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We propose a low-Mach correction for cell-centered schemes in Lagrangian frame. After transposing some classical results from the Eulerian frame to the Lagrangian frame, we show why classical cell-centered Lagrangian schemes are not able to capture the low-Mach regime except by using unreasonably fine meshes. Consequently, we propose a slight modification of the original scheme, which is easy to implement in any scheme using an acoustic Godunov solver on unstructured mesh, and has a negligible cost in term of CPU time. We demonstrate that this modification cures this flaw. The properties of the original semi-discrete scheme (consistence, conservation) are preserved. Particular attention is paid to the entropy condition, proving its compatibility with the proposed modification. We assess this new scheme on several low and high-Mach problems, to demonstrate its good behavior in all regimes. Our last test problem is devoted to the study of the growth rate of instability in convergent configurations. It shows that even if the problem is globally very compressible, the low-Mach correction can have a significant impact on the solution.

Introduction

Since 1950 and the seminal work of Von Neumann and Richtmyer [START_REF] Neumann | A method for the calculation of hydrodynamics shocks[END_REF], semi-Lagrangian methods are useful and widely used for the calculation of high velocity gas dynamics (refer to [START_REF] Barlow | Arbitrary Lagrangian Eulerian methods for modeling high-speed compressible multimaterial flows[END_REF][START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF][START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF] and references therein for more details about these methods). This popularity to respect to Eulerian methods is partly due to the fact that the convection terms are not taken into account in the fluxes, but implicitly by the mesh motion. The original scheme of Von Neumann and Richtmyer is said to be staggered in space, which means that the velocity's unknowns are associated with the vertices of the cells, while the thermodynamics's unknowns (internal energy, density) are associated with the cells of the mesh. This is a natural choice for semi-Lagrangian methods, because it directly provides a procedure to move the mesh compatibly with the velocity unknowns. This intrinsic quality justifies the great number of works devoted to this method for more than 60 years. Among these works, some concern the design of artificial viscosity. Artificial viscosity is needed in staggered schemes, because the discretization of the pressure gradient is by construction "centered" and does not account for the entropy increase in shock waves. The artificial viscosity cures this flaw in adding a dissipative term proportional to the velocity jump into the momentum equation. Modern versions of this mechanism include a monotonic second-order reconstruction of this jump, in order to discard the artificial viscosity for regular (isentropic) flows. One indirect and never mentioned consequence of this enhancement is to widely improve the behavior of staggered schemes in low-Mach regimes. Indeed, it has been shown that a correct calculation of low-Mach flows is directly related to a centered pressure gradient (refer for instance to [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF]).

Finite-Volume cell-centered (or collocated) schemes are the alternative to the former staggered schemes. Contrary to staggered schemes, all the unknowns of these schemes, including the velocity, are mean values associated with the cells of the mesh. The main advantage of this configuration, is that it greatly facilitates the balance of momentum and total energy, making in particular much easier its extension to Arbitrary Lagrangian Eulerian (ALE). However, since the velocity unknowns are no more associated with the vertices, one needs an extra ingredient to predict the mesh motion. Recent works [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF][START_REF] Maire | A cell-centered lagrangian scheme for 2D compressible flow problems[END_REF] have successfully overcome this difficulty, in solving the Riemann problem at the vertices instead of the sides of the cells (as done in the first attempts [START_REF] Addessio | CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip[END_REF]). Numerous variants of these schemes (refer among other to [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Burton | A cell-centered Lagrangian Godunov-like method for solid dynamics[END_REF][START_REF] Cheng | Positivity-preserving Lagrangian scheme for multi-material compressible flow[END_REF][START_REF] Ge | High-order Lagrangian cell-centered conservative scheme on unstructured meshes[END_REF][START_REF] Liu | A two dimensional nodal Riemann solver based on one dimensional Riemann solver for a cell-centered Lagrangian scheme[END_REF]) have been recently developed. All use an acoustic Godunov solver to compute the fluxes. A peculiar feature of this solver, is that it enforces by construction an entropy deposit, in including a term proportional to the velocity jump into the pressure gradient. This feature makes these schemes not well suited to capture the low-Mach regime, what has been previously experienced in Eulerian community. Godunov solvers are widely used in Eulerian community, and many works have been devoted to this issue (refer for instance to [START_REF] Boniface | Rescaling of the Roe scheme in low Machnumber flow regions[END_REF][START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes[END_REF][START_REF] Ph | A projection method for low speed flows[END_REF][START_REF] Cordier | An Asymptotic-Preserving allspeed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF][START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system[END_REF][START_REF] Guillard | On the behavior of the upwind scheme in low Mach number limit[END_REF][START_REF] Klein | Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics I: One-dimensional flow[END_REF][START_REF] Li | An All-Speed Roe-type scheme and its asymptotic analysis of low-Mach number behaviour[END_REF][START_REF] Liou | A sequel to AUSM, Part II: AUSM + -up for all speeds[END_REF][START_REF] Moguen | Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations[END_REF][START_REF] Rieper | A low-Mach number fix for Roe's approximate Riemann solver[END_REF][START_REF] Thornber | An improved reconstruction method for compressible flows with low Mach number features[END_REF]), mainly for Cartesian grids. Only few works are dealing with unstructured meshes, and none of them in Lagrangian frame (however Chalons et al. [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes[END_REF] consider a Lagrange + remap method to solve the equations in Eulerian frame). Dellacherie [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF] has enlightened the specificity of the low-Mach problem for multi-dimensional schemes, and explains why successful mono-dimensional scheme can fail in multi-D.

In this paper we propose a low-Mach correction for cell-centered schemes in Lagrangian frame. After transposing some classical results in Eulerian frame to Lagrangian frame in Section 2, we show why classical cell-centered schemes are not able to capture the low-Mach regime in Section 3. Then in Section 4, we propose a slight modification of the original scheme, which is easy to imple-ment in any scheme using an acoustic Godunov solver on unstructured mesh, and its cost in term of CPU time is negligible. We demonstrate that this modification cures this flaw. The properties of the original semi-discrete scheme (consistence, conservation) are preserved. We devote Section 5 to the entropy condition, proving its compatibility with the modification proposed. We give useful implementation details in Section 6. Finally, in Section 7, we assess this new scheme on several low and high-Mach problems, to demonstrate its good behavior in all regimes. Last test problem is devoted to the study of the growth rate of instability in convergent configuration. It shows that even if the problem is globally very compressible, the low-Mach correction can have a significant impact on the solution.

Framework and notations

This preliminary section is devoted to the specification of the framework and notation used in the remainder of the paper.

Governing equations and low-Mach regime

We consider the semi-Lagrangian form of the Euler system of conservation laws:    ρD t τ -∇ • u = 0 volume, ρD t u + ∇p = 0 momentum, ρD t e + ∇ • (pu) = 0 total energy. [START_REF] Addessio | CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip[END_REF] where D t (ϕ) := (∂ t + u • ∇)ϕ is the Lagrangian derivative, ρ is the density, τ = 1/ρ is the specific volume, u is the velocity, p is the pressure, e = ε + u 2 /2 the specific total energy and ε the specific internal energy.

This set of equations is supplemented by an equation of state p = p(ρ, ε) and endowed with an entropy evolution law

ρD t η ≥ 0 ( 2 
)
where η is the physical entropy fulfilling the Gibbs relation

T dη = dε + pdτ, (3) 
where T is the temperature.

In the following, we are interested in the low-Mach regime corresponding to

M = |u|/c << 1, with c = ∂p ∂ρ η the sound-speed.
In order to study this regime, we rescale the system (1) using a set of dimensionless variables:

x = x L , t = t t R , ρ = ρ ρ R , p = p p R , u = u u R , e = e e R , c = c c R (4) 
where the parameters

L, t R , ρ R , p R , u R = L/t R , e R = p R ρ R and c R = p R /ρ R
denote respectively a characteristic length, time, density, pressure, velocity, energy and sound-speed, and x ∈ R d is the position. The characteristic Mach number is defined as M = u R /c R , and the system (1) recasts:

     ρD t τ -∇ • u = 0 volume, ρD t u + 1 M 2 ∇p = 0 momentum, ρD t e + ∇ • (pu) = 0 total energy. ( 5 
)
with e = ε + M 2 u 2 /2, and D t ϕ := ∂ t ϕ + u • ∇ϕ. To lighten the notation we omit in the following the bar on the differential operators in the dimensionless equations.

To study the asymptotic low-Mach regime of the previous system, we perform a Hilbert expansion of all the variables with respect to the small parameter M (ϕ = ϕ 0 + M ϕ 1 + M 2 ϕ 2 + ...). Injecting it into the momentum equation of the system (5), we obtain ∇p 0 = ∇p 1 = 0. Consequently, p(x, t) = p 0 (t) + M 2 p 2 (x, t) and keeping only the O(1) terms in (5), we get

   ρ 0 D 0 t τ 0 -∇ • u 0 = 0 volume, ρ 0 D 0 t u 0 + ∇p 2 = 0 momentum, ρ 0 D 0 t ε 0 + p 0 ∇ • (u 0 ) = 0 total energy. (6) 
where

D 0 t ϕ = (∂ t + u 0 • ∇)ϕ.
The total energy conservation law has been changed into an internal energy balance law, equivalent to the conservation of the entropy, D 0 t η 0 = 0 (see equation ( 3)). Expanding the energy equation to the next order gives:

ρ 0 D 0 t ε 1 + ρ 1 D 0 t ε 0 + ρ 0 u 1 • ∇ε 0 + p 0 ∇ • (u 1 ) = 0. (7) 
It means that D t η 1 = 0, and then

D t η = O(M 2 ).
The previous analysis is formal. For a rigorous study of the low-Mach regime, we refer the reader to the founding works of Klainerman and Majda [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF][START_REF] Klainerman | Compressible and incompressible fluids[END_REF].

Notations

We have chosen a formalism general enough to express at once Glace [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF], Eucclhyd [START_REF] Maire | A cell-centered lagrangian scheme for 2D compressible flow problems[END_REF] and CCH [START_REF] Burton | A cell-centered Lagrangian Godunov-like method for solid dynamics[END_REF]. In this formalism, we denote the cells Ω j , paving the computational domain Ω with the index j. The vertices of the mesh are denoted by the index r and the faces (or edges) by f . For instance, x j , x r and x f are the positions respectively of the center of cell j, the vertex r, and the middle of face f , as depicted on Figure [START_REF] Addessio | CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip[END_REF].

In the following, some quantities are defined relatively to the cell j, the node r or the face f . They are referred respectively as ϕ j , ϕ r or ϕ f . Some quantities, as for instance the vectors N jrf and C jr of Figure [START_REF] Addessio | CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip[END_REF], can depend on two or even three different types of elements. The vector N jrf = N jrf n jrf is the outward directed surface normal to the face f owning the vertex r of the cell j, n jrf and N jrf being respectively the unit normal vector and the half length corresponding to this face. In the following, we call J the set of the cells, R •

x j x r x f C jr N jrf Ω j • • Figure 1: Notations
the set of the vertices, and F the set of the faces (or edges) of the calculation domain. Consequently, we define F j the set of faces of the cell j, and F r the set of faces owning the vertex r. Similarly, R j and R f denote respectively the set of vertices of the cell j or of the face f , and J r and J f respectively the set of cells owning the vertex r or the face f . We also make use of the notation J j , with j a cell index, to design all cells sharing a vertex with cell Ω j . Finally, we condensate the intersection of the sets, for instance: F jr := F r ∩F j . To simplify the notations, we adopt the following conventions for sums: if no set is defined in the sum, it means that this set is defined by the indices of the quantities involved. For instance

ψ j = r ϕ r means ∀j ∈ J , ψ j = r∈Rj ϕ r , ψ r = j f ϕ jf means ∀r ∈ R, ψ r = j∈Jr f ∈Fr∩Fj ϕ jf , or equivalently ∀r ∈ R, ψ r = f ∈Fr j∈Jr∩J f ϕ jf , ψ jr = f ϕ jf means ∀r ∈ R, ∀j ∈ J r , ψ jr = f ∈Fjr ϕ jf , or equivalently ∀j ∈ J , ∀r ∈ R j , ψ jr = f ∈Fjr ϕ jf .
The geometrical vector C jr is defined as

∀r, ∀j, C jr = ∇ xr |Ω j |. (8) 
Finally, we recall the geometrical identities, widely used in the following:

               ∀j, r C jr = 0, ∀r, j C jr = 0, ∀j, r f N jrf = 0, ∀r, j f N jrf = 0, ∀r, ∀j, f N jrf = C jr . (9) 

Semi-discrete conservation laws

With this formalism, the semi-discrete Glace [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF], Eucclhyd [START_REF] Maire | A cell-centered lagrangian scheme for 2D compressible flow problems[END_REF] and CCH [9] schemes for Euler system (1) write

                 d t j 1 = r C jr • u r volume, d t j ρu = - r f F jrf momentum, d t j ρe = - r f F jrf • u r energy, (10) where j 
• denotes the integral over the cell Ω j moving at the fluid velocity u.

In the following, we denote m j := 

ε j := j ρε/ j ρ.
This system of equation is closed by the kinematic evolution of the node positions d t x r = u r . An acoustic Godunov solver is employed to compute the fluxes F jrf and F jrf • u r . The way this Riemann solver is expressed makes the difference between the semi-discrete schemes, but can be also put in the same formalism

F jrf -F rf j + ρ j c j A jrf (u r -u j ) = 0, (11) 
where

F rf j = N jrf p j (12) 
is a reconstructed pressure force at the location considered, and A jrf is a rank 1 symmetric non-negative matrix for Glace and Eucclhyd and a diagonal matrix for CCH1 . These matrices write

       A jrf = 1 #(Fjr) C jr ⊗ C jr |C jr | Glace, A jrf = N jrf ⊗ n jrf Eucclhyd, A jrf = N jrf |n jrf • a j |Id CCH. ( 13 
)
where Id stands for the identity d × d tensor (d being the dimension of the problem) and a j is the unit vector direction of the local acceleration. Whatever the scheme is, the matrix A jrf is a purely geometric entity and scales as O(h d-1 j ) with respect to the cell radius h j .

Summing equation ( 11) over all faces of all cells containing vertex r, and enforcing the momentum conservation, we get

A r u r = j f ρ j c j A jrf u j + j F rf j , (14) 
where we define A r = j f ρ j c j A jrf . The matrix A r can be proved to be invertible (refer to [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Maire | A cell-centered lagrangian scheme for 2D compressible flow problems[END_REF]).

Analysis of the collocated schemes at low Mach number

We consider only the first-order version of the scheme, in the analysis.

Dimensionless semi-discrete scheme

We apply the same rescaling to the semi-discrete scheme [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] as for the continuous system [START_REF] Ben-Artzi | Generalized Riemann Problems in Computational Fluid Dynamics[END_REF]. The volume integral scales as L d , and the geometrical vectors N jrf as L d-1 . Finally, since p jrf has the dimension of a pressure, and u r has the dimension of a velocity, we obtain the following dimensionless semidiscrete scheme:

                 d t j 1 = r C jr • u r volume, d t j ρu = - 1 M 2 r f F jrf momentum, d t j ρe = - r f F jrf • u r energy. (15) 
A similar rescaling can be made for the acoustic Godunov solver. For equation [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]:

F jrf -F rf j + M ρ j c j A jrf (u r -u j ) = 0, (16) 
and for equation [START_REF] Cheng | Positivity-preserving Lagrangian scheme for multi-material compressible flow[END_REF]:

A r u r = j f ρ j c j A jrf u j + 1 M j F rf j . (17) 

Consistence of the spatial operators

We now prove that the semi-discrete scheme [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearlyperturbed planar-symmetric flows of gas dynamics[END_REF] with the nodal solver ( 16) and ( 17) is consistent with the continuous system (5) with an error proportional to h M , where h = max j (h j ). To achieve that, we need the three following propositions.

Proposition 3.1. Assume that 0 < α 1 ≤ ρ j c j ≤ α 2 for all j, then ∀e ∈ J r , ∀g ∈ F er ,

|N erg • (u r -u e )| ≤ β 0 ( max j,k∈Jr |u j -u k | + 1 M max j,k∈Jr |p j -p k |) max j∈Jr,f ∈Fjr |N jrf |, (18) 
where β 0 does not depend on h and M .

Proof. The proof mimics the proof of Proposition [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF].

We have the identity A r u e = j f

N jrf ρ j c j u e •n jrf . Using j f
N jrf u e = 0, we recast the nodal solver [START_REF] Ph | A projection method for low speed flows[END_REF] into

A r y r = j f N jrf y j , (19) 
where y r = u r -u e , and y j = (p j -p e ) + ρ j c j M (u j -u e ) • n jrf . Multiplying equation ( 19) by y r , we obtain: y r A r y r = j f y j N jrf • y r . Moreover,

y r A r y r = j f ρ j c j |N jrf | (N jrf • y r ) 2 .
Using the hypothesis of the proposition, it yields:

j f (N jrf • y r ) 2 ≤ max j∈Jr,f ∈Fjr |N jrf | α 1 j f |y j ||N jrf • y r |.
From the Cauchy-Schwarz inequality we infer:

j f |y j ||N jrf • y r | ≤ j f (N jrf • y r ) 2 j f y 2 j ,
and

j f |N jrf • y r | ≤ j f (N jrf • y r ) 2 .
Together with the previous inequalities, we obtain

j f |N jrf • y r | ≤ max j∈Jr,f ∈Fjr |N jrf | α 1 j f y 2 j ,
which ends the proof using the definition of y j , since ρ j and c j do not depend on M and h.

Proposition 3.2. Under the same condition than for Proposition (3.1) we have,

∀e ∈ J r , ∀g ∈ F er , |F erg -F rg e | ≤ β 1 (M max j,k∈Jr |u j -u k | + max j,k∈Jr |p j -p k |) max j∈Jr,f ∈Fjr |N jrf |.
(20) where β 1 does not depend on h j and M .

Proof. Equation [START_REF] Ph | A projection method for low speed flows[END_REF] gives 

F jrf -F rf j = M ρ j c j N jrf (u r -u j ) • n jrf
|N erg • u r | ≤ β 2 (max j∈Jr |u j | + 1 M max j∈Jr |p j |) max j∈Jr,f ∈Fjr |N jrf |, (21) 
where β 2 does not depend on h j and M .

Proof. Equation [START_REF] Ph | A projection method for low speed flows[END_REF] gives

N jrf p jrf = N jrf p j + M ρ j c j N jrf (u r -u j ) • n jrf . Consequently, since N jrf = 0, N jrf • u r = N jrf • u j + 1 M ρ j c j |N jrf |(p jrf -p j ).
Applying the proposition (3.2) gives the result. Note that summing the previous equation on the faces sharing the cell j and the node r gives a similar estimate on |C er • u r |.

In the following we use the convention that φ(x) = j φ j 1 x∈Ωj , and x → 1 x∈Ωj is the indicator of characteristic function of cell Ω j .

Defining B(x) = j   r f F jrf   1 x∈Ωj |Ω j |
, we can now prove the weak consistency of the gradient operator.

Proposition 3.4. Assume that 0 < α 1 ≤ ρ j c j ≤ α 2 for all j, that the mesh is regular in the sense α 3 h d ≤ |Ω j | and h j ≤ α 4 h for all cells, with uniform constants α 1 , α 2 , α 3 , α 4 > 0. Assume moreover that p j and u j are bounded in L ∞ and are bounded in the BV sense

j k∈Jj h d-1 |u j -u k | ≤ α 5 and j k∈Jj h d-1 |p j -p k | ≤ α 6 , (22) 
Assume also that ∀j, |p j -

p k | k∈Jj = O(M 2 ) ( 23 
)
then B -∇p = O(M h) in the weak sense.

Before proving the result, some comments are in order.

• The hypothesis [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF] • The result of Proposition 3.4 can be rewritten in the following form: for

any smooth function x → ϕ(x) with compact support in Ω, Ω Bϕ + Ω p∇ϕ = O(M h).
• In the proof, we make use of three following estimates concerning the mean of a smooth function

1 |Ω j | Ωj ϕdx -ϕ(x j ) = O(h 2 ), (24) 
the number of cells in the mesh

J = O(h -d ), (25) 
and the size of N jrf

|N jrf | = O(h d-1 ). (26) 
• We also use the following identity demonstrated for instance in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF]:

r f N jrf ⊗ x r = |Ω j |Id, (27) 
Proof. First part of the proof is the proof of Theorem 12 in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF]. It is demonstrated that

Ω Bϕ + Ω p∇ϕ = O(h).
Introducing the definition of B into this expression, we obtain

j 1 |Ω j | Ωj ϕdx r f F jrf + Ω p∇ϕ = R r , (28) 
with R r = O(h).

Second part consists in proving that

j 1 |Ω j | Ωj ϕdx r f F jrf = O(M )
and

Ω p∇ϕ = O(M 2 ). Using r f F rf j = 0, we infer j 1 |Ω j | Ωj ϕdx r f F jrf = j 1 |Ω j | Ωj ϕdx r f F jrf -F rf j . Since ϕ is O(1)
with respect to M , the Proposition 3.2 and the Cauchy-Schwarz inequality give us

| j 1 |Ω j | Ωj ϕdx r f F jrf -F rf j | ≤ αβ 1 (M max j,k∈Jr |u j -u k | + max j,k∈Jr |p j -p k |) max j∈Jr,f ∈Fjr |N jrf |,
for some α which does not depend on M . Using the low-Mach hypothesis [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF], we obtain

| j 1 |Ω j | Ωj ϕdx r f F jrf -F rf j | = (M + M 2 )O(1). (29) 
We study now the second term. Since ϕ has a compact support

Ω p∇ϕ = Ω (p -p m )∇ϕ,
where p m is the mean pressure over Ω.

Using the Cauchy-Schwarz inequality and the smoothness of ϕ, we infer

| Ω (p -p m )∇ϕ| ≤ Ω |p -p m | 2 Ω |∇ϕ| 2 , ≤ α Ω |p -p m | 2 ,
for some α independent of M . The low Mach hypothesis [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF] gives us

Ω (p -p m )∇ϕ = M 2 O(1). (30) 
Plugging estimates ( 29) and ( 30) into (28), we infer that R r = (M + M 2 )O(1), and since we also have that

R r = O(h), R r = O(M h).
It is worth noting that this proof already enlightens the issue of this solver for low-Mach flows. Indeed, the fact that the continuous gradient and the discrete one have not the same dependency with respect to the Mach number will produce spurious results in this regime. First part of the proof mimics the proof of theorem ( 12) in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF], and demonstrates that C -∇ • u = O(h) in the weak sense, with respect to h. Second part of the proof demonstrates that C -∇ • u = O(1) in the weak sense with respect to M .

Defining now C(x) =

Proof.

• We have

Ω Cϕ = j 1 |Ω j | Ωj ϕdx r C jr • u r .
Introducing the ϕ(x j ) into this formula gives:

Ω Cϕ = j ϕ(x j ) r C jr • u r + j 1 |Ω j | Ωj ϕdx -ϕ(x j ) r C jr • u r , = j ϕ(x j ) r C jr • u r + j 1 |Ω j | Ωj ϕdx -ϕ(x j ) r C jr • (u r -u j ) , since r C jr = 0.
Using Proposition 3.2, estimates ( 24), ( 25) and ( 26), and the last equality of (9), we infer

j 1 |Ω j | Ωj ϕdx -ϕ(x j ) r C jr • (u r -u j ) = O(h 2 )O(h -d )O(h d-1 ) = O(h). Moreover, since j C jr • u r = 0, j ϕ(x j ) r C jr • u r = j r C jr • u r (ϕ(x j ) -ϕ(x r )) = j r C jr • u j (ϕ(x j ) -ϕ(x r )) + j r C jr • (u r -u j ) (ϕ(x j ) -ϕ(x r )) . Since ϕ is smooth, ϕ(x j ) -ϕ(x r ) = O(h), and j r C jr • (u r -u j ) (ϕ(x j ) -ϕ(x r )) = O(h 1-d )O(h d-1 )O(h) = O(h),
using the BV hypothesis [START_REF] Després | Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy[END_REF].

The smoothness of ϕ implies ϕ(

x r ) = ϕ(x j ) + ∇ϕ(x j ) • (x r -x j ) + O(h 2 ),
and then using similar arguments as before j r

C jr • u j (ϕ(x j ) -ϕ(x r )) = j r C jr • u j ∇ϕ(x j ) • (x r -x j ) + O(h) = j u j r C jr ⊗ x r ∇ϕ(x j ) + O(h)
Using relation [START_REF] Haan | Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes[END_REF], we infer:

j u j r C jr ⊗ x r • ∇ϕ(x j ) = j |Ω j |u j • ∇ϕ(x j ) = - Ω u • ∇ϕ(x) + O(h)
Putting all these pieces together, it proves the first part of the claim, that is R e = O(h).

• Now, we prove that Moreover, we have

Ω Cϕ = j 1 |Ω j | Ωj ϕdx r C jr • u r , = j 1 |Ω j | Ωj ϕdx r C jr • (u r -u j ).
Using the fact that ϕ( Proof. The first part of the proof can be found in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF] and is not reproduced here. It concludes that D -∇ • pu = O(h) in the weak sense with respect to the mesh size. It means that

j 1 |Ω j | Ωj ϕdx r f F jrf • u r + Ω pu∇ϕ = R e ,
with R e = O(h). Now we prove that R e is O(1) with respect to the Mach number.

• Since u, p and ∇ϕ are O(1),

Ω pu∇ϕ = O(1).
• Now concerning the first part of the left-hand-side: Plugging these estimates into the semi-discrete solver [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearlyperturbed planar-symmetric flows of gas dynamics[END_REF], we finally obtain the equivalent equations:

j 1 |Ω j | Ωj ϕdx r f F jrf • u r = j 1 |Ω j | Ωj ϕdx r f F jrf -F rf j • (u r -u j ) + F rf j • u r , since r f F jrf •u j = 0,
               d t j 1 = j ∇ • u + O(h) volume, d t j ρu = - j 1 M 2 ∇p + O( h M ) momentum, d t j ρe = - j ∇ • (pu) + O(h) energy. ( 31 
)
This analysis explains the bad behavior of this scheme in the low-Mach regime, since the momentum equation suffers of a O( h M ) error. Similar analysis on the entropy balance shows that

T j d t j ρη = O(M ), (32) 
which is one order of magnitude higher with respect to M than what is expected from the continuous analysis.

Low-Mach correction of the collocated schemes

We now propose a low-Mach correction for collocated Godunov schemes, and prove the consistency of the resulting semi-discrete scheme.

Modified scheme

Following the ideas developed for instance in [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF], the pressure gradient should be centered at low Mach number, canceling the dissipative velocity related term in the flux. This is why we propose the following modification of the fluxes:

G jrf = λ r F jrf + (1 -λ r )H jrf , (33) 
with λ r ∈ [0 1] ⊂ R, and

H jrf = N jrf p r , (34) 
where p r is a consistent evaluation of the pressure at the node depending only on the p j 's. The system [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] is recast in:

                 d t j 1 = r C jr • u r volume, d t j ρu = - r f G jrf momentum, d t j ρe = - r f G jrf • u r energy, (35) 
Computation of F jrf and u r does not change with respect to the classical scheme and are always given by Equations ( 11) and [START_REF] Cheng | Positivity-preserving Lagrangian scheme for multi-material compressible flow[END_REF]. We check easily that the scheme remains conservative since

r j f H jrf = r p r j f N jrf = 0.
In the following, we prove that in chosing λ r = O(M ), we obtain a uniformly consistent scheme with respect to M (see Section 4.3). Then, the analysis of the semi-discrete entropy balance gives us a constraint on λ r , which is compatible with λ r = O(M ) (see Section 5). The implementation of λ r and p r used in the numerical test problems is finally discussed in Section 6.1. Before we explicit the dimensionless counterpart of the scheme (next section).

Dimensionless scheme

The dimensionless counterpart of ( 35) is very similar to (15)

                 d t j 1 = r C jr • u r volume, d t j ρu = - 1 M 2 r f G jrf momentum, d t j ρe = - r f G jrf • u r energy. ( 36 
)
Computation of F jrf and u r does not change with respect to the classical scheme and are always given by equations ( 16) and ( 17).

Uniform consistence of the spatial operators

We now demonstrate that the scheme defined by equations [START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF][START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Cheng | Positivity-preserving Lagrangian scheme for multi-material compressible flow[END_REF][START_REF] Liou | A sequel to AUSM, Part II: AUSM + -up for all speeds[END_REF]) is consistent with the continuous system (1) uniformly with respect to the Mach number M .

Defining B(x) = j   r f G jrf   1 x∈Ωj |Ω j |
, we now prove the weak consistency of the gradient operator.

Proposition 4.1. Assume that 0 < α 1 ≤ ρ j c j ≤ α 2 for all j, that the mesh is regular in the sense α 3 h d ≤ |Ω j | and h j ≤ α 4 h for all cells, with uniform constants α 1 , α 2 , α 3 , α 4 > 0. Assume moreover that p j and u j are bounded in L ∞ and are bounded in the BV sense

j k∈Jj h d-1 |u j -u k | ≤ α 5 and j k∈Jj h d-1 |p j -p k | ≤ α 6 . ( 37 
)
Assume also that ∀j, |p j -

p k | k∈Jj = O(M 2 ) (38) 
and that ∀j, k, r,

G jrk = αM F jrk + (1 -αM )H jrk (39) 
with α ∈ [0 1], and αM ≤ 1, then B -∇p = O(M 2 h) in the weak sense.

Note that the conditions ( 37) and ( 38) are the same as in the Proposition 3.4. The condition (39) is obviously new, and enforces λ r to be proportional to M . In this case, this scheme can be viewed as a multi-D generalization of the 1D scheme proposed in [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]. Since G jrf is a convex-combination of F jrf and H jrf , the proof consists in three steps.

1. The first step demonstrates that

j 1 |Ω j | Ωj ϕdx r f F jrf + Ω p∇ϕ = O(h). (40) 
2. The second step is to prove that

j 1 |Ω j | Ωj ϕdx r f H jrf + Ω p∇ϕ = O(h). (41) 
3. The third step consists in showing that

j 1 |Ω j | Ωj ϕdx r f G jrf = O(M 2 )
and

Ω p∇ϕ = O(M 2 ). (42) 
Proof.

1. First step of the proof is the proof of the Theorem 12 in [START_REF] Després | Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension[END_REF]. 2. Second step of the proof is very similar to the proof of Proposition 3.5.

We use the following (obvious) estimates:

|p j -p r | ≤ max k∈Jr |p j -p k | and p r ≤ max k∈Jr p k . ( 43 
)
The sketch of the remaining of the proof, very similar to the proof of Proposition 3.4 is as follows:

j 1 |Ω j | Ωj ϕdx r f H jrf = j ϕ(x j ) r f H jrf + O(h), = j r f H jrf (ϕ(x j ) -ϕ(x r )) + O(h), = j r f H jrf ∇ϕ(x j ) • (x j -x r ) + O(h), = j r f N jrf p j ∇ϕ(x j ) • (x j -x r ) + O(h), = - j p j ∇ϕ(x j )|Ω j | + O(h), = - Ω p∇ϕ(x) + O(h).
3. As for Propositions 3.4, 3.5, and 3.6, the last step of the proof consists in showing that

j 1 |Ω j | Ωj ϕdx r f G jrf = M 2 O(1) and - Ω p∇ϕ(x) = M 2 O(1).
The latter has been already proved in Proposition 3.4. Concerning the former, we have shown in Proposition 3.4 that

j 1 |Ω j | Ωj ϕdx r f F jrf = M O(1) and consequently αM j 1 |Ω j | Ωj ϕdx r f F jrf = M 2 O(1).
It remains to prove that

j 1 |Ω j | Ωj ϕdx r f H jrf = M 2 O(1), which means that r f H jrf = M 2 O(1). Using r f
N jrf p j = 0, we infer

r f H jrf = r f N jrf (p r -p j ).
The low-Mach hypothesis [START_REF] Maire | A cell-centered lagrangian scheme for 2D compressible flow problems[END_REF] and the Cauchy-Schwarz inequality allow to conclude.

With this modification, we have removed the issue observed with the classical scheme concerning the low-Mach regime. Plugging these estimates into the semi-discrete system (36), we construct the equivalent equations:

Considering again C(x) =

               d t j 1 = j ∇ • u + O(h) volume, d t j ρu = - j 1 M 2 ∇p + O(h) momentum, d t j ρe = - j ∇ • (pu) + O(h) energy, (44) 
that shows the uniform consistency of the modified scheme with respect to M . It is an asymptotic preserving behavior for the semi-discrete scheme.

Entropy condition and calculation of λ r

In this section, we show that the definition of λ r proposed in the previous section is compatible with the entropy condition.

We consider the semi-discrete entropy equation for the modified scheme. From the Gibbs relation, and assuming the spatial first-order accuracy of the scheme, we infer

T j d t j ρη = d t j ρe -u j d t j ρu + p j d t j 1. (45) 
Entropy condition implies T j d t j ρη ≥ 0.

Proposition 5.1. A sufficient condition to enforce the growth of the entropy for the semi-discrete scheme [START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF] is

λ r = max j∈Jr |p j -p r | |p j -p r | + |p j -p jrf | . ( 46 
)
Proof. Plugging the fluxes of the scheme [START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF] into equation ( 45), the entropy condition recasts:

-

r f G jrf • u r + u j • r f G jrf + p j r f N jrf • u r ≥ 0. Since r f N jrf • u j = 0, this equation is equivalent to r f (N jrf p j -G jrf ) • (u r -u j ) ≥ 0.
Using the definition of G jrf , this expression can be recast into:

r f λ r (N jrf p j -F jrf )•(u r -u j ) ≥ r (1-λ r ) (N jrf p j -H jrf )•(u j -u r ) . (47) 
The good news is that the Left-Hand-Side of this inequality is positive thanks to the Riemann solver [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]. Unfortunately, the sign of the Right-Hand-Side of the inequality is unknown. However, a sufficient condition for Inequality [START_REF] Rieper | A low-Mach number fix for Roe's approximate Riemann solver[END_REF] to hold, is that

∀r ∈ R j , ∀f ∈ F jr , λ r (N jrf p j -F jrf ) • (u r -u j ) ≥ (1 -λ r ) (N jrf p j -H jrf ) • (u j -u r ) . The problematic case corresponds to λ r (N jrf p j -F jrf ) • (u r -u j ) (1 - λ r ) (N jrf p j -H jrf ) • (u j -u r ) ≤ 0 (
otherwise, both terms contribute to the increase of the entropy). Then, easy manipulations yield the following equivalent form

∀r ∈ R j , ∀f ∈ F jrf , [λ r (p j -p jrf ) + (1 -λ r )(p j -p r )] N jrf • (u r -u j ) ≥ 0.
Thanks to the Riemann solver [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF], we know that (p j -p jrf ) and N jrf • (u r -u j ) have the same sign. Consequently, a sufficient condition for inequality [START_REF] Rieper | A low-Mach number fix for Roe's approximate Riemann solver[END_REF] to hold is

∀r ∈ R j , ∀f ∈ F jr , λ r |p j -p jrf | ≥ (1 -λ r )|p j -p r |, which gives ∀r ∈ R j , ∀f ∈ F jr , λ r ≥ |p j -p r | |p j -p r | + |p j -p jrf | .
Since this inequality should hold for all cells, it ends the proof.

Weaker conditions can be obtained on λ r considering the cases for which p j -p r has the same sign as p j -p jrf (no constraint induced).

We now demonstrate that the definition of λ r fulfills the conditions of Proposition 4.1, that is λ r = O(M ). Proposition 5.2. Assuming same hypotheses than for Proposition 3.4, the coefficient λ r defined by equation [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF] is O(M ).

Proof. The definition of λ r remains unchanged in dimensionless form, and then estimate [START_REF] Després | Lagrangian gas dynamics in 2D and lagrangian systems[END_REF] and Proposition 3.2 give the result.

These results prove that the hypothesis of Proposition 3.4 are compatible with the entropy condition for the scheme [START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF].

Consequently, the new semi-discrete scheme defined by equations ( 35), ( 33), ( 46), [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF] and ( 14) is

• conservative,
• endowed with a semi-discrete entropy inequality,

• uniformly convergent with respect to the Mach number,

• Galilean invariant (since so are the original scheme and the modification).

Implementation

The method has been implemented into the High Performance Computing framework [START_REF] Grospellier | The Arcane Development Framework[END_REF], and use domain decomposition for parallel calculations. Since the CPU cost of the original scheme is mainly related to geometrical calculations (Volumes, C jr , MUSCL extension, . . . ), the modification of the scheme induces a negligible additional CPU cost.

Considering the previous analysis, the only remaining degree of freedom of the method concerns the calculation of p r in formula [START_REF] Liu | A two dimensional nodal Riemann solver based on one dimensional Riemann solver for a cell-centered Lagrangian scheme[END_REF]. The implementation of the entropy enforcing value of λ r requires also explanations. In the following, we discuss the implementation choices we have made. We also address the timediscretization issue and propose a formal second-order extension of the method.

Numerical parameters

Theoretically, any consistent formula to compute p r fulfills the requirements for a low-Mach number version of the scheme. In this work, we simply use an average of the pressures in the cells surrounding each node, weighted by the cell volume. This procedure may be not optimal and more clever solutions can be considered, but we obtain satisfactory results with this basic approach.

In the following test problems, we also provide results with the formula

   λ r = max j∈Jr |u j | c j if |u j | c j ≤ M max λ r = 1 otherwise (48) 
In the Section 7, we take M max = 1, but reasonably smaller values of M max (> 0.5) have very few influence on the results. Note that the entropy stability criterion is no more fulfilled in this case for Mach numbers smaller than M max , even if the scheme remains consistent for the entropy equation. Results using this formula for the calculation of λ r are referred as bmodified (for basic modification) in the Section 7.

We obviously provide results with the criterion [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF]. However this criterion requires a careful implementation for at least two reasons.

1. It does not tend to one in sonic or supersonic areas, while our goal is to recover the original Eucclhyd or Glace solvers in these areas. To deal with this problem, we enforce λ r ≥ min(1, max j∈Jr {M j }). It gives the following formula for λ r :

λ r = min 1, max max j∈Jr |p j -p r | |p j -p r | + |p j -p jrf | , max j∈Jr {M j } (49) 
2. In quasi-steady areas, for which both |p j -p r | ≈ 0 and |p j -p jrf | ≈ 0, the criteria is not well defined and can lead to noisy values of λ r . To cure this flaw, we take into account in the computation of λ r only cells for which |p j -p r | ≥ (∆p) min . The quality of the results are found quite sensitive to the choice of (∆p) min in low-Mach regime while almost insensitive in supersonic regime. In the Section 7, all results correspond to the choice (∆p) min = 10 -3 p j h j (where h j is the cell diameter).

It is worth noting that we loose the Galilean invariance in introducing

explicitly the Mach number into these formula. It can be recovered in using Galilean invariant evaluation of the Mach number as M = |u -u mean |/c, where u mean is a local evaluation of the mean velocity.

Results obtained with this computation of λ r will be referred as emodified (for entropic modified), while results obtained with the scheme without modification will be referred as standard in the Section 7.

Time discretization

For the time integration, we use the same procedure for the three schemes. It consists in a forward Euler discretization (denoted by the superscript e) and a second-order Runge-Kutta discretization (denoted by the superscript rk2) for respectively the first-order and the second-order versions of the schemes. The forward Euler time integration results in the following discrete version of System [START_REF] Loubère | Chapter 13 -Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics[END_REF] (refer also to [START_REF] Barlow | Arbitrary Lagrangian Eulerian methods for modeling high-speed compressible multimaterial flows[END_REF] page 631)

               m(τ n+1,e j -τ n j ) = ∆t n r C n+1/2 jr • u n r volume, m(u n+1,e j -u n j ) = -∆t n r f G n jrf momentum, m(e n+1,e j -e n j ) = -∆t n r f G n jrf • u n r energy, (50) 
where the superscript n stands for the time index, and C n+1/2 jr = 1 2 (C n jr +C n+1 jr ). The nodal quantities G n jrf and u n r are preliminary computed using time n values in equations ( 33) and ( 11), the vertices position are updated following x n+1 r = x n r + ∆t n u r , and p n+1 j is deduced from ρ n+1 and ε n+1 thanks to the equations of states.

The Runge-Kutta time integration is the same as in [START_REF] Barlow | Arbitrary Lagrangian Eulerian methods for modeling high-speed compressible multimaterial flows[END_REF] page 635 (called predictor-corrector in this paper) and is also the one used in [START_REF] Hoch | A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex-hull preservation[END_REF]. First step of this algorithm consists in the Forward Euler time integration described just before. Then the values ϕ n+1,e j , (ϕ = τ , u and p) are used to compute G n+1 jrf and u n+1 r with equations ( 33) and [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]. Finally, the conservative variables are updated thanks to the following discrete scheme

               m(τ n+1,rk2 j -τ n j ) = ∆t n r C n+1/2 jr • u n+1/2 r volume, m(u n+1,rk2 j -u n j ) = -∆t n r f G n+1/2 jrf momentum, m(e n+1,rk2 j -e n j ) = -∆t n r f G n+1/2 jrf • u n+1/2 r energy, (51) 
where

G n+1/2 jrf = G n jrf + G n+1,e jrf 2 and u n+1/2 r = u n r + u n+1,e r 2
. This secondorder in time accurate integration is an alternative to the Generalized Riemann Problem algorithm proposed in [START_REF] Ben-Artzi | Generalized Riemann Problems in Computational Fluid Dynamics[END_REF] and used for the second-order extension of the Eucclhyd scheme in [START_REF] Maire | A high-order cell-centered Lagrangian scheme for twodimensional compressible fluid flows on unstructured meshes[END_REF]. It has been proven for instance in [START_REF] Maire | Contribution à la modélisation numérique de la Fusion par Confinement Inertiel[END_REF][START_REF] Mazeran | Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle[END_REF] that the forward Euler scheme is entropy-stable under a CFL condition. In the numerical illustrations proposed hereafter, the time-step is computed as for the standard scheme defined by equations ( 10) and ( 11) already used in [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] 

∆t = κ min j l j c j , (52) 
where the lenghtscale

l j = |Ω j | r |C jr |
is the volume over the surface of the cell, and κ = 1 2 is a safety coefficient. We observe, that the time step calculation is very stringent in low-Mach regime as it writes in dimensionless form:

∆t = M κ min j l j c j . ( 53 
)
This issue is independent from the over-dissipative behavior of Godunov-type schemes in the low-Mach regime (refer for instance to [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF]). We do not expect a loss of precision by using an explicit time integration but only a CFL condition as stringent as for the standard scheme. To cure this flaw, many authors use an implicit time-integration for at least the acoustic phenomena. Let us emphasis, that with an implicit scheme, all the properties established in the semi-discrete framework, including the entropy stability should remain valid, and this stringent CFL condition would be removed. Consequently, the correction we propose in this work is not fully asymptotic preserving, in the sense that the stability criterion of the scheme still depends on the Mach number (asymptotic preserving schemes for which the time-step does not depend on the Mach number are called all-regime [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes[END_REF] or all-speed [START_REF] Cordier | An Asymptotic-Preserving allspeed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Li | An All-Speed Roe-type scheme and its asymptotic analysis of low-Mach number behaviour[END_REF][START_REF] Liou | A sequel to AUSM, Part II: AUSM + -up for all speeds[END_REF] in the literature, and rely to a full-or a semi-implicitation). However our goal is to compute problems for which several Mach regimes coexist. In these cases, our experience is that the time-steps imposed by the stability criterion in the low-speed regions are of the same order of magnitude (and then not drastically more restrictive) than those computed in the high-speed ones. Moreover, using an implicit scheme in high Mach region diminishes the precision of the calculations and requires the resolution of a linear system.

Second-order in space extension

The second-order in space extension is formally achieved thanks to a MUSCLlike procedure [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v-a second order sequel to Godunov's method[END_REF]. Values of the centered unknowns p j and u j are reconstructed using a first-order Taylor-expansion

ϕ(x) ≈ ϕ j + (∇ϕ) j • (x -x j ),
and their extrapolated values at the vertices r of the mesh are used to compute the fluxes F jrf and H jrf . The whole procedure to compute and limit the fluxes is described in [START_REF] Hoch | A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex-hull preservation[END_REF]. In the tests, we use a Barth-Jespersen-type limiter [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF] for scalar, and the adaptation of the VIP limiter described in [START_REF] Luttwak | Slope limiting for vectors: A novel vector limiting algorithm[END_REF].

Numerical illustrations

We propose to assess the method on several test problems. The first-order method is evaluated only on the low-Mach vortex problem 7.1, for information. For all the other problems, we evaluate the robustness and the gain in term of precision for the second-order method. The test 7.2 is a modified Sod shock tube including a stationary flow into the rarefaction fan. The test 7.3 is the famous Noh problem on a Cartesian grid. These two tests are used to assess the robustness of the method in high-Mach configurations. The last two problems 7.4 and 7.5 are designed to evaluate the gain in precision of the method for instability growth calculation, respectively in planar and spherical configurations. All these problems have been run: 1-with the standard scheme defined by equations ( 10), ( 11), ( 14) which is referred to as standard in the results, 2-with the modified scheme defined by equations ( 35), ( 33), ( 34), ( 49) referred to as emodified (for modified entropic) in the results, and 3-with the modified scheme defined by equations ( 35), ( 33), ( 34), [START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[END_REF], referred as bmodified (for modified basic) in the results. For problems with no analytic solution, a reference is computed with the standard scheme on a fine mesh with respect to the Mach number (h < M ), and is referred as reference. On all these test problems, for the second-order versions of the schemes, the measured grind times (wall-clock time per cell and per iteration) on an Intel Xeon processor range from ≈ 20.7µs for the standard (cheaper) scheme to ≈ 21.2µs for the emodified (most expensive) scheme. It corresponds to a negligible (less than 3%) difference. Further analysis shows that most of the CPU-time is devoted to geometric characteristics (cell volumes, N jrf , ...) and second-order reconstructions in space, which are common to all schemes.

Vortex

We reproduce a test proposed in [START_REF] Ph | A projection method for low speed flows[END_REF] and also performed in [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]. The flow is defined in Ω = [0 1] × [0 1] by the initial conditions, u(x, y, 0) = 2 sin 2 (πx) sin(πy) cos(πy), v(x, y, 0) = 2 sin(πx) cos(πx) sin 2 (πy), p(x, y, 0) = 1000, ρ(x, y, 0) = 1 -1 2 tanh(y -1 2 ), and symmetry boundary conditions. These conditions correspond to a Mach number M ≈ 0.027. The calculation is run until t = 0.125. At first, we perform a convergence study with the bmodified scheme, which has found to be the more accurate for this problem. To this aim, we compute the solution on seven (initially Cartesian) grids corresponding to successive 2 × 2 refinement from ∆x = 4 × 10 -2 (25 × 25 grid, coarsest) to ∆x = 6.25 × 10 -4 (1600 × 1600 grid, finest). We evaluate the order of the scheme in computing the L 2 norm of the difference between the solution between two successive refinements of the mesh ∆E(∆x) = |u 2∆x -u ∆x | L 2 (Ω) . The order can then be estimated following Richardson extrapolation [START_REF] Richardson | The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam[END_REF]. We found an order of ≈ 1.8 as illustrated on Figure 2. The order 1.8 can be considered as pretty disappointing for this smooth test, since we claim our scheme is second-order accurate. However, it can be explained by the fact that we have decided to use exactly the same limiter for all the test problems proposed in this section. Now to show the improvement brought by the correction, we compute

E(∆x) = |u R -u ∆x | L 2 (Ω)
, where u R corresponds to a calculation with the second-order bmodified scheme on a 1600 × 1600 cells mesh (corresponding to ∆x = 6.25 × 10 -4 ), and u ∆x to the velocity obtained on a (initially) Cartesian grid of size ∆x. These results are displayed in Table 1 and obtained thanks to the post-processing tool Odace [START_REF] Aguilera | Visualization and post-processing for high performance computing[END_REF]. As expected, the first-order standard scheme fails to predict the correct solution, and even on the finer ∆x = 2.5 × 10 -3 grid, it remains worst than the firstorder bmodified scheme. Second-order standard scheme performs better, but more than respectively two or three grid refinements are necessary to achieve the same precision than respectively the emodified or the bmodified schemes. We also observe that the entropy enforcement for the modified scheme generates a loss of accuracy corresponding to roughly one grid refinement comparing emodified with bmodified. However, the convergence rates of the different schemes are roughly the same. To illustrate these results, we display on Figure 3 the norm of the velocity map for the 50 × 50 grid (|u| ∆x=2×10 -2 ) for the firstorder schemes. These results are quite disappointing for the emodified scheme, showing that the entropy enforcement leads to a severe loss of precision on this coarse grid. We display on Figure 4 the norm of the velocity map for the 50 × 50 ∆x 4 × 10 -2 2 × 10 -2 10 -2 5 × 10 -3 2.5 × 10 -3 standard order 1 2.3 × 10 -1 1.9 × 10 -1 1.5 × 10 -1 1.2 × 10 -1 7.9 × 10 -2 order 2 1.2 × 10 -1 4.9 × 10 -2 2 × 10 -2 7.2 × 10 -3 2.8 × 10 -3 emodified order 1 1.4 × 10 -1 9.6 × 10 -2 6 × 10 -2 3.4 × 10 -2 1.9 × 10 -2 order 2 1.5 × 10 -2 4.9 × 10 -3 1.7 × 10 -3 6.1 × 10 -4 2.3 × 10 -4 bmodified order 1 2.6 × 10 -2 1.3 × 10 -2 6.6 × 10 -3 3.3 × 10 -3 1.7 × 10 -3 order 2 6 × 10 -3 1.7 × 10 -3 4.5 × 10 -4 1.2 × 10 -4 3.8 × 10 -5

Table 1: Vortex problem: Error E(∆x) (refer to the text) relative to a reference solution computed on a ∆x = 6.25 × 10 -4 grid with the bmodified scheme.

grid (|u| ∆x=2×10 -2 ) for the second-order schemes. The lack of precision of the standard schemes is still clear, even at second-order, while low-Mach correction allows to recover satisfactory results. The last diagnostic for this test consists in plotting the velocity norm along the y = 0.5 line to observe the convergence to the reference solution. This is displayed on figure 5 for the second-order schemes. It enlightens the interest of the low-Mach correction. It shows also the non-negligible loss of precision for this test, due to the enforcement of the entropy (emodified versus bmodified).

Modified Sod shock tube

To now assess the robustness of the method, we run a problem issued from the paper of Thornber et al [START_REF] Thornber | An improved reconstruction method for compressible flows with low Mach number features[END_REF]. It consists in a Riemann problem with the following initial conditions:

(ρ, u, p) L = (1, -0.5, 1) (ρ, u, p) R = (0.125, 0, 0.1) γ = 1.4 on Ω = [0 1].
This test is relevant for low-Mach methods because it includes a stationary flow into the rarefaction fan. It tests the low-Mach correction for unphysical rarefaction shocks when the dissipation becomes low in the fan.

We run the calculation until t = 0.17 with the standard, emodified and bmodified schemes with a 100 cells grid (corresponding initially to ∆x = 10 -2 for all cells).

Results are displayed on Figure 6. It shows that the results in term of robustness are not affected by the low-Mach correction. The fan profile is also unaffected by the stationary flow condition. This was expected since the schemes respect the Galilean invariance. We have computed the discrepancies between the exact solution and the numerical solution for the different schemes, using the second order accurate formula:

E(ϕ) = j |ϕ j -ϕ ana (x j )||Ω j | j |Ω j | , 0 1 1 2 3 4
Figure 3: Vortex problem: |u| maps 1-reference on a ∆x = 6.25 × 10 -4 grid, 2-standard first-order scheme on a ∆x = 2 × 10 -2 grid, 3-emodified first-order scheme on a ∆x = 2 × 10 -2 grid and 4-bmodified first-order scheme on a ∆x = 2 × 10 -2 grid.

On coarse grids, we notice the distortion of the grid due to the Lagrangian framework of the calculations. Structure of the solution is completely lost with the standard first-order scheme and almost lost with the emodified first-order scheme on this grid. Only the bmodified firstorder scheme succeed in providing a decent result. where ϕ ana stands for the exact value of the variable ϕ. The error in L 1 norm are displayed in Table 2.

scheme E(ρ) E(p) E(||u||) standard 6.65 × 10 -3 6.43 × 10 -3 1.47 × 10 -2 emodified 7.28 × 10 -3 7.11 × 10 -3 1.51 × 10 -2 bmodified 7.33 × 10 -3 7.18 × 10 -3 1.55 × 10 -2 Table 2: Sod problem: L 1 error on the density, pressure and velocity.

It shows that the errors made with the emodified and bmodified schemes are of only slightly higher than those made with the standard scheme. Note however that these diagnostics depend on the choice of the limiter, in the context of shocked configurations. For comparison, we provide in appendix the solutions obtained with a more stringent limiter.

Cylindrical Noh problem on Cartesian grid

We perform a cylindrical Noh [START_REF] Noh | Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux[END_REF] calculation on a 50 2 Cartesian grid. Initial conditions consists in a density ρ = 1 in the entire domain, and an inward velocity of magnitude 1. The initial domain size is 1 2 . Initial pressure is theoretically zero, but we use the classical value p = 10 -6 leading to a very low initial sound-speed and a large Mach number 1 c = M ≈ 775. This test is challenging for low-Mach correction, because the Mach number varies theoretically through the shock from infinity to zero (and with our numerical setting from 775 to zero). We run the problem run until t = 0.6. We depict on Figure 7 the final grids obtained with the three -standard, emodified and bmodifiedsecond-order schemes. Colors correspond to the density field.

We also plot on Figure 8 the average density in all the cells at the final time versus the radius for the three versions of the scheme. The results obtained with the emodified and bmodified versions are close to the one obtained with the standard scheme. However, wiggles appear in the solution in using the nonentropic bmodified schemes. These wiggles disappear in enforcing the entropy of the scheme (emodified version).

We have computed the discrepancies between the exact solution and the numerical solution for the different schemes, using the second order accurate formula:

E(ϕ) = j |ϕ j -ϕ ana (x j )||Ω j | j |Ω j |
, where ϕ ana stands for the exact value of the variable ϕ. The error in L 1 norm are displayed in Table 3.

It shows that the errors made with the emodified are of the same order than those made with the standard scheme, while significantly higher errors are obtained with the bmodified scheme. Note however that these diagnostics depend on the choice of the limiter, in the context of shocked configurations. For comparison, we provide in appendix the solutions obtained with a more stringent limiter.

This test assess the robustness of the method in strong shock configurations corresponding to a Mach number ranging from zero to infinity.

Planar flow Richtmyer-Meshkov instability

We aim at quantifying the effect of the low Mach correction for hydrodynamic instability calculations in converging configuration. An intermediate step to achieve this goal consists in evaluating this effect on planar configurations (meaning that the mean flow is 1D planar). Since during an implosion the material interfaces can lie into both high-Mach or low-Mach regions depending on the time, we have performed a study to determine the effect of the correction for several Mach numbers. We focus on the Richtmyer-Meshkov instability [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF], which occurs when a shock hits a perturbed contact discontinuity. For sufficiently small initial perturbation, it leads to an asymptotic linear growth of the perturbation amplitude with time (called terminal growth rate). This terminal growth can be estimated thanks to linear perturbation theory. Some authors [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearlyperturbed planar-symmetric flows of gas dynamics[END_REF][START_REF] Vandenboomgaerde | Impulsive model for the Richtmyer-Meshkov instability[END_REF][START_REF] Yang | Small amplitude theory of Richtmyer-Meshkov instability[END_REF] have indexed the terminal growth rates in a table for different dimensionless initial conditions. The relevant parameters for these problems are the initial density ratio of the fluids, the shock strength depending on the pressure ratio between shocked and at rest fluid, and by the adiabatic constant of the two fluids. We have performed several calculations for different initial conditions in order to estimate the effect of the low-Mach correction. Our conclusion is that under M ≈ 0.3, relevant improvement on the solution can be made using the low-Mach correction. Obviously, these improvements become more significant when the Mach number gets smaller. To illustrate this statement, we propose to report on two different Mach configurations for which the terminal growth rate of the Richtmyer-Meshkov instability is available in the literature. The first one corresponds to a moderate Mach number M ≈ 0.5, the second-one to a low Mach number M ≈ 3 × 10 -2 . We use the same [-5 4.2] × [0 λ/2] rectangular computational domain for both problems, with λ = 1 and α 0 = 10 -3 corresponding respectively to the wave-length and the initial amplitude of the perturbation. No flow boundary conditions are applied in y = 0, y = 1/2 and x = 4.2. We use three different grid refinements. The coarser is a 460 × 25 uniform grid as in [START_REF] Maire | A high-order cell-centered Lagrangian scheme for twodimensional compressible fluid flows on unstructured meshes[END_REF]. Then we refine in the two directions to obtain the second (920 × 50) and the third (1840 × 100) grids. We have verified that the mean flow calculation is already converged with the coarse grid. a high kinetic energy and high density shell imploding on a light gas cavity, as for instance for Ignition Confinement Fusion (ICF) target. However, we widely simplify the problem in considering only one initial contact discontinuity in our study -ICF targets are composed of at least three layer: an outer plastic shell, an inner iced DT shell, and a gas DT central cavity-in order to ease the interpretation of the results. This simplification has obviously a big impact on the global dynamic of the flow. However, we constructed this problem in order to approximately respect mass ratio between light and heavy material, and dimensionless heavy shell velocity. The initial conditions of the problem are reported on Figure 14. The second-order version of the scheme is used for all the calculations.

Meshing. We perform the calculation in cylindrical r -z geometry, on a halfsphere. Symmetry boundary conditions are applied on the r and z axis. Since there is no analytic solution for this problem, we perform a convergence study. We propose five grids (M1 to M5). As depicted in Figure 14, we use an equal angle zoned polar grid for the shell Ω H . Ω l is divided into two parts. The central part is meshed with an O-grid, and the outer part is meshed with a polar grid. The O-grid is constructed so that the axis r and z have a uniform cutting without perturbation.

For the coarsest M1 grid, the shell is paved with 30 slices and 40 uniform layers so that the initial layer thickness is ∆ M 1 = 2.5 × 10 -3 . The size of the center box of the cavity is 0.15 2 , paved with 15 2 squares. Then, 30 layers are used for the remaining of the cavity grid. M2, M3, M4 and M5 grids are obtained in multiplying respectively by a factor of 2, 4, 8 and 16, the number of cells of the grid M1 in the r and z directions. The initial layer thicknesses ∆ M 2 , ∆ M 3 , ∆ M 4 and ∆ M 5 of the grids M2, M3, M4 and M5 are consequently divided by a factor 2, 4, 8 and 16.

We call Γ the interface between the shell Ω H and the cavity Ω l . Initial mean radius of Γ is called R Γ = 0.45.

Numerical parameters.

• The calculation is run until t = 0.06.

• The area-weighted formulation of the Eucclhyd scheme (refer to [START_REF] Maire | A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry[END_REF]) is used to perform this calculation.

• A small amount of subzonal entropy [START_REF] Després | Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy[END_REF] is applied at the vicinity of the outer boundary of the shell, in order to prevent spurious deformations of this interface during the unstable phase.

• The convergence study is performed with the standard scheme.

Mean flow description . Now, we briefly describe the main features of the mean flow.

The interface speed magnitude slowly increases at the beginning of the calculation due to confinement. A detached shock compressed the gas in the cavity number at the interface Γ, M init Γ ≈ 2.5. However, since it is a convergent problem, interface undergoes briefly a low-Mach regime between t 3 ≈ 0.038 and t ≈ 0.058 (see Figure 15). In the following, we display only the results with the emodified scheme. We have checked that the main flow results are unaffected by the low-Mach correction. We display on Figure 19, the comparison between the standard and the emodified scheme in term of W 6 versus time on the coarsest M1 grid. It shows that despite the fact that the interface Γ undergoes only briefly a low-Mach regime, it has a undeniable impact on the precision of the calculation of the instability. However, this impact does not compensate a coarsening of a factor of 2 in all the directions (the standard scheme on M2 remains more precise than the emodified scheme on M1). Looking more carefully at the local dynamic of the perturbation growth, we observe on the central part of Figure 19, that at t = t 3 = 0.038, the curves corresponding to the standard scheme and to the emodified scheme almost coincide on M1 grid. As a matter of fact, Γ does not stand in a low-Mach region before this time. It is only for t > t 3 , that the perturbation growth is sensitive to the low-Mach correction (right parts of Figure 19). The same analysis can be made on finer grids, as displayed on Figure 20 for the M2 grid. The enhancement obtained with the low-Mach correction for this problem can be considered as small. However, a coarser mesh (≈ ×0.65 per direction) is sufficient to reach an equivalent precision with the standard scheme for the growth rate of the perturbation, and since the low-Mach correction has a negligible impact on the cost of the calculation, it corresponds roughly to a gain of CPU times of 75% in 2D and 85% in 3D for an equivalent precision on the W 6 profile for this problem. Obviously, this gain is problem dependent, but we insist on the fact that the configuration we have chosen can not considered at all as a low-Mach problem. 

Conclusion

In this work, we have studied the low-Mach regime for acoustic-Godunov solvers for the multi-D Euler equations in Lagrangian frame. We have analytically explained why standard solvers suffer a drastic loss of precision at low-Mach number. We have proposed a modification of the solver, very easy to implement and computationally negligible in terms of CPU-time. This modification consists mainly in performing a convex combination of the fluxes involving two parts: the first one corresponds to the standard fluxes, and the second one to centered fluxes. The coefficients of the convex combination depend on the Mach number. We have demonstrated that this modification cures the standard solver deficiencies at low-Mach number, and have shown that it is not contradictory with the entropy stability criterion. We propose a formula for these coefficients. A second-order extension of this scheme has been proposed. The modified scheme has been implemented and assessed on several tests problems. This numerical study shows that it succeeds in widely increasing the precision for low-Mach problems, and it remains as precise and robust as the standard scheme in high-Mach regime, even at high order. We finally showed that, on a convergent instability growth problem, this modification can perceptibly enhance the results, even for high-velocity flows. A natural follow up of this work could consist in evaluating the effect of replacing the centered part of the fluxes with isentropic fluxes (refer to [START_REF] Braeunig | Reducing the entropy production in a collocated Lagrange-Remap scheme[END_REF][START_REF] Mazeran | Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle[END_REF]). We emphasis the fact that the modification is made in the context of the multi-dimensional acoustic Godunov solver in the Lagrangian frame, but could be easily adapted to other Riemann solvers. However, a dedicated analysis of the entropy condition should be made in this case. where ϕ ana stands for the exact value of the variable ϕ. The error in L 1 norm are displayed in Table B. [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF]. It shows that the errors made with the emodified and bmodified schemes are lower than those made with the standard scheme with this limiter.
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 42143 jr • u r 1 x∈Ωj |Ω j | , we can now prove the weak consistency of the divergence operator of the volume balance law. Assuming the same hypotheses as in Proposition 4.1, then C -∇ • u = O(h) in the weak sense with respect to h and M . Proof. This proof is exactly the same as that of Proposition 3.5. Defining now D(x) = j r |Ω j | , we can now prove the weak consistency of the energy flux. Assuming the same hypotheses as in Proposition 4.1, then D -∇ • pu = O(h) in the weak sense with respect to h and M .Proof. The proof is very similar to the one of Proposition 4.1.

Figure 2 :

 2 Figure2: Vortex problem: plot of the L 2 norm of the difference between solutions obtained for two successive mesh refinement versus the finer mesh size (∆E(∆x), refer to the text), for the bmodified scheme.
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 45 Figure 4: Vortex problem: |u| maps 1-reference on a ∆x = 6.25 × 10 -4 grid, 2-standard second-order scheme on a ∆x = 2 × 10 -2 grid, 3-emodified second-order scheme on a ∆x = 2 × 10 -2 grid and 4-bmodified second-order scheme on a ∆x = 2 × 10 -2 grid. Structure of the solution is hardly distinguishable with the the standard scheme. The emodified and bmodified schemes gives visually good results.

Figure 6 :

 6 Figure 6: Shock tube problem:Plots of ρ along x for the second-order versions of the schemes. Sensitivity with respect to the low-Mach correction is weak for this test, assessing the robustness of the method even in stationary configurations (please refer to the text for more details).

Figure 7 :

 7 Figure 7: Noh problem: Mesh and density fields at the final time. Results are satisfactory for all versions of the scheme. However, the grid obtained with the bmodified scheme is more deformed than the other ones, what is related to an entropy defect.

Figure 8 :

 8 Figure 8: Noh problem: density versus radius in all cells. +: numerical result, -exact solution. The result with the bmodified scheme is quite noisy. This defect is cured in using the entropic version emodified.
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 1011 Figure 10: Planar M ≈ 0.5 instability: dimensionless amplitude versus time (c/w stands for cells per wave-length). A very small improvement of the growth rate estimation is obtained with the low-Mach correction (emodified and bmodified versus standard) on the 50 cells per wave-length grid. The result is by far more improved in refining (100 cells per wave-length) the grid. Note that emodified and bmodified schemes give almost the same answer.
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 1113 Figure 11: Planar M ≈ 3 × 10 -2 instability: domain and initial conditions. The perturbation has been artificially amplified (α 0 = 0.1) for visualization purpose.

Figure 14 :Figure 17 :

 1417 Figure 14: Spherical instability problem: initial M1 grid and conditions. Black line accounts for the interface Γ between the shell Ω H and the cavity Ω l . Amplitude of the perturbation on Γ has been increased to α 0 = 1.5 × 10 -2 for visualization purpose. The dimensions correspond to an unperturbed configuration.
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 1819 Figure 18: Spherical instability problem: normalized power W 6 = α 2 6 (t)/α 2 0 of the amplitude of the mode 6 of the perturbation versus time for the standard scheme. Convergence study: -M1 (coarsest) grid, -M2 grid, -M3 grid, -M4 grid, -M5 (finest) grid. Left plot displays the whole time of the calculation. Central plot displays the times from t = 0.00375 ≈ t 3 to t = 0.047. Right plot displays times from t = 0.047 to t = 0.055 (around t 4 ).
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Figure 20 :

 20 Figure 20: Spherical instability problem: normalized power W 6 = α 2 l (t)/α 2 0 of the amplitude of the mode 6 of the perturbation versus time. Comparisons: -standard scheme on the M2 grid, + emodified scheme on the M2 grid, -standard scheme on the M3 grid. Left figure displays the whole time of the calculation. Central figure displays the times between t = 0.00375 ≈ t 3 until t = 0.047. Right figure displays times between t = 0.047 until t = 0.055 (around t 4 = 0.0492).
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 2422 scheme E(ρ) E(p) E(||u||) standard 8.36 × 10 -3 8.23 × 10 -3 1.92 × 10 -2 emodified 8.03 × 10 -3 7.98 × 10 -3 1.67 × 10 -2 bmodified 8.05 × 10 -3 7.91 × 10 -3 1.72 × 10 -2

  

  

  

Table 3 :

 3 Noh problem: L 1 error on the density, pressure and velocity.

in some case, a quadratic-like term proportional to |u j -ur| is added to c j in the above expression[START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF]. It is explained in Appendix A why this term has no impact on the asymptotic behavior in the low-Mach regime.
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M ≈ 0.5 configuration. The parameters for this simulation are the same as those of [START_REF] Maire | A high-order cell-centered Lagrangian scheme for twodimensional compressible fluid flows on unstructured meshes[END_REF] and are illustrated by the Figure 9. They correspond to a density ratio ρ 2 /ρ 1 = 2 and a shock strength of s = 1 -p 1 /p s 1 = 0.5, where p s 1 accounts for the pressure of the shocked fluid 1. For this configuration, tables (we choose the one in [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearlyperturbed planar-symmetric flows of gas dynamics[END_REF], but all references are very close) give us a dimensionless terminal growth rate of 0.0635 which corresponds to a dimensional growth rate of 0.6616. The calculation is run until t = 6.5, while the time for which the shock hits the interface is t ≈ 3.015.

We have compared the dimensionless perturbation amplitude versus time profiles obtained with the different second-order schemes, which are displayed on Figure 10. It is shown that the low-Mach correction has almost no influence at this regime. However, it does not impact negatively the robustness of the calculation.

M ≈ 0.03 configuration. The parameters for this simulation are illustrated by the Figure 11. They correspond to a density ratio ρ 2 /ρ 1 = 2 and a shock strength of s = 1 -p 1 /p s 1 = 0.05 (weak shock), where p s 1 accounts for the pressure of the shocked fluid 1. For this configuration, tables (we choose the one in [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearlyperturbed planar-symmetric flows of gas dynamics[END_REF], but all references are very close) give us an dimensionless terminal growth rate of 0.00725 which corresponds to a dimensional growth rate of 0.1603. The calculation is run until t = 3.5, while the time for which the shock hits the interface is t ≈ 1.403.

We have compared the dimensionless perturbation amplitude versus time profiles obtained with the different second-order schemes, which are displayed on Figure 12. It is shown that the low-Mach correction greatly improves the results at this regime. Growth rate prediction is almost the same for the emodified and bmodified schemes, but some wiggles appear with the bmodified scheme when the shock hits the interface. We also display the same plots for the 100 cells per wave-length (Figure 13). Conclusions are the same.

Convergent flow instability

We now estimate the effect of this modification on convergent flows, and in particular, convergent flows in a configuration for which the initial Mach number is high. However, it decreases during the calculation because of the implosion framework. The kind of applications we are interested in, consists in The results are even better than those of the standard scheme on a finer (100 cells per wave-length) grid. Note that emodified and bmodified schemes give almost the same answer, except some wiggles just after the shock hits the interface for the bmodified scheme. ahead of the interface. About t 1 ≈ 0.0221, pressure inside the cavity becomes higher than in the shell, and the velocity of the interface decreases. This is the end of the stable phase. The detached shock focuses at t 2 ≈ 0.028 and bounces. Then, it diverges and crosses the interface at t 3 ≈ 0.038. The expansion phase (outward mean velocity for the interface) begins at time t 4 ≈ 0.0492. Minimum mean radius of the interface is R min Γ ≈ 0.145. Mean velocity ṘΓ (t) versus time is displayed on Figure 15.

We provide in Figure 16 1D plots of the radius versus time. It demonstrates that the mean flow is almost converged on the coarsest mesh M1 (for instance, minimal volume of the cavity on M1 is 6.67 × 10 -2 , while a Richardson extrapolation [START_REF] Richardson | The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam[END_REF] gives a converged minimal volume of 6.6 × 10 -2 ).

Perturbation description. Our goal is to compare the growth rate of an instability with and without the low-Mach correction. To this aim, we apply a perturbation on the interface Γ. For a sphere in cylindrical geometry, the relevant frame for perturbation analysis is the Legendre frame (more details on Legendre frame can be found for instance in [START_REF] Chandrasekhar | Radiative transfer[END_REF]). Since we perform the calculation on a half-sphere, only even modes can grow. We choose a 6 mode. It means that the positions of the interface nodes are computed initially by: 

where θ is the angle between the (r, z) T vector and the z axis, P 6 the 6 th Legendre polynomial, and α 0 the initial amplitude of the perturbation. In this work, we choose α 0 = 10 -4 . Consequently, since 0.1 × R Γ /6 = 0.0075 > 10 -4 (refer for instance to [START_REF] Haan | Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes[END_REF]), the perturbation growth can be considered as linear at the beginning of the calculation. This linear behavior allows systematic comparisons, which will be much more difficult for a non-linear perturbation growth. Because of the initial shock (with respect to the mean flow description), the perturbation grows due to Richtmyer-Meshkov instability [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF] until t 1 ≈ 0.0221. Then, the flow is Rayleigh-Taylor unstable [START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[END_REF].

Instability growth. We first check that the instability growth remains essentially linear during the whole calculation. The amplitude versus time of even modes from 2 to 18, in term of normalized power W l = α 2 l (t)/α 2 0 (where α l stands for the amplitude of the mode l), is displayed on Figure 17. These results are obtained with the standard scheme on the M5 finest grid. The amplitudes of all the modes except α 6 remain below α 0 . Consequently, we consider that we are in the linear regime during the whole calculation.

On Figure 18, we display a plot of the normalized power of the mode 6, W 6 , for all the grids M1 to M5. It shows that this quantity is almost converged on M5. At the time t = 0.055, a Richardson extrapolation gives 575 ≤ W 6 ≤ 585, depending on the grids considered to perform the extrapolation (the asymptotic regime of the extrapolation is not reached).

Effect of the low-Mach correction. We now investigate the effect of the low-Mach correction for this problem. We insist on the fact that this problem can not be considered at all as a low-Mach problem, since the initial Mach Appendix A. About the quadratic term in the acoustic Godunov solver

Adding a quadratic term in the Riemann solver leads to the following modification of Equation ( 11):

The dimensionless counterpart of this solver is:

Using the arguments employed in the proof of Proposition 3.4, we conclude that the linear coefficient M ρ j c j = O(M ), while the quadratic coefficient

Consequently, the quadratic term has no impact on the asymptotic behavior of the scheme.

Appendix B. Dependency of the numerical results on the limiter

As explained in Section 6.3 all the numerical results proposed in Section 7 are obtained using the procedure described in [START_REF] Hoch | A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex-hull preservation[END_REF]. In this appendix we provide complementary results using a more stringent limiter for the velocity. This limiter can be viewed as an extension to vector fields of the well-known Min-Mod limiter, using the VIP framework [START_REF] Luttwak | Slope limiting for vectors: A novel vector limiting algorithm[END_REF]. The limiter for the scalar field p remains the Barth-Jespersen limiter [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF]. Multi-D limiters are an empirical way to enforce high-order schemes to degenerate to first-order into the shock waves. Because of this empirical nature, the choice of the best limiter depends on the scheme considered. Since we have modified the scheme, it seems interesting to show the sensibility of the results to the choice of the limiter. In the following, we make the same analysis as in Section 7.2 and 7.3 but with the new limiter. We have computed the discrepancies between the exact solution and the numerical solution for the different schemes, using the second order accurate formula: 

Appendix B.2. Cylindrical Noh problem on Cartesian grid

We perform same test as in Section 7.3 but with the stringent limiter. We plot on Figure B.22 the average density in all the cells at the final time versus the radius for the three versions of the scheme. The results obtained with the emodified and bmodified versions are close to the one obtained with the standard scheme. However, wiggles appear in the solution in using the nonentropic bmodified schemes. These wiggles almost disappear in enforcing the entropy of the scheme (emodified version).

We have computed the discrepancies between the exact solution and the numerical solution for the different schemes, using the second order accurate formula:

, where ϕ ana stands for the exact value of the variable ϕ. The error in L 1 norm are displayed in Table B.5. This table is more difficult to analysis than the one of Section 7.3. Depending on the quantity, the best results are obtained with the low Mach correction (ρ) or with the standard scheme (u). To conclude, this complementary study suggests that it could be useful to investigate the choice of the limiter in using the low Mach correction, since the new schemes are less dissipative than the standard scheme.