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Summary

The paper deals with the use of model order reduction within a posteriori error

estimation procedures in the context of the finite element method. More specifi-

cally, it focuses on the constitutive relation error concept, which has beenwidely

used over the last 40 years for FEM verification of computational mechanics

models. A technical key-point when using constitutive relation error is the con-

struction of admissible fields, and we propose here to use the proper generalized

decomposition to facilitate this task. In addition to making the implementation

into commercial FE software easier, it is shown that the use of proper generalized

decomposition enables to optimize the verification procedure and to get both

accurate and reasonably expensive upper bounds on the discretization error.

Numerical illustrations are presented to assess the performance of the proposed

approach.
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1 INTRODUCTION

Numerical models, such as these obtained using the finite element method (FEM), are fundamental in science and engi-

neering activities as they constitute the basic ingredient of simulations that enable to predict the behavior of physical

phenomena. Consequently, a permanent issue is the verification of these models, which nowadays can attain very high

levels of complexity, to certify the quality of numerical simulations. Model verification deals with the assessment of the

numerical (FE) model with respect to an initial mathematical model and implies the estimation of discretization error

to control the quality of the approximate numerical solution. It delivers error estimates that can further be used in mesh

adaptivity processes. In this context, a large set of a posteriori error estimates has appeared over the last 30 years (see pre-

vious studies1-4 for an overview). Methods can be roughly classified in 3 categories: (1) those based on field smoothing

(initiated in Zienkiewicz and Zhu5); (2) those based on residuals of equilibrium (initiated in Babus̆ka and Rheinboldt6);

and (3) those based on residuals of the constitutive relation (initiated in Ladevèze and Leguillon7). In this work, we focus

on the latter methods that involve the constitutive relation error (CRE) concept.

In the context of Computational Mechanics models in which the constitutive relation is a major component, the

CRE concept is a convenient and powerful tool. The idea of CRE is rather simple: so-called admissible fields verify-

ing all equations of the model except the constitutive relation are constructed, then the residual associated with the

constitutive relation is measured. The CRE concept was first introduced as a robust a posteriori error estimator in FE

computations,8 enabling to compute both strict and effective discretization error bounds for linear and more generally
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convex Structural Mechanics problems and to lead mesh adaptivity processes. It was primarily used for linear thermal

and elasticity problems7,9 before being extended to nonlinear time-dependent problems10,11 and to goal-oriented error

estimation.12-15 The use of CRE for model verification, for which a general overview can be found in other works,3,16

requires in particular the computation of admissible dual fields that are fully equilibrated. This requirement, which is the

main practical issue both in terms of computational cost and implementation technicality, was addressed bymeans of sev-

eral techniques3,7,17-29; we concentrate here on the hybrid-flux approach, referred asElementEquilibrationTechnique (EET)

in the recent literature, that post-processes the primal FE solution at hand and requires local fine-scale computations.

The objective of the paper is to present new numerical tools, on the basis of model reduction techniques and an

offline/online strategy that can be coupled to the CRE concept to make this latter fully implementable and exploitable for

practical industrial applications. They particularly aim at decreasing the computational cost and technicality level, which

are required when computing admissible fields, leading to fast and inexpensive V&V procedures. For that purpose, we

decide to refer to the proper generalized decomposition (PGD), which is an a priori model reduction technique that has

been extensively used over the last decade to solve multiparametric problems (see previous works30-33).

First, starting from the classical hybrid-flux approach, we introduce a reduced model at the element level issued

from a parameterization of local problems. This approach, later referred as EET-PGD, was primarily introduced in

Chamoin et al34 for a simple case (it is generalized here). It leads to a precomputation of local equilibrium from given

data (tractions, element geometry, and material), in an offline step, using PGD. The PGD solution is then used and

post-processed in the online step. Second, from the PGD representationmentioned previously, we address optimization of

tractions (or hybrid fluxes) by introducing dual unknowns over each element of the mesh. A global optimization problem

is thus defined for which all expensive computations (such as numerical integrations) can be performed in the offline

step. The associated technique is later referred as HFT-PGDwhereHFT stands forHybrid Flux Technique, as equilibration

at the element level is indirectly performed here.

In the context of model verification, the CRE concept was already used to control PGD approximations (see a posteriori

error estimates developed in other studies35,36) or to directly drive the PGDprocesswithCREminimization.37Nevertheless,

the use of PGD in CRE implementation has never been investigated and we wish to show here that there are major

advantages to do so, in particular for the construction of equilibrated fields. The goal is to give a general framework on

the effective use of PGD for model verification with CRE. For the sake of simplicity and clarity, we consider scalar linear

elliptic (stationary thermal) problems to introduce technicalities of the proposed approach, but extensions to elasticity,

time-dependent, or nonlinear problems are also given with regard to existing literature3,10).

The paper outline is as follows: We review in Section 2 the CRE concept and classical construction of equilibrated

fields for a general nonlinear mechanical problem; the use of PGD in addition to CRE for the construction of admissible

fields (EET-PGD technique) is shown in detail in Section 3; optimization of tractions using PGD (HFT-PGD technique)

is addressed in Section 4; illustrative numerical results are reported in Section 5; eventually, conclusions are drawn in

Section 6.

2 MODEL PROBLEM AND A POSTERIORI ERROR ESTIMATION WITH CRE

2.1 Model problem

We consider a structure that occupies a continuum open bounded domainΩ ⊂ Rd with boundary 𝜕Ω. We consider small

displacements, quasi-static loadings, and isothermal conditions. The time interval is denoted by [0,T]. The structure, for

all t ∈ [0,T], is placed in an environment characterized by a given displacement ud on 𝜕1Ω ⊂ 𝜕Ω, given tractions Fd on

𝜕2Ω, and a given body force fd inΩ. 𝜕1Ω and 𝜕2Ω are complementary parts of 𝜕Ω. The problem that describes the evolution

of the structure on [0,T] is to find the displacement-stress pair (u, 𝜎𝜎) that verifies the following:

• kinematic constraints

u ∈  [0,T] ; u|𝜕1Ω = ud ∀t ∈]0,T[ ; 𝜖(u) =
1

2
(∇u + ∇Tu), (1)

• equilibrium equations (principle of virtual works)

𝜎𝜎 ∈  [0,T] ; ∫Ω

𝜎𝜎 ∶ 𝜖(u∗) = ∫Ω

f du
∗ + ∫𝜕2Ω

Fdu
∗ ∀u∗ ∈ 0,∀t ∈]0,T[, (2)
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• constitutive relations

𝜎𝜎t = (𝜖(u̇)|𝜏 , 0 ≤ 𝜏 ≤ t) ∀(x, t) ∈ Ω×]0,T[. (3)

 [0,T] = L2([0,T]; [H1(Ω)]d) is the space containing the displacement field u defined on Ω×]0,T[.  [0,T] =

L2([0,T];H(div,Ω)) is the space of symmetric tensors containing the stress field 𝜎𝜎 defined on Ω×]0,T[. 0 is the vector

space of specified virtual displacements. The operator characterizes the mechanical behavior of the material; it may be

nonlinear and dependent on history.

Let us denote by  [0,T]
ad

⊂  [0,T] the space of displacements verifying the kinematic constraints (1), and  [0,T]
ad

⊂  [0,T]

the space of stress fields, which are solutions to equilibrium equation 2.

2.2 The CRE concept

2.2.1 General idea
The CRE concept is built from a dual approach and measures the residual on the constitutive relation; it is a robust error

estimate in the context of model verification.

The notion of error in the constitutive law (CRE) was introduced in Ladevèze and Leguillon.7 The general concept is

to split the equations of the problem into two groups with different mechanical contents. The first group involves “safe”

equations, ie, kinematic and static constraints whereas the second group involves less reliable equations, ie, constitutive

relation equations. A solution satisfying the first group is called admissible. An admissible solution is the exact solution

to the problem if and only if it satisfies the equations of the second group. Thus, the quality of the admissible solution

may be evaluated through the residuals associated to the equations of the second group. Since the second group is related

to the constitutive relations, the terminology of error in the constitutive law was naturally introduced. The splitting of

the equations into the two groups is not always obvious. For instance, when the material behavior is described using

internal variables, the state laws may be seen as “internal” equilibrium relations and thus included in the first group,

or seen as constitutive law like the evolution laws and thus included in the second group. The first choice was inves-

tigated in Ladevèze and Moës.10 This choice leads to the terminology of dissipation error since the error is measured

through the residuals of the sole evolution laws, the state laws being a priori satisfied. An alternative is to consider the

state laws as part of the second group; in this case, the error estimate involves the residuals associated to both the state

and evolution laws. We shall see that this second choice allows to fit elasticity, plasticity, and viscoplasticity with or with-

out softening in the same framework. The dissipation error is recovered as a particular case by enforcing strongly the

state laws.

The CRE definition is based on duality pairing. Constitutive relation error gives guaranteed bounds on a large set of

problems. In the following, we give examples of CRE functionals for classical mechanical models.

2.2.2 Linear elasticity
Let us start with the simplest family of problems, ie, elasticity problems. One looks for the final state of the structure at

t = T, and the problem does not depend on time. The constitutive relation reads

𝜎𝜎 = 𝜖(u), (4)

where is the Hooke tensor, which is symmetric and positive definite. The admissibility spaces are denotedad and ad.
An FE solution (uh, 𝜎𝜎h) is computed, where 𝜎𝜎h = 𝜖(uh) is equilibrated in the finite element sense.

The principle is to associate a new displacement-stress pair denoted (û, �̂�𝜎), which is admissible, ie, in ad × ad. The
pair verifies the most reliable equations of the problem; its quality and that of the FE solution is measured through the

residual related to the constitutive relation. The crucial point is to build a stress �̂�𝜎 that verifies equilibrium equations.

Once (û, �̂�𝜎) is obtained, the constitutive relation error reads

E2CRE(û, �̂�𝜎) = ∫Ω

[𝜓(𝜖(û)) + 𝜓∗(�̂�𝜎) − �̂�𝜎 ∶ 𝜖(û)] =
1

2
||�̂�𝜎 −𝜖(û)||2 , (5)

where || · || =

√
∫
Ω
·−1· is the energy norm. 𝜓(𝜖(û)) =

1

2
𝜖(û) ∶ 𝜖(û) and 𝜓∗(�̂�𝜎) =

1

2
−1�̂�𝜎 ∶ �̂�𝜎 are dual (in the

Legendre Fenchel sense) convex potentials related to free energy. This error estimate is related to the error defined from
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the exact solution through the Prager-Synge theorem:

||û − u||2 + ||�̂�𝜎 − 𝜎𝜎||2 = 2E2CRE(û, �̂�𝜎). (6)

2.2.3 Viscoplasticity
We consider materials with standard thermodynamics formulation involving internal variables and small displacements

without softening such as viscoplasticity.3,10,12 The reference problem is reformulated introducing internal variables

(rather than formulating the constitutive relation in functional form). Internal variables other than the plastic strain ten-

sor 𝜖p (such as the accumulated plastic strain p for isotropic hardening) are gathered in a vectorX. The force associated to

X, involving the additional yield stress R for isotropic hardening, is denoted Y, and we introduce quantities s = (𝜎𝜎,Y)T ,

ėp = (�̇�p,−Ẋ)
T , and ėe = (�̇�e, Ẋ)

T , so that the dissipation reads d = ∫ T

0
∫
Ω
s · ėp. The material behavior is described by

state equations ee = Λ(s) = 𝜕Ψ∗

𝜕s
(or s =

𝜕Ψ

𝜕ee
), where Ψ and Ψ* are free energy potentials, and evolution laws ėp = B(s).

Λ is assumed to be linear, symmetric, and positive; this is the case of most viscoplastic materials, after a change of vari-

ables (normal description). B can be nonlinear and multivalued, as in plasticity; it is assumed to be expressed with two

pseudo-potentials of dissipation 𝜑 and 𝜑* that are dual convex functions (family of standard materials): ėp ∈ 𝜕s𝜑
∗(s)with

𝜕s denoting subdifferentials; these correspond to the indicatrix function of the elasticity domain for plasticity problems.

The equations of the problem are then divided in two groups:

• The first one related to the free energy defines the admissibility and combines equilibrium equations (s is S-admissible),

kinematic constraints (ė = ėe + ėp is K-admissible), initial conditions (ep = 0 at t = 0), and state equations; and

• The second group, related to dissipation, only includes evolution laws.

The quality of an admissible solution is estimated through the quality of satisfaction of the evolution laws. This defines

the CRE error of dissipation type, for which there is a link (similar to the Prager-Synge theorem) with the solution error:

E2CRE(
̇̂ep, ŝ) = ∫

T

0 ∫Ω

e2CRE(
̇̂ep, ŝ) ; e2CRE(

̇̂ep, ŝ) = 𝜑∗(ŝ) + 𝜑( ̇̂ep) − ŝ · ̇̂ep. (7)

Remark 1. A more general framework for the dissipation error (7) was proposed in Ladevèze12 when evolution laws

are not given by potentials (but the operator B remains monotonous).

Remark 2. An alternative definition of the CRE functional for nonlinear dissipative models is as follows:

E2CRE(ê, ŝ) = ∫Ω

[
Ψ∗(ŝ) + Ψ(ê) − ŝ · ê

]
|T + ∫

T

0 ∫Ω

[
𝜑∗(ŝ) + 𝜑( ̇̂ep) − ŝ · ̇̂ep

]
. (8)

It is based on a definition of admissibility similar to elasticity and involves residuals on both state equations and evo-

lution laws. It is a suitable definition that preserves convexity properties when addressing damage models (softening

materials).11,38

2.3 Recovering admissible fields

2.3.1 Elasticity case
Weusually choose û = uh. The construction of �̂�𝜎 is more technical, and several methods have been proposed. The optimal

method would be a full dual analysis (minimizing the complementary energy using equilibrium elements, see previous

studies39-42). However, this is hardly applicable in practice, as it requires the solution of an additional global problem, with

substantial computational efforts and nonconventional FE spaces that are usually not available in commercial software.

We focus on the hybrid-flux method (or EET) that enables to compute an admissible field �̂�𝜎h ∈ ad from a

post-processing of the FE field 𝜎𝜎h at hand, with local independent computations.3,7,17 The key is the prolongation

condition:

∫K(�̂�𝜎h − 𝜎𝜎h)𝛁𝜙i = 0, (9)

which is enforced for all elements K and all nodes i connected to K. 𝜙i is the scalar shape function associated with node

i. The recovery method can be split in two steps:
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Step 1: recovery of equilibrated tractions F̂K|Γ defined on edges (or faces in 3D) Γ of each element K, with F̂K|Γ = Fd if

Γ ⊂ 𝜕2Ω, such that equilibrium at the element level is verified:

∫Kf d · u
∗
R + ∫𝜕K

F̂K · u∗
R = 0 ∀u∗

R ∈ R(K), (10)

where R(K) denotes the space of rigid body motions on K. The prolongation condition (9) then yields (using

�̂�𝜎h|𝜕K · nK = F̂K and 𝛁 ·�̂�𝜎 + f d = 0):

∫𝜕K

F̂K𝜙i = ∫K(𝜎𝜎h 𝛁𝜙i − f d𝜙i), (11)

and leads to small well-posed systems of equations (over patches of elements connected to each node i), which can

be solved explicitly. In practice, tractions are defined as F̂K|Γ = 𝜂Γ
K
F̂Γ, with 𝜂Γ

K
= ±1, to ensure continuity across

element boundaries and are searched as a linear combination of FE shape functions: F̂K|Γ(x) =
∑

j∈Γ
F̂
j

K|Γ𝜙j(x).Γ denotes the set of nodes connected to the edge/face Γ. All technical details on the construction of equilibrated

tractions can be found in other works3,27;

Step 2: local recovery of an equilibrated stress field �̂�𝜎h, for given tractions F̂K , over each element K solving the Neumann

problem:

∫K �̂�𝜎h ∶ 𝜖(u∗) = ∫Kf d · u
∗ + ∫𝜕K

F̂K · u∗ ∀u∗ ∈  (K), (12)

with  (K) = [H1(K)]d. A solution to (12) may be obtained analytically, using polynomial functions with suffi-

ciently high degree, provided the source term fd is polynomial as well.
43 In practice, an alternative approach with

numerical solution and higher-order elements is preferred. Indeed, the optimal stress field verifying (12) is the

one that minimizes over K the local error estimate ||�̂�𝜎−𝜎𝜎h|| ,K (or equivalently ||�̂�𝜎|| ,K). Duality arguments show
that this is equivalent to taking �̂�𝜎h|K = 𝜖(𝝆), with 𝝆 ∈  (K) verifying:

∫K𝜖(𝝆) ∶ 𝜖(u∗) = ∫Kf d · u
∗ + ∫𝜕K

F̂K · u∗ ∀u∗ ∈  (K). (13)

A numerical approximation of the solution of (13) (defined up to rigid body motions in R(K)) can be obtained

using the FEMwith a single finite element of degree p+k, where p denotes the polynomial degree used to compute

uh and k denotes the extra degree. Numerical studies performed in Babus̆ka et al44 showed that analytical and

numerical approaches give similar CRE error estimates choosing k ≥ 3, even though the flux field is not rigorously

equilibrated in each element Kwith the latter approach. We consider the numerical approach in the remainder of

the paper.

Solving (13) is in practice themost costly part in the hybrid-fluxmethod (in particular for 3D applications), as it involves

high-order elements and has to be performed for each element K. We wish to use model order reduction to circumvent

this issue.

2.3.2 Time-dependent nonlinear case
The FE solution is computed at time points tn, considering the classical incremental FEM. Assuming that data are piece-

wise linear on [0,T], we complete the FE solution on [0,T] and get (uh, 𝜎𝜎h). The stress field 𝜎𝜎h is FE equilibrated on [0,T].

We usually choose ûh = uh (except when incompressibility needs to be enforced45).

The crucial point is to build an admissible stress field. For that purpose, the classical recovery used for elasticity is still

used for any time point tn, then a piecewise linear interpolation is performed. Other internal variables, which are not

involved in equilibrium equations, are obtained solving local and explicit minimization problems.
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3 ACCELERATION OF LOCAL RECOVERY USING PGD

3.1 Scalar problem

For the sake of simplicity, we first consider a scalar problem, ie, a steady-state thermal problem that consists in finding

the temperature/flux pair (u,q) such that

u ∈  ; u = ud on 𝜕1Ω (kinematic constraints)

q ∈  ; ∫Ω

q · 𝛁u∗ = ∫Ω

fdu
∗ + ∫𝜕2Ω

Fdu
∗ ∀u∗ ∈ 0 (balance equations)

q = 𝛁u (constitutive relation)

(14)

with  = H1(Ω) and  = H(div,Ω) = {𝝅 ∈ [L2(Ω)]d,𝛁 ·𝝅 ∈ L2(Ω)}.  is a symmetric positive definite operator

(second-order tensor). We introduce the energy semi-norm || · || =
√

∫
Ω
𝛁(·) ·𝛁(·). For an admissible pair (û, q̂) ∈

ad × ad, the CRE functional is defined as follows:
E2CRE(û, q̂) =

1

2∫Ω

(q̂ −𝛁 û) ·−1(q̂ −𝛁 û) =
1

2
||q̂ −𝛁 û||2 . (15)

It measures the nonverification of the constitutive relation for (û, q̂) and can be used as an error estimate. Indeed, after

computing an FE solution (uh,qh), choosing û = uh and constructing q̂h ∈ ad lead to the Prager-Synge theorem (6) and

to the following:

||uh − u|| ≤ √
2ECRE(uh, q̂h). (16)

The quality of the estimate depends on that of q̂h.

Classically, q̂h is constructed using the hybrid-flux approach as described in Section 2.3, with the following two steps

and specifying that tractions refer here to normal thermal fluxes on element boundaries:

Step 1: construction of equilibrated tractions F̂K|Γ = 𝜂Γ
K
F̂Γ on edges/faces Γ of each element K, such that equilibration at

the element level is verified:

∫K fd + ∫𝜕K

F̂K = 0. (17)

This is performed using the prolongation condition, and tractions are searched as linear combinations of FE shape

functions: F̂K|Γ(x) =
∑

j∈Γ
F̂
j

K|Γ𝜙j(x) (see Figure 1).

K

1

2

3

13

12

23

FIGURE 1 Configuration at the level of a 3-node triangle element, with linear tractions F̂K|Γ defined on element edges
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Step 2: local construction, for given tractions F̂K and over each element K, of q̂h|K = 𝛁 𝜌 solving the following local

Neumann problem with higher-order elements:

∫K𝛁 𝜌 · 𝛁u∗ = ∫K fdu
∗ + ∫𝜕K

F̂Ku
∗ ∀u∗ ∈  (K). (18)

Solving (18) is in practice themost costly part in the hybrid-fluxmethod (in particular for 3D applications), as it involves

high-order elements and has to be performed for each element K. We wish to use the PGD technique to find, in an offline

phase, a parameterized solution to (18), valid for any configuration of the geometry and the loading. From equilibrated

tractions computed in step 1 and with respect to problem data (material parameters, mesh geometry, … ), this PGD

solution would then be directly used in the online error estimation phase, and in a multiquery context, for each element

K of the mesh.

3.2 Parametrization of the local problems

In the following, we consider that the material behavior is isotropic and that material parameters are constant over each

element K, so that their values have no influence on q̂h|K ; we thus set  = I when solving (18) and define q̂h|K = 𝛁 𝜌. In

cases where  is not constant over each element or is not isotropic, its structure could be parameterized and additional

material parameters could be introduced in the PGD decomposition.

On each edge/face Γ of any element K, tractions are linear combinations of FE shape functions and thus read

as follows:

F̂K|Γ(x) =
∑
j∈Γ

F̂
j

K|Γ𝜙j(x) ; F̂
j

K|Γ = 𝜂ΓK F̂
j
Γ
∈ R. (19)

Consequently, the solution 𝜌 to (18) can be written as a linear combination of elementary solutions:

𝜌(x) =
∑
Γ⊂𝜕K

∑
j∈Γ

F̂
j

K|Γ𝜌
j
Γ
(x), (20)

where 𝜌
j
Γ
is the solution (up to a constant) to the elementary problem:

∫K 𝛁 𝜌
j
Γ
· 𝛁u∗ = ∫Γ

𝜙ju
∗ − ∫K

(
1

|K|∫Γ

𝜙j

)
u∗ ∀u∗ ∈  (K). (21)

The solution 𝜌
j
Γ
to each problem (21) can be computed with the PGD technique, for any element K, parameterizing the

geometry of K with a set of parameters pgeo ∈  . Following the approach described in other studies,46-48 we reformulate
the weak problem (21) by introducing a parameter-dependent mapping(pgeo) ∶ Kref → K(pgeo) from a reference fixed

element Kref to the geometrically parameterized element K(pgeo). Such a geometrical transformation then allows defining

the weak problem in a tensor product space and applying the PGD method, to compute generic parameterized solutions

𝜌
j
Γ
(pgeo) that can be used for any element geometry.

Remark 3. In the presence of geometrical variabilities, an alternative approach described in other works49,50 could

also be used. It consists in embedding the parameterized domain into a fixed fictitious domain.

In the present case, the mapping is defined from two transformations:

• a first scaling mapping 1 ∶ K̄ → K maps a homothetic element K̄ with diameter 1 to the actual element K with

diameter 𝛼. This mapping involves a transformation matrix T1 = 𝛼Id such that x = T1x̄;

• a second mapping2 ∶ Kref → K̄ maps a reference element Kref to element K̄. This mapping uses an isoparametric

formulation and involves a transformation matrix T2 such that x̄ = T2xref .

The globalmapping is therefore(pgeo) = 1 ◦2 with transformationmatrixT(pgeo) = 𝛼T2, Jacobianmatrix J = T,

and Jacobian J(pgeo) = det(J).
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As an illustration, we consider two element types. We first consider 3-node triangle elements (Figure 2). The mappings

read (
x̄
ȳ

)
=

(∑3
i=1 x̄i𝜙i(𝜂, 𝜉)∑3
i=1 ȳi𝜙i(𝜂, 𝜉)

)
= T2

(
𝜂
𝜉

)
; T2 =

[
1 x̄3
0 ȳ3

]
, (22)

where (x̄3, ȳ3) are local coordinates of node 3 in the coordinate system associated with element K̄ and (𝜂, 𝜉) are local

coordinates in the coordinate system associated with element Kref. The global mapping thus involves 3 parameters, ie,

pgeo = (𝛼, x̄3, ȳ3) and J = 𝛼2ȳ3.

We now consider 4-node tetrahedron elements (Figure 3). The mappings read

(
x̄
ȳ
z̄

)
=

⎛
⎜⎜⎝

∑4
i=1 x̄i𝜙i(𝜂, 𝜉, 𝜏)∑4
i=1 ȳi𝜙i(𝜂, 𝜉, 𝜏)∑4
i=1 z̄i𝜙j(𝜂, 𝜉, 𝜏)

⎞
⎟⎟⎠
= T2

(
𝜂
𝜉
𝜏

)
; T2 =

[
1 x̄3 x̄4
0 ȳ3 ȳ4
0 0 z̄4

]
, (23)

where (x̄3, ȳ3, x̄4, ȳ4, z̄4) are local coordinates of nodes 3 and 4 in the coordinate system associated with element K̄, and

(𝜂, 𝜉, 𝜏) are local coordinates in the coordinate system associated with element Kref. The global mapping thus involves

6 parameters, ie, pgeo = (𝛼, x̄3, ȳ3, x̄4, ȳ4, z̄4) and J = 𝛼3ȳ3z̄4.

Consequently, the problem (21) can be parameterized and defined in a fixed reference element Kref under the form:

∫Kref J.J
−T

𝛁 𝜌
j
Γ
· J−T 𝛁u∗ = ∫Γref

Js𝜙ju
∗ − ∫Kref J.

(
1

|K|∫Γref

Js𝜙j

)
u∗ ∀u∗ ∈  (Kref ), (24)

3

3

3

KKref

1 2

1

1 2

2

1

1

1

y

12

FIGURE 2 Mapping between reference and parameterized elements for a 3-node triangle element

3 K

1

21

1

1

4

1

3
1

21

4 1

2

3

4

2

FIGURE 3 Mapping between reference and parameterized elements for a 4-node tetrahedron element
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with Js the Jacobian associated with the transformation of element edge/face Γ. For 3-node triangle elements (Figure 2),

it reads

Js = 𝛼

⎧
⎪⎨⎪⎩

1 on Γ12√
(1 − x̄3)2 + ȳ2

3
on Γ23√

x̄2
3
+ ȳ2

3
on Γ13

, (25)

whereas for 4-node tetrahedron elements (Figure 3), it reads

Js = 𝛼2

⎧
⎪⎪⎨⎪⎪⎩

ȳ3 on Γ123√
ȳ2
4
+ z̄2

4
on Γ124√

z̄2
4
(x̄2
3
+ ȳ2

3
) + (x̄4ȳ3 − x̄3ȳ4)2 on Γ134√

z̄2
4
((x̄3 − 1)2 + ȳ2

3
) + ((x̄4 − 1)ȳ3 − (x̄3 − 1)ȳ4)2 on Γ234

. (26)

Remark 4. Equivalently, (24) can be recast as follows:

∫Kref 𝛁 𝜌
j
Γ
· K̃𝛁u∗ = ∫Γref

F̃d u
∗ + ∫Kref f̃d u

∗ ∀u∗ ∈  (Kref ), (27)

with K̃ = J.J−1J−T , F̃d = Js𝜙j, and f̃d = −J.
(

1

|K|∫Γref Js𝜙j
)
.

Remark 5. The number of elementary problems (21) (or (24)) and the number of parameters involved in the mapping

 (size of pgeo) depend on the type of FE element. For instance,

• 3-node triangle elements involve 6 elementary problems (2 for each of the 3 edges) and 3 geometrical parameters

(6 degrees of freedom with 3 rigid body motions);

• 6-node triangle elements involve 9 elementary problems (3 for each of the 3 edges) and 9 geometrical parameters

(12 degrees of freedom with 3 rigid body motions);

• 4-node tetrahedron elements involve 12 elementary problems (3 for each of the 4 faces) and 6 geometrical

parameters (12 degrees of freedom with 6 rigid body motions).

3.3 Solution using PGD

We now introduce a reduced model, based on PGD, at the element level to facilitate step 2 of the hybrid-flux approach.

For that purpose, approximations of solutions 𝜌
j
Γ
(xref ,pgeo) are computed offline and once for all using the PGD technique

with separated-variable modal decomposition.

Considering a general linear D-dimensional problem defined on the tensor space  = 1 ⊗ 2 ⊗ · · · ⊗ D, PGD is

a low-rank tensor method that consists in searching an approximation um of u in a low-dimensional tensor subspace of

m ⊂  made of canonical format tensors of rankm:

um =

m∑
i=1

w1
i ⊗ w2

i · · ·⊗ wD
i , w𝜇

i
∈ 𝜇. (28)

Among the various strategies to construct um,51 we focus on the one called progressive Galerkin. Introducing a global

weak formulation of the problem,

find u ∈  such that B(u, v) = F(v) ∀v ∈  , (29)

and assuming that the rankm−1 decomposition um−1 is known, the rankm decomposition um = um−1+w1⊗w2 · · ·⊗wD

is searched such that

B(um, 𝛿v) = F(𝛿v) ∀𝛿v = 𝛿w1 ⊗ w2 · · ·⊗ wD + w1 ⊗ 𝛿w2 · · ·⊗ wD + · · · + w1 ⊗ w2 · · ·⊗ 𝛿wD, (30)
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with 𝛿w𝜇 ∈ 𝜇. This formulation naturally leads to a nonlinear problemwhere a set of coupled low-dimensional problems

have to be solved:

B(w1 ⊗ w2 · · ·⊗ wD, 𝛿w1 ⊗ w2 · · ·⊗ wD) = Rm−1(𝛿w
1 ⊗ w2 · · ·⊗ wD) ∀𝛿w1 ∈ 1,

B(w1 ⊗ w2 · · ·⊗ wD,w1 ⊗ 𝛿w2 · · ·⊗ wD) = Rm−1(w
1 ⊗ 𝛿w2 · · ·⊗ wD) ∀𝛿w2 ∈ 2,

⋮ =⋮

B(w1 ⊗ w2 · · ·⊗ wD,w1 ⊗ w2 · · ·⊗ 𝛿wD) = Rm−1(w
1 ⊗ w2 · · ·⊗ 𝛿wD) ∀𝛿wD ∈ D,

(31)

with Rm−1(v) = F(v)−B(um−1, v). This problem is in practice solved using alternated minimization with an iterative (fixed

point) strategy.

To solve (24) with the progressive Galerkin approach of PGD, we introduce the following bilinear form B and linear

form F constructed from the parameterized separated variable Jacobian transformation (all technical details can be found

in other works46,47). Introducing the interval Ipkgeo in which parameter p
k
geo evolves (1 ≤ k ≤ P = size(pgeo)), these forms read

B(𝜌
j
Γ
, v) = ∫I𝛼∫Ipgeo,1

… ∫Ipgeo,P∫Kref
J.J−T 𝛁 𝜌

j
Γ
· J−T 𝛁 v,

F(v) = ∫I𝛼∫Ipgeo,1
… ∫Ipgeo,P

[
∫Γref

Js𝜙jv − ∫Kref J.
(

1

|K|∫Γref

Js𝜙j

)
v

]
.

(32)

The parameter 𝛼 is included only for completeness of the description; it acts as a multiplicative constant in the solution

𝜌 and disappears when computing q̂h|K = 𝛁 𝜌. PGD solutions thus read

𝜌
j
Γ,m

(xref ,pgeo) = 𝛼

m∑
i=1

(
𝜓i(xref )

∏
2≤k≤P

𝛿
pgeo,k
i

(pgeo,k)

)
. (33)

Space functions 𝜓 i(xref) in (33) are computed using the FEM with a single element of degree p+ k. Other functions are

discretized using a fine grid over individual spaces Ipgeo,k . Additionally, square roots involved in Js are approximated using

SVD and polynomial interpolation with high degree (degree 8 in practice).

Remark 6. The numberm of PGDmodes that is required to get accurate solutions 𝜌
j
Γ,m

can be rigorously defined using

classical a posteriori error estimation tools devoted to PGD.35,36,52,53 For extremal cases (elements with bad shape),

the number of PGD modes should be chosen carefully; however, too much distorted elements are usually avoided in

practice (regular meshes) and a few number of PGDmodes leads to a PGD error, which is negligible compared to the

discretization error that we wish to assess. A numerical evaluation of the value m that yields sufficient accuracy is

provided in the numerical results.

Combining (20) and (33), a PGD representation of 𝜌(x) solution to (18) reads

𝜌m(xref ,pgeo, {F̂
j

K|Γ}) =
∑
Γ⊂𝜕K

∑
j∈Γ

F̂
j

K|Γ𝜌
j
Γ,m

(xref ,pgeo). (34)

It provides for a parameterized equilibrated flux field at the element level:

q̂h,m|K(xref ,pgeo, {F̂
j

K|Γ}) = J−T(pgeo)𝛁

(∑
Γ⊂𝜕K

∑
j∈Γ

F̂
j

K|Γ𝜌
j
Γ,m

(xref ,pgeo)

)
, (35)

which can be directly used online in the a posteriori error estimation procedure.

A representation of the use of PGD in step 2 of the hybrid-flux approach (so-called EET-PGD technique) is given in

Figure 4.

Remark 7. In practice, the numerical implementation of the EET-PGD technique is organized so that the loop over

all elements of the mesh is avoided. It is rather chosen to store all PGD space modes in a single vector and to perform

global matrix multiplications which are optimized in classical software.
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FEM solution

Tractions construction

loop over

elements

Linear system

construction

 System

solution

Equilibrated field

computation

Local parameters

identification

Solution

interpolation

PGD

solution

Field rotation,

Gauss points reordering

admissible

solution

CRE estimation

STEP 1

STEP 2

FIGURE 4 Flow chart of the hybrid-flux approach without (left) or with (right) the use of EET-PGD in step 2. CRE, constitutive relation

error; EET, Element Equilibration Technique; PGD, proper generalized decomposition

3.4 Extension to elasticity problems

Considering elasticity problems, the local Neumann problems to solve in step 2 read

∫K𝜖(𝝆) ∶ 𝜖(u∗) = ∫Kf d · u
∗ + ∫𝜕K

F̂K · u∗ ∀u∗ ∈  (K), (36)

where  is the fourth-order symmetric elasticity tensor. On each edge/face Γ of any element K, tractions are linear

combinations of FE shape functions and thus read (in the 3D case)

F̂K|Γ(x) =
∑
j∈Γ

[F̂
jx

K|Γ𝝓
x
j (x) + F̂

jy

K|Γ𝝓
y
j
(x) + F̂

jz

K|Γ𝝓
z
j
(x)] ; (F̂

jx

K|Γ, F̂
jy

K|Γ, F̂
jz

K|Γ)
T = 𝜂ΓK(F̂

jx
Γ
, F̂

jy
Γ
, F̂

jz
Γ
)T ∈ R3, (37)

with 𝝓x
j (x) = (𝜙j(x), 0, 0)T , 𝝓

y
j
(x) = (0, 𝜙j(x), 0)T , and 𝝓z

j
(x) = (0, 0, 𝜙j(x))T . Consequently, the solution 𝝆 to (36) can be

written as follows:

𝝆(x) =
∑
Γ⊂𝜕K

∑
j∈Γ

[F̂
jx

K|Γ𝝆
jx
Γ
(x) + F̂

jy

K|Γ𝝆
jy
Γ
(x) + F̂

jz

K|Γ𝝆
jz
Γ
(x)], (38)

where 𝝆
jx∕y∕z
Γ

is the solution, up to a rigid body motion, to the elementary problem (generalization of (21)):

∫K𝜖(𝝆
jx∕y∕z
Γ

) ∶ 𝜖(u∗) = ∫Γ

𝝓
x∕y∕z

j
· u∗ − ∫K(a1 ∧ X + a2) · u

∗ ∀u∗ ∈  (K) (39)

X are barycentric coordinates in element K, and a1 and a2 are defined as follows:

a1 =
∫
Γ
X ∧ 𝝓

x∕y∕z

j

∫
K
X · X

; a2 =
1

|K|∫Γ

𝝓
x∕y∕z

j
. (40)
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As for the scalar case, a PGD representation of 𝝆 is then constructed as follows:

𝝆m(xref ,pgeo, {F̂
jx∕y∕z

K|Γ }) =
∑
Γ⊂𝜕K

∑
j∈Γ

[F̂
jx

K|Γ𝝆
jx
Γ,m

(xref ,pgeo) + F̂
jy

K|Γ𝝆
jy
Γ,m

(xref ,pgeo) + F̂
jz

K|Γ𝝆
jz
Γ,m

(xref ,pgeo)] (41)

and a parameterized equilibrated stress field at the element level reads

�̂�𝜎h,m|K(xref ,pgeo, {F̂
jx∕y∕z

K|Γ }) = (J−T(pgeo)∇)
s𝝆m(xref ,pgeo, {F̂

jx∕y∕z

K|Γ }). (42)

4 OPTIMIZATION OF TRACTIONS

The quality of the CRE estimate is related to that of constructed equilibrated tractions, so that optimizing tractions F̂K|Γ
is a relevant task. However, this leads to a global optimization problem that is complex to solve without sophisticated

numerical methods. In previous studies,43,54,55 a partial optimization was investigated. The basic idea was to give greater

freedom in the construction of equilibrated tractions, applying the prolongation condition on nonvertex nodes alone, to

improve the quality of the recovered admissible flux fields. To keep a reasonable computational cost, such an enhanced

construction of equilibrated tractions may in practice be applied only in zones of high element aspect ratios or sharp

gradients, in which the quality of admissible flux fields may be affected with usual procedures.

In this section, we wish to take advantage of the PGD representation (35) (which provides for a reduced model at the

element level) to address a full optimization of tractions F̂K|Γ by minimizing the CRE functional. This procedure, which
would be out of reach with a classical approach, is highly facilitated by the explicit dependency of the admissible field

q̂h,m on {F̂
j

K|Γ} provided by the PGD. It is referred as the HFT-PGD technique.

4.1 Optimization problem

We define the (infinite dimensional) space of equilibrated tractions:

 =

{
{F̂Γ(x)}; ∫K fd +

∑
Γ⊂𝜕K

∫Γ

𝜂ΓK F̂Γ = 0 for all K, 𝜂ΓK F̂Γ = Fd if Γ ⊂ 𝜕2Ω

}
. (43)

In this space, we consider the (finite dimensional) subspace of tractions that have a given form on each edge/face (linear

combination of shape functions):

𝓁 =

{
{F̂Γ(x)} ∈  ; F̂Γ(x) =

∑
j∈Γ

F̂
j
Γ
𝜙j(x)

}
⊂  . (44)

The dimension of 𝓁 depends on the polynomial degree of FE shape functions and the number of edges/faces. Conse-

quently, the unknowns of the problem are interface data {F̂
j
Γ
}, which are gathered in a global vector F̂ of length NF. This

way, the constraint that {F̂
j
Γ
} provide tractions that belong to  can be written CF̂ = F̂d.

Consequently, the optimization problem reads

{F̂Γ(x)}opt = arg min
{F̂Γ}∈𝓁

E2CRE
(
uh, q̂h({F̂Γ})

)
or F̂opt = arg min

F̂,CF̂=F̂d

E2CRE

(
uh, q̂h(F̂)

)
. (45)

4.2 Solution using PGD

On the one hand, from the PGD representation (35) of q̂h,m|K ,

q̂h,m|K(xref ,pgeo, {F̂
j
Γ
}) = J−T(pgeo)𝛁

(∑
Γ⊂𝜕K

∑
j∈Γ

𝜂ΓK F̂
j
Γ
𝜌
j
Γ,m

(xref ,pgeo)

)
, (46)
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the global admissible field q̂h,m computed with PGD can be written as follows:

q̂h,m = N(xref ,pgeo)F̂, (47)

where N(xref ,pgeo) is a parameterized d × NF matrix.

On the other hand, the PGD representation of E2
CRE

(uh, q̂h,m({F̂
j
Γ
})) reads

E2CRE(uh, q̂h,m) =
1

2∫Ω

(q̂h,m −𝛁uh) ·−1(q̂h,m −𝛁uh)

=
1

2
||q̂h,m||2 − ∫Ω

q̂h,m 𝛁uh +
1

2
||uh||2

=
1

2
F̂
T
MF̂ − F̂

T
LUh +

1

2
||uh||2

(48)

withM = ∫
Ω
NTN and L = ∫

Ω
NTB (BUh = 𝛁uh). Then the optimization problem is recast as follows:

F̂opt = arg min
F̂,CF̂=F̂d

(
1

2
F̂
T
MF̂ − F̂

T
LUh

)
. (49)

It is solved using a Lagrangian functional that leads to the system:

(
M CT

C 0

)(
F̂opt
Λ

)
=

(
LUh

F̂d

)
. (50)

We notice that elementary matrices that compose M, C, and L can be precomputed in the offline phase and defined

under a PGD formwith separated variables decomposition, from bothmatrices defined at the element level from (46) and

the topology of the mesh. Technically, coefficients of elementary matrices are computed and stored once for all with a

parameterized PGD form. From the topology of the mesh and the shape of elements, these coefficients are particularized

by means of evaluation of PGD terms and the assembly of global matrices is performed under a sparse format without

FEM solution

Solution of local systems

around each node

 Computation

of tractions

Solution of local systems

over each element

Local parameters

identification

PGD solution

evaluation

PGD

solution

Construction of a

global linear system

CRE estimation

STEP 1

STEP 2

Equilibrated field

computation

Global system

solution

CRE

minimization

FIGURE 5 Flow chart of the classical EET approach (left) versus the HFT-PGD approach (right) to compute the CRE estimate. CRE,

constitutive relation error; EET, Element Equilibration Technique; HFT, Hybrid Flux Technique; PGD, proper generalized decomposition
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resorting to any numerical integration in the online phase. The global system (50) of size (NF+NFd)×(NF+NFd),NFd being

the number of constraints imposed in  , is then factorized and solved in this latter phase. The number of PGD modes

that are used in this process is defined from a posteriori error estimation at the element level as suggested in Section 3.3.

Once the system (50) is inverted, the CRE estimate is directly recovered as follows:

E2CRE =
1

2
F̂
T
optMF̂opt − F̂

T
optLUh +

1

2
||uh||2 . (51)

Remark 8. When considering nonlinear problems, the CRE functional may be nonlinear with respect to q̂h,m so that

iterative minimization methods are required. An alternative is to minimize ||q̂h,m − qh|| .
A representation of the obtained HFT-PGD technique, that uses PGD model reduction all along the CRE process and

thus leads to a convenient alternative to the classical hybrid-flux approach, is given in Figure 5.

5 NUMERICAL RESULTS

In this section, we evaluate performance of the proposed approach on two-dimensional (2D) and three-dimensional (3D)

numerical experiments. In all studied cases, we consider regularmeshes such as these classically given bymesh generators

(no badly shaped or distorted elements). Consequently, the geometrical parameters considered in the PGD take values

that remain in a convenient interval for which PGDdecompositions lead to a negligible truncation error with a reasonable

number of modes. In addition, the numerical experiments involve an FE approximation with first-order Lagrange basis

functions.

5.1 2D thermal problem over a regular physical domain

We perform discretization error estimation on a 2D holed plate Ω, which is discretized by means of a mesh composed of

3-node triangle elements (Figure 6). The plate has length 2H and height H with H = 10, and the circular hole is centered

on the platewith radius r = 1.We consider a steady-state thermal problem and homogeneous isotropicmaterial properties

with = I. A prescribed zero temperature is applied on the external boundary, while a normal flux Fd = 1 is imposed on

the inner boundary, ie, on the hole boundary. Because of symmetries, only one quarter of the plate is studied.

From the associated FE solution, equilibrated tractionsmay be computed using the first step of the hybrid-flux (or EET)

technique.

5.1.1 Details on the PGD solution
Using notations of Figure 2, we compute parameterized solutions 𝜌

j

Γkl,m
(xref , 𝛼, x̄3, ȳ3) = 𝛼

∑m
i=1 𝜓i(xref )𝛿

x
i
(x̄3)𝛿

y
i
(ȳ3) of (21)

with a single fourth-order FE element and 20 PGD modes (m = 20). The domains Ix̄3 = [0, 1] and Iȳ3 = [0.1, 1] are

discretized with 100 points each, after checking that this is sufficient to ensure an accurate description of the evolutions

with respect to x̄3 and ȳ3. The first 3 PGD modes of 𝜌1
Γ12,20

are shown in Figure 7. In Figure 8, we represent the PGD

approximation of 𝜌1
Γ12

for various configurations of parameters x̄3 and ȳ3. The computation of this PGD solution is done

once for all, in an offline phase and stored for later use.

FIGURE 6 Representation of the 2D domain, associated FE mesh, and applied loading
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FIGURE 7 First proper generalized decomposition modes of 𝜌1
Γ12 ,20

: space functions 𝜓 i(x) (top), and parameters functions 𝛿
x
i
(x̄3) (center)

and 𝛿y
i
(ȳ3) (bottom) are represented with respect to the order i, for i = 1, 2, 3 (from left to right)

FIGURE 8 Representation of the parameterized proper generalized decomposition solution 𝜌1
Γ12 ,20

over the element K̄ for various

parameter configurations

After identifying the PGD parameters 𝛼, x̄3, and ȳ3 over each element of the mesh (see Figure 9), an accurate PGD

approximation of the admissible flux q̂m can then be directly evaluated inside each element in an inexpensive online

phase; we recall that this method is referred as EET-PGD method.
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FIGURE 9 Identified values of proper generalized decomposition parameters 𝛼, x̄3, and ȳ3 for each element K of the mesh

FIGURE 10 Local contributions to the constitutive relation error (CRE) estimate 2E2
CRE

obtained using either the Element Equilibration

Technique (EET) technique (left) or the EET-PGD technique (center), and elementary contributions to the exact error ||e||2 (right). PGD,

proper generalized decomposition

5.1.2 CRE estimate obtained from EET-PGD
From equilibrated tractions and PGD solutions, we have all ingredients to estimate the discretization error using the CRE

method. In Figure 10, we compare local contributions to the CRE estimate 2E2
CRE

, obtained from the EET-PGD technique

when computing an admissible flux q̂h,m, with the following: (1) contributions to the CRE estimate obtained from the

classical EET technique when computing an admissible flux q̂h; (2) contributions to the exact error ||e||2 evaluated using

a highly refined mesh (overkill solution). One observes similarities between the two CRE estimations, showing up areas

where the mesh needs to be refined. These areas are correctly predicted when comparing to the exact error distribution.

Choosingm = 20 to compute PGD solutions in the EET-PGD technique may be unnecessary. To analyze this point, we

show in Figure 11 values of the effectivity index ieff =
√
2ECRE
||e|| with respect to the numberm of PGDmodes used to evaluate

the equilibrated flux q̂h,m. We also represent in Figure 12 the evolution of the relative error
||q̂h,m−q̂h||

||q̂h|| with respect to m,

where q̂h is the equilibrated flux field constructed with the EET technique. A map of ||q̂h,m − q̂h|| for m = 1, m = 2,

and m = 3 is given in Figure 13. We observe that choosing m = 7 is enough to reconstruct an admissible flux solution,

which is equivalent to the one obtained with the classical EET technique. We also observe thatm = 3 enables to capture
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FIGURE 11 Value of the effectivity index with respect to the number of proper generalized decomposition (PGD) modes used to evaluate

the equilibrated flux in the constitutive relation error estimate. EET, Element Equilibration Technique

FIGURE 12 Evolution of the relative error ||q̂h,m − q̂h||∕||q̂h|| with respect to the number of proper generalized decomposition modes
used to compute q̂h,m

FIGURE 13 Map of the error on the flux field ||q̂h,m − q̂h|| computed with proper generalized decomposition, form = 1 (left),m = 2

(center), andm = 3 (right)

the complexity of the local problems and to provide for a relevant error estimate, even though it is not mathematically

guaranteed.

5.1.3 Speedup obtained using the PGD solution
Eventually, we compare the CPU time required to compute the equilibrated flux field depending onwhichmethod is used

(see Figure 18 for a graphical representation). All the computations were performed on an Intel Core i5 2.4 GHz with
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FIGURE 14 CPU speedup on the equilibrated flux step for meshes with increasing numbers of elements (speedup on the local recovery

alone or on the overall hybrid-flux technique are explicited)

FIGURE 15 Sequence of refined meshes used to assess CPU speedup with the EET-PGD technique. EET, Element Equilibration

Technique; PGD, proper generalized decomposition

8 Gb of RAM, without parallelization. Classical EET and EET-PGD techniques share as much code as possible, and only

the construction and solution of the matrix problem is replaced by a simple post-processing with PGD solutions in the

EET-PGD technique. Naturally, the first step with construction of equilibrated tractions is similar for both techniques.

When using the EET-PGD technique, the offline CPU cost to compute the PGD solution is 312 seconds; this solution can

then be used in amultiquery context. In the online step, computing the equilibrated flux from the classical EET technique

(Cholesky factorization) takes 0.01509 seconds per element (0.0587 s for the whole mesh composed of 42 elements),

whereas computing the equilibrated flux from a direct evaluation of the PGD solution takes 0.00426 seconds per element

(0.0077 s for thewholemesh).We thus observe a speedup of almost 10 in the secondCRE step (construction of equilibrated

fluxes in each element), and the global speedup on the whole hybrid-flux technique (with associated CPU cost of 0.0960 s)

is about a factor 2.

In Figure 14, we represent this speedup for different levels of refinement of the initial mesh (corresponding meshes

are given in Figure 15). The speedup increases as the mesh becomes finer, reaching a speedup of 125 on a 2688 elements

mesh for the local recovery, while the overall hybrid-flux technique shows a speedup of magnitude 5 on this same mesh.
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FIGURE 16 Evolution of the effectivity index with respect to the number of proper generalized decomposition (PGD) modes considered,

for Element Equilibration Technique (EET), EET-PGD, and HFT-PGD. HFT, Hybrid Flux Technique

FIGURE 17 Speedup obtained for EET-PGD and HFT-PGD with respect to Element Equilibration Technique (EET), for various values of

m. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

An additional step would be to reduce the CPU time of the tractions reconstruction, by optimizing implementation, to

fully benefit from the use of the PGD technique; this is performed in the following section.

5.1.4 Optimization of tractions
We now implement the HFT-PGD technique presented in Section 4, that aims at optimizing the tractions using PGD. We

represent in Figure 16 the effectivity index for EET, EET-PGD, and HFT-PGD techniques, with respect to the number m

of PGD modes considered. We observe that the global minimization brought by HFT-PGD largely improves the quality

of the error estimate and that its tend to 1 whenm increases.

In Figure 17, we give the speedup on the overall CPU cost required to compute the error estimate. We observe that

HFT-PGD is particularly interesting when considering a small number of PGDmodes, even though it always provides for

a convenient speedup compared to EET or EET-PGD. Moreover, we observe that the speedup is stable with respect to m

when considering EET-PGD alone.

In the following, we consider decompositions with 3 PGDmodes. We represent in Figure 18 the normalized CPU time

associated with EET, EET-PGD, and HFT-PGD methods when considering the coarsest mesh. The splitting of CPU time

contributions emphasizes that the whole cost is associated with the recovery of (optimized) equilibrated tractions when

using HFT-PGD.

We represent in Figure 19 the evolution of the speedup for both EET-PGD and HFT-PGD with respect to the number

of elements in the mesh. We observe that there is a constant speedup of about 2 for EET-PGD compared to classical EET,
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FIGURE 18 Comparison of CPU times required to compute the error estimate depending on the method which is used. EET, Element

Equilibration Technique; HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 19 Speedup obtained for EET-PGD and HFT-PGD with respect to EET, for various mesh sizes. EET, Element Equilibration

Technique; HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 20 Ratio of CPU times for Element Equilibration Technique (EET), EET-PGD, and HFT-PGD with respect to the FEM CPU time,

for various numbers of elements. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

and a speedup higher than 30 for HFT-PGD; this latter speedup increases with the number of elements, reaching about

100 for 2500 elements.

We eventually analyze the 3 construction techniques, ie, EET, EET-PGD, andHFT-PGD, in terms of CPU time compared

to the CPU time required to perform the FEM computation (Figure 20). We observe that contrary to EET and EET-PGD,

HFT-PGD leads to an error estimation procedure which is much cheaper than the FEM computation itself; even though
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an additional global computation is performed inHFT-PGD, the low computational cost is due to the fact that all matrices

are precomputed (no numerical integration in the online phase) and that the storage is optimized (sparse matrices are

declared).

FIGURE 21 Representation of the 2D. domain, associated FE mesh, and applied loading

FIGURE 22 Identified values of proper generalized decomposition parameters 𝛼, x̄3, and ȳ3 for each element K of the mesh

FIGURE 23 Evolution of the relative error ||q̂h,m − q̂h||∕||q̂h|| with respect to the number of proper generalized decomposition modes
used to compute q̂h,m
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5.2 2D thermal problem over a singular physical domain

We consider in this section the 2D squared structure represented in Figure 21, which contains two rectangular holes. The

structure has size 2× 2, holes have size 1× 0.6, and we choose isotropic material properties with = I. A prescribed zero

FIGURE 24 Map of the error on the flux field ||q̂h,m − q̂h|| computed with proper generalized decomposition, form = 1 (left),m = 2

(center), andm = 3 (right)

FIGURE 25 Value of the effectivity index with respect to the number of proper generalized decomposition (PGD) modes used to evaluate

the equilibrated flux in the constitutive relation error estimate. EET, Element Equilibration Technique; HFT, Hybrid Flux Technique

FIGURE 26 Speedup obtained for EET-PGD and HFT-PGD with respect to Element Equilibration Technique (EET), for various values of

m. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition
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temperature is applied on the external boundary, while a normal flux Fd = −1 is applied on hole boundaries. Exploiting

symmetries, one quarter of the structure is studied.

5.2.1 Computation of admissible fluxes using PGD
The FE mesh that is used being made of 3-node triangle elements, PGD solutions associated to an element are the same

as in Section 5.1. The values of PGD parameters 𝛼, x̄3, and ȳ3 over each element of the mesh are given in Figure 22.

Considering the EET-PGD, ie, using PGD for given tractions obtained from classical equilibration techniques, we rep-

resent in Figure 23 the evolution of the relative error
||q̂h,m−q̂h||

||q̂h|| with respect to m, where q̂h is the equilibrated flux field

constructed with the EET technique. A map of ||q̂h,m − q̂h|| for m = 1, m = 2, and m = 3 is also given in Figure 24. We

FIGURE 27 Local contributions to the exact error ||e||2 and to the constitutive relation error estimate 2E2
CRE

obtained using Element

Equilibration Technique (EET), EET-PGD, or HFT-PGD techniques (from left to right). HFT, Hybrid Flux Technique; PGD, proper

generalized decomposition

FIGURE 28 Comparison of CPU times required to compute the error estimate depending on the method which is used. EET, Element

Equilibration Technique; HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 29 Speedup obtained for EET-PGD and HFT-PGD with respect to Element Equilibration Technique (EET), for various mesh

sizes. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition
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still observe that a small number of PGD modes is necessary to reconstruct an admissible flux solution, which is equiva-

lent to the one obtained with the classical EET technique (m = 3 already enables to capture the complexity of the local

problems).

5.2.2 Comparison between EET, EET-PGD, and HFT-PGD
We represent in Figure 25 the effectivity indexwhen computing the CRE error estimate with EET, EET-PGD, orHFT-PGD

techniques, with respect to the numberm of PGDmodes.We still observe thatHFT-PGD enables to get an effectivity index

close to 1 for m ≥ 3. We give in Figure 26 the speedup obtained using EET-PGD or HFT-PGD on the overall CPU time

required to compute the error estimate. In the range of values ofm that we consider (m ≤ 10), EET-PGD and HFT-PGD

are cheaper than EET while HFT-PGD is cheaper than EET-PGD.

In the following,we consider decompositionswith 3 PGDmodes.We compare inFigure 27 the elementary contributions

to the CRE estimate 2E2
CRE

(obtained from EET, EET-PGD, or HFT-PGD techniques) with contributions to the exact error

FIGURE 30 Sequence of refined meshes used to assess CPU speedup

FIGURE 31 Ratio of CPU times for Element Equilibration Technique (EET), EET-PGD, and HFT-PGD with respect to the FEM CPU time,

for various numbers of elements. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 32 Representation of the 3D domain, associated FE mesh, and applied loading
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||e||2 (evaluated from an overkill solution).We observe that error representations are similar between EET and EET-PGD,

and the one given by HFT-PGD is very close to the exact one.

We represent in Figure 28 the normalized CPU time associated with EET, EET-PGD, and HFT-PGD techniques. The

associated speedup provided by EET-PGD and HFT-PGD compared to EET is shown in Figure 29; it is given with respect

to themesh size by considering different levels of refinement of the initial mesh (see Figure 30). We observe that there is a

constant speedup of about 2 to 3 for EET-PGD compared to classical EET, and a speedup higher than 10 forHFT-PGD; this

FIGURE 33 First 3 proper generalized decomposition modes (from left to right) of 𝜌1
Γ124 ,20

with from top to bottom: space functions 𝜓 i(x),

and parameters functions 𝛿
x3
i
(x̄3), 𝛿

y3
i
(ȳ3), 𝛿

x4
i
(x̄4), 𝛿

y4
i
(ȳ4), and 𝛿

z4
i
(z̄4)
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latter speedup increases with the number of elements, reaching about 30 for 1500 elements. Eventually, when analyzing

performance of EET, EET-PGD, and HFT-PGD in terms of CPU time compared to the CPU time required to perform the

FEM computation (Figure 31), we observe EET-PGD has a CPU cost comparable to the initial FEM computation whereas

HFT-PGD leads to an error estimation procedure which is much cheaper than the initial FEM computation (speedup of

about 8).

5.3 3D thermal problem

We now consider discretization error estimation on a 3D holed cubical domain Ω, according to a given mesh composed

of 4-node tetrahedron elements (Figure 32). The cube has edge length L = 1, and a spherical hole is centered on the cube

with radius r = 0.2. We consider a steady-state thermal problem and homogeneous isotropic material properties with

 = I. A prescribed zero temperature is applied on the external boundary, while a flux Fd = 1 is imposed on the inner

boundary, ie, on the hole boundary. Owing to problem symmetries, only one-eighth of the structure is studied.

From the associated FE solution, equilibrated tractionsmay be computed using the first step of the hybrid-flux (or EET)

technique.

5.3.1 Details on the PGD solution
Using notations of Figure 3, we compute parameterized solutions 𝜌

j

Γklt ,m
(xref , 𝛼, x̄3, ȳ3, x̄4, ȳ4, z̄4) of (21) with a single

fourth-order FE element and 20 PGD modes (m = 20). The domains associated with each geometrical parameter are

discretized with 100 points each, after checking that this is sufficient to ensure an accurate description of the evolutions

with respect to these parameters. Furthermore, a high-order SVD (HOSVD) technique is applied to the Jacobian terms

appearing in (26) to recover an affine dependency with respect to the parameters (about 1000 modes are kept). The first

3 PGD modes of 𝜌1
Γ124,20

are shown in Figure 33. The computation of this PGD solution is done once for all, in an offline

phase and stored for later use.

FIGURE 34 Identified values of proper generalized decomposition parameters 𝛼, x̄3, ȳ3, x̄4, ȳ4, and z̄4 for each element K of the mesh
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5.3.2 Performance of HFT-PGD
After identifying the PGD parameters over each element of the mesh (see Figure 34), an accurate PGD approximation of

the admissible flux q̂m can then be directly evaluated inside each element in an inexpensive online phase.

In Figure 35, we compare local contributions to the CRE estimate 2E2
CRE

obtained from the HFT-PGD technique (with

m = 20) with those obtained from the classical EET technique. The estimate value is 2.83 and the CPU time is 624 seconds

when using the EET technique, whereas the estimate value is 2.67 and the CPU time is 219 seconds when using the

HFT-PGD technique (speedup of 2.8 and sharper estimate).

We give in Figure 36 the evolution of the value of the error estimate obtained using the HFT-PGD technique (compared

to the classical EET technique) with respect to the number m of PGD modes used. We observe that a relevant error

estimate is obtained with HFT-PGD for m ≥ 8 and that a sharp error estimate can be recovered considering m ≥ 16.

The speedup provided by HFT-PGD compared to EET is shown in Figure 37; it is given with respect to the mesh size by

considering different levels of refinement of the initialmesh, and for different values ofm.We observe here that HFT-PGD

remains competitive compared to classical EET while m ≤ 10. In addition, comparing CPU time with that of the initial

FEM computation (Figure 38) confirms that performance of HFT-PGD in terms of computational cost for this 3D case is

affected when choosing m ≥ 10. This may be practically changed by using a better implementation and storage of PGD

representations.

5.4 3D elastoplasticity problem

As a last numerical experiment, we consider error estimation on 3D structure made of a elastoplastic material (Ludwik

law) and according to a mesh composed of 8-node hexahedron elements (see Figure 39), as described in Hild et al.56 It

corresponds to the numerical simulation of a tensile test on a nodular graphite cast iron sample. The structure is clamped

on its bottom side and submitted on its top side to a given displacement field obtained from a linear interpolation of

experimentally imposed boundary conditions (see Hild et al56). The other sides are free.

The initial mesh is made of 3 × 5 × 10 H8-elements (mesh 1), but refinements with 6 × 10 × 20 elements (mesh 2),

9× 15× 30 elements (mesh 3), and 12× 20× 40 elements (mesh 4) are also considered. The external loading is applied by

means of 10 steps in the nonlinear iterative algorithm. Using the concept of dissipation error introduced in Section 2.2.3,

FIGURE 35 Local contributions to the constitutive relation error estimate 2E2
CRE

obtained using either the Element Equilibration

Technique technique (left) or the HFT-PGD technique (right). HFT, Hybrid Flux Technique; PGD, proper generalized decomposition
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FIGURE 36 Evolutions of the error estimates obtained with Element Equilibration Technique (EET) and HFT-PGD techniques with

respect tom. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 37 Speedup obtained for HFT-PGD with respect to Element Equilibration Technique (EET), for various mesh sizes and different

values ofm. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition

FIGURE 38 Ratio of CPU times for Element Equilibration Technique (EET), EET-PGD, and HFT-PGD with respect to the FEM CPU time,

for various numbers of elements. HFT, Hybrid Flux Technique; PGD, proper generalized decomposition
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Ud

FIGURE 39 Representation of the 3D domain with associated FE mesh

FIGURE 40 Local contributions to the CRE estimate 2E2
CRE

obtained using the Element Equilibration Technique (EET) technique

associated with meshes 1, 2, 3, and 4 (from left to right)

as well as the classical EET technique to construct an admissible stress field �̂�𝜎h at each time point, the CRE error estimate

2E2
CRE

can be obtained. Local contributions to this estimate are shown in Figure 40.

We now assess performance of EET-PGD and HFT-PGD on this specific application. Because of the regular meshes

that are used, PGD parameter values remain in a limited interval so that very few PGD modes are required to obtain an
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TABLE 1 Performance of EET-PGD and HFT-PGD in terms of effectivity index and speedup compared to classical EET

Effectivity index Effectivity index Speedup Effectivity index Speedup

EET EET-PGD EET-PGD vs EET HFT-PGD HFT-PGD vs EET

Mesh 1 1.36 1.37 20.49 1.09 31.45

Mesh 2 1.33 1.35 28.72 1.11 39.09

Mesh 3 1.30 1.31 32.44 1.08 43.13

Mesh 4 1.37 1.37 36.18 1.06 48.24

Abbreviations: EET, Element Equilibration Technique; HFT, Hybrid Flux Technique; PGD, proper generalized decomposition.

accurate solution over each element. We choosem = 5 in practice, and we report in Table 1 the performance of EET-PGD

andHFT-PGD in terms of effectivity index and speedup compared to classical EET, for the 4meshes described previously.

We observe large speedups for both methods, due to the fact that a limited number of PGD modes is considered and that

the equilibration procedure has to be performed at each iteration step.

6 CONCLUSIONS AND PROSPECTS

We presented a general framework that highlights the original and beneficial use of PGD in verification procedures per-

formed by means of the CRE concept. Based on an offline/online strategy, this framework involves PGD representations

at the level of each element of the finite element mesh. This drastically decreases the computational cost and technicali-

ties that are essentially associated with the computation of admissible fields. It thus facilitates practical implementation,

decreases CPU time, and increases the quality of the CRE error estimate.

As the proposed technique is focused on balance equations alone, it directly extends to any nonlinear time-dependent

mechanical problem. In this framework, we forecast a large speedup in industrial applications due to the fact that the

construction of admissible fields needs to be performed at each time step and that the speedup increases with the number

of elements. We thus believe this work paves the way to robust, practical, and real-time methods for controlling FEM

simulations performed by Computational Mechanics software.

Additional studies on the proposed technique could be investigated: (1) application to higher-order elements on com-

plex meshes; (2) consideration as a tool for designing optimal meshes, as well as for mesh refinement on the fly; and

(3) comparison with concurrent approaches that exhibit an offline stage such as the patch-based mixed finite element

approach.24,29 All these points will be the topics of forthcoming research works.
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