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INEXACT HALF-QUADRATIC OPTIMIZATION

FOR LINEAR INVERSE PROBLEMS

MARC C. ROBINI, FENG YANG, AND YUEMIN ZHU

Abstract. We study the convergence of a generic half-quadratic algorithm for

minimizing a wide class of objective functions that occur in inverse imaging
problems; this algorithm amounts to solving a sequence of positive definite sys-

tems (the inner systems) and has the advantages of simplicity and versatility.

Half-quadratic optimization has been meticulously studied, both theoretically
and experimentally, but two difficulties remain: first, the practical solutions of

the inner systems are generally approximate, which may hamper convergence,

and, second, convergence to a stationary point of the objective is not guaran-
teed if the set of such points contains a continuum. We present new results

that do not suffer from these limitations and hence extend our work in [SIAM

J. Imaging Sci. 8 (2015), no. 3, 1752–1797]. We consider the inexact process
in which the inner systems are solved to a fixed arbitrary accuracy defined in

terms of the energy norm of the error. We show that this process converges
to a stationary point of the objective under minimal conditions ubiquitous

in regularized reconstruction and restoration. Our main results are based on

the assumption that the objective has the Kurdyka- Lojasiewicz property, for
which we provide constructing rules using the concept of tameness from the

theory of o-minimal structures. We also propose an implementation using a

truncated conjugate gradient method that controls the accuracy at negligible
additional cost. Experiments on three different inverse problems show that the

resulting algorithm performs well in various nonconvex scenarios and converges

to solutions accurate to full machine precision.

1. Introduction

1.1. Motivations and background. We consider the problem of recovering an
original signal x• ∈ Rn (e.g., a temporal sequence, an image, or a volume) given
some data

(1.1) d := χ(Dx• + ν),

where D ∈ Rm×n models the deterministic part of the observation process, ν ∈ Rm
is a noise vector whose components are realizations of independent zero-mean ran-
dom variables, and χ : Rm −→ Rm is a component-wise sample function represent-
ing contamination by impulse noise. A common approach to this general inverse
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problem is to look for minimizers of an objective function Θ : Rn −→ R of the form

(1.2) Θ(x) :=
∑

k∈ [1..m]

θk
(
|[Dx− d ]k|

)
+

∑
k∈ [m+1..K]

θk
(
‖Rkx‖

)
,

where θ1, . . . , θK are increasing functions on R+, [ · ]k is the kth coordinate projec-
tion, and ‖ · ‖ denotes the `2-norm. The first sum—the data-fidelity term—favors
solutions consistent with the observations, and the second sum—the regularization
term—imposes prior constraints modeled by the matrices Rk (see, e.g., [1, 2] and
the references therein). The functions θk are called potential functions, or simply
potentials, in reference to the Bayesian interpretation of regularization [3].

The function (1.2) can be written in the general form

(1.3) Θ(x) :=
∑

k∈ [1..K]

θk
(
‖Akx− ak‖

)
,

where, for each k, Ak is a matrix in Rnk×n and ak is a vector in Rnk. (We obtain
(1.2) by setting (Ak,ak) := (D(k, :), [d ]k) if k ∈ [1 . .m], where D(k, :) denotes
the kth row of D, and (Ak,ak) := (Rk,0) otherwise.) We focus on the problem of
minimizing objectives of the type (1.3) under the assumption that every potential
satisfies the following conditions:

(C1) θk is increasing and nonconstant on R+,

(C2) θk is C1 on (0,+∞) and continuous at zero,

(C3) the function θ†k : t∈ (0,+∞) 7−→ t−1θ′k(t) is decreasing and bounded.

We call a potential function admissible if it satisfies (C1)–(C3). Common admissible
potentials are listed in Appendix A; they can be nonconvex and even eventually

constant. Note that the boundedness of θ†k implies that the derivative of θk vanishes
at zero. However, a function θ satisfying all the admissibility conditions except the
boundedness of θ† can be approximated arbitrarily closely by admissible potentials
(e.g., θ

(
(δ2 + t2)1/2

)
with δ > 0 “small enough”).

A popular tool for the task of minimizing Θ is the fully half-quadratic (FHQ)
optimization algorithm, which consists of generating a sequence (x(p))p∈N using the
recurrence relation

(1.4) x(p+1) := arg min
y∈Rn

∑
k∈ [1..K]

εk(x(p))‖Aky − ak‖2,

where the weighting coefficients εk(x(p)) are defined by

(1.5) εk(x) := θ†k
(
‖Akx− ak‖

)
with the convention that θ†k(0) = limt→0+ t−1θ′k(t). We employ the term “fully”
to indicate that the inner optimization problem (1.4) is quadratic, as distinguished
from the mere use of half-quadratic modeling to develop an alternating minimiza-
tion algorithm [4]. As discussed in [2], the FHQ algorithm has different interpreta-
tions: fixed-point iteration, quasi-Newton optimization, alternating minimization,
and majorization-minimization. It also has the advantages of simplicity, versatility,
and ease of implementation. The FHQ algorithm is well-defined if the sum in (1.4)
is positive definite, which is equivalent to the condition

(C4)
⋂

k∈K+

null(Ak) = {0}, K+ :=
{
k ∈ [1 . .K] : θk is strictly increasing

}
.
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In this case, the inner optimization problem can be solved efficiently using either
a direct method such as Cholesky decomposition or an iterative method such as
conjugate gradient (CG), the choice of one over the other being guided by the
overall sparsity of the matrices Ak.

The global convergence of FHQ algorithms has been studied in [1, 5–9] under
various conditions on Θ in addition to (C1)–(C4). We have generalized these re-
sults in a more recent paper [2], in which we impose only Conditions (C1)–(C4) and
include the problematic cases where Θ is nonconvex and the set of stationary points
SΘ := {x ∈ Rn : ∇Θ(x) = 0} is nondiscrete. (Note that the results in [2] are also
stronger than those obtained by applying Theorem 2 in [10] to FHQ optimization;
indeed, the results derived from [10] further require the potentials to have locally
Lipschitz continuous derivatives, which is not guaranteed by (C1)–(C3).) However,
two limitations remain. First, it is assumed implicitly that the inner optimization
problem is solved exactly at each iteration, which is not the case in practice, espe-
cially when using an iterative solver. Second, if SΘ is not level-discrete (that is, if
there exists h ∈ R such that SΘ ∩ {x ∈ Rn : Θ(x) = h} is not discrete), then the
convergence is guaranteed only in terms of point-to-set distance; in other words,
the FHQ sequence (x(p))p may diverge while “hugging” the boundary of SΘ in the

sense that limp infy∈SΘ ‖y − x(p)‖ = 0. The present work addresses both issues.
In a nutshell, we derive new results for the global convergence to a single stationary
point when the inner optimization problem is solved approximately and SΘ is not
level-discrete, and we propose an efficient and numerically stable implementation
based on CG.

1.2. Contributions and organization. The inexact FHQ algorithm, described
in Section 3, is obtained by replacing the exact iteration map x(p) 7−→ x(p+1)

defined in (1.4) by a set-valued map whose definition is based on the majorization-
minimization interpretation of FHQ optimization. We first show in Section 4 that
this set-valued map satisfies the conditions of the monotone convergence theorem of
Meyer [11, Theorem 3.1] and hence shares the convergence properties derived in [2].
Our approach to establishing global convergence when SΘ is not level-discrete is
presented in Section 5; it consists of excluding pathological cases by assuming that
Θ satisfies the ubiquitous Kurdyka- Lojasiewicz (KL) inequality (see, e.g., [12,13]).
In this case, a sequence generated by the inexact FHQ algorithm converges to a
stationary point and forms a finite-length trajectory. Section 6 is devoted to the
construction of objectives satisfying the KL inequality. Our starting point is that
a real C1 function on Rn has the KL property if it is tame, meaning that its
restrictions to balls are definable in an o-minimal structure (we refer to [14–16]
and Appendix B for an introduction to o-minimal geometry). Of special interest
is the subclass of objectives with piecewise analytic potentials, for which we can
specify the convergence rate of the inexact FHQ algorithm. To our knowledge, the
potentials used in the literature are piecewise analytic; yet we also provide practical
rules for constructing general tame objectives.

The implementation of the inexact FHQ algorithm is discussed in Section 7.
We solve the inner optimization problem using truncated CG, and we propose a
CG stopping criterion that controls the accuracy of the iterates. The resulting
CG-based FHQ algorithm is numerically stable in that it converges to a solution
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accurate to full machine precision. Its versatility is illustrated in Section 8 with nu-
merical experiments on three inverse imaging problems—reconstruction from lim-
ited projection data, deblurring in the presence of mixed Gaussian-impulse noise,
and inpainting from moderately sparse data—under various scenarios involving
quadratic or nonquadratic data-fidelity, nonconvex potentials, and different regu-
larization operators (gradient, tight frame, and patch-based sparsifying transform).
Section 9 concludes the paper.

2. Notation

We denote matrices by bold upper-case roman letters (e.g., M), vectors by
bold lower-case roman letters (e.g., x), sets by caligraphic upper-case letters (e.g.,
A), and set-valued maps by bold greek letters (e.g., Φ). The kth coordinate (or
component) of a vector v is denoted by vk or [v]k depending on the context, and
‖ · ‖ is the `2-norm. We let ‖ · ‖M denote the `2-norm weighted by the matrix M ,
that is, ‖z‖M := (zTMz)1/2 (we will omit the parentheses for the square of such
a norm, so ‖z‖2M := (‖z‖M )2 = zTMz). The distance from a point x ∈ Rn to a
nonempty set A ⊆ Rn is denoted by dist(x,A), that is,

(2.1) dist(x,A) := inf
y∈A

‖y − x‖.

The interior, the closure, and the boundary of A are denoted by A◦, A, and ∂A,
respectively, and B(x, r) denotes the open ball with center x and radius r.

Let f be a real function on a A ⊆ Rn. The restriction of f to some set A′ ⊂ A
is denoted by f |A′ . Given a binary relation R on R and a real number h, we use
the shortcut notation

(2.2) {fRh} :=
{
x ∈ A : f(x)Rh

}
.

For example, {f = h} and {f 6 h} are the level and sublevel sets of f at height
h, respectively. When convenient, we denote the preimage of a set B ⊆ R under
f by {f ∈ B} rather than f−1(B). The set of stationary points of a function f in
C1(Rn) (the class of real C1 functions on Rn) is denoted by Sf , that is,

(2.3) Sf := {‖∇f‖ = 0}.

Finally, we let Cobj(Rn) denote the class of objective functions Θ : Rn −→ R
of the form (1.3) such that Conditions (C1)–(C4) hold, and we define Cobj :=⋃
n∈[1..∞) Cobj(Rn). Other notation will be introduced as needed.

3. The inexact fully half-quadratic algorithm

We assume throughout this section that Θ ∈ Cobj(Rn). Let A and a be the
vertical concatenations of the matrices Ak ∈ Rnk×n and of the vectors ak ∈ Rnk ,
that is,

(3.1) A :=

 A1

...
AK

 ∈ RN×n and a :=

 a1

...
aK

 ∈ RN,

where N :=
∑

k∈[1..K] nk, and let

(3.2) E(x) := diag
(
ε1(x)In1

, . . . , εK(x)InK
)
,
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where the weighting coefficients εk(x) are defined in (1.5) and In denotes the iden-
tity matrix of order n (so E(x) is an N ×N nonnegative diagonal matrix). With
this notation, the gradient of Θ is given by

(3.3) ∇Θ(x) = ATE(x)(Ax− a).

Let Θ : Rn× Rn −→ R be defined by

(3.4) Θ(x,y) := Θ(x) + (y − x)T∇Θ(x) + 1
2‖y − x‖

2
ATE(x)A.

By [2, Proposition 2.4], the matrix ATE(x)A is positive definite for all x ∈ Rn,
and hence so is the quadratic function Θ(x, ·) : y ∈ Rn 7−→ Θ(x,y). It is easy to
see that the exact FHQ iterations (1.4) are equivalent to

x(p+1) := Φ0(x(p)),(3.5a)

Φ0(x) := arg min
y∈Rn

Θ(x,y).(3.5b)

Furthermore, we readily have Θ(x,x) = Θ(x) for all x ∈ Rn, and it is shown in
[2, Proposition 2.6] that

(3.6) Θ(x,y) > Θ(y) for all x,y ∈ Rn.

Therefore the exact FHQ algorithm is a majorization-minimization algorithm [17,
18] with surrogate function Θ.

From now on, we focus on a relaxed version of (3.5) in which x(p+1) is any point
y such that the difference Θ(x(p),y)−min Θ(x(p), ·) is smaller than some fraction
of Θ(x(p))−min Θ(x(p), ·). More precisely, the exact FHQ map Φ0 is replaced by
the set-valued map Φµ : Rn ⇒ Rn defined by

Φµ(x) :=
{
y ∈ Rn : Θ(x,y)−min Θ(x, ·) 6 hµ(x)

}
,(3.7a)

hµ(x) := µ
(
Θ(x)−min Θ(x, ·)

)
,(3.7b)

where the constant µ ∈ (0, 1) sets the accuracy of the approximation to Φ0(x).

Definition 3.1 (Inexact FHQ process). We call a sequence (x(p))p∈N an inexact
FHQ sequence if there exists a constant µ ∈ (0, 1) such that

(3.8) x(p+1) ∈ Φµ(x(p)) for all p ∈ N.

The iterative process (3.8) starting from a given point x(0) ∈ Rn is called an inexact
FHQ algorithm.

The inexact FHQ optimization process is illustrated in Figure 1. As we will see in
Section 7, inexact FHQ sequences occur in particular when the inner optimization
problem (3.5) is solved approximately by CG with a fixed minimum number of
iterations.

4. Monotonic nonlinear programming interpretation

The results presented in this section extend those in [2] to inexact FHQ se-
quences. They rely on a general convergence theorem of Meyer characterizing the
behavior of sequences generated by set-valued maps under some compactness, con-
tinuity, and monotonicity assumptions [11, Theorem 3.1]. This approach is similar
to that in [2], except we deal with a set-valued rather than a point-valued iteration
map; so we do not reproduce the parts of the proofs unaffected by this change.
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Figure 1. Inexact FHQ optimization process: given the current
iterate x(p), the next iterate x(p+1) is any point in the sublevel
set of the surrogate Θ(x(p), ·) at an height exceeding its minimum
value by a fraction µ of the difference Θ(x(p))−min Θ(x(p), ·).

We start with some terminology on set-valued maps in Definition 4.1 and re-
call Meyer’s results in Theorem 4.2. Lemma 4.5 then states the properties of the
inexact FHQ map that are needed to apply Meyer’s theorem, from which we de-
rive our convergence results. In brief, the inexact FHQ algorithm converges to a
stationary point if SΘ is discrete in each level set of Θ (Theorem 4.9(i)) and oth-
erwise converges to SΘ in three weaker senses: in terms of point-to-set distance
(Theorem 4.9(ii)), gradient (Theorem 4.9(iii)), and objective (Theorem 4.7(iv)).
Theorem 4.10 characterizes the basins of attraction of isolated local minimizers
regardless of the stucture of SΘ.

Definition 4.1 (Terminology of set-valued maps). Let H be a closed set in Rn and
let Ψ be a set-valued map from H to itself.

(i) A sequence (x(p))p∈N in Rn is said to be generated by Ψ if x(0) ∈ H and

x(p+1) ∈ Ψ(x(p)) for all p ∈ N.

(ii) A point x ∈ H is called a fixed point of Ψ if Ψ(x) = {x}. The set of fixed
points of Ψ is denoted by FΨ.

(iii) Ψ is called upper semicontinuous if for all convergent sequences (x(p))p
and (y(p))p in H such that y(p) ∈ Ψ(x(p)) for all p, we have limp y

(p) ∈
Ψ(limp x

(p)).

(iv) Ψ is said to be strictly monotonic with respect to a function f : Rn −→ R
if for every x ∈ H \ FΨ, we have f(y) < f(x) for all y ∈ Ψ(x).

Theorem 4.2 (Meyer [11]). Let H be a closed set in Rn and let Ψ be a set-valued
map from H to itself. Let X := (x(p))p be a sequence generated by Ψ and denote by
CX its set of cluster points. If Ψ is upper semicontinuous and strictly monotonic
with respect to a function f , and if X is bounded, then

(i) ∅ 6= CX ⊆ FΨ,

(ii) limp ‖x(p+1) − x(p)‖ = 0,

(iii) limp f(x(p)) = f(x∗) for some x∗ ∈ CX .

Definition 4.3 (Flat set). Let f be a real function on Rn. A nonempty set A ⊆ Rn
is said to be flat with respect to f (or simply flat if f is clear from the context) if
f is constant on A.
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Definition 4.4 (Generalized cup). Let f be a real continuous function on Rn. We
call a set G ⊂ Rn a generalized cup of f if there exists a bounded set B such that

(4.1) ∅ 6= G = B ∩
{
f < min

∂B
f
}
.

In other words, G is a bounded open set with flat boundary.

Lemma 4.5 (Properties of the inexact FHQ map). Let Θ ∈ Cobj(Rn) and let G
be a generalized cup of Θ. For every µ ∈ (0, 1), the set-valued map Φµ defined in
(3.7) has the following properties:

(i) Φµ(G) :=
⋃

x∈G Φµ(x) ⊆ G (that is, Φµ maps G into itself),

(ii) Φµ(G) is bounded,

(iii) FΦµ = SΘ (that is, the fixed points of Φµ are the stationary points of Θ),

(iv) Φµ is upper semicontinuous,

(v) Φµ is strictly monotonic with respect to Θ.

Proof. (i) Let x ∈ G. We have

Φµ(x) ⊂
{

Θ(x, ·) 6 Θ(x)
}
⊆ G,

where the second inclusion follows from [19, Proposition 6.3] (indeed, by the proof
of Lemma 4.12 in [2], a generalized cup is the set of points that are well-contained
in a generalized basin). So Φµ(G) ⊆ G.

Let x ∈ ∂G and set

Hµ(x) := hµ(x) + min Θ(x, ·).

Since Θ(x, ·) is a positive definite quadratic function, Φµ(x) is a closed ellipsoid in
Rn, and therefore

(Φµ(x))◦ =
{

Θ(x, ·) < Hµ(x)
}

and (Φµ(x))◦ = Φµ(x).

Let y ∈ (Φµ(x))◦ and let (x(p))p be a sequence in G converging to x. Then, for

sufficiently large p, y ∈ (Φµ(x(p)))◦ ⊂ G. Hence (Φµ(x))◦ ⊆ G, and taking the

closure on both sides of this inclusion yields Φµ(x) ⊆ G. So Φµ(∂G) ⊆ G.

(ii) Let x ∈ G. Since the function Θ(x, ·) is coercive, its sublevel sets are

bounded, and so Φµ(x) ⊆ B(0, rx) for some rx > 0. Since G is compact, it follows

that Φµ(G) ⊆ B(0, R), with R := sup{rx : x ∈ G} < +∞.
(iii) Let x ∈ Rn. We have

x ∈ FΦµ ⇐⇒
{

Θ(x, ·) 6 Hµ(x)
}

= {x} ⇐⇒ Hµ(x) = min Θ(x, ·).
So we must show that hµ(x) = 0 if and only if x ∈ SΘ. The gradient of the function

Θ(x, ·) is given by

∇Θ(x, ·)(y) = ATE(x)A(y − x) +∇Θ(x).

Therefore the global minimizer of Θ(x, ·) is

(4.2) Φ0(x) = x− (ATE(x)A)−1∇Θ(x),

and hence

(4.3) min Θ(x, ·) = Θ(x,Φ0(x)) = Θ(x)− 1
2‖∇Θ(x)‖2(ATE(x)A)−1 .

Substituting into the definition of hµ, we obtain

(4.4) hµ(x) = 1
2µ‖∇Θ(x)‖2(ATE(x)A)−1 ,
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which is zero if and only if ∇Θ(x) = 0.
(iv) Let (x(p))p and (y(p))p be convergent sequences in Rn such that y(p) ∈

Φµ(x(p)) for all p, and let x and y be their respective limits. Since Θ is continuous
on the product space Rn× Rn, we have

Θ(x,y) = lim
p

Θ(x(p),y(p)) 6 lim
p

min Θ(x(p), ·) + lim
p
hµ(x(p)).

From (4.3) and (4.4), the functions z ∈ Rn 7−→ min Θ(z, ·) and hµ are continuous
(because the matrix inverse function is continuous at every point that represents
an invertible matrix). So Θ(x,y) 6 min Θ(x, ·) + hµ(x), that is, y ∈ Φµ(x).

(v) For every x ∈ Rn and y ∈ Φµ(x),

Θ(y) 6 Θ(x,y) 6 min Θ(x, ·) + hµ(x)

= Θ(x)− 1
2 (1− µ)‖∇Θ(x)‖2(ATE(x)A)−1 .

If x 6∈ FΦµ , then ∇Θ(x) 6= 0 by (iii), and so Θ(y) < Θ(x). �

Definition 4.6 (Continuum). A nonempty compact and connected set in Rn is
called a continuum. A continuum is called nondegenerate if it contains more than
one point.

Theorem 4.7 (Monotone convergence). Let Θ ∈ Cobj(Rn) and let X := (x(p))p
be an inexact FHQ sequence starting from a point x(0) in a generalized cup of Θ.

(i) CX ⊆ SΘ (that is, the cluster points of X are stationary points of Θ).

(ii) CX is either a singleton or a flat nondegenerate continuum.

(iii) limp ‖x(p+1) − x(p)‖ = 0.

(iv) The objective sequence (Θ(x(p)))p decreases to the value of Θ on CX and

is strictly decreasing as long as x(p) 6∈ SΘ.

Proof. Let µ ∈ (0, 1) be such that X is generated by Φµ, and let G be a generalized

cup of Θ containing x(0). By Lemma 4.5, Theorem 4.2 applies to the restrictions of
Φµ and Θ to G. Therefore, CX is nonempty and included in SΘ ∩ G, the difference

x(p+1)−x(p) goes to zero, and (Θ(x(p)))p converges to Θ(x∗) for some x∗ ∈ CX . The
proof that CX is a flat continuum is the same as in [2, Theorem 3.7], and the fact
that Θ(x(p+1)) < Θ(x(p)) for all x(p) 6∈ SΘ follows from the strict monotonocity of
Φµ. �

Definition 4.8 (Level-discrete stationary points). Let f ∈ C1(Rn). We call the
set of stationary points Sf level-discrete if for every h ∈ R, the intersection of Sf
with the level set {f = h} is either discrete or empty.

Theorem 4.9 (Global convergence to stationary points). Let Θ and X be as in
Theorem 4.7.

(i) If SΘ is level-discrete, then X converges to a point in SΘ.

(ii) limp dist(x(p), ∂SΘ) = 0 (that is, X converges to the boundary of SΘ).

(iii) limp ‖∇Θ(x(p))‖ = 0.

Proof. The proofs of the three items of Theorem 4.9 rely on Theorem 4.7. They
are similar to those of Theorems 3.9 and 3.12 in [2], but with the sublevel set
{Θ 6 Θ(x(0))} replaced by G. �
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Remark 1. In Theorems 4.7 and 4.9, the condition that the starting point x(0) be
in a generalized cup can be replaced by any condition ensuring the boundedness
of X . Indeed, if X is bounded, we can apply Theorem 4.2 to Φµ and Θ without
restricting their domain, and so we just have to replace the generalized cup G in
the proofs by any bounded open set containing X . It follows that X either goes to
infinity or converges to ∂SΘ.

Remark 2. In [2], the condition on x(0) is that the sublevel set {Θ 6 Θ(x(0))} be
bounded. In this case, there is a bounded set B such that {Θ 6 Θ(x(0))} ⊂ B◦, so
∂B is a compact subset of {Θ > Θ(x(0))} and thus Θ(x(0)) < min∂B Θ. Therefore
the boundedness of {Θ 6 Θ(x(0))} implies that x(0) is in a generalized cup. The
converse implication, however, is not true, as illustrated by the objective function
in Example 1 after Theorem 4.10.

Remark 3. If Θ is coercive, then all its sublevel sets are bounded and so the conclu-
sions of Theorems 4.7 and 4.9 hold independently of the starting point. This makes
coercivity an attractive property that should be imposed whenever possible. Let
K∞ be the set of indices k ∈ [1 . .K] such that limt→+∞ θk(t) = +∞. As shown in
[2, Proposition 2.5], if the potentials θ1, . . . , θK are admissible, then Θ is coercive
if and only if

(4.5) N∞ :=
⋂

k∈K∞

null(Ak) = {0}

(in particular, Condition (C4) holds if Θ is coercive). Therefore, we can always
enforce the coercivity of the objective by adding a term of the form

(4.6) Θ0(x) :=
∑

k∈ [1..n0]

θ0(|[A0x]k|),

where θ0 is admissible and such that limt→+∞ θ0(t) = +∞, and where A0 ∈ Rn0×n

satisfies null(A0) ∩ N∞ = {0}. This technique is used for example in [20], [1],
and [2], where Θ0 is respectively a Tikhonov penalty, a multiresolution contour-line
smoothing penalty, and a wavelet-sparsity penalty.

Theorem 4.9 does not guarantee that all isolated local minimizers are attractors;
that is, a local minimizer isolated from the other stationary points may not be a
limit point no matter how closely it is approached. The following theorem shows
that, regardless of the configuration of the stationary points, every isolated local
minimizer is an attractor and every generalized cup containing a single stationary
point is a basin of attraction. Furthermore, such generalized cups are “cups” in
the sense defined in [2, Definition 4.4], so the water-flooding interpretation of the
basins of attraction developed therein holds for the inexact FHQ algorithm.

Theorem 4.10 (Local convergence to isolated minimizers). Let Θ ∈ Cobj(Rn), let

G be a generalized cup of Θ such that G ∩ SΘ = {x∗}, and let X := (x(p))p be an

inexact FHQ sequence. The point x∗ is a local minimizer of Θ, and if x(p) ∈ G for
some p, then X converges to x∗.

Proof. It follows from the definition of a generalized cup that G is open and ∅ 6=
arg minG Θ ⊂ G. Therefore the global minimizers of Θ on G are stationary points
in G. But x∗ is the only stationary point in G, so x∗ is a local minimizer.

Let p be such that x(p) ∈ G. By Lemma 4.5(i), the shifted sequence X+p :=

(x(q+p))q∈N is in the compact set G, and thus X converges to x∗ if CX = {x∗}.
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Figure 2. Two-dimensional noncoercive objective: (a) function
Θ defined in (4.7) and level sets at heights 1 and Θ(z∗); (b) basins
of attraction of the minimizers x∗ and y∗ (there is no theoretical
convergence guarantee when starting outside these basins).

Let B be a bounded set such that G = B ∩ {Θ < h}, where h := min∂B Θ. By
Theorem 4.7 applied to X+p, we have

∅ 6= CX ⊆ SΘ ∩ G ⊆ {x∗} ∪ ∂G,

and (Θ(x(q+p)))q is a decreasing sequence starting from Θ(x(p)) < h. Hence

CX ⊆ ({x∗} ∪ ∂G) ∩ {Θ < h},

and since

∂G ∩ {Θ < h} ⊆ (∂B ∪ ∂{Θ < h}) ∩ {Θ < h} = ∂B ∩ {Θ < h} = ∅,

it follows that CX = {x∗}. �

The following two examples illustrate the scope of Theorems 4.9(i) and 4.10.

Example 1. Let Θ ∈ Cobj(R2) be defined by

(4.7) Θ(x) := ϑGM

(
‖(x1, x2)− (4, 0)‖

)
+ ϑGM

(
|x2 − x1|

)
,

where ϑGM is the Geman and McClure function defined in (A.10). This function
has three isolated stationary points: two minimizers x∗ and y∗ near (2, 2) and
(4, 0), and one saddle point z∗ near (3, 1). Figure 2(a) shows the level sets {Θ = 1}
and {Θ = Θ(z∗)} superimposed on Θ; both are unbounded, as Θ(x, x) < 1 for all
x ∈ R and limx→∞Θ(x, x) = 1. Let Gh(x) denote the connected component of a
point x in the sublevel set {Θ < h}. For every h ∈ (Θ(x∗), 1), the set Gh(x∗) is a
generalized cup, and Gh(x∗)∩SΘ = {x∗}. It follows from Theorem 4.10 that these
cups are basins of attraction of x∗, and hence so is G1(x∗). Likewise, GΘ(z∗)(y

∗) is a
basin of attraction of y∗. (We also observe that a point in a cup is not necessarily in
a bounded sublevel set, as {Θ 6 Θ(x)} is unbounded if x ∈ GΘ(z∗)(y

∗)∩{Θ > 1}.)
The basins G1(x∗) and GΘ(z∗)(y

∗) are shown in Figure 2(b). Since their union
contains all the generalized cups of Θ, Theorem 4.9 does not tell us more about
the convergence of the inexact FHQ algorithm; so there is neither global nor local
convergence guarantee when the starting point is outside G1(x∗) ∪ GΘ(z∗)(y

∗).
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Figure 3. Two-dimensional coercive objective: (a) function Θ̃

defined in (4.8) and level sets at heights 1 and Θ̃( z̃∗); (b) basins of
attraction of the minimizers x̃∗ and ỹ∗ (when started outside these
basins, the inexact FHQ algorithm converges to either x̃∗ or ỹ∗, or
to the saddle point z̃∗).

Example 2. Consider the coercive function

(4.8) Θ̃(x) := Θ(x) + γ0‖x‖2,

where Θ is as in Example 1 and γ0 := 5 × 10−3 (a value small enough so that
the Tikhonov penalty γ0‖x‖2 slightly pulls the stationary points of Θ towards 0

without changing their nature). The function Θ̃ is shown in Figure 3(a) and the
convergence guarantees provided by Theorems 4.9 and 4.10 are depicted in Fig-
ure 3(b). By Theorem 4.9(i), the inexact FHQ algorithm converges to a stationary
point independently of the starting point. By Theorem 4.10, the basins of attraction

of x̃∗ and ỹ∗ are their respective connected components in {Θ̃ < Θ̃( z̃∗)}.

5. Exploiting the Kurdyka- Lojasiewicz property

We know from Theorem 4.9 that the inexact FHQ algorithm converges globally
to a stationary point if no level set of the objective contains a nondiscrete set
of stationary points. Here, we drop this assumption and show that an inexact
FHQ sequence forms a finite-length trajectory to a stationary point if the objective
satisfies the KL inequality. This result is stated in Theorem 5.5, preceded by the
definition of the KL inequality for C1 functions and two lemmas.

For any α ∈ (0,+∞), we let C ?(α) denote the class of real C1 functions on (0, α)
that are positive, strictly increasing, and concave.

Definition 5.1 (KL inequality, KL function). A function f ∈ C1(Rn) is said to
satisfy the Kurdyka- Lojasiewicz (KL) inequality at a stationary point x ∈ Sf if
there exist positive constants α and r and a function ϕ ∈ C ?(α) such that

(5.1) ϕ′
(
f(y)− f(x)

)
‖∇f(y)‖ > 1 for all y ∈ B(x, r) ∩ {f − f(x) ∈ (0, α)}.

We call f a KL function if it satisfies the KL inequality at each of its stationary
points. We denote by CKL(Rn) the class of KL functions in C1(Rn), and we define
CKL :=

⋃
n∈[1..∞) CKL(Rn).
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Remark 4. If f(x) = 0, the inequality in (5.1) can be written as ‖∇(ϕ◦f)(y)‖ > 1.
Therefore, if x is an isolated local minimizer, the informal meaning of the KL
inequality is that the values of f can be reparameterized so that the resulting
composite function is steep around x. Note also that the KL inequality is satisfied
at all maximizers and all nonstationary points: if x is a local maximizer, then the
set B(x, r) ∩ {f > f(x)} is empty for sufficiently small r, and so (5.1) is trivial;
and if ∇f(x) 6= 0, then ‖∇f(y)‖ > 1

2‖∇f(x)‖ in a neighborhood of x, and so

(5.1) holds with ϕ(t) = 2t‖∇f(x)‖−1.

In the definition of a KL function, the constants α and r and the function ϕ
depend on the stationary point considered. In fact, as stated in the following
lemma, KL functions satisfy the KL inequality uniformly on flat compact sets of
stationary points.

Lemma 5.2 (Uniform KL inequality on a flat compact set). Let f ∈ CKL(Rn), let
C be a flat compact subset of Sf , and denote by h the value of f on C. There exist
positive constants α and r and a function ϕ ∈ C ?(α) such that

(5.2) ϕ′
(
f(y)− h

)
‖∇f(y)‖ > 1 for all y ∈ B(C, r) ∩ {f − h ∈ (0, α)},

where B(C, r) := {z ∈ Rn : dist(z, C) < r}.

Proof. By Definition 5.1, for every x ∈ C, there exist positive constants αx and rx
and a function ϕx ∈ C ?(αx) such that

(5.3) ϕ′x
(
f(y)− h

)
‖∇f(y)‖ > 1 for all y ∈ B(x, rx) ∩ {f − h ∈ (0, αx)}.

Since C is compact, there is a finite set S ⊆ C such that {B(x, rx) : x ∈ S} is a
cover of C. Let

BS :=
⋃
x∈S

B(x, rx)

and define the function ρ : C −→ R+ and the radius r ∈ R+ by

ρ(x) := sup
{
% ∈ R+ : B(x, %) ⊆ BS

}
and r := inf

x∈C
ρ(x).

Suppose that r = 0. Then there is a sequence (x(p))p in C such that limp ρ(x(p)) = 0.

From the compactness of C, (x(p))p has a subsequence (y(q))q converging to a point
y ∈ C ⊂ BS . Let % > 0 be such that B(y, %) ⊆ BS . For sufficiently large q, we
have B(y(q), 1

2%) ⊂ B(y, %) and hence ρ(y(q)) > 1
2%. This contradicts the fact that

limp ρ(x(p)) = 0, so r > 0.
Let y ∈ B(C, r). There is a point z ∈ C such that ‖y − z‖ < r 6 ρ(z), and

thus y ∈ BS by the definition of ρ. So y ∈ B(x, rx) for some x ∈ S. Define the
function

ψ : t ∈ (0, α) 7−→ max
x∈S

ϕ′x(t), α := min
x∈S

αx.

It follows from (5.3) that

ψ
(
f(y)− h

)
‖∇f(y)‖ > 1 if y ∈ {f − h ∈ (0, α)}.

The function ψ is positive, decreasing, and continuous; moreover, for every t ∈ (0, α)
and ε ∈ (0, t), ∫ t

ε

ψ 6
∫ t

ε

∑
x∈S

ϕ′x(t) <
∑
x∈S

ϕx(t) < +∞.
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Therefore the function

ϕ : t ∈ (0, α) 7−→ lim
ε→0+

∫ t

ε

ψ

is well-defined and belongs to C ?(α), which completes the proof. �

The next lemma shows that the distance between two successive iterates of a
bounded inexact FHQ sequence is bounded below by the norm of the gradient and
above by the square root of the objective difference (up to constant factors).

Lemma 5.3 (Further properties of the inexact FHQ map). Let Θ ∈ Cobj(Rn) and
µ ∈ (0, 1). For every compact set C ⊂ Rn, there exist positive constants c1 and c2
such that for all (x,y) ∈

⋃
z∈C {z} ×Φµ(z),

c1‖∇Θ(x)‖ 6 ‖y − x‖,(5.4)

c2‖y − x‖2 6 Θ(x)−Θ(y).(5.5)

Proof. Let C be a compact set in Rn and let x ∈ C. We assume that x 6∈ SΘ, for
otherwise x is a fixed point of Φµ (by Lemma 4.5(iii)) and the inequalities (5.4)
and (5.5) are trivial. Substituting from (4.3) and (4.4) into the definition of Φµ, we
obtain

y ∈ Φµ(x) ⇐⇒ ‖y − x‖2ATE(x)A + 2(y − x)T∇Θ(x)

+ (1− µ)‖∇Θ(x)‖2(ATE(x)A)−1 6 0.
(5.6)

For every z ∈ Rn, we have

(5.7) ‖z‖2ATE(x)A > λ1(x)‖z‖2 and ‖z‖2(ATE(x)A)−1 > (λn(x))−1‖z‖2,

where λ1(x) and λn(x) denote the smallest and largest eigenvalues of the n × n
positive definite matrix ATE(x)A, respectively. Since C is compact,

(5.8) 0 < inf
z∈C

λ1(z) =: λ1(C) 6 sup
z∈C

λn(z) =: λn(C) < ∞.

Let y ∈ Φµ(x). From (5.6)–(5.8) and the Cauchy-Schwarz inequality, we deduce
that

λ1(C)
(
‖y − x‖‖∇Θ(x)‖−1

)2 − 2‖y − x‖‖∇Θ(x)‖−1 + (1− µ)(λn(C))−1 6 0.

The quadratic function of ‖y−x‖‖∇Θ(x)‖−1 on the left-hand side has two positive
roots, which shows that there are positive constants c1 and c̃1 independent of x
and y such that

c1‖∇Θ(x)‖ 6 ‖y − x‖ 6 c̃1‖∇Θ(x)‖.
Furthermore, from the definition of Φµ and using (4.3), we have

Θ(x)−Θ(y) > Θ(x)−Θ(x,y)

> (1− µ)
(
Θ(x)−min Θ(x, ·)

)
= 1

2 (1− µ)‖∇Θ(x)‖2(ATE(x)A)−1

> 1
2 (1− µ)(λn(C)c̃ 2

1 )−1‖y − x‖2.
This completes the proof. �

Definition 5.4 (Finite-length sequence). We say that a sequence (x(p))p∈N in Rn
has finite length if the series

∑∞
p=0 ‖x(p+1) − x(p)‖ converges.
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Theorem 5.5 (Finite-length convergence). Let Θ ∈ Cobj(Rn) and let X := (x(p))p
be an inexact FHQ sequence starting in a generalized cup of Θ. If Θ is a KL
function, then X has finite length and converges to a point in SΘ.

Proof. Suppose Θ ∈ CKL(Rn) and let µ ∈ (0, 1) be such that X is generated by Φµ.
Since the fixed points of Φµ are the stationary points of Θ (see Lemma 4.5(iii)), the

theorem is trivial if x(p) ∈ SΘ for some p. We assume from now on that x(p) 6∈ SΘ

for all p. By Theorems 4.7 and 4.9,

(a) the set CX of cluster points of X is a flat compact subset of SΘ,

(b) (Θ(x(p)))p is strictly decreasing to the value h of Θ on CX ,

(c) limp dist(x(p), CX ) = 0.

It follows from (a) that Lemma 5.2 applies with f = Θ and C = CX . Let α, r, and
ϕ be as in the conclusion of Lemma 5.2, and set tp := Θ(x(p))− h for all p. From

(b) and (c), we have tp ∈ (0, α) and x(p) ∈ B(CX , r) for all p sufficiently large; so

there exists q ∈ N such that the inequality in (5.2) holds for all y ∈ {x(p) : p > q}.
Let p > q. Using the concavity of ϕ, we deduce that

ϕ(tp)− ϕ(tp+1) > ϕ′(tp)(tp − tp+1) > ‖∇Θ(x(p))‖−1(tp − tp+1).

Since X is bounded by items (i) and (ii) of Lemma 4.5, it follows from Lemma 5.3
that there exists a positive constant c independent of p such that

ϕ(tp)− ϕ(tp+1) > c‖x(p+1) − x(p)‖.

Therefore

c
∑

p∈ [q..∞)

‖x(p+1) − x(p)‖ 6 lim
m

∑
p∈ [q..m]

(
ϕ(tp)− ϕ(tp+1)

)
= ϕ(tq)− lim

m
ϕ(tm+1)

6 ϕ(tq),

where the last inequality follows from (b) and the fact that ϕ is positive and strictly
increasing. So X has finite length and hence converges. Furthermore, since CX ⊆
SΘ, the limit point of X is a stationary point. �

Remark 5. A bounded inexact FHQ sequence X is a descent sequence generated
by Algorithm 1 in [21] if the following conditions hold:

(i) there is a constant K > 0 and a compact set C containing X such that ∇Θ
is K-Lipschitz continuous on C;

(ii) there is a constant c > K such that for all x ∈ C and y ∈ Φµ(x) ∩ C,

(5.9) c‖y − x‖2 + 2(y − x)T∇Θ(x) 6 0.

It can be shown that (ii) is satisfied if

(5.10) K < 2λ1(C)
(

1 +
[
1− (1− µ)λ1(C)(λn(C))−1

]1/2)−1

=: Kµ,

where λ1(C) and λn(C) are defined as in (5.8). The quantity Kµ decreases with
increasing µ and is bounded by 2λ1(C). It follows that if (i) holds with K sufficiently
small, then Theorem 5.5 is a special case of the general convergence result in [21,
Theorem 3.2].
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Two important classes of KL functions are those of real analytic functions and
real semialgebraic functions [22], for which the KL inequality holds with ϕ(t) ∝ tυ
for some υ ∈ (0, 1]. Recall that a set in Rn is called semialgebraic if it is the union
of finitely many sets of the form

(5.11)
⋂

i∈ [1..l ]

{
x ∈ Rn : Pi(x) = 0, Qi(x) > 0

}
,

where P1, Q1, . . . , Pl, Ql are real polynomial functions on Rn. A function f : Rn −→
R is called semialgebraic if its graph {(x, h) ∈ Rn× R : f(x) = h} is a semialge-
braic set in Rn+1. Elementary examples of semialgebraic functions are polynomial
and rational functions, the absolute value function, and the square root function.
Semialgebraic sets and functions have numerous stability properties [23]; in par-
ticular, finite sums and products of semialgebraic functions are semialgebraic, the
composition of semialgebraic functions is semialgebraic, and images and preimages
of semialgebraic sets under semialgebraic functions are semialgebraic. As for the
objective Θ, the functions x ∈ Rn 7−→ ‖Akx − ak‖ are semialgebraic, and so
Theorem 5.5 applies if the potentials are semialgebraic. Examples of semialgebraic
potentials among those given in Appendix A are the function of minimal surface
(A.2), the Lange function (A.4), the Huber function (A.8), the Geman and McClure
function (A.10), and the Tukey’s biweight function (A.13).

The scope of Theorem 5.5 is not limited to analytic and semialgebraic objectives:
as we will see in the next section, the class CKL contains all the objective functions
that are definable in some o-minimal structure on the real field. Before that, we
give simple examples showing that Theorems 4.9 and 5.5 complement each other.
On one hand, Theorem 5.5 extends Theorem 4.9 because it guarantees a stronger
mode of convergence and also because Cobj∩CKL contains functions with non-level-
discrete sets of stationary points (Example 3). On the other hand, Theorem 5.5
does not generalize Theorem 4.9 because Cobj \ CKL contains functions with level-
discrete as well as non-level-discrete sets of stationary points (Examples 4 and 5).

Example 3 (KL objective with a flat continuum of stationary points). Let a, b ∈ R
be such that a < b, and let Θ[a,b] ∈ Cobj(R) be defined by

(5.12) Θ[a,b](x) := ϑHu

(
|x− (b+ 1)|

)
+ ϑHu

(
|x− (a− 1)|

)
,

where ϑHu is the Huber function defined in (A.8). The function Θ[a,b] is semialge-
braic, strictly decreasing on (−∞, a), constant on [a, b], and strictly increasing on
(b,+∞); so it is a KL function and its set of stationary points is the flat continuum
[a, b].

Example 4 (Non-KL objective with a level-discrete set of stationary points). Let
θ1 and θ2 be the admissible potentials defined as follows:

θ1(t) :=

{
t2(1− 1

3 t) if t ∈ [0, 1],

t− 1
3 if t > 1,

θ2(t) :=

 θ1(t) if t ∈ [0, 1],

2
3 +

∫ t

1

uη(u− 1)du if t > 1,
(5.13)

where η : (0,+∞) −→ R is given by

η(t) :=
(
1 + t sin(t−1)

)(
1 + t+ sin(t−1)

)−1
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(θ2 is admissible because η is positive and decreasing and limt→0+ η(t) = 1). Let
Θ ∈ Cobj(R) be defined by

Θ(x) := θ1(|x− 2|) + θ2(|x|).
This function is decreasing on (−∞, 1] and increasing on [1,+∞), and its set of
stationary points is

SΘ = {1} ∪ {x(k) : k ∈ N}, x(k) := 1 + 2((4k + 3)π)−1.

Therefore SΘ is level-discrete and Θ does not satisfy the KL inequality at x = 1
(since otherwise its derivative at x(k) would be nonzero for large k).

Example 5 (Non-KL objective with a flat continuum of stationary points). Let Θ

be as in Example 4, and let Θ̃ ∈ Cobj(R) be defined as Θ but with

θ1(t) :=

{
t2(1− 1

3 t) if t ∈ [0, 2],
4
3 if t > 2.

The function Θ̃ is constant on [0, 1] and equal to Θ on [1, 3]; therefore SΘ̃ contains

the continuum [0, 1] and Θ̃ does not satisfy the KL inequality at x = 1.

6. Tame half-quadratic optimization

The KL property is difficult to verify when the objective is neither analytic nor
semialgebraic. The theory of o-minimal structures, based on an axiomatization
of semialgebraic geometry [14–16], provides useful tools to overcome this problem.
(The fundamental definitions and results concerning o-minimal structures are re-
called in Appendix B.) We build here on the notion of tameness adapted from
[24], which refers to functions whose restrictions to balls are o-minimal. First, in
Section 6.1, we show that tame potentials yield KL objectives with “nice” sets of
stationary points. Next, in Section 6.2, we focus on the special case of piecewise an-
alytic potentials, for which we can specify the convergence rate of the inexact FHQ
algorithm. Finally, in Section 6.3, we propose a rule-based model for constructing
tame potentials and hence KL objectives.

6.1. Ensuring the KL property. We begin by showing that tameness implies
the KL property (Proposition 6.2) and is guaranteed by tame potentials (Theo-
rem 6.3). Next, we give some structural properties of the sets of stationary points
of tame functions (Proposition 6.5), followed by an overview of the global conver-
gence properties of the inexact FHQ algorithm.

Definition 6.1 (Tame function). Let M be an o-minimal structure on (R,+, ·).
A function f : A ⊆ Rn −→ R is said to be tame in M (or simply tame) if for all
r ∈ (0,+∞), the restriction f |A∩B(0,r) is M-definable.

Proposition 6.2 (Tame functions are KL functions). Let f ∈ C1(Rn). If f is
tame, then f is a KL function.

Proof. Let f ∈ C1(Rn) be tame in an o-minimal structureM, and let x be a local
maximizer or a saddle point of f (recall that the KL inequality is trivial at all
maximizers). By the definition of a tame function, f |B(0,2(‖x‖+1)) is M-definable,
and thus so is the restriction of f to the set

O := B(x, ‖x‖+ 1) ∩ {f > f(x)}.
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Applying Theorem B.6 to the function y ∈ O 7−→ f(y) − f(x), we obtain that
there exist a positive constant α and a strictly increasing,M-definable C1 function
ϕ : (0,+∞) −→ (0,+∞) such that

(6.1) ϕ′
(
f(y)− f(x)

)
‖∇f(y)‖ > 1 for all y ∈ O ∩ {f < f(x) + α}.

Furthermore, since the derivative of a differentiable definable function of a real
variable is definable, we have from Theorem B.5 that ϕ′ is either strictly monotone
or constant on an interval (0, α′), α′ > 0. So it remains to show that limt→0+ ϕ′(t) =
+∞, because then ϕ′ is strictly decreasing on (0, α′) and hence ϕ is concave on this
interval. Since x is not a local maximizer, there exists a sequence (y(p))p∈[1..∞)

such that

y(p) ∈ B(x, p−1) ∩ {f > f(x)} for all p > 1.

Let (tp)p∈[1..∞) be the sequence defined by tp := f(y(p)) − f(x) for all p. Then

limp tp = 0+, and it follows from (6.1) that

‖∇f(y(p))‖ >
(
ϕ′(tp)

)−1
> 0 for all p sufficiently large.

But limp∇f(y(p)) = ∇f(x) = 0, and so limp ϕ
′(tp) = +∞. Hence, from the

monotonicity of ϕ′ on (0, α′), we have limt→0+ ϕ′(t) = +∞. �

Theorem 6.3 (Tame potentials yield KL objectives). Let Θ ∈ C1(Rn) be of the
form (1.3) and suppose the potentials θ1, . . . , θK are tame in an o-minimal structure
M. Then Θ is tame in M and hence is a KL function.

Proof. Suppose θ1, . . . , θK are tame in an o-minimal structure M. Let r > 0 and
define, for every k ∈ [1 . .K],

ρk := 1 + max
x∈B(0,r)

‖Akx− ak‖ < +∞.

Each function x ∈ B(0, r) 7−→ θk
(
‖Akx−ak‖

)
isM-definable as the composition

of the restriction θk|[0,ρk), which is M-definable by the tameness assumption, with
a semialgebraic function. So Θ|B(0,r) is a sum of M-definable functions and hence
is M-definable. This shows that Θ is tame in M. The KL property then follows
from Proposition 6.2. �

From Theorems 5.5 and 6.3, tame admissible potentials and Condition (C4) guar-
antee that an inexact FHQ sequence started in a generalized cup has finite length
and converges to a stationary point. Tame objectives locally enjoy the properties of
o-minimal functions and therefore behave “nicely”; in particular, by Theorem B.5,
their restrictions to lines are piecewise smooth and monotone. Tameness also im-
pacts the set of stationary points, as Proposition 6.5 below shows.

Lemma 6.4 (Finiteness of the stationary values). Let f be a tame C1 function.
For every r ∈ (0,+∞), the set {f(x) : x ∈ Sf ∩B(0, r)} is finite.

Proof. Let f ∈ C1(Rn) be tame in an o-minimal structureM, let r > 0, and define
B := f(Sf ∩B(0, r)). The set B isM-definable and hence a finite union of intervals
and points, so it suffices to show that it cannot contain a nondegenerate interval.
Let x ∈ Sf ∩ B(0, r) and O := B(0, r) ∩ {f > f(x)}. Applying Theorem B.6
to the function y ∈ O 7−→ f(y) − f(x), we obtain that there exists a positive
constant α such that ‖∇f(y)‖ > 0 for all y ∈ O ∩ {f < f(x) + α}. It follows
that f(y) > f(x) + α for all y ∈ Sf ∩ O, and thus B ∩ (f(x), f(x) + α) = ∅. This
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shows that for every h ∈ B, there is an α > 0 such that B ∩ (h, h + α) = ∅, which
completes the proof. �

Proposition 6.5 (Tame functions have “nice” sets of stationary points). Let f be
a tame C1 function.

(i) The intersection of Sf with any ball has finitely many connected compo-
nents, each of which is path-connected.

(ii) Either Sf is discrete or it contains a nondegenerate continuum.

(iii) The connected components of Sf are flat1.

Proof. Let f ∈ C1(Rn) be tame in some o-minimal structure M.
(i) Sf is the preimage of the singleton {0} under ∇f and hence is M-definable.

Therefore the intersections Sf ∩B(0, r) and Sf ∩B(0, r) are M-definable for all
r > 0, and the result follows from Theorem B.4.

(ii) Suppose Sf is nondiscrete, so there exists a convergent sequence (x(p))p in

Sf . Let r := ‖ limp x
(p)‖ + 1. The set Sf ∩B(0, r) has finitely many connected

components, each of which is compact, and it contains all the points x(p) for suffi-
ciently large p. Therefore at least one of the connected components of Sf ∩B(0, r),
and hence of Sf , must be a nondegenerate continuum.

(iii) We first show that for every x ∈ Sf , there is an r > 0 such that Sf ∩B(x, r)
is flat. Let x ∈ Sf and suppose for contradiction that for every r > 0, there are two
points ur and vr in Sf∩B(x, r) such that f(ur) 6= f(vr). Define the sequence X :=

(x(p))p∈[2..∞) by (x(2q),x(2q+1)) = (u1/q,v1/q) for all q > 1. Since X converges to

x and (f(x(p)))p is not eventually constant, X has a subsequence (y(q))q such that

|f(y(q))− f(x)| is strictly decreasing, which contradicts Lemma 6.4.
Let C be a connected component of Sf . For every x ∈ C, there is an r > 0

such that f is constant on the intersection of C with B(x, r) =: Bx. Consider
the equivalence relation ∼ on C defined as follows: x ∼ y if and only if there
exists a finite sequence (x(i))i∈[1..k] in C such that x ∈ Bx(1) , y ∈ Bx(k) , and
Bx(i) ∩Bx(i+1) ∩ C 6= ∅ for all i ∈ [1 . . k− 1] (this latter condition is void if k = 1).
Each equivalence class of ∼ is flat, so we must show that the quotient set C/ ∼
contains only one equivalence class. Let E ∈ C/∼ and let (y(p))p be a sequence in
E converging to some point y ∈ Rn. Since C is closed, y ∈ C and so f is constant
on the intersection of C with an open ball By centered at y. For sufficiently large

p, y(p) ∈ By and thus y ∼ y(p). This shows that the equivalence classes of C by ∼
are closed. It follows that C/∼ contains only one equivalence class, for otherwise
C/∼ would be a nontrivial partition of C into closed subsets, in contradiction to
the connectedness of C. �

Let Ctame(Rn) denote the class of tame C1 functions on Rn, let CLD(Rn) denote
the class of real C1 functions on Rn whose set of stationary points is level-discrete,
and define Ctame :=

⋃
n∈[1..∞) Ctame(Rn) and CLD :=

⋃
n∈[1..∞) CLD(Rn). Fig-

ure 4 summarizes the global convergence properties of the inexact FHQ algorithm
depending on the conditions imposed on the objective Θ. We know from Exam-
ples 3–5 that the sets Cobj ∩ Ctame \ CLD (yellow), Cobj ∩ CLD \ CKL (green), and
Cobj \ CKL \ CLD (blue) are nonempty. Example 6 below shows that this is also

1The connected components of the set of stationary points of a C1 function are not necessarily
flat—see the famous example of Whitney [25].
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converges

Convergence 
to a stationary point

Finite-length convergence
to a stationary point

discrete
is

Figure 4. Summary of the global convergence properties of an
inexact FHQ sequence (x(p))p starting in a generalized cup of the
objective Θ (Theorems 4.7(iv), 4.9, 5.5, and 6.3).

the case for Cobj ∩ CKL ∩ CLD \ Ctame (orange) and Cobj ∩ CKL \ CLD \ Ctame

(light orange). Note that the set of stationary points SΘ is necessarily discrete if
Θ ∈ Cobj ∩Ctame ∩CLD. Indeed, if Θ ∈ Cobj ∩Ctame and SΘ is nondiscrete, then it
follows from Proposition 6.5 that SΘ contains a flat nondegenerate continuum and
hence is not level-discrete. In other words, there is no distinction between discrete
and level-discrete sets of stationary points for tame objectives.

Example 6 (Nontame KL objectives). Let θ1 and θ2 be the admissible potentials
defined as follows:

θ1(t) :=

{
t2( 1

2 −
1
3 t) if t ∈ [0, 1],

1
6 if t > 1,

θ2(t) :=

∫ min{t,1}

0

uη(1− u)du,(6.2)

where η : (0, 1] −→ R is given by

η(t) := t
(
1− t+ t sin(t−1)

)−1

(θ2 is admissible because η increases from limt→0+ η(t) = 0 to η(1) = (sin 1)−1).
Consider the function Θ : R −→ R defined by

Θ(x) := θ1(|x− 1|) + θ2(|x|).

The set of stationary points of Θ is

SΘ = (−∞,−1] ∪ {0, 1} ∪ {1− ((k + 1)π)−1 : k ∈ N} ∪ [2,+∞),

and Θ is strictly decreasing on [−1, 0] and strictly increasing on [0, 2]. Since SΘ ∩
(−1, 1) has infinitely many connected components (all of which are singletons), it
follows from Proposition 6.5(i) that Θ|(−1,1) is nondefinable; so Θ is not tame. On
the other hand, Θ is a KL function: it is analytic on (−1, 1)\{0} and semialgebraic
on (1, 2), it has a local maximum at x = −1, and it satisfies the KL inequality at
x = 0 and x = 1 with ϕ(t) ∝

√
t.

Since θ1 and θ2 are constant on [1,+∞), the function Θ does not belong to Cobj

(Condition (C4) is not satisfied). To obtain a function in Cobj that behaves like Θ
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on [−1, 2], we can add to Θ the semialgebraic objective Θ[a,b] defined in Example 3
with a 6 −1 and b > 2. The sum Θ+Θ[a,b] then belongs to Cobj∩CKL\Ctame and its
set of stationary points is SΘ ∩ [a, b]. This set is level-discrete if a = −1 and b = 2,
while it contains a flat nondegenerate continuum if a < −1 or b > 2. Therefore
Θ + Θ[−1,2] ∈ Cobj∩CKL∩CLD \Ctame, while Θ + Θ[a,b] ∈ Cobj∩CKL \CLD \Ctame

if a < −1 or b > 2.

6.2. The special case of piecewise analytic potentials. Here we consider the
usual case where the potentials are piecewise-defined by analytic functions restricted
to closed intervals. This assumption ensures that the objective has the classical
 Lojasiewicz property (that is, for every x ∈ SΘ there is a positive integer s such that
|Θ−Θ(x)|1−1/s‖∇Θ‖−1 is bounded around x), allowing us to relate the convergence
rate to the geometric properties of the objective around its stationary points.

Definition 6.6 (Restricted analytic function). A function f : A ⊂ Rn −→ R is
said to be restricted analytic if there exist an open set O ⊆ Rn and an analytic
function g : O −→ R such that A ⊂ O and g|A = f . The class of restricted analytic
functions on A is denoted by an(A).

Definition 6.7 (Piecewise analytic function of a real variable). Let I be a nonde-
generate interval. A function θ : I −→ R is said to be piecewise analytic if there
exists a finite partition of I into subintervals I1, . . . , Il such that θ|Ii ∈ an(Ii) for
all i ∈ [1 . . l ].

Theorem 6.8 (Piecewise analyticity and KL inequality). Let Θ ∈ C1(Rn) be of
the form (1.3) and suppose the potentials θ1, . . . , θK are piecewise analytic. Then
Θ is tame in Ran and for every x ∈ SΘ there is an integer s > 2 such that Θ
satisfies the KL inequality at x with ϕ(t) ∝ t1/s.

Proof. Suppose θ1, . . . , θK are piecewise analytic. For every k ∈ [1 . .K] and ρ > 0,
the graph of θk|[0,ρ) is a finite union of graphs of restricted analytic functions on
bounded intervals, and hence is Ran-definable. So the potentials are tame in Ran,
and it follows from Theorem 6.3 that Θ is tame in Ran. By definition, an Ran-
definable set is the image of a bounded subanalytic set under an analytic isomor-
phism (namely, the inverse of (B.1)) and is thus subanalytic; therefore Θ|B(0,r) is
subanalytic for all r > 0. Let x ∈ SΘ. Applying Theorem B.7 to the function
y ∈ B(0, ‖x‖+ 1) 7−→ Θ(y)−Θ(x), we obtain that there exist positive constants
c and α and an integer s > 2 such that

‖∇Θ(y)‖ > c |Θ(y)−Θ(x)|1−1/s for all y ∈ B(x, 1) ∩ {Θ−Θ(x) ∈ (0, α)},
which completes the proof. �

The rational number 1/s ∈ (0, 1
2 ] is called the  Lojasiewicz exponent of x. This

exponent can be interpreted as a measure of flatness around x : the smaller 1/s,
the flatter Θ. Theorem 6.9 below relates the convergence rate of an inexact FHQ
sequence to the  Lojasiewicz exponent of its limit, confirming the intuition that the
flatter the objective around x ∈ SΘ, the slower the convergence to x. (The case
s = 2 arises when Θ is quadratic positive definite in a neighborhood of x.)

Theorem 6.9 (Convergence rate and  Lojasiewicz exponent). Let Θ ∈ Cobj(Rn)

and suppose the potentials θ1, . . . , θK are piecewise analytic. Let X := (x(p))p be
an inexact FHQ sequence starting in a generalized cup of Θ, and let 1/s be the
 Lojasiewicz exponent of the limit x of X .
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(i) If s = 2, then there is a constant ξ ∈ (0, 1) such that ‖x(p) − x‖ = O(ξ p).

(ii) If s > 3, then ‖x(p) − x‖ = O(p−1/(s−2)).

Proof. Suppose θ1, . . . , θK are piecewise analytic. It follows immediately from The-
orems 5.5 and 6.8 that X converges to a stationary point x with  Lojasiewicz expo-
nent 1/s, s ∈ [2 . .∞). By the triangle inequality, we have

‖x(p) − x‖ 6
∑

q∈ [p..∞)

‖x(q+1) − x(q)‖ =: Zp for all p ∈ N,

so it suffices to show that the stated convergence bounds hold with ‖x(p) − x‖
replaced by Zp.

Suppose that no point x(p) belongs to SΘ (for otherwise ‖x(p)−x‖ is eventually
zero and the theorem is trivial) and set tp := Θ(x(p))−Θ(x) for all p. The sequence
(tp)p is strictly decreasing to zero (by Theorem 4.7(iv)), and it follows from the KL
inequality at x that there exist c0 > 0 and p0 ∈ N such that

(6.3) ‖∇Θ(x(p))‖ > c0 t
1−1/s
p for all p > p0.

We assume from now on that p > p0. Since the function t ∈ R+ 7−→ t1/s is concave,

s
(
t 1/s
p − t 1/s

p+1

)
> t 1/s−1

p (tp − tp+1) > c0‖∇Θ(x(p))‖−1(tp − tp+1).

By Lemma 5.3, there are positive constants c1 and c2 independent of p such that

(6.4) c1‖∇Θ(x(p))‖ 6 ‖x(p+1) − x(p)‖ and c2‖x(p+1) − x(p)‖2 6 tp − tp+1.

Consequently, there exists γ0 > 0 such that

γ0

(
t 1/s
p − t 1/s

p+1

)
> ‖x(p+1) − x(p)‖,

and hence

(6.5) Zp 6 γ0

∑
q∈ [p..∞)

(
t 1/s
q − t 1/s

q+1

)
= γ0 t

1/s
p .

From (6.3) and the first inequality in (6.4), we also have

(6.6) t 1−1/s
p 6 (c0c1)−1‖x(p+1) − x(p)‖ = (c0c1)−1(Zp − Zp+1).

Combining (6.5) and (6.6), we obtain that there exists γ1 > 0 such that

(6.7) Z s−1
p 6 γ1(Zp − Zp+1).

Consider the case s = 2. Since Zp+1 < Zp, it follows from (6.7) that

Zp+1 < ξZp, ξ := γ1(1 + γ1)−1.

Therefore Zp0+q < ξ p0+q(Zp0ξ
−p0) for all q > 1, and so Zp = O(ξ p).

Now suppose that s > 3. Using (6.7) again, we have

0 < γ−1
1 6 (Zp − Zp+1)Z 1−s

p 6
∫ Zp

Zp+1

t1−sdt 6 (s− 2)−1
(
Z 2−s
p+1 − Z 2−s

p

)
.

Hence there exists γ2 > 0 such that

γ2(p+ 1− p0) 6
∑

q∈ [p0 ..p]

(
Z 2−s
q+1 − Z 2−s

q

)
= Z 2−s

p+1 − Z 2−s
p0

,

and so

Zp+1 6
(
γ2(p+ 1− p0) + Z 2−s

p0

)1/(2−s) ∼ (γ2(p+ 1)
)1/(2−s)

.
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Therefore Zp = O(p1/(2−s)). �

To our knowledge, the potentials used in the computer vision and robust sta-
tistics literature are piecewise analytic (common admissible examples are given in
Appendix A), so Theorem 6.9 covers the current applications of FHQ optimization.
Still, a practical model describing a larger class of tame potentials can be useful;
this is subject of the next section.

6.3. Construction rules for tame objectives. We first provide a simple set of
rules for constructing potentials that are tame in Ran,exp. Then we extend this
description to include infinite branches of certain special functions. The resulting
potentials are tame in expansions of Ran,exp that contain the graph of either the
Riemann zeta function or the gamma function and are closed under integration.
We conclude with a summary of the investigated hierarchy of potentials.

6.3.1. Analytic-exponential tameness. Piecewise analytic potentials are tame in Ran

(as the proof of Theorem 6.8 shows), but there exist admissible o-minimal potentials
that are not. An example is the function

(6.8) θe(t) :=

{
t2 exp(t−1)

(
t+ exp(t−1)

)−1
if t > 0,

0 if t = 0,

where exp is the natural exponential function. If θe|(0,r) is Ran-definable for some

r > 0, then so must be exp|(r−1,+∞) (because exp(u) = uθe(u−1)(1 − u2θe(u−1))
for all u > 0), contradicting the fact that Ran is polynomially bounded. Therefore
none of the restrictions θe|(0,r) is Ran-definable, and so θe is not tame in Ran. More
generally, a potential θ is not tame in Ran if it confines the asymptotics of exp,
meaning that there is a finite interval on which the definition of θ requires an infinite
branch of the graph of exp. This leads us to consider o-minimal expansions of Ran

in which exp is definable.
Consider the collection of real functions

(6.9) A := an([−1, 1]) ∪ af (R) ∪ {exp},
where an([−1, 1]) is the class of restricted analytic functions on [−1, 1] and af (R)
is the class of affine functions on R. We denote by F the class of functions which
contains A and whose members are obtained by applying the following rules finitely
many times, where f and g are functions in F with respective domains If and Ig
in R.

(R1) f |I ∈ F for any nondegenerate interval I ⊂ If .

(R2) If If = Ig, then the sum f + g and the product fg belong to F .

(R3) If 0 6∈ If , then the reciprocal 1/f belongs to F .

(R4) If f(If ) ⊆ Ig, then the composite g ◦ f belongs to F .

(R5) If f is strictly monotonic, then the inverse f−1 belongs to F .

Every function in F is a real Ran,exp-definable function defined on some interval
I and analytic on I◦. In particular, F contains the real polynomial functions,
the natural logarithm function, the power functions t ∈ (0,+∞) 7−→ tυ, υ ∈ R,
the hyperbolic sine and cosine functions and their inverses, the restriction of the
tangent function to (−π2 ,

π
2 ), and the restrictions of the sine and cosine functions

to finite intervals. Note that since F is a class of o-minimal functions, it does not
contain any function f that oscillates infinitely often in the sense that f itself or
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one of its successive derivatives has infinitely many isolated zeros (see Remark 10
after Theorem B.5). This is why the sine and cosine functions on infinite intervals
are not members of F .

Definition 6.10 (Piecewise F -definable function). Let I be a nondegenerate in-
terval. A function θ : I −→ R is said to be piecewise F -definable if there exists
a finite partition of I into subintervals I1, . . . , Il such that θ|(Ii)◦ ∈ F for all i ∈
[1 . . l ].

Theorem 6.11 (Piecewise F -definable potentials yield KL objectives). Let Θ ∈
C1(Rn) be of the form (1.3). Suppose that for every k ∈ [1 . .K], the potential θk
is piecewise F -definable or there exists ρ ∈ (0,+∞) such that θk|(0,ρ) is piecewise
F -definable and θk|[ρ,+∞) is restricted analytic. Then Θ is tame in Ran,exp and
hence is a KL function.

Proof. First note that piecewise F -definable functions are Ran,exp-definable. Let
θk be as stated, with the convention that ρ = +∞ if θk is piecewise F -definable.
Let r > 0. If r 6 ρ, then θk|(0,r) is Ran,exp-definable; and if r > ρ, then the graph
of θk|(0,r) is the union of the graphs of θk|(0,ρ) and θk|[ρ,r), which are respectively
Ran,exp- and Ran-definable. So Theorem 6.3 applies with M = Ran,exp. �

Remark 6. Theorem 6.11 follows from the fact that piecewise F -definable func-
tions are Ran,exp-definable. So F can be extended by adding real analytic Ran,exp-
definable functions to A .

Remark 7. The case where θk is eventually analytic is included in Theorem 6.11
because piecewise analytic potentials are not necessarily piecewise F -definable (in-
deed, piecewise analyticity implies piecewise F -definability only on finite intervals).
Consider, for example, the admissible potential

(6.10) θ(t) :=

{
(1 + 4t2)1/2 − t−1 sin t if t > 0,

0 if t = 0.

While θ ∈ an(R+), the restrictions θ|(ρ,+∞), ρ > 0, are nondefinable (for otherwise
sin|(ρ,+∞) would be o-minimal) and hence do not belong to F .

Theorem 6.11 generalizes Theorem 6.8 in that piecewise F -definability allows
to confine the asymptotics of the exponential function. We say for short that exp
is F -confinable; clearly, the natural logarithm function, the real power functions,
and the hyperbolic functions are also F -confinable.

6.3.2. Confining special functions. The limitations of Theorem 6.11 appear when
needed to confine special functions such as the Gauss error function

(6.11) erf : t ∈ R 7−→ 2π−1/2

∫ t

0

exp(−u2)du,

the Riemann zeta function

(6.12) ζ : t ∈ (1,+∞) 7−→
∑

n∈ [1..∞)

n−t,

or the gamma function

(6.13) Γ : t ∈ (0,+∞) 7−→
∫ +∞

0

ut−1 exp(−u)du.
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For example, let θerf , θζ , and θΓ be defined on (0,+∞) as follows:

θerf(t) := t2 erf(t−1),(6.14)

θζ(t) := t2
(
t+ ζ(1 + t−1)

)−1
,(6.15)

θΓ(t) := t2 Γ(2 + t−1)
(
t+ Γ(2 + t−1)

)−1
.(6.16)

These functions are analytic, and their continuous extensions to R+ (which are
zero at t = 0) are admissible potentials; but they are not covered by Theorem 6.11
because erf, ζ, and Γ are not Ran,exp-definable [26] and hence not F -confinable.

Remark 8. For every r > 0, we have erf|[−r,r] ∈ an([−r, r]) ⊂ F . So the er-
ror function can be used to define piecewise F -definable potentials as long as its
asymptotics is not confined. We can also use the restrictions of the zeta and gamma
functions to any finite interval, though for a different reason: ζ|(1,1+r) and Γ|(0,r)
are Ran-definable for all r > 0 [26] and thus can be added to A for extending F
(see Remark 6).

The asymptotics of erf, ζ, and Γ could be used freely if these functions were de-
finable in a same o-minimal expansion of Ran,exp, but there is currently no evidence
that such a structure exists. The largest currently known o-minimal structures are
the so-called Pfaffian closures [27–29] of the expansions Ran∗ and RG of Ralg by
convergent generalized power series [30] and multisummable series [31]. Here is
what we need to know about these structures:

• Ran∗ and RG are o-minimal,

• 〈Ran∗, {exp}〉 and 〈RG , {exp}〉 are o-minimal expansions of Ran,exp,

• ζ and Γ are, respectively, 〈Ran∗, {exp}〉- and 〈RG , {exp}〉-definable,

• the Pfaffian closure of an o-minimal structureM, denoted by Pf(M), is an
o-minimal expansion of M which is closed under integration of continuous
functions of one variable,

• Pf(Ran∗) and Pf(RG) are expansions of 〈Ran∗, {exp}〉 and 〈RG , {exp}〉,
respectively.

In particular, ζ is Pf(Ran∗)-definable, Γ is Pf(RG)-definable, and erf is definable
in both Pf(Ran∗) and Pf(RG). So the best we can do is to extend F to classes of
o-minimal functions in which erf and either ζ or Γ are confinable.

Given σ ∈ {ζ,Γ}, we let Fσ be the class of functions whose definition is obtained
from that of F by (i) adding σ to the collection A , (ii) replacing the symbol F by
Fσ, and (iii) supplementing (R1)–(R5) with the following rule:

(R6) for any u ∈ (If )◦, the antiderivative t ∈ (If )◦ 7−→
∫ t

u

f belongs to Fσ.

Piecewise Fσ-definable functions are defined as in Definition 6.10, with F replaced
by Fσ. Since the functions in F are Ran,exp-definable, piecewise Fζ - and FΓ -
definable functions are respectively Pf(Ran∗)- and Pf(RG)-definable. Therefore the
proof of Theorem 6.11 remains valid if we replace F and Ran,exp by Fζ and Pf(Ran∗)
or by FΓ and Pf(RG). This yields the following result.

Theorem 6.12 (Expansion to special functions). Let σ ∈ {ζ,Γ}. In Theorem 6.11,
the piecewise F -definability condition can be relaxed to piecewise Fσ-definability.
The objective Θ is then tame in Pf(Ran∗) if σ = ζ or in Pf(RG) if σ = Γ.
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Example:

Example:

Example:

Example:

Admissible 
potentials

Figure 5. Hierarchy of tame potentials. The class pan contains
all the potentials listed in Appendix A; the examples θe, θerf , θζ ,
and θΓ are defined in (6.8) and (6.14)–(6.16). A C1 objective of
the form (1.3) is tame if all its potentials belong to a same class—
namely either pFζ or pFΓ.

6.3.3. Summary. The combination of Theorems 5.5 and 6.11 guarantees finite-
length convergence to a stationary point for a wide class of admissible potentials.
This class consists of tame functions defined by simple rules and can be extended
to include special functions (Theorem 6.12). Two mild restrictions must be kept
in mind. First, as there is no known o-minimal structure expanding both Pf(Ran∗)
and Pf(RG), infinite branches of o-minimal special functions cannot be used freely;
in particular, tameness is not guaranteed if the asymptotics of ζ and Γ at +∞
are confined simultaneously (this rules out, for example, objectives containing both
the potential functions θζ and θΓ defined in (6.15) and (6.16)). Second, tameness
precludes potentials whose definition involves—either directly or after differentia-
tion(s)—a function with a countably infinite set of zeros in a finite interval (exam-
ples of such potentials are given by (5.13) and (6.2)). Nontame potentials, however,
are unlikely to be needed in practice; but if this happens, we can always fall back
on the global convergence properties stated in Theorem 4.9.

To conclude this section, Figure 5 shows the hierarchy of tame potentials and
their associated o-minimal structures. The notation tame(M) stands for the class
of functions on R+ that are tame inM (Definition 6.1), pan is the class of piecewise
analytic functions on R+ (Definition 6.7), and pF denotes the class of functions
that are piecewise F -definable on (0, ρ) for some ρ ∈ (0,+∞] (Definition 6.10) and
restricted analytic on [ρ,+∞) if ρ < +∞.

7. Implementation using the conjugate gradient method

There is freedom in implementing the inexact FHQ algorithm, since the accuracy
parameter µ can take any value in (0, 1) (recall that the smaller µ, the closer to
the behavior of the exact FHQ algorithm). Nevertheless, we must ensure that a
generated sequence (x(p))p is a true inexact FHQ sequence, namely, that it satisfies

(7.1) sup
p∈N

inf
{
µ ∈ (0, 1) : x(p+1) ∈ Φµ(x(p))

}
< 1.
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We first show in Section 7.1 that inexact FHQ sequences can be generated by using
the CG method to compute each iterate. Then, in Section 7.2, we give a version
of the CG method tailored to inexact FHQ optimization, and we discuss two CG
termination strategies. We conclude in Section 7.3 with the main stopping criterion.

7.1. Why use CG? We begin with an alternative definition of Φµ in terms of an
upper bound on the energy norm of the error for a linear system.

Proposition 7.1 (Reformulation of the inexact FHQ map). Let Θ ∈ Cobj(Rn) and
µ ∈ (0, 1). For all x,y ∈ Rn,

(7.2) y ∈ Φµ(x) ⇐⇒ ‖y − y∗‖ATE(x)A 6
√
µ‖x− y∗‖ATE(x)A ,

where y∗ := Φ0(x) is the unique solution of the linear system

(7.3) ATE(x)Az = ATE(x)a.

Proof. Let x ∈ Rn. By definition, Φ0(x) is the global minimizer of the positive
definite quadratic function Θ(x, ·) (see (3.4)), whose gradient is

∇Θ(x, ·)(z) = ATE(x)(Az − a).

So Φ0(x) is the unique solution of the linear system (7.3). Let y ∈ Rn. Using (4.2)
and (4.3), we have

‖y − y∗‖2ATE(x)A = ‖y − x+ (ATE(x)A)−1∇Θ(x)‖2ATE(x)A

= ‖y − x‖2ATE(x)A + 2(y − x)T∇Θ(x) + ‖∇Θ(x)‖2(ATE(x)A)−1

= 2
(
Θ(x,y)−Θ(x)

)
+ 2

(
Θ(x)−min Θ(x, ·)

)
= 2

(
Θ(x,y)−min Θ(x, ·)

)
.

Hence

‖y − y∗‖2ATE(x)A 6 µ‖x− y∗‖2ATE(x)A

⇐⇒ Θ(x,y)−min Θ(x, ·) 6 µ
(
Θ(x,x)−min Θ(x, ·)

)
⇐⇒ Θ(x,y)−min Θ(x, ·) 6 hµ(x)

⇐⇒ y ∈ Φµ(x),

which completes the proof. �

From Proposition 7.1, the (p + 1)th iteration of the inexact FHQ algorithm
amounts to solving the following inner optimization problem: given x := x(p), find
an approximate solution y of the system (7.3) such that the energy norm of the
error is bounded above as in (7.2), where µ is independent of p. Since the n × n
matrix ATE(x)A is symmetric positive definite, it is natural to use the CG method
when n is large, as is typically the case for inverse imaging problems.

We assume symmetric preconditioning: given a nonsingular matrix U and letting
z′ := Uz, the system (7.3) is equivalent to

(7.4) U−TATE(x)AU−1︸ ︷︷ ︸
=: B(x)

z′ = U−TATE(x)a.

Let y(j) be the jth iterate of the preconditioned CG algorithm for (7.3) starting
from y(0) = x (so Uy(j) is the jth iterate of unpreconditioned CG for (7.4) starting
from Ux). Let κ(x) denote the Euclidean condition number of the preconditioned
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system matrix B(x), that is, κ(x) := λ′n(x)(λ′1(x))−1, where λ′n(x) and λ′1(x)
are the largest and smallest eigenvalues of B(x), respectively. Using the fact that
‖Uz‖B(x) = ‖z‖ATE(x)A, we have the following bound on the energy norm of the
error (see, e.g., [32, Theorem 9.4.12]): for every j ∈ N,

(7.5a) ‖y(j) − y∗‖ATE(x)A 6 ωj ◦ Λ(x)‖x− y∗‖ATE(x)A,

where the functions Λ : Rn −→ [0, 1) and ωj : [0, 1) −→ [0, 1) are defined by

(7.5b) Λ(x) :=
(√

κ(x)− 1
)(√

κ(x) + 1
)−1

and ωj(t) := 2tj(1 + t2j)−1.

The quantity ωj ◦Λ(x) increases with increasing Λ(x) and decreases with increasing
j. Therefore, if κ(x) is bounded, inexact FHQ sequences can be generated by
solving the inner optimization problems using CG with a fixed minimum number
of iterations. This leads to the following theorem.

Theorem 7.2 (Inexact FHQ sequences via truncated CG). Let Θ ∈ Cobj(Rn), let

J be a positive integer, and let X := (x(p))p∈N be constructed as follows:

(i) the starting point x(0) is in a generalized cup of Θ,

(ii) for every p ∈ N, the iterate x(p+1) is an approximate solution of the linear
system ATE(x(p))Az = ATE(x(p))a obtained in J or more CG iterations
starting from x(p).

Then there exists µ ∈ (0, 1) such that X is generated by Φµ.

Proof. Let G be a generalized cup of Θ containing x(0). Since G is compact and
λ′1(x) > 0 for all x, the condition number κ(x) is bounded on G, and hence

Λ(G ) := sup
x∈G

Λ(x) < 1.

Let x ∈ G and j ∈ [J . .∞). From (7.5) we deduce that

‖y(j) − y∗‖ATE(x)A 6 ωJ(Λ(G ))‖x− y∗‖ATE(x)A,

and so, in view of Proposition 7.1,

(7.6) y(j) ∈ ΦµJ (x), µJ := (ωJ(Λ(G )))2.

Since ΦµJ (G) ⊆ G (see the proof of Lemma 4.5(i)), it follows by induction that

x(p+1) ∈ ΦµJ (x(p)) for all p ∈ N. �

7.2. The inner CG algorithm. Let x ∈ Rn and define

(7.7) A(x) := E(x)1/2A and a(x) := E(x)1/2a.

The system (7.3) can be written as

(7.8) A(x)TA(x)z = A(x)Ta(x),

which are the normal equations for minimizing ‖A(x)z − a(x)‖, z ∈ Rn. This
suggests to use the CG method for least squares problems, or CGLS [33]; we recall
below the preconditioned version of this algorithm.
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Algorithm. Symmetrically preconditioned CGLS applied to (7.8)

Given y(0) ∈ Rn, set r(0) := A(x)T (a(x)−A(x)y(0)),
s(0) := U−1U−Tr(0), p(0) := s(0), τ0 := (r(0))Ts(0)

for j = 0, 1, 2, . . . do
q(j) := A(x)p(j)

αj := τj /‖q(j)‖2
y(j+1) := y(j) + αjp

(j)

r(j+1) := r(j) − αjA(x)Tq(j)

s(j+1) := U−1U−Tr(j+1)

τj+1 := (r(j+1))Ts(j+1)

βj := τj+1/τj
p(j+1) := s(j+1) + βjp

(j)

end for

Theorem 7.2 leaves us the freedom to choose when to stop the CG algorithm
beyond the minimum number of iterations J . We describe below two strategies to
control, respectively, the backward error of the computed solution and the accuracy
of the inexact FHQ map. We then briefly discuss the behavior in finite precision
arithmetic.

7.2.1. Control of the backward error. Backward error measures are often used in
stopping criteria of iterative linear system solvers [34, 35]. In the case of CG, the
preference is for the normwise relative backward error [36] whose definition follows.
Let y be an approximate solution to a square, nonsingular linear system Bz = b.
The normwise relative backward error of y is

ν(y) := min
{
c ∈ R+ : (B + ∆B)y = b+ ∆b,

‖∆B‖ 6 c‖B‖, ‖∆b‖ 6 c‖b‖
}
,

(7.9)

where the vector and matrix norms are compatible in the sense that ‖Mz‖ 6
‖M‖ ‖z‖ for all matrices M and vectors z (the usual choice is the `2-norm, which
is compatible with the Frobenius and spectral norms). In other words, ν(y) is the
minimum relative amount by which B and b must be changed so that y is the exact
solution of the perturbed system (B + ∆B)z = b+ ∆b.

As shown in [37],

(7.10) ν(y) = ‖By − b‖
(
‖B‖ ‖y‖+ ‖b‖

)−1
.

Hence, by setting an upper threshold ε on ν(y) and identifying Bz = b with (7.8)
and y with the jth CG iterate, we obtain the stopping criterion

(7.11) ‖r(j)‖ 6 ε
(
‖A(x)TA(x)‖ ‖y(j)‖+ ‖A(x)Ta(x)‖

)
,

where r(j) := A(x)T (a(x)−A(x)y(j)) is the residual at the jth iteration. The im-
plementation of this criterion requires the additional computation of ‖A(x)TA(x)‖
and ‖A(x)Ta(x)‖ in the initialization step and of ‖y(j)‖ at each iteration.

7.2.2. Control of the accuracy. Under the assumptions of Theorem 7.2, the accu-
racy µ is smaller than the quantity µJ defined in (7.6), but this bound is overly
pessimistic and cannot even be estimated in practice. We propose here a stopping
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criterion which, unlike (7.11), allows to control the value of µ and involves only
quantities that are available in the CG algorithm.

For every integers j1 and j2 such that 0 6 j1 < j2, define Ej1, j2 by

(7.12) E 2
j1, j2 :=

∑
i∈ [j1 ..j2−1]

αi τi ,

where αi is the step length in the ith conjugate direction and τi := (r(i))Ts(i) =
‖U−Tr(i)‖2. This quantity is of particular interest because it gives the difference
between the squares of the j1th and j2th error energy norms [38, Section 3.1]:

(7.13) E 2
j1, j2 = E 2

j1 − E 2
j2 , Ej := ‖A(x)(y(j) − y∗)‖.

Suppose the CG algorithm starts from y(0) = x. Setting y = y(j) in (7.2) and
(j1, j2) = (0, j) in (7.13), we deduce that

(7.14) y(j) ∈ Φµ(x) ⇐⇒ E 2
j 6 µ(1− µ)−1E 2

0, j .

Let d ∈ [1 . .∞). If the error energy norm decreases sufficiently between iterations
j and j + d, so that E 2

j+d � E 2
j , then it follows from (7.13) that Ej,j+d is a tight

lower bound on Ej . Using this bound as an approximation to Ej in (7.14), we
obtain the stopping criterion

E 2
j,j+d 6 µ

(
E 2

0, j + E 2
j,j+d

)
⇐⇒

∑
i∈ [j..j+d−1]

αi τi 6 µ
∑

i∈ [0..j+d−1]

αi τi .
(7.15)

If d is large enough, this simple test ensures that any sequence constructed as in
Theorem 7.2 is generated by Φµ′ with µ′ ≈ µ. Moreover, since the evaluation of the
sums in (7.15) requires running the CG algorithm for j + d iterations, it is natural
to set the outer iterate x(p+1) to y(j+d) (rather than y(j)) when exiting the CG
loop, so the assertion that X is generated with an accuracy close to µ is all the
more true. Then, since (7.15) is not satisfied for j = 0, the minimum number of
iterations J is implicitly set to d+ 1 (so j ∈ [0 . . d ] in the CG loop). Alternatively,
we can set J independently of d to act as a safeguard when d is too small for Ej,j+d
to be a good estimate of Ej .

Remark 9 (Gauss-Radau quadrature). The relation (7.13)—originally proposed by
Hestenes and Stiefel in their seminal paper on the CG method [39, Equation (6:2)]
—can be recovered from the connection between CG and the Gauss quadrature
approximation of an underlying Riemann-Stieltjes integral (see, e.g., [40]). This
connection can also be exploited to derive an upper bound on Ej using the so-
called Gauss-Radau quadrature rule [40, 41], which is useful if needed to ensure
that X is generated by Φµ for a precise value of µ. However, we did not pursue
this direction for two reasons. First, it is sufficient in practice to guarantee that X
is generated with an accuracy reasonably close to a prescribed value. Second, the
Gauss-Radau rule is computationally expensive because it requires a tight lower
bound on the smallest eigenvalue of the preconditioned system matrix at every
outer iteration.
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7.2.3. Behavior in finite precision arithmetic. It is shown in [42] and verified ex-
perimentally in [43] that finite precision CG for solving a linear system Bz = b
is equivalent to exact precision CG applied to a larger system whose eigenvalues
lie in small intervals around those of B. It follows that the exact arithmetic er-
ror bound (7.5) (which is defined solely in terms of the extreme eigenvalues of the
preconditioned system matrix) holds to a close approximation for finite precision
computations, implying that rounding errors do not affect Theorem 7.2. The same
goes for the proposed inner termination strategies. Indeed, the backward error
(7.10) can be computed with negligible rounding error, and the estimate Ej,j+d
(see (7.12)) of the jth error energy norm is stable in finite precision arithmetic [38].
So both the stopping criteria (7.11) and (7.15) can be used safely.

7.3. Termination of the outer iterations. Three standard criteria can be used
to test the convergence of the inexact FHQ algorithm: the iterate-based criterion

(7.16) ‖x(p+1) − x(p)‖ 6 ε̆ max
{

1, ‖x(p)‖
}
,

the objective-based criterion

(7.17) Θ(x(p))−Θ(x(p+1)) 6 ε̆ max
{

1, |Θ(x(p))|
}
,

and the gradient-based criterion

(7.18) ‖∇Θ(x(p))‖ 6 ε̆ max
{

1, |Θ(x(p))|
}
,

where ε̆ is a given tolerance and the max{1, ·} function prevents the right-hand side
from becoming too small in case ‖x(p)‖ or Θ(x(p)) gets close to zero. (The use of
the objective function in the right-hand side of (7.18) ensures scale independence,
as multiplying Θ by a constant does not change the inequality ‖∇Θ‖ 6 ε̆ |Θ|.) All
three criteria are appropriate in light of Theorems 4.7(iii)–(iv) and 4.9(iii). But
since we are primarily interested in finding stationary points, the gradient-based
criterion is the wisest choice.

8. Experiments

In this section we illustrate the behavior of the CG-based implementation of the
inexact FHQ algorithm on three inverse problems. In each case, the observation
model is of the form (1.1) and we look for minimizers of a nonconvex objective
Θ ∈ Cobj with piecewise analytic potentials. We distinguish two versions of the
algorithm: the backward error FHQ algorithm, which uses the stopping criterion
(7.11) to control the normwise relative backward error of the CG iterates, and the
Gauss quadrature FHQ algorithm, which controls the accuracy µ via the criterion
(7.15) (the reason we use the term “Gauss quadrature” is given in Remark 9).
Both generate inexact FHQ sequences as in Theorem 7.2 and thus converge to a
stationary point of Θ by Theorems 5.5 and 6.8.

After some preliminary remarks, we begin in Section 8.2 by examining the sta-
bility of the Gauss quadrature algorithm, first with the gradient-based outer ter-
mination criterion (7.18) and then in the long run. For this purpose, we consider a
limited-data tomography problem with a standard objective combining a quadratic
data-fidelity term with a regularizer operating on the spatial gradient. The behav-
ior of the Gauss quadrature algorithm is further investigated in Section 8.3, where
we look at the effect of the outer termination tolerance and of preconditioning;
here the focus is on image deblurring under mixed Gaussian-impulse noise, and



INEXACT HALF-QUADRATIC OPTIMIZATION 31

the objective involves a non-quadratic data-fidelity term and a tight-frame regu-
larizer. Finally, we compare the backward error and Gauss quadrature algorithms
in Section 8.4, where we consider an image inpainting problem and a regularizer
operating in the domain of a patch-based sparsifying transform.

8.1. Preliminary remarks. The backward error and Gauss quadrature algorithms
always start from x(0) = 0 (the zero image), and the default choice for precondi-
tioning the inner systems is the Jacobi preconditioner: the matrix U in (7.4) is

(diag(ATE(x)A))1/2 = diag
(
‖A(: , 1)‖E(x), . . . , ‖A(: , n)‖E(x)

)
,

where A(: , k) denotes the kth column of A. In Section 8.3, we also use incomplete
Cholesky (IC) preconditioning, for which U is the upper triangular IC factor of the
inner system matrix.

The quality of the solutions is assessed with the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index. The PSNR (in dB) of a computed so-
lution x is defined by

PSNR := 20 log10

(√
n

maxk [x•]k −mink [x•]k
‖x− x•‖

)
,

where x• denotes the original image, and the SSIM index is defined in [44] (we use
the MATLAB implementation available at http://ece.uwaterloo.ca/~z70wang/
research/ssim with default settings).

In the long run, we aim to reach a stationary point to machine precision, that
is, a point x satisfying ‖∇Θ(x)‖ 6 ‖∇Θ(x)−∇Θ(y)‖ for any y with entries [y]k
such that { [x]k, [y]k } is a two-element set of consecutive double-precision floating-
point numbers. For simplicity, we say that machine precision is reached when the
number of outer iterations p is large enough so that x(p) and all subsequent iterates
are stationary to machine precision.

8.2. Reconstruction from limited projection data. We consider the problem
of reconstructing the modified 256×256 Shepp-Logan phantom shown in Figure 6(a)
from the limited parallel-beam projection data displayed in Figure 6(b). These data
consist of 90 evenly spaced projections over 180◦, each with four gaps of width twice
the detector size and poisson noise corresponding to 2 × 104 incident photons per
detector. The observation matrix D is of size 27000× n, n = 2562, and its density
(namely, the percentage ratio of its number of nonzero entries to its total number
of entries) is 0.69%.

We look for solutions that minimize the objective Θ : Rn −→ R defined by

(8.1) Θ(x) := ‖Dx− d‖2 + γ
∑
l

ϑδ
(
‖Glx‖

)
, ϑδ(t) := (δ2 + t2)1/4 −

√
δ,

where γ > 0 controls the regularization strength, δ > 0 controls how well the
admissible potential ϑδ approximates the square root function (the smaller the
value of δ, the better the approximation), and {Gl ∈ R2×n} l is the usual spatial-
gradient operator: l indexes the pixels in x and the two components of Glx are the
horizontal and vertical differences at the lth pixel location (see, e.g., [2, Equation
(5.2)]). The sum

∑
l ϑδ(‖Glx‖) approximates the square root of the `1/2 -norm of

the vector with entries ‖Glx‖ and hence promotes sparsity of the spatial gradient.

Looked at another way, since ϑδ is strictly concave on (
√

2δ,+∞), the regularizer

preserves spatial-gradient magnitudes greater than
√

2δ cm−1. We set δ = 10−3,

http://ece.uwaterloo.ca/~z70wang/research/ssim
http://ece.uwaterloo.ca/~z70wang/research/ssim
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Figure 6. Reconstruction problem: (a) modified 256×256 Shepp-
Logan phantom; (b) limited parallel-beam projection data (the
detector size matches that of the pixels in the phantom and the
red lines indicate gaps due to defective detectors).

so
√

2δ is much smaller than the smallest nonzero value of the spatial-gradient
magnitude in the phantom:

√
2δ ≈ 1.41× 10−3 cm−1 � min

l :Glx• 6=0
‖Glx

•‖ = 5.55× 10−2 cm−1.

The choice of the strength γ is beyond the scope of this paper; we simply adjust it
to obtain the highest PSNR (about 48 dB, achieved for γ = 0.016).

The intersection of the null spaces of the matrices Gl is the set of constant
images, and the only constant image in the null space of D is the zero image.
Therefore Θ is coercive and Theorem 5.5 holds independently of the starting point
(see Remarks 2 and 3). However, to avoid being trapped in a shallow basin of
attraction, we guide the first iterations of the inexact FHQ algorithm by replacing
ϑδ with admissible potentials ϑ(p) such that the optimization difficulty increases
with p. We limit this continuation process to a fixed number of iterations so as not
to question our convergence results (see [1] for motivation and details). Let idδ be
the admissible approximation to the identity function defined by

idδ(t) := (δ2 + t2)1/2 − δ.

We use a continuation sequence (ϑ(p))p∈ [0..50] of the form

(8.2) ϑ(p) := κpϑδ + (1− κp)idδp ,

where (κp)p∈ [0..50] increases linearly from 0 to 1 and (δp)p∈ [0..50] decreases linearly
from 100δ to δ. Examples of these potentials are shown in Figure 7.

We first examine the behavior of the Gauss quadrature FHQ algorithm combined
with the gradient-based outer termination criterion (7.18). Table 1 gives the total
number of outer iterations (denoted by N), the total number of CG iterations
(denoted by NCG), and the PSNR of the computed solutions for practical values
of the inner control parameters µ and d and for the outer termination tolerance
ε̆ = 10−6. The number NCG is given by

(8.3) NCG :=
∑

p∈ [1..N]

(d+ jp),
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Figure 7. Continuation sequence (8.2) for the square root ap-
proximation ϑ10−3 (the maximum abscissa of the left plot is twice
the maximum value of the spatial-gradient magnitude in the phan-
tom).

where jp is the smallest integer j > 1 satisfying the CG stopping criterion (7.15)
at the pth outer iteration. The algorithm consistently produces high-quality recon-
structions: the PSNR is always greater than 48 dB and is constant to five significant
digits for µ 6 10−5. As an example, Figure 8 shows the reconstruction obtained
for (µ, d) = (10−3, 4) together with the highest-PSNR solution found using TV
regularization (that is, by replacing ϑδ with idδ in (8.1)). The PSNR of the con-
vex reconstruction is 11 dB smaller than that of the nonconvex reconstruction, the
differences between the two being particularly pronounced at edge locations, where
the magnitude of the spatial gradient is large. Another indicator of good behavior
is the stability of the total number of outer iterations when the inner solutions are
sufficiently accurate: N varies little for µ 6 10−3 and is constant for µ 6 10−6.
We do not report the computation time, which is machine-dependent, but there
is a nearly affine relationship between the total run time and the total number of
CG iterations; moreover, NCG is eventually affine in both − log10 µ and d (we will
call the quantity − log10 µ the log-accuracy). Note also that the Gauss quadrature
FHQ algorithm performs well even for “unwise” choices of µ and d. For example,
for (µ, d) = (0.9, 1), it terminates in 886 outer iterations at a PSNR of 47.136 dB.

We now examine the long-run convergence. Figure 9 plots the norm of the gra-
dient ‖∇Θ(x(p))‖, the objective Θ(x(p)), and the PSNR over 1000 outer iterations
for d = 4 and log-accuracies between 1 and 7. For each accuracy level, the norm of
the gradient eventually decreases to a steady value slightly below 10−12, a plateau
that occurs when x(p) is a stationary point to machine precision. Because of the
nonconvexity of the regularizer, the objective is riddled with shallow local minima2.
This explains the slight differences between the computed solutions, as well as why
two inexact FHQ sequences with the same starting point but different accuracies
can follow different paths in the objective landscape. That said, the trajectory of
the iterates hardly changes when µ is decreased below 10−2, so the magenta curve
corresponding to µ = 10−7 represents the behavior of the exact FHQ algorithm for
the 550 or so first iterations (before machine precision is reached). The objective

2Note, however, that nonconvex regularization does not necessarily yields nonconvex objec-
tives, even when the data-fidelity term is quadratic (see, e.g., [2, Appendix B]).
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Table 1. Behavior of the Gauss-quadrature FHQ algorithm as a
function of µ and d for an outer termination tolerance of 10−6.
(The PSNR is rounded to five significant digits.)

µ

10−1 10−2 10−3 10−4 10−5 10−6

Total number of outer iterations (N)

2 653 233 290 290 290 289

4 383 287 291 290 289 289

d 8 242 290 291 298 289 289

16 297 298 289 289 289 289

32 289 289 289 289 289 289

Total number of CG iterations (NCG)

2 2749 2285 4787 7268 9925 12607

4 2499 3532 5819 8435 11087 13752

d 8 2607 4680 7230 10168 12592 15247

16 5376 7053 9599 12352 15032 17700

32 9852 11498 14192 16996 19684 22335

PSNR in dB

2 48.008 48.031 48.058 48.058 48.058 48.058

4 48.002 48.058 48.058 48.058 48.058 48.058

d 8 48.044 48.058 48.058 48.066 48.058 48.058

16 48.066 48.066 48.058 48.058 48.058 48.058

32 48.058 48.058 48.058 48.058 48.058 48.058

always decreases with p—even when ‖∇Θ(x(p))‖ increases—and is nearly con-
stant between consecutive gradient peaks starting from p = 200. In other words,
in the close vicinity of a stationary point, the trajectory of the iterates switches
between nearly flat regions of decreasing height in the objective landscape. Each
gradient peak also coincides with a rise in PSNR; however, after 200 iterations, the
maximum relative difference of the PSNR lies between 2.7 × 10−4 for µ = 10−7

and 4.6 × 10−4 for µ = 0.1, so there is no need to reach machine precision from
the standpoint of this quality measure. Finally, we note that the outer termination
criterion (7.18) (represented by the gray dashed curve in the upper plot) seems
to amount to a constant threshold on the norm of the gradient. Indeed, after
50 iterations, the objective lies in the interval [25.085, 25.138] and thus (7.18) is
approximately equivalent to ‖∇Θ(x(p))‖ 6 25 ε̆.

8.3. Deblurring under mixed Gaussian-impulse noise. Here we focus on the
problem of restoring the 254×254 “peppers” image shown in Figure 10(a) from the
blurred and noisy data displayed in Figure 10(b). These data were generated by
first blurring with a 7× 7 rotationally symmetric Gaussian kernel with a standard
deviation of one pixel, then adding white Gaussian noise at 30 dB SNR (this decibel
level corresponds to a noise standard deviation of 1.94), and finally degrading the
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Figure 8. Reconstructions of the Shepp-Logan phantom using
spatial-gradient regularization with (a) the square root approxi-
mation ϑ10−3 (PSNR = 48.058 dB) and (b) the identity approxi-
mation id10−3 (PSNR = 37.006 dB). The images shown in (c) and
(d) are the corresponding absolute differences with the phantom.

result by 20% random-valued impulse noise. The observation matrix D is of size
2482 × n, n = 2542, and has a density of 0.076%.

Borrowing from robust statistics [45], we deal with mixed Gaussian-impulse noise
by using the Huber function ϑHu defined in (A.8). The objective is of the form

Θ(x) :=
∑
k

ϑHu

(
|[Dx− d ]k|/ς

)
+ ΘFrame(x) + ΘTV(x),

where ς is the standard deviation of the Gaussian noise component, ΘFrame is a
nonconvex tight-frame regularizer, and ΘTV is a first-order isotropic TV regularizer
that ensures coercivity and penalizes isolated outliers. The tight-frame regularizer
is given by

(8.4) ΘFrame(x) := γ1

∑
l

ϑLE

(
|[Hx ]l|

)
,

where ϑLE is the Lorentzian error function defined in (A.9), and H ∈ R16n×n is the
vertical concatenation of the high-pass operators of a two-level tight-frame system
generated from piecewise linear filters (we refer to [46] for details). Note that there
is no need to scale the argument of ϑLE to preserve tight-frame coefficients of large
magnitude, since ϑLE is strictly concave on (1,+∞) and the standard deviation of
the tight-frame coefficients of x• (the original “peppers” image) is greater than 5.
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Figure 9. From top to bottom: norm of the gradient, objective,
and PSNR versus number of outer iterations for d = 4 and dif-
ferent accuracy levels. The vertical dotted lines indicate the lo-
cations of the main gradient peaks, and the gray dashed curve in
the upper plot represents the right-hand side of the termination
criterion (7.18) for a tolerance of 10−6.

The TV regularizer has the form

ΘTV(x) := γ2

∑
l

idδ
(
‖Glx‖

)
,

where idδ and {Gl} l are as in Section 8.2. We set δ = 0.1, which is much smaller
than the standard deviation of the spatial-gradient magnitudes in x• (about 18.0).
As for the regularization strengths, we adjust γ1 to obtain the highest SSIM without
TV regularization (about 0.946, achieved for γ1 = 0.11), and then we choose γ2
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Figure 10. Deblurring problem: (a) original 254 × 254 “pep-
pers” image; (b) 248 × 248 degraded observation (7 × 7 Gaussian
blur, 30 dB white Gaussian noise, and 20% random-valued impulse
noise).

small enough to not interfere with the tight-frame regularizer except for preventing
outliers (γ2 = 0.05).

We guide the first steps of the optimization process using the continuation se-
quence (ϑ(p))p∈ [0..25] illustrated in Figure 11 and defined by

(8.5) ϑ(p) := κpϑLE + (1− κp)ϑMS,

where (κp)p∈ [0..25] increases linearly from 0 to 1 and ϑMS is the function of minimal
surfaces defined in (A.2). Furthermore, to avoid unnecessary CG computations
during the continuation phase, we replace the potential in the TV regularizer by idδp
with (δp)p∈ [0..25] decreasing linearly from 100δ to δ. Figure 12 shows the restoration

obtained for (µ, d) = (10−3, 4) and an outer termination tolerance of 10−6 (we keep
using the Gauss quadrature FHQ algorithm with the gradient-based termination
criterion (7.18)). Nonconvex regularization outperforms convex regularization: the
displayed solution has an SSIM of 0.94601 and a PSNR of 33.143 dB, while the best
solution obtained with ϑLE replaced by id10−2 (so that ΘFrame/γ1 approximates the
`1-norm of the tight-frame coefficients) has an SSIM of 0.94491 and a PSNR of
32.875 dB.

We now examine the impact of the outer termination tolerance and of precon-
ditioning the inner systems. We do not seek to compare possible preconditioning
strategies, but it is important to note that computationally expensive precondi-
tioners should be discarded because the inner system matrix ATE(x(p))A changes
at each outer iteration. As an alternative to Jacobi preconditioning, we consider
IC preconditioning with an absolute dropping strategy, which is feasible because
ATA is only 0.26% dense (as opposed to 71% for the tomographic reconstruction
problem). The drop tolerance is set to 10−3, the largest integer power of 10 for
which there is no pivot breakdown.

Table 2 summarizes the effects of decreasing the termination tolerance ε̆ and
switching from Jacobi to IC preconditioning; the reported values are the minimum,
the maximum relative difference, and the digit accuracy of the SSIM and PSNR
of the solutions obtained for µ 6 0.1 and d > 2. (The digit accuracy of a positive
function f on a set A is the largest integer d > 1 such that the difference supA f −
infA f is less than half a unit in the dth significant digit of infA f .) We see that
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Figure 11. Continuation sequence (8.5) for the Lorentzian error
potential (the maximum abscissa is twice the standard deviation
of the tight-frame coefficients of the original “peppers” image).
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Figure 12. (a) Restoration of the “peppers” image using tight-
frame regularization with the Lorentzian error potential (SSIM =
0.94601, PSNR = 33.143 dB); (b) absolute difference with the orig-
inal image.

the performance and stability of the Gauss quadrature FHQ algorithm—which are
already good for ε̆ = 10−6 and Jacobi preconditioning—are significantly improved
by decreasing ε̆ and using IC preconditioning. Furthermore, IC preconditioning
brings the trajectories closer together: for ε̆ = 10−12 and Jacobi preconditioning,
the total number of outer iterations N is in the range [724 . . 1416] and stabilizes to
798 when µ 6 10−5, whereas with IC preconditioning N = 798 for all µ 6 0.1.

Figure 13 shows the total number of CG iterations, NCG, as a function of the
inner control parameters for the two preconditioners and ε̆ = 10−12. Compared
with Jacobi preconditioning, IC preconditioning substantially reduces NCG and
its rate of increase with the log-accuracy. For Jacobi preconditioning, NCG is
eventually affine in the log-accuracy with a slope of about 4.8 × N, whereas for
IC preconditioning NCG increases approximately by N every several units in log-
accuracy: NCG ≈ (d + 1)N if − log10 µ 6 3, (d + 2)N if − log10 µ ∈ [4 . . 7], and
(d+ 3)N if − log10 µ ∈ {8, 9}. This piecewise constant-like behavior is explained as
follows. At low accuracy, up to − log10 µ = 3, the CG stopping criterion (7.15) is
usually satisfied for j = 1, its evaluation then requiring d+ 1 CG iterations. If the
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Table 2. Effects of decreasing the outer termination tolerance and
using IC preconditioning: minimum, maximum relative difference,
and digit accuracy of the SSIM and PSNR for µ 6 0.1 and d > 2.

ε̆, preconditioner

10−6, Jacobi 10−12, Jacobi 10−12, IC

SSIM

min. 0.946026 0.946194 0.946196

max. rel. diff. 1.13× 10−4 4.65× 10−6 1.31× 10−12

digit acc. 3 5 11

PSNR in dB

min. 33.1375 33.1740 33.1748

max. rel. diff 5.13× 10−4 1.18× 10−4 6.65× 10−12

digit acc. 3 4 11
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Figure 13. Total number of CG iterations (NCG) as a function
of µ and d for Jacobi and IC preconditioning and for an outer
termination tolerance of 10−12.

log-accuracy is increased to 4, then (7.15) generally holds for j = 2, thus adding one
CG iteration per outer iteration. Furthermore, this extra CG iteration increases the
log-accuracy by several units, resulting in NCG remaining approximately constant
up to − log10 µ = 7. Similar arguments can be made when increasing the log-
accuracy from 7 to 8.

Figure 14 plots the norm of the gradient versus the cumulative number of itera-
tions (that is, ‖∇Θ(x(p))‖ versus

∑
q∈[1..p](d+ jq), where jq is defined in the same

way as for (8.3)) and the number of CG iterations per outer iterations (that is,
d+ jp versus p) for the two preconditioners and for (µ, d) = (10−2, 4) and (10−8, 4).
The gradient curves are nearly scaled versions of each other (the dotted curves in
Figure 14(b) are those of Figure 14(a)), so the iterates x(p) follow similar paths
for the four cases considered; indeed, the trajectory of the iterates is stable when
µ 6 10−2, like for the reconstruction problem. As expected, the ratio of the total
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Figure 14. Jacobi versus IC preconditioning at low and high ac-
curacy: (a)(b) norm of the gradient as a function of the cumulative
number of CG iterations; (c)(d) number of CG iterations per outer
iteration. (The inner control parameter d is kept equal to 4.)

number of CG iterations for Jacobi preconditioning to that for IC preconditioning
increases with the log-accuracy, from 1.72 for µ = 10−2 to 4.58 for µ = 10−8. We
see from Figures 14(c) and (d) that with IC preconditioning, the number of CG it-
erations d+jp is equal to 5 (from the second iteration on) for µ = 10−2 and quickly
stabilizes at 7 for µ = 10−8; also, the increase in jp resulting from increasing the
log-accuracy is much smaller for IC than for Jacobi preconditioning. These last
observations agree with those from Figure 13.

8.4. Patch-based inpainting. We complete our experiments with the restoration
of the 256× 256 “Barbara” face image shown in Figure 15(a) from the moderately
sparse data displayed in Figure 15(b). The original image is the upper right quad-
rant of the full 512×512 “Barbara” image, and the data consist of 20% of the original
pixels chosen uniformly at random. The observation matrix D is an m× n binary
matrix with m = 13108 and n = 2562; its nonzero entries are (1, l1), . . . , (m, lm),
where l1, . . . , lm ∈ [1 . . n] are the indices of the nonmissing pixels.
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Figure 15. Inpainting problem: (a) original 256×256 “Barbara”
face image; (b) data obtained by randomly selecting 20% of the
pixels (the missing pixels are displayed in red).

We seek to minimize the sum of a quadratic data-fidelity term and a regulariza-
tion term based on the local sparse model introduced in [47]. This model assumes
that small patches of size, say,

√
w×
√
w in the original image x• are approximately

sparsifiable by a single transform W ∈ Rw×w (we suppose that w is the square of
an integer); more precisely, the columnwise representation y ∈ Rw of any patch in
x• satisfies Wy = z + e, where z is sparse and e is a small residual error in the
transform domain. The objective is defined by

Θ(x) := ‖Dx− d‖2 + γ
∑
i

∑
j

ϑGM

(
|[WPix ]j |/δ

)
,

where ϑGM is the Geman and McClure function defined in (A.10), and Pi ∈ Rw×n
is a binary matrix that extracts the patch at the ith pixel location (Pix is the
columnwise representation of the pixels in the image subdomain [i1 . . i1 +

√
w −

1] × [i2 . . i2 +
√
w − 1], where i1 and i2 are the ith pixel coordinates). The outer

sum in the regularizer is over evenly-spaced pixel locations, and the inner sum is
over the components of the vector WPix ∈ Rw.

We consider patches of size 8 × 8 (that is, w = 64) and we use the doubly-
sparse transform (DST) proposed in [48]: W is the product SV of a learnt sparse
transform S ∈ R64×64 with the 2-D discrete cosine transform (DCT) V ∈ R64×64

(defined as the Kronecker product of the unitary, 8 × 8, 1-D DCT matrix with
itself). The matrix W is called doubly sparse because it is a sparsifying transform
and its left factor S is sparse. As illustrated in Figure 16(a), the training patches
for learning S are extracted from the the upper left, lower left, and lower right
quadrants of the full “Barbara” image, with 50% overlap between any two successive
patches in the horizontal or vertical direction. The learning is performed using
the MATLAB code available from http://transformlearning.csl.illinois.

edu with default settings—a patch representation of the resulting DST is shown in
Figure 16(b). The regularizer operates on a patch cover with 75% horizontal and
vertical overlap; in other words, the regularization operator is the patch-based DST
formed by stacking the matrices WPi with i indexing the pixels whose coordinates
are both odd (this concatenated transform is of size 106×n and about 0.1% dense).

Noting that ϑGM is strictly concave on (1/
√

3,+∞), we set δ = 5 so as to preserve

the DST coefficients with magnitude greater than 5/
√

3, as is the case for nearly one

http://transformlearning.csl.illinois.edu
http://transformlearning.csl.illinois.edu
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(b)(a)

Figure 16. DST learning: (a) the 8× 8 training patches are ex-
tracted from the full 512 × 512 “Barbara” image with the upper
right quadrant removed (the sliding distance is 4 pixels, both hor-
izontally and vertically); (b) rows of the learnt DST W ∈ R64×64

represented as 8× 8 patches.

third of the original DST coefficients [WPix
• ]j . Again, the regularization strength

γ is adjusted to obtain the highest SSIM (about 0.873, achieved for γ = 7.9×10−6).
Since null(D) 6= {0} and ϑGM is bounded, Θ is not coercive. However, Condi-

tion (C4), which becomes null(D) ∩
(⋂

i null(WPi)
)

= {0}, is satisfied. Indeed,
null(WPi) is the set of images whose ith patch is zero (because W is invert-
ible) and the patches extracted via the matrices Pi cover the whole pixel grid; so⋂
i null(WPi) = {0}. We use a continuation sequence similar to (8.5) but with

ϑLE replaced by ϑGM. This sequence is illustrated in Figure 17; its role is to guide
the first iterates towards a generalized cup of Θ so that Theorem 5.5 holds. Fig-
ure 18(a) shows the restoration obtained for (µ, d) = (10−3, 5) after 85 iterations,
the minimum number needed to satisfy the gradient-based termination criterion
(7.18) with a tolerance of 10−6. For comparison, Figure 18(b) shows the cubic
interpolation computed using the MATLAB function “griddata”. Cubic interpola-
tion properly recovers smooth regions but fails to restore the strip texture of the
shawl; the corresponding SSIM and PSNR are, respectively, about 13% and 4.2 dB
smaller than for the DST-regularized solution.

Below we compare the Gauss quadrature FHQ algorithm considered so far to
the backward error FHQ algorithm. The latter uses the CG stopping criterion
(7.11), whose parameter ε is not to be confused with the tolerance ε̆ of the outer
termination criterion. We recall that the minimum number J of CG iteration per
outer iteration is implicitly set to d + 1 for the Gauss quadrature algorithm, and
we set J = 1 for the backward error algorithm. So the numbers of CG iterations at
the pth outer iteration of the Gauss quadrature and backward error algorithms are
d + jp and j′p, respectively, where jp is the smallest integer j > 1 satisfying (7.15)

with x = x(p) and j′p is defined similarly for (7.11).
Figure 19 plots the norm of the gradient and the number of CG iterations over

8000 outer iterations for the Gauss quadrature algorithm with (µ, d) = (10−2, 4)
and (10−3, 5) and for the backward error algorithm with ε = 10−14, 10−15, and
2−53 ≈ 1.11×10−16 (the latter value is the unit roundoff in IEEE standard double-
precision arithmetic). The number of outer iterations to reach machine precision
is significantly smaller for the Gauss quadrature algorithm (about 2500) than for
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Figure 17. Continuation sequence for the Geman and McClure
potential (the maximum abscissa is twice the standard deviation
of the scaled original DST coefficients [WPix

• ]j/δ).
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Figure 18. Restoration of the “Barbara” face image: (a) using
patch-based DST regularization with the Geman and McClure po-
tential (SSIM = 0.87376, PSNR = 25.847 dB); (b) using cubic
interpolation (SSIM = 0.75858, PSNR = 21.631 dB).

the backward error algorithm (between 3500 and 8000). Beyond 2500 outer iter-
ations, the cumulative number of CG iterations is larger for the lower-accuracy
Gauss quadrature algorithm (with (µ, d) = (10−2, 4)) than for the higher-accuracy
backward error algorithm (with ε = 2−53). However, the backward error algo-
rithm is computationally less efficient because of the extra computations needed to
evaluate (7.11). For example, over 5000 outer iterations, the cumulative number
of CG iterations is about five times larger for the higher-accuracy Gauss quadra-
ture algorithm (with (µ, d) = (10−3, 5)) than for the lower-accuracy backward error
algorithm (with ε = 10−14), whereas the former is 36% faster than the latter.

In the case of the Gauss quadrature algorithm, the number of CG iterations
per outer iteration is stable from the end of the continuation phase until machine
precision is reached (for all p ∈ [25 . . 2500], d+ jp is in [9 . . 12] for (µ, d) = (10−2, 4)
and in [12 . . 16] for (µ, d) = (10−3, 5)), after which jp drops to 1. The number
of CG iterations j′p controlled by the backward error criterion is less stable than
jp. We also observe that j′p = 1 whenever the norm of the gradient is below some
threshold. Indeed, as shown in Appendix C, there is a constant ε ′ ∈ (0, ε) such
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Figure 19. Norm of the gradient (top) and number of CG iter-
ations (bottom) versus number of outer iterations for the Gauss
quadrature FHQ algorithm (cyan and magenta) and the backward
error FHQ algorithm (red, green and blue). The horizontal dot-
ted lines represent the thresholds below which the backward error
criterion (7.11) is satisfied from the start.

that for sufficiently large p, the backward error criterion is satisfied from the start if
‖∇Θ(x(p))‖ 6 ε ′T∗, where T∗ is a constant depending on the limit stationary point.
For the three values of ε considered here, the backward error algorithm converge to
the same stationary point with T∗ ≈ 4× 106, and the gradient threshold delimiting
the intervals in which j′p = 1 is very close to εT∗, suggesting that ‖r(1,p)‖ 6 ‖r(0,p)‖
for sufficiently large p (see Proposition C.2).

It is important to note that the observations from Figure 19 concern small be-
havior changes in the long run. In fact, for ε̆ = 10−6 (the standard value of the
outer termination tolerance), the two algorithms terminate in 84 or 85 outer iter-
ations and perform similarly in terms of objective, PSNR, and SSIM: beyond 85
outer iterations, the objective and the PSNR are constant to five significant digits
and vary by less than 0.08% and 0.22%, respectively, and the SSIM is constant to
four significant digits and varies by less than 0.09%.

9. Conclusion

We showed that the inexact FHQ method converges globally to a stationary point
of the objective if the conditions (C1)–(C4) hold and the potentials are tame. These
minimal assumptions cover all current applications of minimizing C1 functions of
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the general form (1.3), which are prevalent in regularized image reconstruction and
restoration. Moreover, even in the unlikely situation where some potentials are not
tame, the inexact FHQ method converges either to a stationary point or to the
boundary of the set of stationary points.

We proposed an efficient and numerically stable implementation based on trun-
cated CG and coming in two versions: the backward error algorithm, which uses a
standard CG stopping criterion with no control on the accuracy of the outer iter-
ates, and the Gauss quadrature algorithm, which uses a less conventional criterion
that monitors the error energy norm to control the accuracy. The Gauss quadrature
algorithm is the more computationally efficient of the two; it is also robust to the
choice of its inner parameters µ and d. In practice, a good compromise between
solution quality and computation time is achieved by setting (µ, d) = (10−3, 5)
and using the gradient-based outer termination criterion (7.18) with a tolerance
of 10−6. When the objective in nonconvex, we recommend using a continuation
sequence at the beginning of the optimization process. This inexpensive technique
leads to deeper minima without altering the convergence properties of the inexact
FHQ method (it also guides the first iterates in case the starting point is not in a
generalized cup).

We investigated the behavior of the inexact FHQ method in the contexts of
tomographic reconstruction, deblurring, and inpainting. Our experiments showed
that it performs well in various nonconvex scenarios and consistently converges
to stationary points to machine precision, illustrating the fact that inexact FHQ
optimization is a fast reliable answer to numerous inverse problems.

Appendix A. Common potential functions

A potential function θ is usually defined by scaling the argument and the value
of a mother potential function ϑ, that is,

(A.1) θ(t) := γϑ(t/δ),

where γ and δ are free positive parameters. We list below some common mother
potentials from the computer vision and robust statistics literature, beginning with
convex functions with affine behavior at infinity (definitions (A.2)–(A.8)) and con-
tinuing with nonconvex functions (definitions (A.9)–(A.14)). Each of them is ad-
missible, that is, ϑ is increasing on R+, C1 on (0,+∞), continuous at zero, and
such that t−1ϑ′(t) is decreasing and bounded on (0,+∞).

• Function of minimal surfaces [49]:

(A.2) ϑMS(t) := (1 + t2)1/2 − 1.

• Green function [50]:

(A.3) ϑGr(t) := ln(cosh t).

• Lange functions [51]:

ϑLa,1(t) := t2(1 + t)−1,(A.4)

ϑLa,2(t) := t+ exp(−t)− 1,(A.5)

ϑLa,3(t) := t− ln(1 + t),(A.6)

ϑLa,4(t) := 2t arctan t− ln(1 + t2).(A.7)
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• Huber function [45,52,53]:

(A.8) ϑHu(t) :=

{
1
2 t

2 if t 6 1,

t− 1
2 if t > 1.

• Lorentzian error function [52,54]:

(A.9) ϑLE(t) := ln(1 + t2).

• Geman and McClure function [55]:

(A.10) ϑGM(t) := t2(1 + t2)−1.

• Welsch function [56,57]:

(A.11) ϑWe(t) := 1− exp(−t2).

• Hyperbolic tangent function [20]:

(A.12) ϑHT(t) := tanh(t2).

• Tukey’s biweight function [45]:

(A.13) ϑTB(t) :=

{
1−

(
1− 1

6 t
2
)3

if t 6
√

6,

1 if t >
√

6.

• Andrew’s sine function [45]:

(A.14) ϑAS(t) :=

{
(sin t)2 if t 6 π

2 ,

1 if t > π
2 .

Appendix B. O-minimal structures on the real field

In this appendix, we recall some definitions and results concerning o-minimal
structures. The content is limited to what is necessary for the paper to be self-
contained; we refer to [14–16] for a comprehensive introduction to the subject.

Definition B.1 (O-minimal structure). A structure on the real field (R,+, ·) is a
sequence M := (Mn)n∈N such that for all n ∈ N,

(i) Mn is a boolean algebra of subsets of Rn (that is, Mn is nonempty and
closed under complementation and finite union),

(ii) Mn contains the family of algebraic subsets of Rn (that is, the sets of the
form {x ∈ Rn : P (x) = 0}, where P is a real polynomial function on Rn),

(iii) if A ∈Mn and B ∈Mp, then A× B ∈Mn+p,

(iv) if A ∈ Mn+1, then π(A) ∈ Mn, where π : Rn+1 −→ Rn is the projection
map on the first n coordinates.

If, in addition,

(v) the sets in M1 are exactly the finite unions of intervals and points,

then M is said to be o-minimal.

Definition B.2 (Definability). Let M := (Mn)n∈N be a structure on (R,+, ·).
A set A is said to be definable in M, or M-definable, if A ∈ Mn for some n ∈
N. Given such a set, a function f : A −→ R is called M-definable if its graph
{(x, h) ∈ A× R : f(x) = h} belongs to Mn+1.
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Sets and functions that are not definable in any structure are said to be nondefin-
able. A function definable in an o-minimal structure is simply called an o-minimal
function.

B.1. Examples of o-minimal structure. We give here three fundamental exam-
ples of o-minimal structures on the real field: the structure Ralg of semialgebraic
sets, the structure Ran of globally subanalytic sets [58], and the structure Ran,exp

of analytic-exponential sets [59]. The structures Ran and Ran,exp are defined by
successively expanding Ralg. We first recall the definition of the expansion of a
structure.

Definition B.3 (Expansion). Let M := (Mn)n∈N and M′ := (M′n)n∈N be two
structures on (R,+, ·). IfMn ⊆M′n for all n ∈ N, thenM′ is called an expansion
of M. Given a collection F of real functions, each with domain in Rn for some
n ∈ N, we denote by 〈M,F 〉 the smallest expansion ofM in which all the functions
in F are definable.

Example 7 (Semialgebraic sets). Let Ralg := (alg(Rn))n∈N, where alg(Rn) de-
notes the class of semialgebraic subsets of Rn, that is, the finite unions of sets
of the form (5.11). The sequence Ralg clearly satisfies conditions (i)–(iii) and (v)
in Definition B.1, and condition (iv) follows from the Tarski-Seidenberg princi-
ple [23, Theorem 2.2.1]. Furthermore, it is easy to see that any o-minimal structure
on (R,+, ·) is an expansion of Ralg. In other words, Ralg is the smallest o-minimal
structure on the real field (in contrast, there is no largest o-minimal structure [60]).
The potential functions ϑMS, ϑLa,1, ϑHu, ϑGM, and ϑTB defined in Appendix A are
Ralg-definable.

Example 8 (Finitely subanalytic sets). Let Ran := 〈Ralg,
⋃
n∈N an([−1, 1]n)〉, where

an([−1, 1]n) is the class of restricted analytic functions on [−1, 1]n (see Defini-
tion 6.6). The structure Ran is o-minimal [58] and consists of the so-called finitely
subanalytic sets: a set A ⊆ Rn is Ran-definable if and only if the image of A under
the isomorphism

(B.1) x ∈ Rn 7−→
(
x1(1 + x2

1 )−1/2, . . . , xn(1 + x2
n)−1/2

)
∈ (−1, 1)n

is subanalytic [14, Section 3] (we refer to [61] for the definition and properties of
subanalytic sets). Finitely subanalytic sets can also be defined in a way similar
to semialgebraic sets [16, Example 1.6]: an Ran-definable set in Rn is the union of
finitely many sets of the form

(B.2)
⋂

i∈ [1..l ]

{
x ∈ Rn : fi(x) = 0, gi(x) > 0

}
,

where the functions fi, gi : Rn −→ R are obtained by composition from

• the constant functions, the coordinate functions x 7−→ xm, m ∈ [1 . . n],
addition, and multiplication,

• the functions f : Rm −→ R, m ∈ N, whose restriction to [−1, 1]m belongs
to an([−1, 1]m) and which are identically zero outside [−1, 1]m,

• the extended reciprocal function t ∈ R 7−→ t−1 if t 6= 0, 0 if t = 0.

The structure Ran is polynomially bounded [62], meaning that for every Ran-definable
function f : R −→ R, there exists p ∈ N such that |f(t)| < tp for all t sufficiently
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large (in particular, exponential functions are not Ran-definable). Among the po-
tentials listed in Appendix A, the Andrew’s sine function ϑAS is the only one that
is Ran- but not Ralg-definable.

Example 9 (Analytic-exponential sets). Let Ran,exp := 〈Ran, {exp}〉, where exp is
the natural exponential function on R. The structure Ran,exp is o-minimal [59].
Like Ran, it can be described in the style of semialgebraic sets [16, Example 1.8]:
the Ran,exp-definable sets are those of the form (B.2) with the functions fi and gi
obtained by composition from

• the same functions as for finitely subanalytic sets,

• the natural exponential function,

• the extended natural logarithm function t ∈ R 7−→ ln t if t > 0, 0 if t 6 0.

All the potentials listed in Appendix A are Ran,exp-definable.

B.2. Some properties of definable sets and functions. Definable sets and
functions have the following basic properties (see, e.g., [14]).

• The interior and the closure of an M-definable set are M-definable.

• Let f, g : A ⊆ Rm −→ R be M-definable. The sum f + g, the product fg,
and the reciprocal 1/f (defined on A \ {f = 0}) are M-definable.

• A function f = (f1, . . . , fn) : A ⊆ Rm −→ Rn is M-definable if and only if
its coordinate functions f1, . . . , fn : A −→ R are M-definable.

Let f : A ⊆ Rm −→ Rn be M-definable.

• If A′ ⊆ A is M-definable, then the image f(A′) and the restriction f |A′
are M-definable.

• If B ⊆ Rn is M-definable, then the preimage f−1(B) is M-definable.

• Let g : B ⊆ Rn −→ Rp be M-definable. The composite g ◦ f : f−1(B) −→
Rp is M-definable.

• The set A′ := {x ∈ A◦ : f is differentiable at x} is M-definable and the
gradient ∇f : A′ −→ Rm is M-definable.

We recall below some important results on the connectedness of definable sets,
the smoothness and monotonicity of definable functions on R, and the local behavior
of definable functions on Rn.

Theorem B.4 (Connectedness [16, Corollary 3.2]). Let A ⊆ Rn be definable in an
o-minimal structure M on (R,+, ·). Then A has finitely many connected compo-
nents, each of which is M-definable and path-connected.

Remark 10 (Nondefinable functions). It follows from Theorem B.4 that the sine
and cosine functions on R are nondefinable, as the intersections of their graphs
with R×{0} have infinitely many connected components (however, the restrictions
of sin and cos to finite intervals are Ran-definable). More generally, a function of
class Cp on an open interval is nondefinable if any of its derivatives up to order p
has infinitely many isolated zeros.

Theorem B.5 (Smoothness and monotonicity [16, Section 2]). Let M be an o-
minimal structure on (R,+, ·) and let f : I ⊆ R −→ R be an M-definable function,
where I is a nondegenerate interval. For every p ∈ N, there exists a finite partition
of I into subintervals I1, . . . , Il such that for each i ∈ [1 . . l ], the restriction f |(Ii)◦
is of class Cp and either strictly monotone or constant.
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Theorem B.6 (KL inequality [12, Theorem 1]). Let f : O −→ R be a C1 function,
where O is a bounded open set in Rn. Suppose f is definable in an o-minimal
structure M on (R,+, ·) and f(x) > 0 for all x ∈ O. Then there exist a positive
constant α and a strictly increasing, M-definable C1 function ϕ : (0,+∞) −→
(0,+∞) such that

(B.3) ‖∇(ϕ ◦ f)(x)‖ > 1 for all x ∈ O ∩ {f < α}.

If f is subanalytic, which is the case when f is Ran-definable, then the following
theorem shows that (B.3) holds with ϕ(t) ∝ t1/s for some positive integer s.

Theorem B.7 ( Lojasiewicz inequality [12, Theorem ( LI)]). Let f : O −→ R be a
subanalytic C1 function, where O is a bounded open set in Rn. Then there exist
positive constants c and α and an integer s > 2 such that

(B.4) ‖∇f(x)‖ > c |f(x)|1−1/s for all x ∈ O ∩ {|f | ∈ (0, α)}.

Appendix C. Asymptotic behavior of the backward error criterion

Consider an inexact FHQ sequence (x(p))p∈N constructed as in Theorem 7.2, and

denote by r(j,p) and y(j,p) the jth iterate and residual, respectively, of the inner
CG algorithm at the (p+ 1)th outer iteration. The backward error criterion (7.11)
is then

(C.1) ε−1‖r(j,p)‖ 6 ‖ATE(x(p))A‖ ‖y(j,p)‖+ ‖ATE(x(p))a‖ =: T(j, p),

and the residual can be written as

(C.2) r(j,p) = −∇Θ(x(p))−ATE(x(p))A(y(j,p) − x(p)).

Note that (C.1) is checked after the fixed minimum number of CG iterations has
been performed (that is, when j > J), and that r(0,p) = −∇Θ(x(p)) (since y(0,p) =
x(p) by construction). Also keep in mind that the norm of the residual does not
necessarily decrease with j (see, e.g., [63, Section 2.3]).

The following propositions show that as p increases, the threshold T(j, p) in
(C.1) becomes increasingly independent of both j and p, and that consequently
the backward error criterion is satisfied when the norm of the gradient of x(p) is
small enough. We assume that the set of stationary points of the objective Θ is
level-discrete or that Θ is a KL function, so (x(p))p converges to a stationary point
x∗ by Theorem 4.9(i) or Theorem 5.5.

Proposition C.1 (Limit threshold of the backward error criterion). Let

(C.3) T∗ := ‖ATE(x∗)A‖ ‖x∗‖+ ‖ATE(x∗)a‖.
As p→∞, the threshold T(j, p) in (C.1) tends to T∗ independently of j, that is,

(C.4) lim
p

sup
j>J
|T(j, p)− T∗| = 0.

Proof. Since the maps x 7−→ ‖ATE(x)A‖ and x 7−→ ‖ATE(x)a‖ are continuous,
we need only show that

lim
p

inf
j>J
‖y(j,p)‖ = lim

p
sup
j>J
‖y(j,p)‖ = ‖x∗‖.

Let p ∈ N and j ∈ [J . .∞). Since

‖y(j,p) −Φ0(x(p))‖ 6 ‖y(0,p) −Φ0(x(p))‖
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(see [39, Theorem 6.3]), we have

‖y(j,p) − x(p)‖ 6 ‖y(0,p) −Φ0(x(p))‖+ ‖x(p) −Φ0(x(p))‖

= 2‖x(p) −Φ0(x(p))‖.
(C.5)

Hence, from Lemma 5.3, there is a constant c > 0 such that

‖y(j,p) − x(p)‖ 6 c
(
Θ(x(p))−Θ(Φ0(x(p)))

)1/2
.

Therefore

lim
p

sup
j>J
‖y(j,p) − x(p)‖ 6 c

(
Θ(x∗)−Θ(lim

p
Φ0(x(p)))

)1/2
= 0,

where the last equality follows from (4.2). Also,

‖x(p)‖ − sup
j>J
‖y(j,p) − x(p)‖ 6 inf

j>J
‖y(j,p)‖

6 sup
j>J
‖y(j,p)‖ 6 ‖x(p)‖+ sup

j>J
‖y(j,p) − x(p)‖.

Taking the limit as p→∞ completes the proof. �

Proposition C.2 (Backward error control is eventually superfluous). There is a
constant ε ′ ∈ (0, ε) such that for p sufficiently large, (C.1) is satisfied for j = J if

(C.6) ‖∇Θ(x(p))‖ 6 ε ′T∗.

This result holds for any ε ′ ∈ (0, ε) if ‖r(J,p)‖ 6 ‖r(0,p)‖ for p sufficiently large.

Proof. From (C.2) and (C.5) we have

‖r(J,p)‖ 6 ‖∇Θ(x(p))‖+ 2‖ATE(x(p))A‖ ‖x(p) −Φ0(x(p))‖,

and from the proof of Lemma 5.3 there is a constant c̃ > 0 such that

‖x(p) −Φ0(x(p))‖ 6 c̃‖∇Θ(x(p))‖.

So there is a constant c̃ ′ > 1 independent of p such that

(C.7) ‖r(J,p)‖ 6 c̃ ′‖∇Θ(x(p))‖.

Let ε ′ ∈ (0, ε/c̃ ′). By Proposition C.1, we can assume that p is large enough so
that c̃ ′ε ′T∗ 6 εT(J, p). Then, if (C.6) holds, we obtain from (C.7) that ‖r(J,p)‖ 6
εT(J, p).

Now consider the case where ‖r(J,p)‖ 6 ‖r(0,p)‖ for p sufficiently large. Let
ε ′ ∈ (0, ε). Using Proposition C.1 again, we have that εT(J, p) is eventually greater
than ε ′T∗. So if p is large enough and (C.6) holds, then

‖r(J,p)‖ 6 ‖r(0,p)‖ = ‖∇Θ(x(p))‖ 6 ε ′T∗ 6 εT(J, p).

This completes the proof. �
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