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any given model and the truth has the same distribution 

as the difference between any pair of models, but other 

choices might also be considered. The properties of this 

approach are illustrated and discussed based on synthetic 

data. Lastly, the method is applied to the linear trend in 

global mean temperature over the period 1951–2010. Con-

sistent with the last IPCC assessment report, we find that 

most of the observed warming over this period (+0.65 K)

is attributable to anthropogenic forcings (+0.67 ± 0.12 K,

90 % confidence range), with a very limited contribution 

from natural forcings (−0.01 ± 0.02 K).
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1 Introduction

 Detection and attribution of climate change has received 

much attention over the last two decades because it seeks 

to assess whether recent observed changes are consistent 

with internal climate variability only, or are consistent with 

the expected response to different combinations of external 

forcings and internal variability (Santer et al. 1995; Mitch-

ell et al. 2001; Hegerl et al. 2007; Bindoff et al. 2013). The 

IPCC’s definitions of these notions have partly varied over 

time, particularly in order to be more suitable to all IPCC 

working groups. The definitions used in the 5th assess-

ment report (IPCC 2013, thereafter AR5) were taken from 

the IPCC guidance paper on detection and attribution by 

Hegerl et al. (2010), and were stated as follows. “Detection 

of change is defined as the process of demonstrating that 

climate [...] has changed in some defined statistical sense, 

without providing a reason for that change. [...] Attribu-

tion is defined as the process of evaluating the relative 

Abstract We propose here a new statistical approach to 

climate change detection and attribution that is based on 
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current statistical methods for detection and attribution 
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is almost never treated explicitly. As an alternative to this 

approach, our statistical model is only based on the addi-
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observations onto expected response patterns. We intro-
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maximization, and show that climate modelling uncertainty 

can easily be accounted for. Some discussion is provided 

on how to practically estimate the climate modelling uncer-

tainty based on an ensemble of opportunity. Our approach 

is based on the “models are statistically indistinguishable 

from the truth” paradigm, where the difference between 
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contributions of multiple causal factors to a change or event 

with an assignment of statistical confidence”. The defini-

tion for attribution that was previously used by WGI in the 

AR4 (IPCC 2007, thereafter AR4), was a bit more precise 

and mentioned three required conditions. A change Y was 

attributed to a forcing or a combination of forcings X if Y 

was detectable, consistent with the expected response to 

the cause X, and inconsistent with alternative, physically 

plausible causes. Note that “consistent with” may be under-

stood in different ways that will be discussed further later. 

Taken together, these two definitions imply that detection 

and attribution (D&A) requires some knowledge of the sta-

tistical properties of the internal (unforced) climate vari-

ability and of the expected response to one or several exter-

nal forcings. They also imply that D&A relies on statistical 

inference approaches.

Several statistical models have been used in D&A. Over 

the past two decades, the most commonly used method has 

relied on linear regression models where observations are 

regressed onto expected responses to external forcings, 

with various levels of complexity. Regression based mod-

els for D&A were first proposed by Hasselmann (1979), 

Hasselmann (1993), who introduced the “Optimal Finger-

prints” terminology. The links with classical linear regres-

sion were further highlighted by Allen and Tett (1999a). 

More recently, this statistical model was made somewhat 

more complex so as to account for uncertainty in the esti-

mates of the expected responses due to internal variability 

(there is uncertainty from this source because the expected 

responses are estimated from finite ensembles of forced 

simulations). This is referred to as the Total Least Squares 

approach (TLS, see Allen and Stott 2003; Ribes et al. 

2013).

In all of these studies, a key assumption underlying the 

use of such a regression approach is that uncertainty in the 

simulated response to a specified external forcing is domi-

nated by uncertainty in the amplitude of the spatio-tem-

poral pattern of response rather than in the pattern itself. 

The justification for this assumption is generally that the 

magnitude of the response is often uncertain while the 

spatio-temporal pattern of response is more constrained by 

physical understanding. As an illustration, uncertainties in 

the amplitude of the response to increasing concentrations 

of well-mixed greenhouse gases (GHGs) has remained 

relatively large for more than three decades: about a fac-

tor of 2.5 for the transient climate response, and 3 for the 

equilibrium climate sensitivity (Knutti and Hegerl 2008; 

IPCC 2013), related to large uncertainty on feedbacks. In 

contrast, the response to GHGs is robustly expected to be 

larger over land than over oceans, and to be amplified in 

the Arctic region. With a very high level of confidence, it 

is also expected to strengthen with time, as a direct con-

sequence of the historical evolution of emissions and 

concentrations. Robust, large scale features of response 

patterns have also been described for other variables—e.g. 

the temperature of the free atmosphere and some aspects 

of the precipitation response—and for other forcings, such 

as natural forcings (e.g. due to the well-known historical 

occurrence of major volcanic eruptions) and anthropogenic 

aerosols (as a direct consequence of the location and tim-

ing of their emissions). These arguments may justify the 

assumption that the amplitude of the response is a domi-

nant source of uncertainty, which is subsequently treated as 

unknown in statistical regression models.

Despite these uncertainties, physical knowledge does 

provide some information about amplitude of the response 

to many forcings. As a very naive illustration, the sign of 

the response, e.g. in terms of the mean surface tempera-

ture, is known in many cases. Although uncertainty remains 

substantial, physical constraints often allow us to discard 

wide ranges of values for the magnitude of the response to 

a forcing. Regression based statistical models, by consider-

ing the amplitude of the response as being unknown, do not 

take these constraints into account, although the simulated 

response magnitudes are subsequently used to interpret 

the fitted model. This weakness was previously pointed 

out by Berliner et al. (2000), who argued for a Bayesian 

treatment. Huber and Knutti (2012) also proposed to incor-

porate prior knowledge on the magnitude to disentangle 

contributions from various external forcings. Furthermore, 

while a few features of the response pattern are well-known 

qualitatively, uncertainties may stand in the way of their 

quantification. The land-sea warming ratio, for instance, or 

the amount of Arctic amplification, vary from one model 

to another. Many other aspects of the spatial patterns of 

response also vary considerably among models (e.g. Shin 

and Sardeshmukh 2011).

The discussion about the relative importance of the 

uncertainties on the magnitude vs pattern can also be con-

sidered from a forcings and feedbacks perspective.

• Some forcings are quite uncertain, both in magnitude

and pattern. For example, aerosols forcing is particu-

larly uncertain (Boucher et al. 2013). Greenhouse gases

forcing also has substantial uncertainties if effective

radiative forcings are considered rather than radiative

forcings (Myhre et al. 2013). The associated time-series

have also been shown to be quite uncertain, particularly

for aerosols (e.g. Rotstayn et al. 2015), suggesting that

it may not be sufficient to represent forcing uncertainty

through the use of a scaling coefficient.

• In addition to uncertainty on the forcing itself, global

scale feedbacks like the water vapour feedback are

likely to enhance or reduce the signal everywhere, con-

sistent with a regression framework. In contrast, the

cloud feedback, which is the most uncertain feedback in
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the response to increasing GHGs (Dufresne and Bony 

2008), is highly variable over space, and able to induce 

local and regional changes in the atmospheric circula-

tion (Stevens and Bony 2013), that could contribute 

substantially to uncertainties on the response patterns.

• Further, possible unknown feedbacks within the climate

system have been mentioned as factors that contribute

uncertainty to the response magnitude. However, if we

acknowledge that unknown feedbacks may impact the

magnitude of the response as simulated by climate mod-

els, then it seems reasonable to expect that these feed-

backs may also alter the expected patterns of response

as they will probably act differently over different

regions—e.g. feedbacks involving specifically the land

surface, snow, sea ice, etc.

• Thus, even if the global rescaling of the model esti-

mated patterns of forced responses has some advan-

tages, we argue that uncertainties in the response pat-

terns are also very substantial and that they should be

treated symmetrically to the extent possible.

In terms of D&A, Ribes and Terray (2013) recently 

reported that inter-model discrepancies in the simulated 

response patterns were substantial, and potentially large 

enough to be detrimental to D&A results (see also Jones 

et al. 2013). This study showed in particular that, as a 

consequence of the discrepancies in response patterns 

simulated by different models, the use of regression based 

methods may lead to nonphysical D&A results such as 

negative scaling factors - even in cases where the sign of 

the response is not ambiguous. It therefore suggested that 

better accounting for physical knowledge could be of inter-

est in D&A, and that climate modelling uncertainty should 

not be neglected. Note that “climate modelling uncertainty” 

here includes uncertainties in climate model parameters, 

and in the representation of physical processes in models, 

but does not include sampling uncertainty related to inter-

nal variability within climate model experiments.

A few approaches have previously been proposed to 

account for climate modelling uncertainty within a regres-

sion framework, using Errors-In-Variables approaches 

(Huntingford et al. 2006). However, statistical inference 

is then much more complicated (e.g. maximum likelihood 

estimates are not explicit), and there are remaining issues 

in the uncertainty analysis (Hannart et al. 2014). More 

importantly, if climate modelling uncertainty is explicitly 

taken into account in the spatio-temporal response pat-

tern, we see no clear reason why the response magnitude 

should be treated differently. We argue that both the mag-

nitude and the pattern could be treated similarly in order to 

reflect inter-model uncertainty. In this way, all the infor-

mation provided by physical models on the response to 

each forcing could be appropriately taken into account, 

together with the associated modelling uncertainty. As 

further illustrated in this work, the climate modelling 

uncertainty in the estimated response to a given forc-

ing may well be much larger in the magnitude than in the  

pattern—e.g. it may cover a range of values as large as the 

factor of 2.5 on the transient sensitivity to GHG forcing  

that is acknowledged in the IPCC AR5. In such cases, the 

method we propose will come close to the usual linear 

regression methods.

The main goal of this study is to describe an alterna-

tive to the use of linear regression based statistical models 

in D&A. This alternative basically proposes a symmetric 

treatment of the magnitude and the pattern of the response 

to each forcing. Our method involves simple hypothesis 

testing to check each of the three conditions mentioned 

in the IPCC AR4 attribution definition. In particular, we 

address the important questions such as the consistency 

between observed and simulated responses, not only in 

terms of the response magnitudes, but also in terms of the 

response patterns. We illustrate a few properties of this 

method and show its efficiency in particular in cases where 

linear regression is not efficient, e.g. where there are col-

linear or weak responses.

A second objective of this work is to provide a new sta-

tistical framework to deal with climate modelling uncer-

tainty in D&A. This is done by considering the responses 

simulated by a wide range of climate models, and the cor-

responding uncertainty, as representing what we know 

about the physically plausible response to a forcing. Given 

modelling uncertainty, observations are used to further con-

strain the response to each forcing. In this way, our method 

also allows assessment of the contributions of different 

combinations of external forcings, consistent with the more 

recent definition of attribution (Hegerl et al. 2010). It is 

shown that accounting for climate modelling uncertainty 

in this way leads to a simpler and more accurate statistical 

treatment than under the EIV approach. Note that if mod-

elling uncertainty is ignored, the method presented in this 

paper also leads to a simpler and more accurate treatment 

than under the widely used TLS approach.

An important requirement to deal with climate model-

ling uncertainty is to be able to estimate it from available 

ensembles of climate models. This requirement applies 

whatever the statistical method used. The inference method 

presented here assumes that such estimates are available. 

Since this is a challenging task, we provide a brief discus-

sion of how such estimates might be derived. Our estima-

tion is based on the “models are statistically indistinguisha-

ble from the truth” paradigm, where the difference between 

any given model and the truth has the same distribution as 

the difference between any pair of models. However, many 

different methods might be considered, and their efficiency 
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might depend on the variable under scrutiny, so we provide 

no definitive recommendation in this respect. In particu-

lar, the chosen paradigm may not be appropriate for cases 

where the models have large common errors and are unable 

to simulate the pattern or magnitude of a change.

In Sect. 2, we present how an attribution statement may 

be made based on a single univariate variable if information 

on the magnitude of the response is considered. Section 3 

describes the general statistical framework as well as 

the proposed inference and hypothesis testing methods. 

Section 4 deals with a few implementation issues, in par-

ticular those related to the estimation of the variance-covar-

iance matrix of climate modelling uncertainty. Section 5 

compares our method with traditional linear regression 

methods, and provides a few illustrations of the method 

using synthetic data, in order to describe important proper-

ties. Lastly, Sect. 6 shows a first application to real-world 

data by focusing on the linear trend in global mean tem-

perature over the 1951-2010 period.

2  D&A based on a single observation of a scalar 
diagnostic

This section is intended to provide a short illustration of 

how detection and attribution may be applied to a scalar 

quantity such as the linear trend in the global mean temper-

ature. Considering one unique variable, response patterns 

are not really defined (except for the sign of the response), 

and D&A will only focus on the magnitude of the 

(observed and simulated) changes. We stress that if more 

than one causal factor were to be considered, a regression 

model could not have been used as several regression coef-

ficients cannot be inferred based on a single scalar observa-

tion. The discrimination between two forcings, if any, nec-

essarily relies on the magnitude of the observed change. We 

also argue that such a very simple analysis could be very 

relevant to determining how much an observation exceeds 

the range of internal variability, or to assess whether this 

observation is consistent with an ensemble of simulated 

responses. It may also be particularly appropriate for ruling 

out a weak forcing from being a sufficient explanation of 

an observed change. An illustration of such a single scalar 

based D&A analysis applied to real-world data is provided 

in Sect. 6, based in the linear trend in global mean tempera-

ture over the 1951-2010 period.

The question of detection, first, is primarily related to 

assessing whether the observed indicator of climate change, 

say y, is consistent with internal variability only. To address 

this question, D&A studies usually compare observations 

with internal variability as simulated from unforced cli-

mate models runs (Hegerl and Zwiers 2011). In regression 

formulations, the regression residuals are interpreted as an 

observe realization of internal variability, and are addition-

ally compared with model simulated internal variability to 

assess the ability of the models to simulate such variabil-

ity (Hegerl and Zwiers 2011). Then considering a pool of 

unforced control run segments covering the same period, 

the question comes to a simple comparison of y with the 

same indicator computed from each simulated segment, 

say a1, . . . , ap. More precisely, the detection question could 

be rephrased as “Does y come from the same population 

as the ai’s?” Assuming a Gaussian distribution for the ai’s, 

which is commonplace at least for mean temperature, this 

question could be easily addressed with a Student t test. 

Note that we do not provide mathematical details in this 

section, as the statistical framework will be presented in 

Sect. 3 under more general assumptions. This simple way 

of performing detection has been used in several studies, 

e.g. Santer et al. (2013), Terray et al. (2011) or even much 

earlier as discussed by Hegerl and North (1997).

Regarding attribution, and based on the IPCC AR4 

definition (IPCC 2007), two more questions have to be 

considered. The first regards the consistency of y with the 

expected response to all forcings considered. To evaluate 

consistency, climate models are therefore also required 

to provide estimates of the expected response to all forc-

ings (Hegerl and Zwiers 2011). If we assume that a sam-

ple b1, . . . , bq of simulated responses is available from a 

pool of climate models, the question, from a statistical 

point of view, comes to be identical to the previous one, 

and could be tackled with the same simple tool, i.e. a Stu-

dent test. Note that here, consistency is meant in a broad 

sense, i.e. including climate modelling uncertainty. The last 

question—consistency with alternative, physically plau-

sible causes—demands a third sample of climate model 

Fig. 1  Schematic illustration of univariate D&A The observed sca-

lar diagnostic (black arrow) is compared to internal variability (green 

distribution), the expected response to forcing F1 only (blue distri-

bution), or the expected response to forcings F1 + F2 taken together 

(red distribution). Samples obtained under each of these three distri-

butions are illustrated below the x-axis (synthetic data, with a sample 

size of 15)
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simulations, e.g. only driven by a subset of external forc-

ings. Denoting this sample c1, . . . , cr, the statistical treat-

ment could, again, be the same.

Figure 1 provides an illustration of a hypothetical D&A 

outcome based on a single scalar observable. We consider 

only two forcings, say F1 and F2. The observation (here 

assumed to be free of measurement uncertainty) is com-

pared to three different distributions. Attribution of the 

change to F2 may be claimed since consistency is not found 

with internal variability only, found with forcings F1 + F2 

combined, and not found with forcing F1 only. Thus a pro-

cedure such as that which is illustrated could be argued to 

comply with the IPCC AR4 definition of detection and attri-

bution: a change has been detected, it is demonstrated to 

be consistent with a hypothesized combination of forcings, 

and inconsistent with other plausible explanations. This 

procedure is also similar to that used in pioneering detec-

tion studies (e.g. Hasselmann 1997; Hegerl et al. 1997). 

The “contributions of several causal factors” as strength-

ened in the IPCC AR5, however, are not really quantified. 

This is done in the next section under a more general statis-

tical framework that also allows multivariate diagnostics to 

be used, such as a space-time pattern of change.

3  Statistical framework and inference approach

3.1  Statistical model

 Our proposed statistical model is written as follows:

 where Y∗ is the true, unknown response of the climate sys-

tem to all external forcings taken together, X
∗

i
 is the true, 

unknown response to each forcing i among the nf  forc-

ings considered, Y is the observation, εY describes noise 

in observations, Xi is the simulated response to forcing i, 

and lastly, εXi
 is the deviation between the simulated and 

true response to forcing i. Note that all these variables are 

vectors of the same dimension n. Multiple factors could 

contribute to εY, including observational error and internal 

variability. Multiple factors could also contribute to εXi
 , 

including climate model uncertainty, forcing uncertainty 

and internal variability. The random variables εX1
, . . . , εXnf

and εY are all assumed to be independent and to follow 

Gaussian distributions with zeros means and known vari-

ance-covariance matrices (respectively ΣX1
, . . . , ΣXnf

, and

(1)Y∗
=

nf∑

i=1

X∗

i ,

(2)Y = Y
∗

+ εY , εY ∼ N(0, ΣY ),

(3)Xi = X∗

i + εXi
, εXi

∼ N(0, ΣXi
), i = 1, . . . , nf ,

ΣY, hereafter variance matrices). These strong assumptions 

are further discussed below.

Equation (1) assumes additivity, i.e. that the response 

to a subset of forcings is the sum of the responses to each 

forcing taken individually. This strong assumption has 

been used in most previous D&A methods (see also Shi-

ogama et al. 2013). Equation (2) describes how the exter-

nal response is altered by noise in the observations Y. Noise 

refers here to both internal variability and measurements 

errors, possibly including instrumental errors, errors related 

to observation adjustments and sampling errors associated 

with the configuration of the observing network and its evo-

lution over time (Brohan et al. 2006; Morice et al. 2012). 

References to observational uncertainty in this article refer 

to εY. Previous studies have suggested that internal variabil-

ity tends to be the dominant source of observational uncer-

tainty, at least for global near-surface temperature (Jones 

and Stott 2011). Equation (3) provides a symmetrical repre-

sentation for climate model output. Xi is typically the mean 

response to forcing i simulated by a set of climate models. 

The multimodel mean will be mainly considered, but we 

refer to Sect. 4 for a comprehensive discussion on deriving 

a response X from a multimodel ensemble. The noise εXi
 

that contaminates Xi may be related to both internal vari-

ability within the climate model runs and other sources of 

variation such as forcing and modelling uncertainty, with 

the latter often being larger than the former. Discussion on 

how to estimate and combine these two terms is also pro-

vided in Sect. 4.

Our proposed statistical model (1)–(3) does not rely 

on a linear regression approach, but it is closely related 

to Errors-In-Variables (EIV) models, such as described in 

Fuller (1987), Hannart et al. (2014). Using our notation, 

an EIV model would leave (2)–(3) unchanged, while (1) 

would be replaced with

where the βi’s are unknown scaling factors. Therefore, 

these two statistical models differ only by the introduction 

of unknown regression coefficients (or scaling factors) βi in 

(4). Similarly, the TLS statistical framework, which has been 

much more widely used than EIV, consists of equations (2)–

(4), with only small differences in the definition of εY and 

εX. In linear regression, and more generally under the TLS 

and EIV models, using these coefficients βi means that the 

magnitude of the influence of X on Y is assumed unknown. 

Usually, such adjustments are useful as X and Y may not be 

directly comparable, e.g. may be given with different units, 

etc. This is obviously not the case in D&A. In particular, the 

most commonly used approach aims at assessing, in addition 

to scaling factors, the consistency between model output and 

(4)Y∗
=

nf∑

i=1

βiX
∗

i ,
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observations by testing whether β is consistent with 1. This 

means that quantities X and Y are considered to be directly 

comparable. By removing these scaling factors β, we assume 

that the cohort of available climate models can appropri-

ately simulate the response magnitude, with some model-

ling uncertainty, in addition to the assumption that they are 

able to appropriately simulate the response patterns, again 

with some modelling uncertainty. The latter assumption is 

implicit under the EIV approach. It is also implicit under 

the TLS approach, but the source of response pattern uncer-

tainty is then limited to internal variability only. Our model 

thus proposes a more symmetric treatment of uncertainty in 

the magnitude and the pattern of the change. Note that the 

climate modelling uncertainty will be estimated from an 

ensemble of opportunity (e.g. Taylor et al. 2012).

A few important remarks should be made concerning 

this statistical model.

First, this model may be regarded as a linear Gauss-

ian model. This alternative point of view is discussed in 

Appendix 8.1, and helps us derive some statistical proper-

ties. However, we will still focus on the previous point of 

view, i.e. (1)–(3), in the following, as the maximization of 

the likelihood is simpler in this way.

Second, the assumption that the variance matrices 

ΣY , ΣX1
, . . . , ΣXnf

 are known is strong. For example, in

the single scalar case discussed in Sect. 2 it corresponds to 

using Gaussian tests instead of Student tests. This strong 

assumption, however, is consistent with previous attempts to 

account for climate modelling uncertainty in D&A, in par-

ticular Huntingford et al. (2006) and Hannart et al. (2014). 

Practically, these matrices need to be estimated from multi-

model ensembles, as discussed in Sect. 4. Overall, this study 

proposes a “plug-in” method, where these matrices are esti-

mated first, and then considered as fixed in the main statistical 

model. Providing a more comprehensive statistical treatment 

that also accounts for uncertainties in the estimation of these 

matrices would be very attractive, but is also very challenging 

and is beyond the scope of this paper. Note that efforts have 

been made in the standard D&A approach to deal with uncer-

tainty on the covariance matrix related to internal variability 

(e.g. Allen and Tett 1999b; Ribes et al. 2013; Hannart 2015). 

It is more challenging here as the larger uncertainty will be, in 

many cases, related to climate modelling uncertainty, which 

can only be estimated from a very limited sample of climate 

models. To our knowledge, previous EIV implementations 

have used the same plug-in approach.

Third, as the random terms ε are centered (i.e. E(ε) = 0 ), 

(1)–(3) imply that

where X =

∑nf

i=1
Xi. That is, it is assumed that the nf  forc-

ings factors considered are sufficient for explaining the 

forced component of the observed change.

(5)E(Y − X) = 0,

Fourth, all errors are assumed to follow a Gaussian dis-

tribution. Considering non-Gaussian distributions might 

be very attractive, but is beyond the scope of this paper, 

although one possibility might be to transform data to bring 

its distribution closer to being Gaussian.

3.2  Inference method

The proposed inference method is based on the method 

of maximum likelihood (Le Cam 1990). After writing the 

likelihood function for the model, we derive maximum 

likelihood estimates and exact confidence intervals are 

proposed, with no use of asymptotic theory. As all random 

variables are assumed to follow a Gaussian distribution, 

we consider the −2 log-likelihood function (i.e. the loga-

rithm of the likelihood, multiplied by −2) and minimize it, 

instead of maximizing the likelihood—this makes the cal-

culation easier.

In (1)–(3), the unknown parameters are X∗

i , i = 1, . . . , nf  ; 

assuming known variance matrices, the −2 log-likelihood 

function relative to observations of (Y, X) can be written 

(up to an additive constant that plays no role) as

3.3  Maximum likelihood estimators (MLEs)

Maximum likelihood estimators X̂∗

i
 of X∗

i
 may be obtained 

by maximizing this likelihood function in X∗

i
. Note that we 

will also denote Ŷ∗ the MLE of Y∗, as it helps to derive ana-

lytic solutions. From (6), the first order maximization con-

dition on X∗

i
 gives

which yields

We then recall that X =

∑nf

i=1
Xi, define ΣX =

∑nf

i=1
ΣXi

, 

and consider 
∑nf

i=1
X̂∗

i , which gives

From there, two equivalent expressions for the MLE of Y∗ 

can be derived

(6)

ℓ(X∗

1 , . . . , X∗

nf
) =

(

Y −

nf
∑

i=1

X∗

i

)′

Σ
−1
Y

(

Y −

nf
∑

i=1

X∗

i

)

+

nf
∑

i=1

(

Xi − X∗

i

)

′
Σ

−1
Xi

(

Xi − X∗

i

)

.

(7i)Σ
−1
Y

(Y − Ŷ
∗) + Σ

−1
Xi

(Xi − X̂
∗

i
) = 0,

(8i)X̂
∗

i
= Xi + ΣXi

Σ
−1

Y
(Y − Ŷ

∗).

(9)Ŷ
∗

= X + ΣXΣ
−1
Y

(Y − Ŷ
∗),

(10)
(
I + ΣXΣ

−1

Y

)
Ŷ

∗
= X + ΣXΣ

−1

Y
Y .
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Substituting (12) into (8i), the MLE of X
∗

i
 may also be 

derived as

This demonstrates that MLEs can be derived explic-

itly under our model as opposed to the EIV model, where 

MLEs can only be obtained numerically, with no guarantee 

that the maximum is actually reached (Hannart et al. 2014) 

and no possibility to derive their distribution explicitly. 

Note also that the maximization of this likelihood corre-

sponds to least squares minimization. In this way, the esti-

mators derived above can be of interest even if the Gauss-

ian assumption is not satisfied in (2)–(3).

Lastly, it may be noted that the minimum −2 log-likeli-

hood (which corresponds to the maximum likelihood) takes 

the value (still up to the same additive constant)

3.4  Distribution of MLEs

Being linear combinations of independent Gaussian vectors 

Xi, i = 1 . . . n, and Y, X̂∗

i
 and Ŷ∗ all follow Gaussian distri-

butions. From (12) and (13), and noting that E(Y − X) = 0 , 

it is also easy to prove that they are unbiased estimates. 

Thus their distributions will be fully determined by their 

variances. The variance of Ŷ∗ can be deduced from (11),

leading to

and

The case of X̂∗

i
 can be treated very similarly, leading to

The above equations show that the distribution of the 

MLEs is explicit under our statistical model, which will 

allow the computation of exact confidence regions or 

hypothesis tests, assuming we know the variance matri-

ces. Confidence regions for X
∗

i
 allow the quantification of 

uncertainties in the contribution of a particular forcing to 

the observed changes. In particular, if Y is a time series of n 

observations, attributable trends have been commonly used 

(11)Ŷ
∗

= (Σ
−1
X

+ Σ
−1
Y

)−1(Σ
−1
X

X + Σ
−1
Y

Y),

(12)= Y + ΣY (ΣY + ΣX)−1(X − Y).

(13)X̂∗

i = Xi + ΣXi
(ΣY + ΣX)−1(Y − X), i = 1, . . . , nf .

(14)ℓ(X̂∗

1 , . . . , X̂∗

nf
) = (Y − X)′(ΣY + ΣX)−1(Y − X).

(15)Var(Ŷ∗) =
(
Σ

−1

X
+ Σ

−1

Y

)−1
.

(16)Ŷ
∗

∼ N

(
Y

∗
,
(
Σ

−1
X

+ Σ
−1
Y

)
−1

)
.

(17)X̂∗
i ∼ N

(
X∗

i ,

(
Σ

−1
Xi

+
(
ΣY +

∑

j �=i

ΣXj

)−1
)−1

)
.

(e.g. Stott et al. 2006; Jones et al. 2013; Gillett et al. 2013; 

Bindoff et al. 2013) to estimate the relative contributions of 

several forcings to a change. Within our statistical frame-

work, estimates and uncertainty analysis on trends attrib-

utable to a given forcing can be derived respectively from 

(13) and (17).

Under like-for-like assumptions, similar results on 

uncertainty analysis are not known under TLS or EIV mod-

els. Instead, the computation of confidence intervals on 

β must be based on approximate results from asymptotic 

statistics, and may involve some computational challenges. 

Hannart et al. (2014) further suggested that the use of 

these asymptotic results in EIV models could lead to con-

fidence intervals that are too permissive, which is not the 

case here. In addition, uncertainty analysis on attributable 

trends inferred from TLS or EIV models should in princi-

ple involve the computation of confidence regions for β̂iX̂
∗

i
,

which is challenging and usually not done.

3.5  Hypothesis testing

This subsection describes hypothesis tests that may be 

used for D&A under our statistical model. Consistent 

with Sect. 2, we will consider three different tests, corre-

sponding to the three conditions required for attribution: 

consistency with internal variability only (i.e. detection), 

consistency with the expected response to all forcings, and 

consistency with the response to a subset of forcings. We 

provide a more comprehensive discussion of the tests in 

“Appendix 8.2”. In particular, all three tests we propose are 

in a sense “goodness of fit” tests, as is discussed in “Appen-

dix 8.2.1”.

First, consistency with internal variability corresponds 

to the null hypothesis H0 : Y
∗

= 0. Under this hypothesis, 

Y ∼ N(0, ΣY ), and thus a natural test would be based on

However, as discussed in “Appendix 8.2”, this test is not 

exactly the likelihood ratio test (LRT) of H0 : Y
∗

= 0 under 

our model (1)–(3); in particular, the proposed responses 

X1, . . . , Xnf
 are not used. The test defined in (18) might be 

considered as testing H0 : Y
∗

= 0 in (2), with (1) and (3) 

removed. This test only attempts to answer the question 

about whether there is evidence of a change in climate for 

an undefined reason (i.e., detection in the purely statisti-

cal sense, not detection of signals 1, . . . , nf  per se). A few 

alternatives are discussed in Appendix 8.2.3. Note that the 

detection that does not involve any information about the 

expected climate change signal was rejected by Hasselmann 

(1993) as a “needle in a haystack” situation: the dimension-

ality might be too large and prevent efficient detection. In the 

test proposed here, the length of Y has to be small. This is 

usually achieved by a pre-processing of the data. Although 

(18)Y
′Σ−1

Y
Y ∼H0

χ2(n).
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preliminary to the main statistical analysis, this pre-pro-

cessing often focuses the power of the test on the expected 

change, so the signal comes into consideration indirectly and 

is in effect not ignored. Such a “low dimension” condition is 

satisfied in the application presented in Sect. 6.

Second, consistency with the response to all forcings 

corresponds to testing whether the data (X, Y) are consistent 

with Model (1)–(3). In other words, we test the goodness

of fit to our full statistical model. Denoting X =

∑nf

i=1
Xi, 

this test may be implemented based on the minimum log-

likelihood given in (14):

Here, the consistency between observed and simulated 

responses is addressed both in terms of the response pat-

terns and the response magnitudes. This question was 

only indirectly addressed in previous linear regression 

approaches, as the results of two different tests —testing 

whether scaling factors are consistent with unity, and test-

ing the overall goodness of fit to the regression model—

had to be combined to answer it. Note that this consistency 

test will be more demanding if ΣX is smaller. Practically, 

this means using simulations with all forcings, if available, 

to limit the sampling uncertainty in ΣX. Note also that con-

sistency here is meant with respect to all sources of uncer-

tainty simultaneously, including internal variability, climate 

modelling uncertainty and observational uncertainty.

Third, consistency with only a subset of external forc-

ings corresponds to a null hypothesis where (1) is replaced 

by

where I is a subset of �1, nf �. Very similarly to the previous 

test, this test could be based on

where XI =

∑
i∈I

Xi and ΣXI
=

∑
i∈I

ΣXi
.

By accounting for information on the magnitude of 

a change, this test corrects a few deficiencies of the lin-

ear regression approach. Under linear regression, this test 

is usually performed in the presence of at least two forc-

ings Fi, which means that two or more scaling factors βi 

are estimated simultaneously. Forcing F1 is assessed to not 

be a sufficient explanation if, within, for example, a 2-forc-

ing analysis, β2 is significantly different from 0. Using this 

procedure, however, two forcings cannot be differentiated 

if their responses are collinear. Even worse, if the response 

to the forcing F1 is very weak, its response pattern will be 

very uncertain, even if many F1-only simulations are avail-

able. This will prevent rejecting the hypothesis that “F1 

alone can explain the change”. This is a paradoxical situa-

tion because the smallest forcings may be the most difficult 

(19)(Y − X)′(ΣY + ΣX)−1(Y − X) ∼H0
χ2(n).

(20)
Y

∗
=

∑

i∈I

X
∗

i
,

(21)(Y − XI)
′(ΣY + ΣXI

)−1(Y − XI ) ∼H0
χ2(n),

to exclude from a list of possible sufficient causes. In such 

a case, the main information provided by climate model 

simulations is actually that the magnitude of the response 

to F1 is weak, and we argue that this information has to be 

taken into account.

4  Implementation: estimation of X and ΣX

In the method presented above, the multi-model response 

X and the variance matrix ΣX describing the corresponding 

uncertainty are assumed to be known (as a single forcing 

is considered, the index i is dropped in this section). How-

ever, the way a multi-model ensemble of opportunity like 

CMIP5 may be translated into X and ΣX is not straightfor-

ward, and several approaches might be considered. Before 

providing illustrations of our new method, we briefly dis-

cuss this issue and present one possible way to estimate 

those quantities.

It is worth noting that a wide literature, and most notably 

the IPCC Assessment Reports, have addressed the question 

of quantifying uncertainties in terms of the Earth’s climate 

sensitivity. However, far fewer studies have provided uncer-

tainty assessments on patterns, i.e. not restricted to one sin-

gle parameter. Quantifying the uncertainty in the response 

pattern is necessary to account for climate modelling 

uncertainty in D&A, whatever the statistical model used, 

whether EIV or that described in this paper. In particular, 

previous EIV studies provided only limited discussion on 

this topic (Huntingford et al. 2006; Gillett et al. 2013; Han-

nart et al. 2014). Note that other approaches like that by 

Huber and Knutti (2012) also usually neglect uncertainty 

on the forcing pattern or time-series.

4.1  Paradigms for climate modelling uncertainty

While several methods with various level of complexity 

could be considered to derive X from a multi-model ensem-

ble, this study focuses mainly on the multi-model mean. 

Empirical evidence from an increasing number of studies 

suggests that the multimodel mean is a better estimate than 

responses provided by any individual model (see e.g. Knutti 

et al. 2010 for a review). Also, the multi-model mean has 

been used extensively in the IPCC assessments (IPCC 2007, 

2013), as well as in many individual studies, making it a 

well-described variable. Nevertheless, other estimates of X 

might have been considered, e.g. the median, or more gen-

erally a trimmed mean (i.e. mean over a subset of climate 

models, in order to avoid or limit the impact of outlier mod-

els on the average). But such techniques may reduce physi-

cal consistency across space, as values at different locations 

may come from different models. Several authors also pro-

pose to eliminate some models prior to analysis because 
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of unrealistic behaviour or to seek subsets of models that 

exhibit adherence to an emergent constraint (e.g. Hall and 

Qu 2006).

The computation of ΣX is more debatable and subject to 

partly arbitrary choices. Note that we only focus on climate 

modelling uncertainty and ignore internal variability in this 

section; the influence of internal variability is discussed 

in Sect. 4.2. Several paradigms have been used in the lit-

erature to compare observations with simulations coming 

from various models, and more precisely to describe the 

distance from X at which the observations are likely to be 

found (Annan and Hargreaves 2010; Knutti et al. 2010). 

Here we only consider the “models are statistically indis-

tinguishable from the truth” paradigm. In a Bayesian per-

spective where the truth is treated as non-deterministic, 

this paradigm simply assumes that the models and the truth 

are taken from the same distribution. This paradigm can 

also be understood in a frequentist perspective, assuming 

dependence among models, as discussed below. Whatever 

the point of view, this paradigm assumes that the differ-

ence between any given model and the truth has the same 

distribution as the difference between any pair of models. 

By considering this paradigm, it is implicitly assumed that 

the true-world response is somewhere within the distribu-

tion of model responses, for the population of models from 

which the available ensemble of opportunity was drawn. 

Since this is an assumption about the population of models, 

it also implies that models not yet observed may lie out-

side the range of responses seen in the available ensemble 

of opportunity.

Under this paradigm, it is assumed that values simulated 

by individual models, wj, are taken independently from the 

same distribution, i.e. wj ∼ N(µ, Σm), where µ denotes the 

mean response that would be obtained from an infinitely 

large ensemble, and Σm describes the climate modelling 

uncertainty. It is further assumed that µ is not equal to true 

value of the parameter of interest w∗. This may happen in 

particular if all the models involved share some common 

features and errors. For any value w′ simulated by a ran-

domly selected model taken from the same population, we 

have w
′
∼ N(µ, Σm), and thus (µ − w

′) ∼ N(0, Σm). The 

underlying idea of the statistically indistinguishable para-

digm is to assume that the value µ differs from the truth 

w
∗ as much as it differs from any independent realization 

w
′. For this reason, we assume that (µ − w

∗) ∼ N(0, Σm) . 

As the multi-model mean w =
1

nm

∑nm

j=1
wj satisfies 

(w − µ) ∼ N(0, Σm/nm) and is independent from the lat-

ter, it follows that w ∼ N(w∗, (1 + 1/nm)Σm), which corre-

sponds to using ΣX = (1 + 1/nm)Σm. Note that this para-

digm is also equivalent to assuming that

(22)

wj ∼ N
(

w∗
, 2Σm

)

, and Cov(wj, wj′) = Σm if j �= j′.

In this way, this paradigm assumes that models are centered 

on the truth w∗, with a particular type of positive depend-

ence among models. This tends to make confidence region 

around the multi-model mean larger than if independence 

is assumed.

We use this paradigm for two main reasons.

First, this paradigm assumes large uncertainties around 

the multimodel mean. We argue that it is more appropri-

ate to assume larger rather than narrower modelling uncer-

tainty to provide a conservative statement. Following previ-

ous D&A studies, we are primarily interested in deriving 

an observational constraint, rather than a strong modelling 

constraint, on the forced responses X
∗

i
, since we regard 

the evidence contained by the observations as being para-

mount. For robustness, we might wish this observational 

constraint to hold even with an overestimate of modelling 

uncertainty. This paradigm is also quite pessimistic because 

it means that no matter how extensively the space of all 

plausible models is sampled, the multimodel mean will not 

converge to the truth.

Second, Annan and Hargreaves (2010) and van Old-

enborgh et al. (2013) suggest that the models are statisti-

cally indistinguishable from the truth paradigm is reason-

ably well supported by observations, although they partly 

disagree on whether it tends to be overly conservative or 

not. Notably, this paradigm is better supported by observa-

tion than alternatives, in particular the models centered on 

the truth paradigm (e.g. Annan and Hargreaves 2010; Fyfe 

et al. 2013), which is briefly introduced and discussed in 

8.4. Note however that those results are mainly valid for 

temperature, but might be discussed for other variables 

such as precipitation.

As a conclusion, the “models are statistically indis-

tinguishable from the truth” paradigm provides a use-

ful framework to compute estimates of climate modelling 

uncertainty. Basically, this approach assumes that the truth 

is somewhere within the model envelope, and a possi-

ble drawback is that values outside the model range (e.g. 

in terms of sensitivity) will not be considered. This is the 

reason why the estimation of climate modelling uncertainty 

should account for multiple lines of evidence in order to 

determine whether or not this paradigm might be consid-

ered as reliable - this discussion goes beyond this paper. 

If not, other estimates might be considered, e.g. with an 

inflated variance, if the ensemble is proven to be under-

dispersive, with some models discarded if they are proven 

unrealistic, or with more specific adjustments. The same 

conclusion applies if some component of the uncertainty, 

such as the forcing uncertainty is ignored in the ensemble 

design. The sensitivity of the results to considering such 

alternative estimates might also be explored.

Lastly, it may be noted that the EIV approach, via the 

introduction of unknown scaling factors, is able to cope 
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with an additional uncertainty on the response magnitude. 

However, this approach still ignores part of the physical 

knowledge of the response magnitude, and more impor-

tantly, we see no evidence why models would be under-

dispersive in the magnitude and not in the patterns. Thus 

some assessment of the paradigm used will also be needed 

regarding uncertainty in the response pattern.

4.2  Estimation of ΣX with modelling uncertainty 

and internal variability

A more comprehensive framework includes repeated exper-

iments from each climate model. We add some complexity 

to the previous description by considering that the response 

wjk simulated in run k from model j can be decomposed as

where µ is the mean value of the population of climate mod-

els, µ + mj is the mean value in model j, and ǫjk denotes 

the particular realization of internal variability contained in 

simulation k from model j. We set ǫjk ∼ N(0, Σv) , assuming 

the variance matrix Σv to be the same for all models (i.e. 

doesn’t depend on j), consistent with some previous D&A 

studies, and mj ∼ N(0, Σm). Within such a framework, 

uncertainty is related to both internal variability and climate 

modelling uncertainty, consistent with Huntingford et al. 

(2006) and Hannart et al. (2014). We further assume these 

two random terms to be independent, which leads to

Then, as above, we use the “models are statistically indis-

tinguishable from the truth” paradigm and assume that 

(µ − w
∗) ∼ N(0, Σm). Finally, we consider the balanced 

case in which nr runs are available from each climate 

model.

Considering this whole set of assumptions, each individ-

ual ensemble mean wj. = 1/nr

∑nr

k=1
wjk satisfies

and the multimodel mean w = 1/nm

∑nm

j=1
wj. (assuming nm 

models are involved) satisfies

Last,

which suggests considering

(23)wjk = µ + mj + ǫjk ,

(24)wjk ∼ N(µ, Σm + Σv).

(25)wj. ∼ N

(

µ, Σm +
Σv

nr

)

,

(26)w ∼ N

(

µ,
Σm

nm

+
Σv

nmnr

)

.

(27)(w − w
∗) ∼ N

(

0,
(

1 +
1

nm

)

Σm +
Σv

nmnr

)

,

(28)ΣX =

(

1 +
1

nm

)

Σm +
1

nmnr

Σv.

While (28) has been obtained in the balanced case 

where each model performs the same number of simula-

tions nr, modelling centers usually provide ensembles 

of various sizes. One possible way to obtain a balanced 

ensemble would be to consider only a fixed number of 

simulations from each model. This usually requires a 

compromise between nm and nr, and tends to exclude 

some of the available simulations (i.e. not consider all 

available information). In order to avoid this, we show in 

“Appendix 8.3” how ΣX and Σm may be estimated in the 

more general unbalanced case (i.e. ensembles of various 

sizes).

5  Properties and several illustrations

This section illustrates a few properties of the proposed 

method. We first discuss how it compares with and relates 

to previous linear regression approaches. We then describe 

the results obtained in a few particular cases, based on syn-

thetic data and with a very small dimension n = 1, 2, to 

illustrate how this method works.

5.1  Relationship with linear regression

In order to compare our method to regression-based meth-

ods, we consider the most basic regression framework, 

which assumes no error in the predictors X (usually referred 

to as Ordinary Least Squares in D&A, following Allen and 

Tett 1999a), i.e.

We also consider a very simple case where nf = 1 and con-

sequently, X is a column vector.

If we consider the term Xβ as being the response to a 

forcing F1, the basic assumption underlying this framework 

is that the shape of the response to F1 (i.e. X) is perfectly 

known, while the magnitude of the response to F1 (i.e. β) is 

unknown. This assumption may be thought of as defining 

a very specific uncertainty structure on the F1 response in 

(3). The “unknown magnitude” means that uncertainty pro-

portional to the simulated response X is large, while uncer-

tainty vanishes in other directions.

To understand the implications of assuming exact 

knowledge of the direction of X, but uncertain knowledge 

of its amplitude, we may write the variance matrix of X 

as

where � represents the variance of the magnitude of X. 

One natural question is to determine whether these two 

approaches provide consistent results if based on similar 

assumptions. The answer is yes because, based on (30), 

(29)Y = Xβ + εY , ε ∼ N(0, ΣY ).

(30)ΣX = �XX
′
,
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and assuming that � → ∞, we can show that our method 

coincides with linear regression. In particular, noting that

(12) becomes

where β̂  denotes the optimal least squares estimate in

(29). The response Y∗ estimated by our method, Ŷ
∗, is

then the same as that estimated using linear regression. 

This shows that linear regression may be regarded as a 

limiting case of our method (as � → ∞), and that both 

approaches are consistent. Similar consistency is also 

found in terms of the uncertainty analysis (e.g. con-

fidence intervals). This result is important, because it 

means that if the assumptions underlying linear regres-

sion are valid—i.e. climate models do agree on the pat-

terns and the magnitude is uncertain—then our approach 

will provide results similar to a regression based method.

Two comments should be mentioned on this topic how-

ever. First, comparison might have been performed with a 

more comprehensive framework for linear regression, such 

as the EIV approach proposed in Hannart et al. (2014). 

However, comparison to such a model is much more dif-

ficult because maximum likelihood estimates are not 

explicit. Instead, using OLS as a baseline allows us to make 

a simple comparison. Second, this result helps to illustrate 

the main difference between these two possible approaches. 

While linear regression is equivalent to assuming no error 

(31)

(

ΣY + �XX
′
)

−1
−−−→
�→∞

Σ
−1
Y

− Σ
−1
Y

X(X ′Σ
−1
Y

X)−1
X

′Σ
−1
Y

,

(32)

Ŷ
∗

= Y + ΣY

(
Σ

−1
Y

− Σ
−1
Y

X(X ′Σ
−1
Y

X)−1
X

′Σ
−1
Y

)
(X − Y),

(33)= X(X ′Σ
−1
Y

X)−1
X

′Σ
−1
Y

Y ,

(34)= Xβ̂,

in the shape (ΣX is rank-1) and infinite uncertainty in the 

magnitude (� → ∞), our approach allows a more bal-

anced point of view, basically assuming there is a limited 

(i.e. finite) amount of uncertainty in both the shape and the 

magnitude of the response X.

5.2  Toy examples

We here consider a few practical cases in order to illustrate 

particular features of our method, in particular with respect 

to its ability to estimate contributions from individual 

forcings.

5.2.1  Single scalar analysis n = 1

We first consider the case of a univariate analysis where the 

main concern is to assess the contributions of two differ-

ent forcings F1, F2 to the observed change Y on the climate 

variable v. More specifically, we assume estimation of X1 to 

be our main concern, and discuss the accuracy of the esti-

mation as a function of uncertainties in both X2 and Y.

Figure 2 illustrates three typical cases that might be 

encountered in this configuration. In this figure, we dis-

tinguish between two possible ways to derive confidence 

intervals for the forced contributions X∗

1
 and X∗

2
. The first, 

very naive option is to consider only information provided 

by climate models (in terms of both the mean spread of 

multimodel ensembles) using (3). Another option is to con-

sider our full statistical model (1)–(3) and thus information 

provided by both models and observations, which leads to 

our estimates X̂∗

1
 and X̂∗

2
. Figure 2 describes how these two

options may provide different results.

In Fig. 2a, the two contributions X
∗

1
 and X

∗

2
 are very 

uncertain based on multimodel information. As one single 

observation is not sufficient to separately estimate the con-

tributions from two different forcings, the added value from 

observations is limited and the resulting confidence intervals 

(c)(b)(a)

Fig. 2  Schematic illustration of 1D reduction of uncertainties Contri-

butions from two forcings F1 and F2 are assessed. Black: observation 

Y (arrow), the related uncertainty, including both internal variability 

and measurements errors (pdf), and the confidence region for Y∗, as 

derived from (2) (interval). Orange: uncertainty on X1 (pdf) and the 

corresponding confidence interval for X
∗

1
 as derived from (3) (inter-

val). Red: confidence region for X
∗

1
 based on inference in the full 

model. Sky blue: uncertainty on X2 (pdf) and the corresponding confi-

dence interval for X∗

2
, as derived from (3) (interval). Blue: confidence 

region, for X∗

2
, based on inference in the full model. Magenta: sum of 

simulated responses X = X1 + X2 (arrow). Panels a, b and c are rep-

resentative of three different configurations (see text)
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on X∗

1
 and X∗

2
 are only slightly reduced after accounting for 

the observational constraint. Note that observations (black 

arrow) fall above the overall forced response as simulated 

by climate models (magenta arrow). As a consequence, 

best-estimates X̂
∗

1
 and X̂

∗

2
 are slightly higher than the first

guess X1 and X2 simulated by the climate models.

In Fig. 2b, the contribution X
∗

2
 is rather constrained 

by model simulations, but observations are dominated 

by noise, and so the resulting uncertainty on X
∗

1
 is, again, 

only slightly reduced. As in panel a, the best-estimate X̂∗

1
 is 

found to have a higher value than the multimodel mean X1 

because the observation Y falls above the simulated forced 

response X = X1 + X2. However, because observations 

are noise dominated, only part of this departure (Y − X) is 

transferred to X̂∗

1
− X1; the remaining part is actually trans-

ferred to (Ŷ∗
− Y).

Figure 2c illustrates a more favourable case in which 

both observations and the contribution from forcing F2 are 

well-constrained. In this case, while climate models simu-

late a relatively uncertain response to forcing F1 (large pink 

confidence interval), the use of our statistical model leads 

to a much better constrained estimate of the response X
∗

1
 

(red confidence interval). This can be understood as a direct 

consequence of the additivity assumption. Basically, (1) 

can be re-written X∗

1
= Y

∗
− X

∗

2
. Because of limited uncer-

tainties (i.e. relatively small ΣY and ΣX2
), Y and X2 are 

close to Y∗ and X∗

2
, respectively. So computing X∗

1
 from the 

subtraction above allows uncertainties to be reduced sub-

stantially. Furthermore, the departure of Y from X is almost 

completely transferred to X̂
∗

1
− X1, as the two other terms

are much less uncertain. In this toy example, while Y − X 

is actually not very large, the resulting confidence interval 

for X∗

1
 doesn’t contain X1 (which could be considered as a 

naive first guess).

5.2.2  Analysis when Y has dimension n = 2

In order to illustrate how uncertainties may be substan-

tially reduced in the presence of two somewhat uncertain 

responses, we now consider a 2-dimensional example, 

n = 2. We still consider two forcings F1 and F2 and assume 

that our primary interest is to estimate the contribution of 

these forcings to the variable v1 (x-axis on Fig. 3). Let X∗

1,1 

and X∗

2,1 be the true responses to F1 and F2 respectively on 

v1, and let X∗

1,2
, X

∗

2,2 be the true responses to F1 and F2 on 

v2. In these examples, we assume that uncertainty in the 

observations Y is relatively small, e.g. because internal var-

iability has somehow been partly filtered out (see Sect.  6 

for a concrete illustration). We then discuss how the accu-

racy of the final estimate of X∗

1,1 depends on the structure of 

the uncertainty on X1 and X2, i.e. ΣX,1 and ΣX,2.

In Fig.  3a, for both X1 and X2, the uncertainty in the 

v1 direction is essentially independent from that in the v2 

direction, which means that ΣX,1 and ΣX,2 are close to 

being diagonal. Therefore, these two dimensions v1 and 

v2 may be considered separately. First, on v1, both X1 and 

X2 are quite uncertain. Consistent with Fig. 2a, the obser-

vational constraint is weak and X
∗

1,1 is poorly estimated. 

Second, on v2, the situation is closer to Fig. 2c, and X∗

1,2 is 

more accurately estimated. This, however, has little impact 

on the estimation of X∗

1,1.

The case illustrated in Fig. 3b is much different; the sim-

ulated response X1 has the same variance as in panel 3a on 

both v1 and v2, but there is strong dependence between the 

two components. The more X1 deviates from X∗

1
 on v1, the 

more it deviates on v2. Thus, based on (3) only, the confi-

dence region for X∗

1
 (pink ellipsoid) is stretched in one par-

ticular direction. We chose this direction to be the same as 

X1, so that the uncertainty is closer to that which is assumed 

(b)(a)

Fig. 3  Schematic illustration of 2D reduction of uncertainties Contri-

butions from two forcings F1 and F2 are assessed. Black: observation 

Y (cross) and the related uncertainty (confidence intervals and ellip-

soid for Y∗, as derived from (2)), including both internal variability 

and measurements errors. Pink: simulated response to forcing F1, 

including the simulated response X1 (diamond), individual synthetic 

models (cross), confidence region for X
∗

1
 as derived from (3) only 

(ellipse), and corresponding confidence intervals for each coordinate, 

X
∗

1,1
 and X

∗

1,2
. Sky blue: simulated response to forcing F2 (similar). 

Red: confidence intervals for X∗

1,1
 and X∗

1,2
 based on inference in the 

full model. Blue: equivalent confidence intervals for X
∗

2,1
 and X

∗

2,2
.  

Magenta cross: sum of simulated responses X = X1 + X2. Panels a 

and b illustrate two typical cases (see text)
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when linear regression is performed (see Sect. 5.1)—but 

some constraint on the magnitude of the change is still 

available from climate models.

In Fig. 3b, under these assumptions, there is a strong 

observational constraint on estimates of both X∗

1,1 and X∗

2,1 . 

This can be understood as follows. First, in the v2 direc-

tion, the case is close to that of Fig. 3a, and the contribution 

X
∗

1,2 of F1 is well constrained. Second, the assumed shape 

of the uncertainty on X1 ensures that this constraint on v2 

projects quite clearly on v1, and thus a relatively small con-

fidence interval is found for X∗

1,1. Third, this new constraint 

also allows accurate estimation of the contribution X
∗

2,1 of 

forcing F2 on v1. Finally, thanks to the particular shape of 

the modelling uncertainty, the observational constraint is 

relatively strong on each component. This example is also 

particularly illustrative because, on v1, the observation Y 

falls above the expected total response (magenta cross), but 

the response to F1 (X∗

1,1) is finally assessed to be smaller 

than simulated in X1,1. This is due to two facts: (1) on v2, 

the observation Y falls below the expected total response, 

and (2) the observational constraint on v1 comes from that 

on v2.

The example of Fig. 3b also illustrates a strong discrep-

ancy with the linear regression approach. Here, the simu-

lated responses X1 and X2 are close to being collinear. Dis-

crimination of the responses to F1 and F2 would not have 

been successful based on the linear regression approach, as 

a direct consequence of this collinearity. In particular the 

EIV inference method proposed by Hannart et al. (2014) 

provides unbounded confidence intervals if applied to the 

same data. Instead, the observational constraint found 

above is actually a consequence of the strong constraint 

provided by X2 on the magnitude of X∗

2,2, which is appro-

priately taken into account here. It may also be noted that 

while the structure of the uncertainty on X1 is consistent 

with a linear regression approach, that of X2 is not. Our sta-

tistical model is also able to appropriately deal with such 

different cases.

6  Application to global mean temperature

As a simple illustration of an application of the method 

to real data, we consider the global mean warming over 

the period 1951-2010, as estimated with a linear trend. 

This period is selected in order to be consistent with the 

Fig. 10.5 of the IPCC Fifth Assessment Report (IPCC 

2013). Based on this example, we illustrate the capabili-

ties of our method, both in terms of hypotheses testing 

and in terms of estimation of individual forcing contribu-

tions. This is done in a 2-forcing analysis (considering both 

natural and anthropogenic external forcing) of a simple 

scalar diagnostic, as proposed in Sect. 2. Application of our 

method to more comprehensive datasets, possibly includ-

ing time-series, and/or spatial information, is beyond the 

scope of this methodological paper. It may also be noted 

that, given the limited number of climate models available 

worldwide, estimating climate modelling uncertainty vari-

ance matrices necessitates working with a reasonably small 

dimension n.

6.1  Data

Observed temperature data are taken from the median reali-

zation of the HadCRUT4 merged land/sea temperature data 

set (Morice et al. 2012). We use outputs from unforced pre-

industrial control simulations, historical simulations per-

formed with all external forcings combined (ALL) and his-

torical simulations with natural forcings only (NAT), from 

all available CMIP5 models (see Table 1). These data are 

available at: http://cmip-pcmdi.llnl.gov/cmip5/. For models 

providing both ALL and NAT ensembles, the response to 

anthropogenic forcings (ANT) is computed as the differ-

ence between the ALL and NAT responses. As our analy-

sis is based on the 1951-2010 period, we did not consider 

models providing historicalNat simulations with end dates 

earlier than 2010. When required, ALL simulations were 

extended to 2010, either with historicalExt experiments, if 

available, or with RCP8.5 simulations.

The pre-processing of data involves the following steps. 

Model outputs are interpolated onto a common 5°× 5°regu-

lar grid. Long control simulations are divided into non-

overlapping 60-year segments (their number varies among 

models, see Table 1). We compute anomalies with respect 

to the 1961–1990 period (or the corresponding period 

in control segments). The spatio-temporal observational 

mask is applied to each simulated 60-year period. Follow-

ing the HadCRUT4 dataset, the global mean temperature is 

then computed as the average of Northern Hemisphere and 

Southern Hemisphere mean temperatures. Each of these is 

computed as the area-weighted average of available grid-

points. Lastly, we compute the linear trend with a least 

square fit.

6.2  Results

Figure 4 illustrates results obtained at different stages of 

the D&A analysis. Note that 90 % confidence intervals 

are reported. The analysis presented in this section is per-

formed under the “models are statistically indistinguishable 

from the truth” paradigm. The equivalent analysis assum-

ing the “models are centered on the truth” paradigm is pre-

sented and briefly discussed in “Appendix 8.4”.
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Figure 4a illustrates the detection step, where observa-

tions are only compared to unforced simulations. Estimated 

from the linear trend over the whole period, the observed 

warming is about +0.65K. By contrast, the linear warming 

of global mean temperature found in segments taken from 

unforced simulations has mean zero and a standard devia-

tion of about 0.08K. The observed value is thus well out-

side the range of values expected as a consequence of inter-

nal variability alone (±0.13K at the 90 % confidence level). 

Detection, based on (18), is very significant, as the p value 

is numerically indistinguishable from 0.

Figure 4b illustrates the comparison of observations to 

the ALL-forcings simulations. This comparison allows us 

to test the consistency between the observed and simu-

lated global warming, and to estimate the overall forced 

response. The range of values obtained from individual cli-

mate models is quite large, ranging from +0.44K to +1.16

K. Consistent with this, the forced warming estimated from 

(3) only is about +0.80K, with a 90 % confidence range of 

[+0.46K, +1.15K]. The observed value (+0.65K) is smaller 

than the center of this distribution. Given the expected 

range of internal variability, the forced response based 

on (2) only is within [+0.52K, +0.78K]. Considering the 

whole model (1)–(3), the confidence interval for the overall 

forced response is very similar, [+0.55K, +0.79K], with a 

best estimate at +0.67K. Observations are also found to be 

very consistent with simulated responses, as the p value of 

the test (19) is 0.51.

Figure 4c illustrates how the contributions from natu-

ral and anthropogenic external forcings may be estimated. 

Note that a smaller ensemble of models has been used here 

as many CMIP5 models did not run D&A simulations (i.e. 

historical simulations using specified subsets of forcings). 

Models simulate a response to natural forcing of −0.01K 

([−0.03K, +0.02K]). This range of values is particularly 

narrow, as the NAT response is weak in all models. Sur-

prisingly, this range of values is also much narrower than 

that reported in Fig. 4a from internal variability only. This 

is partly because ensemble means are considered, which 

are less impacted by internal variability than individual 

runs. Related to this, the estimated modelling uncertainty 

on this term is exactly 0 (which may happen with the trun-

cated estimate used, see “Appendix 8.3”). This means that 

the discrepancy between models is consistent with internal 

variability only. The simulated response to anthropogenic 

forcing is much more uncertain, with a warming of +0.80K 

on average, and a 90 % range of [+0.39K, +1.21K]. Apply-

ing our method leads to reduced uncertainty on the latter 

term, [+0.55K, +0.80K] with a best-estimate of +0.67K, 

while the natural contribution is left virtually unchanged. 

Note that the main limitation to a stronger observational 

constraint comes from noise in the observations, which is 

dominated by internal variability, and not from uncertainty 

in the contribution of natural forcings, which is very small 

here. Based on this 2-forcing analysis, observations are also 

found to be consistent with models, with a p value of 0.60. 

A final piece of information from this analysis is the attri-

bution test of other plausible causes. Based on this analy-

sis of linear warming trends only, we find that the anthro-

pogenic influence is unequivocal, as the hypothesis that 

natural forcings alone can explain observations is strongly 

rejected (the p value is, again, numerically indistinguish-

able from 0). The symmetric hypothesis that anthropogenic 

forcings alone can explain observations is not rejected (p 

Table 1  Ensembles of CMIP5 simulations used

Climate model Nb 60-year Nb ALL Nb NAT

PICTL seg. Runs Runs

ACCESS1-0 9 1 –

ACCESS1-3 – 1 –

bcc-csm1-1 22 3 1

bcc-csm1-1-m – 1 –

BNU-ESM 24 1 –

CanESM2 46 5 5

CCSM4 22 6 –

CESM1-BGC – 1 –

CMCC-CM – 1 –

CMCC-CMS – 1 –

CMCC-CESM – 1 –

CNRM-CM5 47 10 6

CSIRO-Mk3-6-0 22 10 5

EC-EARTH – 5 –

FGOALS-g2 – 2 2

FGOALS-s2 22 3 –

FIO-ESM – 1 –

GFDL-CM3 22 – –

GFDL-ESM2G 4 1 –

GFDL-ESM2M – 1 –

GISS-E2-H 41 5 5

GISS-E2-R 70 5 5

HadGEM2-ES 9 4 4

HadGEM2-CC – 1 –

inmcm4 22 1 –

IPSL-CM5A-LR 47 4 3

IPSL-CM5A-MR – 1 –

IPSL-CM5B-LR 12 1 –

MIROC5 7 4 –

MIROC-ESM – 1 –

MIROC-ESM-CHEM – 1 –

MPI-ESM-LR 6 3 –

MPI-ESM-MR 22 1 –

MRI-CGCM3 22 3 –

NorESM1-M 22 3 1
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value 0.58). The natural influence is thus much more diffi-

cult to demonstrate, consistent with the very small response 

simulated to natural forcings over this period of time.

Our estimates of natural or anthropogenically-induced 

warming are well consistent with Figure 10.5 from the 

last IPCC report, in the sense that the IPCC estimates are 

included within our intervals. Our ranges, however, are 

slightly wider. Part of this might be due to fact that we 

compute 90 % confidence ranges, while the IPCC ranges 

were assessed to be only likely (i.e. 66 %). Part of this dif-

ference is also expected as no temporal or spatial informa-

tion is accounted for here. Our estimates come only from 

the constraint provided by the linear warming over this 

period. Applying our procedure to a more comprehensive 

observed vector Y in order to more efficiently distinguish 

between internal variability and the expected responses to 

forcing, and to further reduce these uncertainties, would be 

a natural continuation of this work.

7  Conclusion

D&A has, for the most part, used regression-like 

approaches for the past two decades, where observations 

are regressed onto expected response patterns. These meth-

ods tend to ignore the information provided by climate 

models on the magnitude of the forced responses. Account-

ing for climate modelling uncertainty in such regression-

based approaches is quite challenging, and thus it has also 

been common practice to neglect this type of uncertainty.

We have introduced a revised statistical framework for 

D&A that overcomes these weaknesses. Our approach 

relies on the additivity of the forcing responses to provide 

an observational constraint on the contribution of each 

forcing. This method is able to deal with climate modelling 

uncertainty. The information provided by an ensemble of 

climate models is then used both in terms of the response 

patterns and the response magnitudes, in a very symmetri-

cal way.

This paper describes statistical inference methods 

required for D&A within this new statistical framework. 

The estimation of each forced response is based on a maxi-

mum likelihood method. Closed-form estimators and exact 

confidence regions are provided, as opposed to regres-

sion-based methods like EIV. Hypothesis tests that are of 

interest to formally attribute an observed change to some 

combination of forcings are also presented and discussed. 

In particular we provide likelihood ratio tests and their 

null-distribution.

We provide some guidelines on quantifying climate 

modelling uncertainty from an ensemble of opportunity. 

Following previous studies, we consider the models are sta-

tistically indistinguishable from the truth paradigm, where 

the truth is assumed to lie somewhere within the model 

envelope, to obtain a more conservative estimate of this 

uncertainty. The reliability of such a paradigm, however, 

might be investigated further. We also discuss in an Appen-

dix how this uncertainty may be estimated if the number of 

simulations available varies among models. This approach 

is not expected to strongly affect inferences because the 

strongest constraints on the estimated responses to forcing 

is from observations.

Our additive decomposition method is shown to have 

good properties based on simple synthetic examples. In 

particular, we illustrate how the observational constraint 

on forced contributions is influenced by the structure of the 

climate modelling uncertainty - i.e. the corresponding vari-

ance matrices. We also demonstrate that our approach is 

10−0.5 0.5

K / 59yr

10 1.50.5

K / 59yr

10 1.50.5−0.5

K / 59yr

(c)(b)(a)

Fig. 4  Univariate D&A on the 1951–2010 linear trend on global 

mean temperature. Comparison of observations (black arrow) to 

unforced control simulations (left), historical simulations with all 

external forcings (middle), or historical simulations with natural forc-

ings only in blue and anthropogenic forcings only in red (right). Mid-

dle: confidence intervals of Y∗ based on: climate models only (i.e. Eq. 

(3), dotted magenta), observations only (i.e. Eq. (2), dotted black), 

and the full inference proposed (black). Right: confidence intervals of 

X
∗

ANT
 (red) or X∗

NAT
 (blue) are based on: climate models only (i.e. Eq. 

(3), dotted) or the full inference proposed (solid). Uncertainty related 

to internal variability in the observations is reported as a dotted black 

pdf (middle and right)
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equivalent to linear regression in the particular case where 

models agree on the response pattern but widely disagree 

on the response magnitude.

Application of this method to the analysis of the con-

tributions of anthropogenic and natural external forcing to 

the linear 1951-2010 trend in global mean temperature pro-

vides results that are very consistent with the recent IPCC 

AR5. We find that the observed warming over this period 

(+0.65K) is mostly related to anthropogenic forcings 

(+0.67 ± 0.12K), with a very limited contribution from 

natural forcings (−0.01 ± 0.02K). Application of the same 

method with space-time information might further reduce 

these ranges.

Assessing the extent to which this new method may 

improve the observational constraint on other variables or 

other external forcings would be a natural continuation of 

this work.
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Appendix

Model (1)–(3) as a linear regression Gaussian model

Based on the notation used in (1)–(3), we define

which are vectors of size (nf + 1)n, nf n, and (nf + 1)n, 

respectively. Then, (2) and (3) may be written simultane-

ously as

where

is the (nf + 1)n × nf n design matrix of the linear Gaussian 

model (36).
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This representation is useful to derive some of the sta-

tistical properties of our model. It is used, for instance, in 

“Appendix 8.2.3”. A′
A has also a simple closed form. How-

ever, it is difficult to derive the precision matrix 
(

A
′
A
)

−1
 in 

closed form, which would be required to deduce, e.g., the 

MLEs more directly than in Sect. 3.3.

Hypothesis testing details

Goodness of fit tests

The tests proposed in Sect. 3.5 are goodness of fit tests con-

structed as follows.

If Z ∈ R
n is a random vector with distribution N(µ, Σ) 

under a given model, with µ and Σ known, we will call 

“goodness of fit” test of this model the deviance test, i.e. 

the likelihood ratio test (LRT) with respect to a saturated 

alternative hypothesis H1 : Z ∼ N(θ , Σ), where θ ∈ R
n is 

unknown. The log-likelihood is 0 under this alternative, so 

the LRT only involves −2 log-likelihood under H0, the con-

sidered model. Therefore the LRT statistic is

which follows a χ2(n) distribution under H0.

Minimized likelihood under H0 : Y
∗

= 0 in model (1)–(3)

Under H0 : Y
∗

= 0, each X
∗

i
 has to be estimated under 

the additional constraint that 
∑nf

i=1
X∗

i = 0. Under H0, (6) 

becomes

The gradient of ℓH0
 with respect to X∗

i
 is

The gradient of the constraint is 1n, i.e. the “all-one” vec-

tor of size n. The theory of Lagrange multipliers imposes 

that at the constrained minimum, these two gradients are 

proportional, so that

where � is some constant. From (41),

and thus the constraint 
∑nf

i=1
X̂∗

i = 0 gives

(38)T = (Z − µ)′Σ−1(Z − µ),

(39)ℓH0
(X∗

i ) = Y ′Σ
−1

Y Y +

nf
∑

i=1

(

Xi − X∗

i

)′
Σ

−1

Xi

(

Xi − X∗

i

)

.

(40)Σ
−1

Xi
(X̂∗

i
− Xi).

(41)Σ
−1
Xi

(X̂∗

i
− Xi) = �1n,

(42)X̂
∗

i
= Xi + �ΣXi

1n,

(43)�1n = −Σ
−1
X

X,
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where X =

∑nf

i=1
Xi and ΣX =

∑nf

i=1
ΣXi

. The maximum 

likelihood estimate of X∗

i
 under H0 is therefore

Finally, the minimized value of −2 log-likelihood under H0 

is

This result is used in “Appendix 8.2.3”, Eq.  (46), to derive 

the LRT of H0 : Y
∗

= 0 within the statistical model defined 

by (1)–(3).

Choice of the null and the alternative hypotheses in the 

detection test

The “detection” test deals with the null hypothesis of no 

change, i.e. H0 : Y
∗

= 0. The detection test we propose 

in (18) is a goodness of fit test based on (2) only. In par-

ticular, it doesn’t consider (1) and (3). Here, we present 

two alternatives that might be considered to test the same 

null hypothesis. Both are LRTs between two nested well-

defined hypotheses on the data (Y, X).

• In the statistical model (1)–(3), consider the null-

hypothesis H0 : Y
∗

= 0 versus the alternative hypoth-

esis H1 :(1)–(3), ie the same model with an unspecified

Y
∗. Following (45) and (14), this test would be based on

the statistic

 Note that the distribution under H0 is known to be 

χ2(n) since H0 is a linear sub-hypothesis of H1, and 

they differ by a dimension of n (see 8.1).

• In the statistical model (1)–(3), consider the null-hypoth-

esis H0 : Y
∗

= 0 versus the saturated alternative hypoth-

esis. This test is a goodness of fit test as defined above.

Such a test would be based on the statistic (see (45))

 where the null-distribution is deduced directly from 

(2) and (3).

Both of these tests would treat information from Y and X 

very symmetrically because, given (1), Y
∗

= 0 implies not 

only that Y is small, but also that X is small (as X∗
= 0). There-

fore, rejection of these tests may happen because either Y or X 

are “large”. In the case where X is large while Y is not, detec-

tion would not be a consequence of an abnormal observation, 

but rather the consequence of too large a response simulated in 

(44)X̂
∗

i
= Xi − ΣXi

Σ
−1

X
X.

(45)ℓH0
(X̂∗

i
) = Y

′Σ
−1

Y
Y + X

′Σ
−1

X
X.

(46)

ℓH0
− ℓH1

= Y
′Σ−1

Y
Y + X

′Σ−1

X
X − (Y − X)′

(ΣY + ΣX)−1(Y − X) ∼H0
χ2(n).

(47)ℓH0
= Y

′Σ−1
Y

Y + X
′Σ−1

X
X ∼H0

χ2(2n),

climate models. This, of course, is not consistent with the defi-

nition of detection. In our opinion, it is then more appropriate 

to discuss the first term in the right hand side of (45) separately.

We further argue that there is a fundamental distinction 

between detection and attribution in this respect. As detec-

tion only assesses whether observations are consistent with 

internal variability, historical simulations by climate models 

(X) are not required for detection. The only requirement is to 

quantify internal variability—which is usually done based on 

other simulations by climate models. Attribution, however, 

definitively relies on historical simulations to disentangle 

contributions from different forcings based on some physical 

knowledge. This fundamental difference is the main reason 

why we propose to base detection on (2) only, while (1)–(3) 

are considered as a whole to perform attribution, and in par-

ticular to estimate the contributions of individual forcings.

As a last remark, the test defined in (18) may also be 

considered as a test of the null hypothesis H0 : “Y
∗

= 0 

and (1) does not hold”. Indeed, removing (1) implies that 

the second term in 45 is zero, and then our test (18) is actu-

ally a LRT against a saturated alternative hypothesis.

Estimation of Σm and ΣX with unbalanced data

This section deals with the realistic case where models 

have run ensembles of historical simulations of various 

sizes. For instance, in the CMIP5 archive, the number of 

historical simulations with all external forcings varies 

from 1 to 10 depending on the model considered. Here, we 

mainly discuss the estimation of Σm, which is not explic-

itly addressed in the main text. We also mention what ΣX 

should be considered in this unbalanced case.

Consistent with Sect. 4, we assume that simulation k of 

model j can be decomposed as

where mj ∼ N(0, Σm), and ǫjk ∼ N(0, Σv), leading to

We then introduce

This kind of framework is actually a multivariate linear 

mixed model, and useful references could be found in Rao 

and Kleffe (1988). Within such models, the main challenge 

comes from the estimation of variance components (here 

Σm and Σv), and no optimal estimator is known in the gen-

eral unbalanced case (i.e. if the ensemble sizes nj are not all 

equal). We propose to use a method of moments approach 

very similar to that proposed by Henderson (1953), but 

with a couple of specific features:

(48)wjk = µ + mj + ǫjk , j = 1, . . . , nm, k = 1, . . . , nj,

(49)wjk ∼ N(µ, Σm + Σv).

(50)wj. =
1

nj

nj
∑

i=1

wjk ∼ N

(

0, Σm +
Σv

nj

)

.
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• Consistent with common practice in climate sci-

ence, we estimate the fixed effect µ as the mean of the

ensemble means from each model. In this way each

model is given equal weight, disregarding the number

of simulations performed. Consequently, we consider

µ̂ = w =
1

nm

∑nm

j=1
wj., whereas the common approach 

in statistics uses µ̂ = w.. =
1
n

∑
j,k wjk.

• As a large number of unforced simulations are avail-

able to estimate Σv (Table 1), we assume that this term

is already known, and only focus on the estimation of

Σm . Note that within-ensemble differences might also

be used to estimate Σv.

• One has:

Using the method of moments, we estimate this quantity 

with

Finally, given an estimate of Σv, we estimate Σm with

(51)

w =
1

nm

nm
∑

j=1

wj. ∼ N

(

µ,
1

nm

Σm +
1

n2
m

nm
∑

j=1

1

nj

Σv

)

.

(52)

Var
(

wj. − w
)

=

(

1 −
1

nm

)

Σm +

(

1

nj

−
2

nmnj

+
1

n2
m

nm
∑

j=1

1

nj

)

Σv,

(53)

E





nm
�

j=1

(wj. − w)2



 = (nm − 1)Σm +
nm − 1

nm

nm
�

j=1

1

nj

Σv.

(54)SSM =

nm∑

j=1

(wj. − w)2
.

(55)Σ̂m =
1

nm − 1

(
SSM −

nm − 1

nm

nm∑

j=1

1

nj

Σv

)

+

,

where A+ means that negative eigenvalues of A are set to 

0. Σ̂m is a truncation of a quadratic unbiased estimator,

very similar to Henderson (1953) or MIVQUE estimators 

(Rao and Kleffe 1988). A nice property of this approach 

is that it can be used even if the wj. only are known (e.g. 

the wjk are not observed). This happens, for instance, if one 

ensemble of simulations has not been performed, and the 

response of each model is estimated by subtraction, e.g. 

w
ANT

= w
ALL

− w
NAT. In such a case, we could assume, 

for model j:

where nANT
j  is defined by

Finally, under this unbalanced assumption, putting 

(515253) together with (µ − w
∗) ∼ N(0, Σm) suggests 

considering

Application to global mean temperature using the 

“models are centered on the truth” paradigm

In this section, we present and briefly discuss the results 

obtained in the analysis of global mean temperature, when 

the “models are centered on the truth” paradigm is used 

instead of the “models are statistically indistinguishable 

from the truth” paradigm, which was used in Sect. 6.2.

Under this paradigm, outputs from each climate model, 

wj, may be regarded as being sampled independently from 

wANT
j. = wALL

j. − wNAT
j. ∼ N

(

0, Σ
ANT
m +

Σv

nANT
j

)

,

(56)
1

nANT
j

=
1

nALL
j

+
1

nNAT
j

.

(57)ΣX =

(
1 +

1

nm

)
Σ̂m +

1

n2
m

nm∑

j=1

1

nj

Σv.

10−0.5 0.5

K / 59yr

10 1.50.5

K / 59yr

10 1.50.5−0.5

K / 59yr

(c)(b)(a)

Fig. 5  Same as Fig. 5 based on the “models are centered on the truth” paradigm
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the same distribution, which is centered on the truth, i.e. 

wj ∼ N(w, Σm), where w is the true value of the simulated 

parameter, and Σm describes the climate modelling uncer-

tainty on this parameter. The distribution of the multi-

model mean is then given by w ∼ N(w, Σm/nm). Finally, 

ΣX = Σm/nm has to be considered under this paradigm (if 

internal variability is neglected).

The primary consequence of considering this alternative 

paradigm is to narrow the climate modelling uncertainty. 

Consequently, the assessment of consistency between mod-

els and observations is usually more demanding, while 

more weight is given to models in the estimation of indi-

vidual forcing contributions.

Under this revised assumption, panel a) is unchanged.

In panel b), observations are found to be barely consist-

ent with models (p value 0.09). The expected ALL warm-

ing, based on climate models only, is [+0.74K, +0.86K] 

(90 % confidence interval). This is a much narrower inter-

val than reported in Sect.  6.2 ([+0.44K, +1.16K]). The 

weak consistency with observations mentioned above is 

then related to internal variability, which has to be added 

to these numbers. After inference, the estimated past warm-

ing lies between [+0.72K, +0.83K], which is still substan-

tially greater than the observed value of +0.65K. This can 

be understood as follows: because there is little uncertainty 

in the estimate provided by climate models, the method 

considers that internal variability is partly responsible for 

the low observed value. The overall forced change is then 

estimated to be higher than that found in raw observations.

In panel c), results are similarly impacted. The expected 

(climate models only) NAT response is unchanged, and the 

ANT response is expected to lies within [+0.67K, +0.93K], 

which is again quite a narrow interval. After the inference 

is performed, the ANT response is estimated to be within 

[+0.64K, +0.82K]. If compared to the results given in 

Sect. 6.2, the impact of changing the paradigm is limited. 

The main impact of changing the paradigm is to discard the 

lowest values, from +0.55K to +0.64K.

Overall, these results suggest that the “models are sta-

tistically indistinguishable from the truth” paradigm, which 

was used in the main text, is more appropriate to ensure 

consistency between models and observations, and avoids 

over emphasizing the climate models outputs.
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