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ABSTRACT

Statistical downscaling models (SDMs) and bias correction (BC) methods are commonly used to provide

regional or debiased climate projections. However, most SDMs are utilized in a ‘‘perfect prognosis’’ context,

meaning that they are calibrated on reanalysis predictors before being applied to GCM simulations. If the

latter are biased, SDMs might suffer from discrepancies with observations and therefore provide unrealistic

projections. It is then necessary to study the influence of applying bias correcting to large-scale predictors for

SDMs, since it can have impacts on the local-scale simulations: such an investigation for daily temperature and

precipitation is the goal of this study. Hence, four temperature and three precipitation SDMs are calibrated

over a historical period. First, the SDMs are forced by historical predictors from two GCMs, corrected or not

corrected. The two types of simulations are comparedwith reanalysis-driven SDMoutputs to characterize the

quality of the simulations. Second, changes in basic statistical properties of the raw GCM projections and

those of the SDMsimulations—driven by bias-corrected or raw predictors fromGCM future projections—are

compared. Third, the stationarity of the SDM changes brought by the BC of the predictors is investigated.

Changes are computed over a historical (1976–2005) and future (2071–2100) time period and compared to

assess the nonstationarity. Overall, BC can have impacts on the SDM simulations, although its influence

varies from one SDM to another and from oneGCM to another, with different spatial structures, and depends

on the considered statistical properties. Nevertheless, corrected predictors generally improve the historical

projections and can impact future evolutions with potentially strong nonstationary behaviors.

1. Introduction

The need for downscaling climate simulations is

present in many studies, and in particular in many

studies related to impacts of climate change. Indeed, if

global climate models (GCMs) are the main tools for

projecting future climate evolutions, the spatial reso-

lution of their outputs is generally too coarse (from

about 100 to 300 km) to drive impact models and to

lead associated impact studies (e.g., IPCC 2013).

Hence, downscaling models have been and are still

extensively developed and applied to generate climate

values (temperature, precipitation, etc.) at regional, local,

or station scales. Now well established in the literature,

those models are said to be either dynamical or statistical.

While dynamical downscaling explicitly solves the

physical equations of the atmosphere at a regional

scale—through so-called regional climate models

(RCMs; e.g., Laprise 2008; Rummukainen 2010)—

statistical downscaling is based on statistical relationships

and models to link large-scale (atmospheric, environ-

mental, etc.) information called predictors to local-scale

variables of interest called predictands. Both approaches

have been widely tested, evaluated, and intercompared

on many climate variables (e.g., Schmidli et al. 2007;

Vaittinada Ayar et al. 2015).

A statistical downscaling model (SDM), however, has

some particularities with respect to RCMs. The main

one is certainly that it is not directly based on physical

equations. It therefore requires large- and local-scale

data for its calibration [see, e.g., Maraun et al. (2010)

and Vaittinada Ayar et al. (2015) for further discussions

about RCMs and SDMs]. As such, when a statistical

downscaling model is applied in a climate change con-

text (i.e., driven by GCM future projections as predic-

tors), some underlying hypotheses are made (Hewitson

and Crane 2006): 1) the statistical model, calibrated
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under present or recent past conditions, remains valid

under modified climate conditions; 2) the predictors

used as input into the SDM are relevant and completely

represent the climate change signal; and 3) the pre-

dictors used as input into the SDM are correctly repre-

sented and simulated by the GCM. Although the

evaluation of those hypotheses is rarely performed be-

fore applying any SDM, some methods exist to assess

the capability of SDMs to reproduce the statistical

properties of observations when calibrated and driven

by reanalysis data (Huth 1999; Robertson et al. 2004;

Vrac et al. 2007b) or driven by GCM or RCM simula-

tions (Charles et al. 1999; Wilby and Wigley 2000;

Charles et al. 2004; Chen et al. 2014). Other approaches

have been tested to evaluate the robustness of the SDMs

in time, comparing SDMs’ future projections with those

from GCMs (e.g., Frías et al. 2006) or from RCMs (e.g.,

Wood et al. 2004; Haylock et al. 2006). Vrac et al.

(2007c) have also developed a method for evaluating

SDMs under control (CTRL) climate (reanalyses versus

GCMs) and under future climate for which RCM future

projections are considered as ‘‘pseudo observations’’

that can be compared with SDM future simulations [see

also Gaitan et al. (2014) for applications]. Many of those

studies showed that validating an SDM in present-day

conditions does not imply legitimacy for the SDM pro-

jections in changed climate conditions (e.g., Charles

et al. 1999). Moreover, the third hypothesis is of high

importance. Indeed, most of the SDMs are part of the

so-called perfect prognosis (PP) realm, as opposed to

the model output statistics (MOS) approach [see

Maraun et al. (2010) or Vaittinada Ayar et al. (2015) for

details and references]. This PP context means that, for

example, for the downscaling of future GCM pro-

jections, those SDMs need first to be calibrated based on

reanalysis predictors to then be applied to the GCM

simulations. If the latter are biased with respect to re-

analyses, SDM outputs might themselves suffer from

large discrepancies with respect to local-scale observa-

tions and therefore provide mistaken and unrealistic

future projections (e.g., Charles et al. 2004; Frost et al.

2011; Bürger et al. 2012; Grouillet et al. 2016). It is then

necessary to study the influence of bias correcting the

large-scale predictors of SDMs, since it can have major

impacts on the local-scale statistical simulations. Indeed,

if climate model simulations have seen their quality

improved over the last years and decades, they still have

some biases in the sense that their statistical distribution

differs from that of observations (Meehl et al. 2007;

Christensen et al. 2008;White and Toumi 2013; Vrac and

Friederichs 2015). Hence, in parallel to climate model

developments, statistical bias correction (BC) methods

have also been designed to adjust climate simulations by

transforming the simulated data into new data with

fewer or no statistical biases with respect to reference

(e.g., Haddad and Rosenfeld 1997; Gudmundsson et al.

2012; Vrac et al. 2012). It is therefore logical to wonder

if and how BC methodologies applied to predictors

derived from GCM simulations can affect the realism

and the quality of the SDM projections under present

and future conditions. In other words, even if the third

hypothesis is not completely verified—that is, the pre-

dictors used as input into the SDM are not correctly

simulated by the GCM—what are the impacts (in terms

of SDMoutputs) of bias correcting thoseGCM-derived

predictors before performing an SDM? Some studies,

such as Colette et al. (2012) or White and Toumi

(2013), have investigated such a question for dynamical

downscaling. Although they found that it can produce

some undesirable features in the RCM simulations,

their main conclusion was that such a prior correction

of the large-scale inputs for RCMs with a quantile-

association-based method clearly improves the quality

of the RCM simulations. This question has never been

addressed for statistical downscaling and is therefore

the main goal of the present article, for temperature

and precipitation.

To tackle this question, as SDM simulations may

differ from one SDM to another, four (three) different

SDMs are employed for temperature (precipitation).

Those are applied at a daily time scale over inland

Europe comprising approximately the region 208–
708N, 408W–808E. Moreover, preliminary analyses

indicated that specific bias correction methods do not

strongly change the main conclusions of this study

(not shown). Hence, only one BC method is used in

the following. Both BC and SDMs are presented in

section 2. The different datasets used are presented

in section 3, including the reference datasets (one for

the BC, one for the historical SDM evaluations) as

well as the two GCMs and the reanalyses, both pro-

viding large-scale predictors. This section also de-

scribes the evaluations in historical and future

contexts. Results are provided in section 4, not only

for historical biases, but also for future comparisons in

terms of changes in statistical properties for temper-

ature and precipitation from present to future periods,

as well as in terms of stationarity of the BC influence

between present and future periods. General conclu-

sions are given in section 5, along with discussions and

perspectives for this study.

2. Statistical downscaling models and BC method

Four SDMs are tested for temperature and three for

precipitation. Those models were selected based on the
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evaluation study performed in Vaittinada Ayar et al.

(2015). For temperature, the four SDMs are the fol-

lowing: the cumulative distribution function–transform

(CDFt) approach (e.g., Michelangeli et al. 2009; Vrac

et al. 2012), a conditional stochastic weather generator

(SWG; e.g., Chandler andWheater 2002), a model based

on analogs (ANALOG; e.g., Zorita and von Storch

1999), and a generalized additive model (GAM; Hastie

and Tibshirani 1990). For precipitation downscaling,

CDFt, SWG, and ANALOG are used, but not GAM,

which performed poorly (Vaittinada Ayar et al. 2015).

Those models are briefly described here; further details

are given in Vaittinada Ayar et al. (2015, and references

therein).

a. Cumulative distribution function–transform

The CDFt approach links the local-scale CDF of the

variable of interest to the associated large-scale CDF

through a quantile–quantile approach performed be-

tween the future large- and local-scale CDFs—not

between present CDFs as in the classical quantile–

quantile method. To do so, the future local-scale CDF

is first estimated based on an assumption of a mathe-

matical transformation to link the evolution of the

large-scale CDF to the evolution of the local-scale

one. Hence, CDFt and quantile–quantile methods are

philosophically close to each other, but CDFt accounts

for the CDF changes from the calibration to the pro-

jection (or future) time periods. All theoretical and

technical details are given in Vrac et al. (2012). Note

that, contrary to SWG, ANALOG, and GAM, which

need to be calibrated with large-scale reanalysis data

as predictors before being applied to GCM data, the

CDFt model directly establishes a link between the

GCM and local-scale CDFs. No calibration based on

real-time predictors is needed. This is a specificity of

someMOS approaches by opposition to PPmodels (for

details, see, e.g., Maraun et al. 2010; Vaittinada Ayar

et al. 2015).

In the present study, CDFt is used both as a statistical

downscaling model and as a bias correction method.

Indeed, CDFt will also be used to bias correct GCM

outputs with respect to reanalysis data to provide bias

corrected inputs to the different SDMs (i.e., CDFt in-

cluded). This bias correction method has been chosen

here 1) because it is derived from the quantile-mapping

(QM) approach that is certainly one of the most widely

used techniques and 2) because it allows us to account

for the changes in the climate model CDFs.

b. Stochastic weather generator

In the SWG used in this study, a two-step approach is

implemented to model precipitation in a vector generalized

linear model (VGLM) framework as in Chandler and

Wheater (2002). First, the rainfall occurrence is modeled

through a logistic regression (e.g., Buishand et al. 2004;

Fealy and Sweeney 2007), allowing to us characterize

the probability pi of rainfall occurrence for a given day i

conditionally on atmospheric predictors (or covariates)

Xi 5 (Xi,1, . . . , Xi,N):

p
i
5

exp

 
P0 1 �

N

j51

PjX
i,j

!

11 exp

 
P0 1 �

N

j51

PjX
i,j

!, (1)

where (Pj)j50,...,N corresponds to coefficients to be esti-

mated. Then, the probability density function (pdf) of

the rain intensity (given that it rains) is assumed to be a

Gamma distribution whose logarithms of the shape ai

and rate bi parameters are linear functions of the large-

scale predictors Xi at day i:8>>>><
>>>>:
log(a

i
)5a0 1 �

N

j51

ajX
i,j

log(b
i
)5b0 1 �

N

j51

bjX
i,j

, (2)

where (aj)j50,...,N and (bj)j50,...,N correspond to coeffi-

cients to be estimated. For temperature, a single step is

used, where temperature at day i is supposed to follow a

Gaussian distribution with the mean mi and the loga-

rithm of the standard deviation si linearly dependent

on Xi.

c. ANALOG

The ANALOG method is applied here in its de-

terministic form, as defined, for example, in Zorita and

von Storch (1999), Yiou et al. (2007), and Vautard and

Yiou (2009). For each given day i (with predictorsXi) to

be downscaled in the projection period, ANALOG

consists of finding, in the calibration period Cal, the day

d that has the closest atmospheric situation (i.e., the

predictors Xd the closest to Xi) according to a chosen

distance (or similarity) metric:

d5 argmin
d2Caldist(Xi

,X
d
). (3)

The temperature and precipitation values observed for

this selected day d are then taken as the downscaled

values for the day i. Many distances have been employed

(e.g., Grenier et al. 2013), but the Euclidian distance is

used here. Note that, as ANALOG samples days from

the calibration dataset, it will not be able to create data

out of this set. Hence, in a warming context, ANALOG
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(at least in its present version) can shift the hottest his-

torical days within the seasonal cycle, but it cannot

generate new ‘‘record breaking’’ events. Therefore, an

underestimation of the hottest days in a future climate

context may be expected.

d. Generalized additive models

For temperature downscaling, a fourth model is also

used, based on GAM (Hastie and Tibshirani 1990).

GAM is a deterministic model characterizing the ex-

pectation of the local-scale predictand (here, the tem-

perature) at day i, conditionally on the large-scale

predictors Xi as a sum of spline functions fj(Xj) (here

cubic regression splines):

E(Y jX
1
, . . . ,X

N
)5 �

N

j51

f
j
(X

j
) . (4)

Such a downscaling method has been applied under

present climate conditions, for instance, to downscale

temperature (Vaittinada Ayar et al. 2015) or near-

surface wind fields (Salameh et al. 2009), or under past

climate like the Last Glacial Maximum time period

(221kyr) to reconstruct monthly temperature and pre-

cipitation climatology over western Europe (Vrac et al.

2007a) or global permafrost (Levavasseur et al. 2011).

Because of its poor performance for downscaling daily

precipitation (VaittinadaAyar et al. 2015), GAM is only

used for temperature here. This approach is said to be

data driven since it allows us to model both piecewise

linearities and additive nonlinearities depending on the

nature of the predictor–predictand dependence (in

other words, the complexity of themodel is not explicitly

fixed by the user, who usually only specifies a smoothing

penalty parameter).

Additional technical details about these four SDMs

are given in Vaittinada Ayar et al. (2015, and references

therein).

The bias correction of the GCMs through CDFt is

applied to daily data but on a monthly basis (i.e.,

month by month), leading to 12 CDFt models for each

predictor and GCM. CDFt as SDM is also applied to

daily data and on a monthly basis (i.e., month by

month). However, the other SDMs—SWG, ANALOG,

and GAM—are calibrated and applied to daily data

but on a seasonal basis (i.e., for each season sepa-

rately) with the traditional Northern Hemisphere

3-month seasons: winter (DJF), spring (MAM),

summer (JJA), and autumn (SON). Preliminary an-

alyses with other configurations (e.g., monthly based

calibrations for all models) did not show any signifi-

cant differences in the conclusions presented later in

this article (not shown).

3. Data and evaluation procedure

a. Reference and model data

For the calibration of most of the statistical down-

scaling models, two types of data are needed: local-scale

observations of the variable of interest (predictand) and

large-scale variables (predictors). In the present study,

the daily local-scale predictands (i.e., temperature and

precipitation) come from the E-OBS gridded dataset

(Haylock et al. 2008) obtained through an interpolation

procedure from the European Climate Assessment and

Dataset (ECA&D) time series at meteorological sta-

tions (Klok and Klein Tank 2009). The E-OBS version

used in this study is version 11 (release date April 2015)

and covers inland Europe (comprising approximately

the region 208–708N, 408W–808E) on a rotated grid

with a spatial resolution of 0.448 from 1950 to 2014 at a

daily time step.

The large-scale predictors come from ERA-Interim

(ERA-I) reanalyses (Dee et al. 2011) taken at 1.1258 3
1.1258 spatial resolution from 1979 to 2005.

Except for CDFt, which only uses the large-scale

variable of interest as predictors, the other SDMs

tested in this study are using several predictors. For

temperature, the predictors are the temperature at 2m

(T2); the sea level pressure (SLP); and the eastward

wind, the northward wind, and the geopotential height

at the 850-hPa pressure level (U850, V850, and Z850).

For precipitation, the same predictors are employed

with the addition of the dewpoint at 2m (D2) and the

large-scale precipitation (PR). All of the predictors are

extracted over the region 20.258–72.008N, 52.8758W–

76.508E. More precisely, based on those data, for

ANALOG the predictors are the fields of anomalies of

those variables with respect to the seasonal cycle. For

SWG and GAM, they are the first two principal com-

ponents (PCs) of a principal component analysis (PCA;

Barnston and Livezey 1987) performed on each pre-

dictor separately. For discussion on the choice of those

predictors, see Vaittinada Ayar et al. (2015).

The daily predictors needed for the SDMs have also

been extracted from two GCMs to drive the different

SDMs over historical (1950–2005) and future (2006–

2100) time periods under the RCP8.5 scenario (IPCC

2013): the IPSL-CM5A-MR global climate model with a

1.1258 3 2.58 resolution, developed at L’Institut Pierre-

Simon Laplace (Marti et al. 2010; Dufresne et al. 2013),

and the CNRM-CM5 global climate model (Voldoire

et al. 2013) with a 1.48 3 1.48 resolution, developed at

Météo-France. All GCM variables used as predictors

into the SDMs have been regridded to the 1.1258 3
1.1258 ERA-I spatial resolution. Hence, the SDMs

(calibratedwith reanalyses) are then forced either by the
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raw (regridded) predictors or by the bias corrected (re-

gridded) predictors, both over the historical and future

(2006–2100) time periods. As mentioned in section 2,

the bias correction of those GCM-based predictors is

performed through CDFt, and the BC references are the

ERA-I reanalyses.

b. Evaluations over the historical period and
comparison over a future period

The impact of bias correcting the GCM-derived pre-

dictors before incorporating them into SDMs is first

studied over a historical period where observed data are

available. In this context, the SDMs are first calibrated

over the 1979–2005 time period to link the ERA-I pre-

dictors to the E-OBS data used as reference. Note

that the predictors depend on the SDM of interest (see

section 3a). In a second step, the predictors are taken

from GCMs to drive the SDMs and provide downscaled

simulations. Those GCM predictors can be used ei-

ther directly as input into the SDMs, or in a corrected

version, that is, with a BC method applied to them to

make their distribution as close as possible to that of

the ERA-I initial predictors. Those two types of

predictors—hereafter referred to as raw and bias

corrected predictors, respectively—are extracted or calcu-

lated over the 1979–2005 time period in order to drive the

SDMs over the same time period. The evaluations are

performed by comparison of those GCM-driven down-

scaled time series with the ERA-I–driven downscaled

time series. Note that the real values of the predictands

(i.e., E-OBS) are not used for evaluation since the goal

here is to evaluate 1) the biases of SDM simulations

when using GCM outputs as predictors instead of re-

analyses and 2) the potential gain in SDM results when

correcting those predictors. Indeed, the evaluation of

those various simulations against real observations

would make it difficult to distinguish the biases brought

by the SDM itself from the biases brought by the pre-

dictors. Working with SDMs driven by predictors from

ERA-I as evaluation reference allows us to ease the

interpretation and to focus directly on the predictors

themselves, without considering the quality (with re-

spect to E-OBS) of the SDMs. Note that the quality and

biases of the SDM with respect to E-OBS have been

studied in Vaittinada Ayar et al. (2015).

In a future projection context, there is obviously no

observed or reference data available for evaluating the

simulations. However, the goal here is to evaluate the

differences between the projections obtained with raw-

GCM-predictor-driven SDMs and those obtained from

the BC-GCM-predictor-driven SDMs, as well as be-

tween the different SDMs. To perform such a task, the

SDMs are first calibrated as before over the 1979–2005

time period between the predictors from the ERA-I

reanalyses and the reference E-OBS data. Then, GCM

predictors—in their raw or bias corrected version—

over the years 2006–2100 are then provided as input

into the calibrated SDMs. In all the following, the an-

alyses are performed according to one future time pe-

riod, 2071–2100. Based on this approach, it is possible

to compare, for a given SDM and the given future

time period, the changes in the SDM simulations when

driven by raw or corrected predictors. To do so in a

coherent way, all temporal changes are computed with

respect to the outputs of the associated method over

the 1979–2005 time period: that is, the raw-GCM-

driven SDM change is computed with respect to the

raw-GCM-driven SDM simulations for 1979–2005,

and equivalently for the corrected-GCM-driven SDM

approaches.

Moreover, relying on the SDM historical and future

projections (from raw and bias corrected predictors),

it is also possible to study the temporal stationarity

of the changes brought by the BC of the predic-

tors. Those changes can indeed be computed over

the historical (1976–2005) and future (2071–2100)

time periods and compared to assess the potential

nonstationarity.

4. Results

In all the following, results are only shown for the

CNRM GCM for the winter (DJF) season. Indeed,

conclusions are generally similar for the IPSL outputs.

However, winter IPSL results (in Figs. SM3–SM14 of

the online supplementary material) will be discussed in

the following when significant differences with respect

to CNRM are visible. For brevity, summer CNRM and

IPSL results are provided for illustrations only as online

supplementary material (in Figs. SM15–SM34). Note

that hereinafter online supplementary figures are de-

noted with an SM prefix.

a. Mean and variance evaluations over the historical
period

In this subsection, analyses will rely on ‘‘biases’’ of

SDM outputs. Those biases are defined as differences

between SDM projections driven either by corrected or

noncorrected predictors and SDM outputs driven by

reanalysis data as predictors. The underlying idea is that

SDM outputs driven by reanalyses somehow provide

the best results that can be obtained with SDMs. For

an evaluation of the biases of reanalysis-driven SDMs,

see Vaittinada Ayar et al. (2015). Figures 1 and 2 show

differences of mean winter biases, that is, biases of

SDM(BC) minus biases of SDM(raw), from the SDMs
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driven by the CNRM outputs as predictors for temper-

ature (in degrees Celsius) and precipitation (relative

biases in percent), respectively. In general, a negative

value does not mean that the bias itself (or its absolute

value) is smaller for SDM(BC) than for SDM(raw)

(e.g., 212 is lower than 3 but j212j . j3j). However, in

the present study, for temperature, the analysis of the

differences of the absolute mean biases (given for tem-

perature in Fig. SM1 of the online supplementary ma-

terial) confirms that, for most locations, this does imply

smaller biases for SDM(BC) than for SDM(raw). For

precipitation (Fig. 2), patterns of differences of absolute

values of relative biases are somehow different for SWG

(Fig. 2b). While in Fig. 2 positive and negative differ-

ences of biases are found, the computation of the dif-

ferences of the absolute biases (Fig. SM2 of the online

supplementary material) shows mostly negative values,

indicating a bias (in absolute value) smaller for

SDM(BC) than for SDM(raw) for SWG. Hence, for

precipitation, positive values in Fig. 2b mostly indicate

opposite signs of the biases. CDFt presents very close

to zero differences of seasonal biases for both temper-

ature and precipitation (Figs. 1a, 2a). This indicates

that the correction of the large-scale temperature or

FIG. 1. Differences of temperature biases (8C) between SDM simulations driven by corrected CNRM predictors

[biases of SDM(BC)] or noncorrected CNRM predictors [biases of SDM(raw)], that is, biases of SDM(BC) 2
biases of SDM(raw): (a) CDFt, (b) SWG, (c) ANALOG, and (d) GAM.

FIG. 2. Differences of relative biases (%) between

SDM precipitation simulations driven by corrected

CNRM predictors [biases of SDM(BC)] or noncorrected

CNRM predictors [biases of SDM(raw)], that is, biases of

SDM(BC)2 biases of SDM(raw): (a) CDFt, (b) SWG, and

(c) ANALOG.
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precipitation—or more generally the bias correction of

the only predictor used as input in CDFt—does not

impact the downscaling results provided by CDFt. This

model simply adapts the CDF transformation to the

inputs. Note also that the small differences between

results from raw or corrected predictors can be ex-

plained by the already satisfying results of CDFt (at least

in terms of biases) when driven by uncorrected pre-

dictors. For SWG (Figs. 1b, 2b), the differences of biases

are not as close to zero as for CDFt. For the major part

of the domain, the differences are significantly negative.

Therefore, bias correcting the predictors used in SWG

improves the quality of the downscaling results. This is

not true everywhere. For example, the northeastern part

of the domain for temperature and precipitation and the

southern Mediterranean Sea basin for precipitation

show positive differences of biases, implying that bias

correcting the predictor degrades the downscaling for

SWG over those regions in winter.

SWG presents differences of biases with a large spatial

variability from one season to another, for both temper-

ature and precipitation. Hence, if the bias correction

globally brings additional quality to the final SWG

downscaling, the gain varies in time and space. CDFt and

SWG results for the other seasons and using the IPSL

GCM (instead of CNRM) display equivalent features

(e.g., see IPSL winter results in supplementary material

Figs. SM3 and SM4) even if spatial specificities may

change. For the ANALOG method, the temperature

differences are all negative inwinter (Fig. 1c), indicating a

clear gain in correcting the predictors. However, positive

differences appear for the other seasons, over different

regions depending on the season (not shown). Never-

theless, the positive or negative values of differences of

biases are usually not as pronounced as those from SWG.

The gains or degradations brought by bias correction of

the predictors in ANALOG stay relatively small for all

seasons (not shown), especially for precipitation. Differ-

ences of biases for GAM (Fig. 1d) are always similar to

those of SWG. This was relatively expected since SWG

can be seen here as a kind of stochastic version of the

deterministic GAM. In other words, on average, the pa-

rameters of the distributionsmodeled byGAMand SWG

are equivalent, but, by construction, SWG provides more

variability than GAM through stochastic realizations,

while GAM only provides the daily conditional expec-

tations. This is probably themain reason that explains the

pixelation in the differences of biases for SWG (Figs. 1b,

2b), while GAM does not have this problem.

In addition to mean seasonal biases, it is also in-

formative to look at the variability of the temperature

and precipitation projections. Figures 3 and 4 show the

box plots of seasonal variance ratios (VR in percent) for

temperature and precipitation, respectively. For each

grid point, VR is defined as VR5 [var(S)/var(R)]3 100,

where S and R correspond to simulated and reference

daily time series for the season of interest, that is, to the

downscaled values from the (raw or corrected) GCM

and those from ERA-I, respectively. The main conclu-

sions are the same for temperature and precipitation.

FIG. 3. Box plots of temperature seasonal variance ratios (%) for each SDM from corrected or noncorrected

predictors for (top left) winter, (top right) spring, (bottom left) summer, and (bottom right) autumn. For each SDM,

the left box plot is from noncorrected predictors while the right box plot is from corrected predictors. In each box

plot, the box is constituted by the 25th, 50th, and 75th percentiles. The upper and lower fences are situated at 1.5

times the interquartile range from the box, and the dots are the values beyond those fences.
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Whatever the season of interest, the mean VR from

CDFt is not affected by the bias correction of the pre-

dictors, staying close to the perfect 100% VR score.

Nevertheless, for precipitation, the variability of the VR

values is clearly reduced around 100%, implying some

gain induced by the bias correction. ANALOG does not

show much difference between VR from corrected

predictors or not for the precipitation variable and only

slight improvements for temperature. However, the

improvements are much stronger for SWG, especially in

spring and summer for temperature (Fig. 3) and in

winter and summer for precipitation (Fig. 4). Clear im-

provements (i.e., VR closer to 100%) are also visible for

GAM (in temperature) for all seasons.

Generally, in terms of mean biases and variance ra-

tios, the results are very similar when predictors come

from IPSL or CNRMGCMs (see IPSL winter results in

Figs. SM3–SM6 for direct comparisons with Figs. 1–4).

Moreover, an evaluation of the gain of bias correcting

the SDM predictors has also been realized in terms of

extreme values of temperature and precipitation. This

has been conducted through the quantification of the

percentage of simulated values higher than the reference

95th percentile (hereinafter referred to as %.Q95
) and

through the calculation of the bias (with respect to the

reference time series) of the 10-yr return levels (herein-

after referred to as BRL10y). Both criteria provided

equivalent patterns and features, similar to those given by

the variance ratios. So, %.Q95
and BRL10y are not shown.

b. Comparisons in a future period context

Obviously, there are no reanalysis data to charac-

terize future climate predictors. As a consequence, the

SDMs, driven by raw or corrected GCM data, cannot

be compared with simulations from SDM driven by

observed predictors or reanalyses. Therefore, this

subsection consists of comparing, over a future time

period, the raw and bias corrected GCM-driven SDM

outputs. This comparison is performed according to

two angles. First, an analysis about the influence of

applying bias correcting to predictors on the changes in

the mean and of the variability is performed for both

temperature and precipitation. Second, the influence

of such a correction on the temporal stationarity (i.e.,

from present to future context) is investigated, both in

terms of mean climate and in terms of variability of

temperature and precipitation. The future time period

considered here is 2071–2100, under the RCP8.5 sce-

nario (IPCC 2013).

1) INFLUENCES ON CHANGES IN MEAN AND

VARIANCE

Figure 5 shows, in the left column, the mean winter

temperature changes (future minus historical data)

from the four SDMs driven by raw or bias corrected

CNRM predictors, as well as the map of the mean

temperature changes as seen by the raw (i.e., not

corrected and not downscaled) CNRM simulations.

The right column presents the maps of the differences

of mean winter temperature changes (from 1976–2005

to 2071–2100) between BC-CNRM-driven SDM sim-

ulations and raw-CNRM-driven SDM simulations

[i.e., change of SDM(BC predictors) minus change

of SDM(raw predictors)] for the four temperature

SDMs. Hence, the right column allows us to visualize

the influence of bias correcting the SDM predictors on

FIG. 4. As in Fig. 3, but for precipitation.
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FIG. 5. (left) Maps of the mean winter temperature changes (future minus historical data) from the four SDMs

driven by raw CNRM predictors [(a) CDFt, (c) SWG, (e) ANALOG, and (g) GAM] and (i) the map of the mean

winter temperature changes as seen by the raw and not downscaled CNRM simulations. (right) Maps of the dif-

ferences of mean winter temperature changes from 1976–2005 to 2071–2100 between BC-CNRM-driven and raw-

CNRM-driven SDM simulations [i.e., change of SDM(BC predictors) 2 change of SDM(raw predictors)] for

(b) CDFt, (d) SWG, (f) ANALOG, and (h) GAM. The units are degrees Celsius for all panels.
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the mean of the statistically downscaled temperature

simulations.

All temperature changes seen by the SDMs driven by

raw GCM predictors (left column) are consistent with the

temperature change from the GCM, seeing a global in-

crease of temperature. However, if the intensity of this

warming is relatively coherent (with respect to the GCM

temperature) for CDFt, SWG, and GAM (Figs. 5a,c,g),

this is not the case for ANALOG (Fig. 5e), which strongly

underestimates it. Moreover, when looking at the differ-

ences of temperature changes (right column) between

BC-CNRM-driven SDM simulations and raw-CNRM-

driven SDM simulations, it is clear that bias correction of

the predictors has no impact on CDFt but slightly accen-

tuates the warming projected by ANALOG and strongly

emphasizes the warming simulated by SWG and GAM.

Figure 6 shows the equivalent of Fig. 5 but in terms

of relative changes (in percent) for the three pre-

cipitation SDMs, as well as the map of the mean pre-

cipitation relative changes as seen by the raw (i.e., not

corrected and not downscaled) CNRM simulations

(Fig. 6g). As in Fig. 5, the ANALOGmethod driven by

raw predictors (Fig. 6e) underestimates the changes

relative to those from the raw GCM (Fig. 6g). While

SWG (Fig. 6c) projects too high mean precipitation

changes, the CDFt model changes (Fig. 6a) are very

close to that of the initial GCM. When bias correcting

the predictors, the (relative) differences of changes

(right column) are small: CDFt (Fig. 6b) is not much

influenced by the BC except over some regions in

North Africa, ANALOG is almost not influenced at all

by bias correction, and SWG (Fig. 6d) shows the

FIG. 6. As in Fig. 5, but in terms of the relative change

(%) with respect to the 1976–2005 time period for the

three precipitation SDMs: (a),(b) CDFt, (c),(d) SWG,

and (e),(f) ANALOG, as well as (g) a map of the mean

precipitation changes as seen by the raw (i.e., not cor-

rected and not downscaled) CNRM simulations.
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biggest influence (with an increase of mean pre-

cipitation) around the Black Sea.

When comparing Fig. SM7 (from IPSL) with Fig. 5

(from CNRM), the main difference is observed with

ANALOG for the differences (between BC-GCM-

driven simulation and raw-GCM-driven simulation) of

mean temperature changes in Fig. SM7f and Fig. 5f.

Indeed, for IPSL-driven ANALOG simulations, the

difference of changes is negative over the northeastern

area of the domain, while it remains only positive for

CNRM-driven ANALOG simulations. In terms of

changes in (relative) mean precipitation, for IPSL-

driven precipitation simulations (Fig. SM8) the mean

changes (left column), as well as the differences of mean

changes (right column), are more pronounced than for

CNRM-driven simulations (Fig. 6). This seems to be due

partially to more pronounced changes in mean IPSL

projections. The major difference between Fig. 6 and

Fig. SM8 is for SWG differences of mean changes

(Fig. SM8d and Fig. 6d). While for CNRM (Fig. 6d), the

differences are essentially positive—indicating an in-

crease of the precipitation mean changes due to the bias

correction step—they can be also negative over a large

portion of the domain for IPSL (Fig. SM8d), showing

opposite influences of the bias correction depending on

the location.

Changes in variance can also be studied. The left

column of Fig. 7 displays the changes (in percent) of the

variance of the winter daily temperatures (i.e., 100 3
future variance/historical variance) from the four tem-

perature SDMs driven by raw CNRM predictors as well

as a map of the temperature variance changes as seen by

the raw (i.e., not corrected and not downscaled) CNRM

simulations. The right column of Fig. 7 shows the ratios

(in percent) of the winter temperature variance changes

from the BC-CNRM-driven SDM simulations over

those of the raw-CNRM-driven SDM simulations, for

the four temperature SDMs. Hence, the right column

allows us to visualize the influence of bias correcting the

SDM predictors on the variability of the statistically

downscaled temperature simulations.

When driven by raw predictors, all SDMs mostly

show a decrease of temperature variability in winter

[except GAM (Fig. 7g) around the Black Sea], in agree-

ment with the raw GCM (Fig. 7i). Once more, ANALOG

displays the weakest intensity of change. Looking at the

right column of Fig. 7, the influence of the bias correction

of the predictors is mainly to emphasize this decrease of

temperature variability for SWG, ANALOG, andGAM

(Figs. 7d,f,h), although GAM (Fig. 7h) can have a higher

variance (due to bias correction) around the Mediterra-

nean basin. CDFt (Fig. 7b) is the only SDM to see

globally its BC-predictor-driven temperature projections

with a higher variability than its raw-predictor-driven

projections.

Figure 8 is the same as Fig. 7 but for the three pre-

cipitation SDMs, and it also presents the map of the

changes in the winter precipitation variances as seen by

the raw (i.e., not corrected and not downscaled) CNRM

simulations. If CDFt (Fig. 8a) and SWG (Fig. 8c)—

driven by the raw predictors—and the raw GCM

(Fig. 8g) are in relative agreement with an increase of

the precipitation variance, ANALOG (Fig. 8e) mainly

displays a decrease of the daily precipitation variability.

Note that, once more, SWG seems to emphasize the

changes of variance seen by the GCM, while CDFt

shows the changes most similar to those of the GCM.

Moreover, bias correcting the predictors before apply-

ing the SDMs globally increases the variability even

more for CDFt (Fig. 8b) and slightly more for SWG

(Fig. 8d)—although some decreases with respect to raw-

predictor-driven SWG are visible—and does not impact

the variance changes from the ANALOG projections

(Fig. 8f).

The results and conclusions are quite similar for both

GCMs (Fig. 7 for CNRM and Fig. SM9 for IPSL), with

the exception of the northeastern part of the domain for

which the variances slightly increase in time with IPSL

for CDFt, SWG and, to some extent, for ANALOG

(Figs. SM9a,c,e). Interestingly, this feature is not pres-

ent for GAM (Fig. SM9g) but is clearly visible on

the variance changes from the raw IPSL simulations

(Fig. SM9i). However, in terms of ratios of variance

changes (right columns), the strongest dissimilarity ap-

pears for ANALOG (Figs. 7f and SM9f) over the

northeastern area that shows ratios above 100% for

IPSL (Fig. SM9f) while CNRM only has ratios below

100% (Fig. 7f).

Furthermore, like for changes in relative mean pre-

cipitation (Figs. 6 and SM8), when comparing the in-

fluences of the two GCMs in Fig. 8 (CNRM) and

Fig. SM10 (IPSL), the major difference appears for the

ratios of variance changes (right columns) with SWG in

Figs. 8d and SM10d. With this method, while CNRM

ratios are mostly above 100%, indicating that the bias

correction of the CNRM predictors in SWG increases

the final precipitation variance changes, IPSL ratios also

have many values below 100%, meaning that the bias

correction of the IPSL predictors decreases the final

precipitation variance changes.

2) STATIONARITY OF INFLUENCES ON MEAN AND

VARIANCE

A common question in statistical downscaling or in

bias correction contexts is, ‘‘what is the strength of

the stationarity assumption underlying those statistical
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FIG. 7. (left)Maps of the changes (%) of the variance of thewinter daily temperatures (i.e., 1003 future variance/

historical variance) from the four temperature SDMs [(a) CDFt, (c) SWG, (e) ANALOG, and (g) GAM] driven by

raw CNRM predictors, as well as (i) a map of the temperature variance changes as seen by the raw (i.e., not

corrected and not downscaled) CNRM simulations. (right) Ratios (%) of the winter temperature variance changes

from the BC-CNRMdriven SDM simulations over those of the raw-CNRMdriven SDM simulations, for (b) CDFt,

(d) SWG, (f) ANALOG, and (h) GAM.

16 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

Unauthenticated | Downloaded 06/09/21 03:55 PM UTC



models?’’ In this part, this question is studied in the

following way: for each variable (temperature and pre-

cipitation) and for each statistical criterion (mean and

variance), the difference between the SDM simulations

driven by the corrected predictors and those driven by

the raw predictors is calculated [i.e., SDM(BC) minus

SDM(raw)], not only over the historical time period

(1976–2005) but also over the future time period (2071–

2100). Those two differences (i.e., one for the historical

period, one for the future period) can then be compared

to evaluate the stationarity in time of the influence of

applying bias correcting to predictors on the SDM

results.

Figure 9 shows, for each temperature SDM, the dif-

ferences between the mean winter SDM temperature

simulations driven by the corrected CNRM predictors

and those driven by the raw CNRM predictors [i.e.,

SDM(BC) minus SDM(raw)]. On the left column, the

differences are calculated over the 1976–2005 period,

while on the right column, it is over the 2071–2100 pe-

riod. Those maps allow us to visualize the change in

downscaled temperatures when the SDM is driven by

bias corrected predictor, with respect to downscaled

temperatures driven by raw GCM predictors.

Looking at the left column of Fig. 9 (i.e., historical

differences), as expected from the evaluations on the

historical time period and the previous results, differ-

ences are clearly visible from one temperature SDM to

another, except for SWG and GAM (Figs. 9c,g), which

are quite similar and have a strong spatial pattern.

FIG. 8. As in Fig. 7, but for the three precipitation

SDMs: (a),(b) CDFt, (c),(d) SWG, and (e),(f) ANALOG,

as well as (g) a map of the changes in the winter pre-

cipitation variances as seen by the raw (i.e., not corrected

and not downscaled) CNRM simulations.
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ANALOG (Fig. 9e) and CDFt (Fig. 9a) show only small

negative differences and no differences, respectively. In

the right column, we can see that the differences over the

2071–2100 period are not exactly the same as in the

historical period. Globally, the patterns of differences

are equivalent between the two periods but the in-

tensities are not: SWG and GAM (Figs. 9d,h) still have

equivalent patterns and intensities, but the latter ones

have been shifted by about118C. This is the opposite for
ANALOG (Fig. 9f), which sees a smaller but nega-

tive difference (about 20.58C) between BC-predictor-

driven and raw-predictor-driven models, while CDFt

shows equivalent and very close to zero differences for

both historical and future periods.

Figure 10 is the same as Fig. 9 but for the ratio (in

percent) of mean precipitation from the three pre-

cipitation SDMs. This time, patterns are very similar

from the historical and future time periods. CDFt

(Figs. 10a,b) and ANALOG (Figs. 10e,f) show only

small ratio values, while SWG (Figs. 10c,d) has stronger

intensities (both lower and higher than 100% values),

but the changes brought by the bias correction of the

predictors in the three SDMs, for mean precipitation,

are not much influenced by the considered time period.

FIG. 9. Differences (8C) between the mean winter SDM temperature simulations driven by the corrected CNRM

predictors and those driven by the raw CNRM predictors [i.e., SDM(BC) minus SDM(raw)]. The differences

are calculated over (left) the 1976–2005 period and (right) the 2071–2100 period for (a),(b) CDFt, (c),(d) SWG,

(e),(f) ANALOG, and (g),(h) GAM.
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This is not necessarily the case when looking at the

stationarity of the changes brought in bias correcting the

predictors in terms of variance, for both temperature

and precipitation. Figure 11 shows, for the four tem-

perature SDMs, the ratios (in percent) of winter SDM

temperature variance from SDMs applied to bias cor-

rected or raw predictors fi.e., 100 3 var[SDM(BC)] di-

vided by var[SDM(raw)]g. In the left column, the ratios

and variances are calculated over the 1976–2005 period,

while in the right column, it is over the 2071–2100 pe-

riod. As previously, in the left column, the variance ra-

tios are different from one SDM to another, with CDFt

having the ratio closest to 100%, indicating no changes

(in terms of variance) over the historical period brought

by the bias correction of the predictors. Comparing the

left and right columns of Fig. 11, it is clear that the

changes in winter daily temperature variances brought

in correcting predictors are not stationary between

1976–2005 and 2071–2100. Bias correcting the predictors

increases the variance over the future time period for

CDFt (Fig. 11b) and mostly decreases the variance in

future for SWG (Fig. 11d) and GAM (Fig. 11h), more in

the future than in the historical period. Interestingly, if

BC of the predictors slightly increases the variance of

the ANALOG historical projections (Fig. 11e), this has

no impact (on the variance) over the future time period

(Fig. 11f), implying a nonstationary behavior.

Figure 12 shows the variance ratio maps equivalent to

Fig. 11 but for the precipitation ratios from three pre-

cipitation SDMs. Here, as for the relative mean pre-

cipitation in Fig. 10, over the historical period, CDFt

(Fig. 12a) and ANALOG (Fig. 12e) are less influenced

by the bias correction than SWG (Fig. 12c). However,

comparing left (historical) and right (future) columns, if

SWG (Figs. 12c,d) and ANALOGS (Figs. 12e,f) show

temporal stationarity in the change of variances with

very similar patterns and intensities of precipitation

variance ratios, this is not the case for CDFt (Figs. 12a,b),

which goes from almost no impact of the bias correction

of the predictors over 1976–2005 (Fig. 12a close to 100%)

to an increase of variance (ratio; 150%on average) over

2071–2100.

When comparing results from the two downscaled

GCMs, first in terms of stationarity of influence onmean

temperature, the conclusions are very similar for the two

GCMs, except that the intensities of the patterns are

FIG. 10. As in Fig. 9, but for relative mean precipitation (%) from the three precipitation SDMs: (a),(b) CDFt,

(c),(d) SWG, and (e),(f) ANALOG.
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stronger over the 2071–2100 (right columns) for SWG

and GAM when driven by IPSL (Figs. SM11d,h) than

when driven by CNRM (Figs. 9d,h). In other words,

bias correcting the IPSL simulations tends to reinforce

the temporal nonstationarity for SWG and GAMmore

than bias correcting the CNRM simulations. This is the

same for mean precipitation (cf. Figs. 10 and SM12),

where bias correcting the IPSL outputs reinforces the

temporal nonstationarity for SWG more than bias

correcting the CNRM simulations (Figs. 10d and

SM12d).

In terms of stationarity of influence on temperature

variance, although slight differences are visible, results

are relatively equivalent for CNRM-driven ratios

(Fig. 11) and IPSL-driven ones (Fig. SM13), for the

CDFt, SWG, and ANALOG models (Figs. 11a–f and

SM13a–f). However, GAM presents stronger differ-

ences with IPSL (Fig. SM13) than with CNRM (Fig. 11),

especially over 2071–2100 (Figs. 11h and SM13h), with

temperature variance ratios close to 150% in the

southeastern part of the Mediterranean basin, or close

to 80% over Russia. For precipitation variance, the

spatial patterns and conclusions are very similar for the

twoGCMs (cf. Figs. 12 and SM14), even if some changes

are visible (e.g., more pronounced intensities for SWG

in 2071–2100; Figs. 12d and SM14d).

FIG. 11. Ratios (%) of winter SDM temperature variance from SDMs applied to bias corrected or raw predictors

fi.e., var[SDM(BC)] divided by var[SDM(raw)]g. Ratios and variances are calculated over (left) the 1976–2005

period and (right) the 2071–2100 period for (a),(b) CDFt, (c),(d) SWG, (e),(f) ANALOG, and (g),(h) GAM.
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As a global conclusion, the influences brought by the

BC of the SDM predictors, both in terms of mean and

variance, are not always the same from one SDM to

another, from one variable to another, and from one

GCM to another, but they also are not always the same

over the historical period and over the end of the

twenty-first century.

5. Conclusions and discussion

This study has investigated the influence of bias cor-

recting (or not bias correcting) the large-scale predictors

used as inputs into SDM simulations of daily tempera-

tures and precipitation. To do so, four temperature

SDMs (CDFt, SWG, ANALOG, GAM) and three

precipitation SDMs (CDFt, SWG, ANALOG) have

been calibrated based on reanalyses and observed data

over a historical time period.

To evaluate the improvements or degradations of the

quality of the statistical simulations depending on the

correction or not of the predictors, the calibrated SDMs

were then forced by historical predictors coming from

two GCMs either corrected or not corrected, and

those two types of simulations were compared with

SDM simulations driven by reanalyses. The main

conclusions in terms of mean and variance biases

(with respect to reanalysis-driven SDMs) were that, for

both temperature and precipitation, the bias correction

may have some important impacts on the SDM simula-

tions. However, the influence of the BC of the predictors

is not the same from one SDM to another—for example,

CDFt is mostly not influenced while SWG is much im-

proved—with different spatial structures and may also

depend on the considered statistical properties (mean or

variance). In order not to repeat the detailed results

presented in section 4a, Table 1 summarizes the main

conclusions of the ‘‘historical’’ evaluations.

The influence of bias correcting the SDM predictors

on the future change in some basic statistical properties

of the SDM simulations has also been studied. In this

climate change context, the SDMs were driven by GCM

future projections in their corrected or uncorrected

versions. The temporal mean and variance changes of

the BC-predictor-driven SDMs precipitation and tem-

perature simulations were compared with those of the

raw-predictor-driven SDMs, as well as with those of the

FIG. 12. As in Fig. 11, but for the precipitation ratios from the three precipitation SDMs: (a),(b) CDFt, (c),(d) SWG,

and (e),(f) ANALOG.
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raw GCM. Globally, raw-predictor-driven CDFt, SWG,

and GAM (for temperature only) changes are more or

less in agreement with raw GCM changes—although

some spatial-, variable-, or criterion-related specificities

were visible—while raw-predictor-driven ANALOG

had a much weaker intensity of changes. The influence

of the bias correction on those SDM changes depends

again on the SDM, the considered variable, and the

statistical criterion. Table 2 provides a synthetic over-

view of the main conclusions seen from section 4b(1).

As somehow expected, in terms of mean and variance

changes, the ANALOG method is only moderately

influenced (at the maximum) by the bias correction of

its predictors. Indeed, as ANALOG resamples data

from the calibration dataset, it cannot create data out of

this set, hence reducing the potential changes that the

method can produce.

Finally, for the two variables, the temporal statio-

narity of the changes brought by theBCof the predictors

has been investigated in terms of means and variances.

Those changes (i.e., differences or ratios) have been

computed over the historical (1976–2005) and future

(2071–2100) time periods and compared to assess the

(non)stationarity. Once more, the results were versatile,

depending on the considered variable, criterion, and

SDM, but some potentially strong nonstationarities

were found. Table 3 gives a short summary of the main

findings of section 4b(2). Hence, this study brought some

useful information to use to properly interpret the

simulations provided by statistical downscaling models,

either with bias corrected or with uncorrected predictors

from GCM as input.

Furthermore, one classical advantage of applying

bias correcting to GCMs is to reduce the disagreements

among the model outputs (Ahmed et al. 2013). There-

fore, it is also interesting to see if removing biases

from GCM predictors reduces the differences be-

tween the CNRM-driven and the IPSL-driven SDM

performances.

First, in the ‘‘historical evaluation’’ context, the dif-

ferences between ‘‘bias’’ values from the raw IPSL and

the raw CNRM experiments are compared with the

differences in the case of the BC IPSL and the BC

CNRM experiments. This is presented via box plots in

Fig. 13 for winter, where the top row shows the results

for temperature and the bottom row for precipitation,

and the left column is for differences of mean biases

while the right column is for differences of variance ra-

tios. The equivalent box plots for summer are given in

Fig. SM35. For CDFt, the bias correction does not re-

duce the disagreements between the twoGCMs (both in

terms of differences of mean bias and variance ratio), for

both seasons and variables. In winter (Fig. 13), for both

temperature and precipitation, the disagreement (for

mean and variance) does not change much by the bias

correction for SWG and ANALOG, although the vari-

ability (i.e., spread of the box plots) is usually reduced.

However, for GAM (i.e., temperature only), bias

TABLE 1. Main conclusions about the influence of the bias correction of the GCMpredictors on the mean and variance historical biases of

the SDM simulations with respect to ERA-I-driven SDM simulations. See section 4a for details.

SDMs Mean temperature Variance temperature Relative mean PR Variance PR

CDFt Not influenced Not influenced Not influenced Not influenced

(range reduced)

SWG Influenced Influenced Influenced Influenced

(improved) (improved) (improved) (improved)

ANALOG Moderately influenced Not influenced Moderately influenced Not influenced

(improved) (improved)

GAM Influenced Influenced — —

(improved) (improved)

TABLE 2. Main conclusions about the influence of the bias correction of the predictors on the mean and variance changes of the SDM

simulations. See section 4b(1) for details.

SDMs Mean temperature Variance temperature Relative mean PR Variance PR

CDFt No influence Influence No influence Strong influence

(increased variance) (increased variance)

SWG Influence Influence Moderate influence Moderate influence

(increased warming) (decreased variance) (increased PR) (mostly increased variance)

ANALOG Moderate influence Moderate influence No influence Weak influence

(increased warming) (decreased variance) (both signs)

GAM Influence Strong influence — —

(increased warming) (both signs)
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correcting the predictors reduces this variability more

strongly in terms of mean bias differences and, surpris-

ingly, increases the disagreement in terms of variance

ratios. In summer (Fig. SM35), except for CDFt where

no clear difference is visible, the bias correction seems

to reduce the disagreement between the two GCMs for

most SDMs and both variables, including a generally

smaller variability of the differences. This is clearly vis-

ible for the mean bias differences with SWG and GAM.

Second, the same analysis is also conducted in terms of

differences of ‘‘changes’’ (from present to future) be-

tween the raw IPSL and the raw CNRM experiments,

which are compared with the differences of ‘‘changes’’

in the case of the BC IPSL and the BC CNRM experi-

ments. Results are shown in Fig. 14 for winter and in

Fig. SM36 for summer. In both figures, for the two var-

iables, the influence of bias correcting the predictors is

very limited on reducing the disagreement between

IPSL and CNRM. This means that the differences of

changes (from present to future) between the two

downscaled GCMs, both in terms of mean and variance,

are basically conserved with the bias correction of the

predictors. Although the biases of the downscaling

output can be reduced by the correction step, this in-

dicates that the specificities of the GCM evolutions are

preserved anyway.

Moreover, some choices have beenmade to design the

present study. Those can of course potentially affect the

results. For example, the choice was made to correct

‘‘raw’’ predictors, even for SWG and GAM that have

PCs as predictors. Imbert and Benestad (2005) found

that bias correcting the RCM PCs with respect to re-

analyses (instead of adjusting the raw climate variables

and then computing the PCs) improved the results

of linear and analog-based statistical downscaling

methods. However, we have not followed this approach

TABLE 3. Main conclusions concerning the temporal stationarity of changes—in means and variances—brought by the BC of the

predictors for the SDM simulations. See section 4b(2) for details.

SDMs Mean temperature Variance temperature Relative mean PR Variance PR

CDFt Stationary Nonstationary Stationary Nonstationary

(increased changes) (increased changes)

SWG Nonstationary Moderately nonstationary Stationary Stationary

(increased changes) (some regions)

ANALOG Moderately nonstationary Nonstationary Stationary Stationary

(decreased changes) (decreased changes)

GAM Nonstationary Moderately nonstatonary — —

(increased changes) (some regions)

FIG. 13. In the ‘‘historical evaluation’’ context, box plots of differences between ‘‘bias’’ values from the raw IPSL

and raw CNRM experiments, as well as box plots of differences in the case of the BC IPSL and the BC CNRM

experiments: results for (top) temperature, and (bottom) precipitation for differences of (left) mean biases and

(right) variance ratios. All panels are for winter (DJF).
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in this study for two reasons. First, one can wonder if

bias correcting the climate model first PC with respect

to reanalyses first PC makes sense if they do not ex-

plain the same percentage of variance. This question is

left for future work. Furthermore, we wanted the bias

correction to be applied the same way for the different

SDMs tested in this study. Since ANALOG and CDFt

are applied respectively to the fields of anomalies and

to raw values—that is, not to the PCs—the correction

of the PCs for SWG and GAM would have made

results less comparable between SDMs. However,

this PC correction is an interesting perspective that

would deserve further methodological research and

analyses.

Another choice was to base the present study on a

single bias correction method, CDFt. Indeed, the goal

was not to demonstrate the added value of a specific BC

technique over another one, but to highlight that the

application of a BC method to predictors that will force/

drive SDMs may have (positive or negative) conse-

quences on the quality and properties of the SDMoutputs.

The CDFt method has been chosen here 1) because it is

derived from the QM approach that is certainly one of

the most widely used techniques; and 2) because it al-

lows accounting for the changes in the climate model

CDFs. However, Pierce et al. (2015) found that CDFt

andQM ‘‘can alter the original GCM projected monthly

mean change’’ for both temperature and precipitation.

Hence, the use of other BC methods, such as trend

or change preserving techniques (e.g., equidistant CDF

matching or quantile delta mapping; Pierce et al. 2015;

Cannon et al. 2015), can potentially lead to differ-

ent results. Nevertheless, as CDFt and QM are quite

classical methods for bias correction, the analysis of the

consequences of their use to bias correct predictors to

enter in SDMs remains of high interest. Studying the

impacts of multiple BC methods in such a context is out

of the scope of the present article and is therefore left for

future work.

Note that the statistically simulated data used in this

study should eventually be available on the Earth Sys-

tem Grid Federation (http://esgf.llnl.gov/) node but are

already available upon request to the authors.

The present work can obviously be extended further

in many manners. For example, only one BC method

has been employed here (CDFt). However, some pre-

liminary analyses have also been performed with a

classical quantile–quantile BC method, indicating that

the main conclusions are robust (not shown). Never-

theless, increasing the number of BC models to realize

the same analyses as done in this paper could be nec-

essary to have a more global overview of the impact of

bias correction in such a context.

Similarly, using more GCMs would help in general-

izing the conclusions of such a study. Of course, the same

analyses could also be carried out with RCMs instead of

GCMs to understand the influence of the resolution

(GCM versus RCM as predictors) or the influence of

different coupling in RCM on the final statistically

downscaled results (e.g., ocean–atmosphere coupled

RCM versus stand-alone atmosphere RCM).

Moreover, this study and the associated analyses are

not restricted to SDMs and can certainly be performed

with (or including) RCMs instead of (or in addition to)

SDMs. Some attempts have been made in this direction,

for example, by Colette et al. (2012) or Bruyère et al.

FIG. 14. As in Fig. 13, but in terms of differences of changes (from present to future) instead of biases.
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(2014), evaluating RCM runs forced by bias corrected

GCM data.

It is important to keep in mind that spatial or inter-

variable dependencies were not accounted for, neither

in the BC method nor in the SDMs tested in this study.

The introduction of such specificities may have conse-

quences on the results and conclusions brought by the

present analyses. This therefore remains an important

perspective for future work.
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