Model percentiles 41.58 61.20 28.82 66.35 79.40 83.03

Tea Observed moments 0.67 0.91 0.85 0.46 0.46 0.01
Model percentiles 0.06 99.97 99.97 38.81 0.53 1.24

Tin Observed moments 0.11 0.80 0.65 0.58 1.63 3.27
Model percentiles 15.62 71.70 67.45 33.05 26.89 26.53

Wheat Observed moments 0.57 0.75 0.45 0.31 1.26 2.17
Model percentiles 4.09 94.87 64.47 2.55 6.11 6.88

Note: There are two variables for each commodity: the moments calculated on the cyclical component of prices, Psto, and
below the percentiles corresponding to these moments calculated from the estimated model using 1,000,000 samples of the
same size as the data.

jute, and tea – do not improve. The storage model with the specifications we estimated seems unable
to match the moments for these three commodities. Due to the deterministic trend, observed first-
order autocorrelation decreases but does not become systematically more consistent with the model
predictions, because with estimations of higher storage costs and more elastic demand the capacity of the
storage model to generate high serial correlation decreases also. For cocoa and maize, the percentiles
corresponding to the observed first-order autocorrelation increase significantly toward higher values
indicating a decrease in the ability of the model to reproduce this moment. Regarding the second-order
autocorrelation, the skewness, and the excess kurtosis, the preferred detrended models are much more
able to fit the observed moments than the models without trend. Similarly, if we exclude banana, jute
and tea, and with the exception of 3 moments that are outside of the (2.5, 97.5) percentiles, all other
moments are consistent with the predictions of the estimated storage models.

A disturbing feature of the estimations without trend is the very small number (often zero) of
implied stockouts. Considering the possibility of a trend increases the number of implied stockouts,
which becomes positive for many commodities (table 6). However, even if we exclude banana, jute and
tea, three commodities – cocoa, copper, and cotton – present zero stockouts. It is also interesting to
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compare the number of implied stockouts to the probabilities of exceeding a given number of stockouts.
The probabilities of stockouts are calculated in the same way as the price moments using 1,000,000
series of 112 periods from the asymptotic distribution. The results for the model without trend and for
the preferred model with trend for at least 1, 2, 5, and 10 stockouts are given in table 6. Models with
trend have much higher probabilities of stockouts than the model without trend. If there is a trend, the
storage costs and the price elasticities are higher than without trend which discourages storage and leads
to higher probabilities of stockouts. Apart from cocoa, cotton and tin, with the preferred model samples
without stockouts are highly unlikely. Even samples with only one stockout are fairly unlikely. The
parameterization implied by the estimation of a model with trend is much more favorable to occasional
stockouts and so provides a natural explanation for price spikes as periods where stocks are exhausted.

Table 6: Number of Implied Stockouts over the Sample Interval and Probabilities of at Least n Stockouts,
in Samples of the Same Size as the Data

No-trend model Preferred model

Probabilities Probabilities

Commodity # Stockouts n = 1 n = 2 n = 5 n = 10 # Stockouts n = 1 n = 2 n = 5 n = 10

Banana 0 0.91 0.81 0.48 0.13 0 0.98 0.94 0.73 0.30
Cocoa 0 0.63 0.47 0.18 0.02 0 0.86 0.74 0.39 0.09
Coffee 0 0.77 0.63 0.28 0.05 1 0.95 0.88 0.59 0.19
Copper 0 0.95 0.88 0.59 0.19 0 0.98 0.94 0.72 0.29
Cotton 0 0.75 0.60 0.26 0.05 0 0.87 0.75 0.41 0.10
Jute 0 0.88 0.77 0.43 0.10 4 1.00 0.99 0.95 0.68
Maize 0 0.76 0.61 0.27 0.05 12 1.00 1.00 0.99 0.86
Palm oil 1 0.95 0.88 0.59 0.19 1 0.97 0.92 0.68 0.26
Rice 0 0.64 0.49 0.19 0.02 1 0.95 0.88 0.59 0.19
Sugar 3 0.77 0.63 0.28 0.05 8 0.98 0.94 0.73 0.30
Tea 0 0.74 0.60 0.26 0.04 0 0.98 0.94 0.73 0.30
Tin 0 0.84 0.71 0.36 0.08 6 0.75 0.60 0.26 0.04
Wheat 0 0.72 0.57 0.24 0.04 1 0.99 0.97 0.82 0.41

Notes: The preferred model is chosen according to the AIC of table 1. The number of implied stockouts is calculated as
the number of times the cyclical prices are greater than or equal to the cutoff price for no storage:

∑T
t=1 1Psto

t ≥P∗ . For the
specification without trend, cyclical prices are just observed prices. The probabilities are calculated for each model as the
proportion of simulated samples where prices are greater than or equal to the cutoff price for no storage at least n times. The
calculation is done on 1,000,000 samples of 112 periods from the asymptotic distribution simulated using the estimated model.

5 Conclusion

Estimating the competitive storage model on untransformed series of commodity prices leads to very
low demand elasticities and storage costs, which results in a prediction of very infrequent, and often
zero, stockouts over the sample period. These results may stem from the presence of trends in prices,
which could create statistical features difficult to explain by a storage model.

This article proposes a strategy inspired byCanova (2014) to estimate jointly the structural parameters
of a storage model and the parameters characterizing the non-cyclical component of prices for which
the storage model cannot account. For the non-cyclical component of prices, three deterministic time
trends with increasing flexibility were tested and compared with the baseline model which ignores the
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possibility of a trend.
Our results show that storage models with trend are always preferred to models without trend,

and the significance of the trend parameters indicates that the model without trend is likely to be
misspecified. Accounting for a trend is quantitatively important for estimating the structural parameters.
For most commodities, the storage model with a deterministic trend yields more plausible estimates
of the structural parameters (e.g., higher storage costs and demand elasticities). It also increases the
probability of observing stockouts, and more closely replicates the most salient features of the price
data. For most commodities our results support the empirical relevance of the speculative storage
model which is in line with the recent findings in Cafiero et al. (2011b, 2015) and prove that the joint
estimation approach is a superior procedure to fit the storage model with the data. Future estimations of
the storage model should no longer neglect the possibility of long-run trends in prices.

For banana, jute and tea, three of the commodities originally studied in Deaton and Laroque (1992),
the storage model with or without a deterministic trend fails to reproduce the main features of the price
dynamics. With the trend specifications considered in this paper, the storage model is rejected as a
relevant model to explain the price dynamics of these commodities. However, other specifications could
be explored in the future.

This paper is a first step toward jointly analyzing short- and long-run aspects of commodity prices.
Our focus was to show the importance of accounting for long-run trends when estimating the storage
model, so we have purposefully chosen simple deterministic trends that maintain the tractability of the
likelihood, but more sophisticated trend specifications could permit the reconciliation of two branches
of the literature that have long been separated. Because commodity prices are characterized by “small
trends and big variability” (Cashin and McDermott, 2002), without good explanations for the big
short-run variability it is challenging to identify the trends. Conversely, neglecting trends, even small
ones, creates difficulties to explain the short-run variability. To really integrate these two issues, several
challenges will have to be faced. A storage model in which agents account for trends implies theoretical
restrictions such as an isoelastic demand function that create numerical difficulties for the solution
method. More sophisticated trends specifications such as random walk with drift or log-linear trend
with Markov switching slope would prevent a direct calculation of the likelihood and would require
the use of filters for non-linear state-space models (see e.g., Fernández-Villaverde and Rubio-Ramírez,
2007, for use of the particle filter to estimate macroeconomic models). Some of the pieces are already
provided in Zeng (2012), with a storage model including a structural log-linear trend in prices, and Dvir
and Rogoff (2014), with a storage model including a trend for quantities following a random walk with
drift, but further elaborations are needed to reach the level of sophistication achieved in the literature on
trends (Ghoshray, 2011).
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