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Abstract. The ability to predict the trajectory of climate
change requires a clear understanding of the emissions and
uptake (i.e., surface fluxes) of long-lived greenhouse gases
(GHGs). Furthermore, the development of climate policies
is driving a need to constrain the budgets of anthropogenic
GHG emissions. Inverse problems that couple atmospheric
observations of GHG concentrations with an atmospheric
chemistry and transport model have increasingly been used
to gain insights into surface fluxes. Given the inherent techni-
cal challenges associated with their solution, it is imperative
that objective approaches exist for the evaluation of such in-
verse problems. Because direct observation of fluxes at com-
patible spatiotemporal scales is rarely possible, diagnostics
tools must rely on indirect measures. Here we review diag-
nostics that have been implemented in recent studies and dis-
cuss their use in informing adjustments to model setup. We
group the diagnostics along a continuum starting with those
that are most closely related to the scientific question being
targeted, and ending with those most closely tied to the statis-
tical and computational setup of the inversion. We thus begin
with diagnostics based on assessments against independent
information (e.g., unused atmospheric observations, large-
scale scientific constraints), followed by statistical diagnos-
tics of inversion results, diagnostics based on sensitivity tests,
and analyses of robustness (e.g., tests focusing on the chem-
istry and transport model, the atmospheric observations, or
the statistical and computational framework), and close with
the use of synthetic data experiments (i.e., observing system
simulation experiments, OSSEs). We find that existing diag-
nostics provide a crucial toolbox for evaluating and improv-
ing flux estimates but, not surprisingly, cannot overcome the

fundamental challenges associated with limited atmospheric
observations or the lack of direct flux measurements at com-
patible scales. As atmospheric inversions are increasingly ex-
pected to contribute to national reporting of GHG emissions,
the need for developing and implementing robust and trans-
parent evaluation approaches will only grow.

1 Introduction and the need for diagnostics

The ability to predict the trajectory of climate change re-
quires a clear understanding of the historical and current
emissions and uptake (i.e., surface fluxes) of long-lived
greenhouse gases (GHGs), and chief among them carbon
dioxide (CO2) and methane (CH4), over the Earth’s land and
ocean regions. For the natural components of the global bud-
gets of these gases, understanding historical and contempo-
rary flux patterns is needed for elucidating the biogeochem-
ical processes that control flux variability and therefore the
likely evolution of these fluxes under changing climate sce-
narios (e.g., Friedlingstein et al., 2014). The ability to con-
strain the anthropogenic components of greenhouse gas bud-
get estimates, on the other hand, is becoming increasingly
central to discussions aimed at setting emissions, or emis-
sions reduction, targets at local to global scales (e.g., Pacala
et al., 2010).

Direct monitoring of the fluxes of greenhouse gases is only
feasible at a limited number of spatial and temporal scales,
however. For example, point sources of anthropogenic emis-
sions can be measured directly at discrete times (e.g., Allen
et al., 2015; Subramanian et al., 2015; Zimmerle et al., 2015),
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while biospheric fluxes over land can be continuously mon-
itored at plot scale (i.e., from a few hectares to a few km2,
depending on sensor height) using the eddy covariance tech-
nique (e.g., Baldocchi et al., 2001; Law et al., 2002), and
ocean fluxes can also be deduced locally from the difference
between the partial pressure of CO2 measured in seawater
and that in the overlying air (e.g., Takahashi et al., 1993,
2002). At the global scale, a network of observation sites
tracks the global growth rate of atmospheric concentrations
of greenhouse gases and gives broad insight into the tempo-
ral (e.g., seasonal, interannual) and spatial (e.g., hemispheric,
latitudinal) signatures of net greenhouse gas emissions (e.g.,
Tans et al., 1990; Steele et al., 1992).

The target applications listed in the first paragraph, how-
ever, require an understanding of fluxes at intermediate
scales, e.g., from urban to biome to national to continental.
Direct observations of fluxes are not feasible at these scales,
and gaining an understanding of flux budgets and control-
ling processes at these scales therefore invariably depends
on a process of either “upscaling” small-scale flux observa-
tions or “downscaling” large-scale information provided by
atmospheric concentration measurements. Upscaling strate-
gies range from the implementation of mechanistic models
calibrated using plot-scale flux observations (e.g., Richard-
son et al., 2012; Schaefer et al., 2012), to the development
of statistical or machine learning approaches for elucidating
dominant patterns (e.g., Beer et al., 2010; Jung et al., 2011),
and to the combination of fine-scale flux measurements with
activity data (e.g., fuel consumption for anthropogenic emis-
sions, or burnt area for fire emissions) as the basis of emis-
sions inventories (e.g., van der Werf et al., 2006; Jeong et al.,
2014; Lyon et al., 2015). Downscaling strategies, on the other
hand, most typically involve the solution of an inverse prob-
lem to elucidate spatially and temporally resolved flux infor-
mation from upwind and downwind observations of atmo-
spheric greenhouse gas abundance (e.g., Enting et al., 2002).

Inverse problems that couple atmospheric observations of
greenhouse gas concentrations with an atmospheric chem-
istry and transport model in order to gain insights into un-
derlying flux patterns have been used since the late 1980s
(e.g., Enting and Mansbridge, 1989, 1991). While the ob-
servational network has expanded and the statistical and nu-
merical methods have become more sophisticated (e.g., Ciais
et al., 2010a; Michalak, 2013; Miller and Michalak, 2017;
Houweling et al., 2017), the underlying principles have re-
mained largely unchanged. Spatiotemporal flux patterns at
the Earth’s surface lead to spatial and temporal gradients in
atmospheric concentrations of greenhouse gases. The inverse
problem then amounts to using those gradients to recover in-
formation about the flux patterns. From a scientific perspec-
tive, an additional goal is often to also gain insight into the
enviro-climatic factors driving these patterns (e.g., Gourdji
et al., 2012; Fang and Michalak, 2015; Miller et al., 2014,
2016b). Although the principle is simple, the atmospheric in-
verse problem is ill-conditioned because the diffusive nature

of atmospheric transport means that relatively small varia-
tions or errors in observed or modeled atmospheric concen-
trations can correspond to relatively large differences or er-
rors in the inferred flux quantities and patterns. In addition,
the atmospheric inverse problem is often under-determined
because the sparse observational coverage precludes the pos-
sibility of resolving fluxes (spatially and temporally) at all
the scales that are of scientific or policy interest as well as at
all the scales to which atmospheric observations are locally
sensitive.

Given the high scientific and policy value of accurate
greenhouse gas budgets, the growing role of atmospheric in-
verse problems to obtain these budgets at relevant scales, and
the inherent technical challenges associated with the solution
of these inverse problems, it is imperative that objective ap-
proaches exist for evaluating the scientific value and accu-
racy of inverse modeling estimates of greenhouse gas fluxes.
Here, we review diagnostics that have been implemented in
recent studies and discuss their use in informing adjustments
to model setup. We have structured the review in a manner
that we hope will be useful to novices and specialists alike.
We present a relatively comprehensive survey of recent ap-
proaches in order to provide a detailed representation of the
state-of-the art for specialists. At the same time, we have or-
ganized the review around high-level categories in order to
help guide researchers who are newer to the field and pro-
vide an entry point for further inquiry via the cited studies.

Fundamentally, the emphasis of diagnostic tools should be
on the scientific value of insights that are based on the so-
lution of an atmospheric inverse problem. This quality con-
trol approach (i.e., the evaluation of the flux estimates) also
has to be complemented by quality assurance (i.e., the eval-
uation of the estimation process that yielded the flux esti-
mates). Indeed, the solution of atmospheric inverse problems
invariably involves a series of decision points including, but
not limited to, (1) the choice of the atmospheric observations
to be used; (2) the choice of the atmospheric chemistry and
transport model to be implemented; (3) the choice of a statis-
tical framework for defining an objective function that cap-
tures the relative contribution of atmospheric observations,
the chemistry and transport model, and any prior information
in informing flux patterns; and (4) the choice of a numeri-
cal framework for the solution of the inverse problem. Each
of these choices will have a direct impact on estimates. It
is therefore also imperative to have diagnostic tools that can
evaluate the self-consistency of the modeling and statistical
assumptions specific to the choices made in the setup of the
inverse problem. In other words, at a minimum, the ultimate
estimates must be consistent with the assumptions inherent
to the specific modeling setup that was implemented.
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2 Challenges of diagnosing atmospheric inversions

Having established the need for diagnostic tools to assess at-
mospheric inverse modeling results, the question then be-
comes one of identifying appropriate diagnostics, metrics,
or benchmarks. As discussed in the last section, however,
direct observation of greenhouse gas fluxes is not possible
at the space and timescales targeted by atmospheric inver-
sions. This is in part because inversion systems for long-lived
greenhouse gases are run over time periods ranging from
weeks to decades to capture the long dispersion times of trac-
ers in the atmosphere and to capture temporal variability in
fluxes. These long time spans are achieved at the expense of
relatively coarse horizontal resolutions, ranging from tens of
kilometers to one or more degrees, such that the large gap
between flux measurements and inverse model scales pre-
cludes direct evaluation of inverse modeling results. This gap
is filled only rarely by some regional inversions (e.g., Lau-
vaux et al., 2009; Meesters et al., 2012). This means that
there is a basic lack of independent measures of flux to as-
sess inverse modeling estimates.

Diagnostic tools used for assessing inverse modeling esti-
mates must therefore rely on other indirect measures or in-
formation about the fluxes to be estimated. Such measures
and information should, in principle, be independent from
the information used in the solution of the original inverse
problem. A natural choice might then be to use additional at-
mospheric concentration data not assimilated in the original
inverse problem, because, as noted earlier, gradients in at-
mospheric greenhouse gas concentrations are themselves the
result of underlying flux patterns. Given the ill-conditioned
and typically under-determined nature of the atmospheric in-
verse problem, however, it is often desirable to use as much
information (i.e., data) as possible to inform the initial solu-
tion of the inverse problem, in order to gain the deepest and
most precise insights possible about flux patterns. This goal,
however, is at odds with the desire to keep some indepen-
dent flux-relevant observations for diagnosing the estimates
obtained from the inversion. Although this problem is not
unique to the solution of atmospheric inverse problems, it is
certainly particularly salient in this context. Two examples
follow.

In some ways, numerical weather forecasting (e.g.,
Kalnay, 2003) bears some resemblance to the flux estima-
tion problem, as they both rely on atmospheric observations
and a numerical representation of atmospheric dynamics. In
both cases, the ability to diagnose the accuracy and preci-
sion of estimates is of high value. Key differences emerge
upon closer examination, however. First, the target quantities
predicted/estimated in numerical weather prediction, such as
temperature, precipitation, and barometric pressure, are ones
that can also be measured directly at a large number of lo-
cations, via both in situ and remote sensing observations,
making a comparison to direct benchmarks feasible (e.g.,
ECMWF, 2016). Although it is technically true that in some

cases a scale mismatch still occurs (e.g., a thermometer can-
not measure the “average” temperature over a computational
grid box), the quantities of interest are less likely to dis-
play the strong multi-scale heterogeneity that makes eddy co-
variance flux observations ill-suited for diagnosing grid-scale
inverse-model-derived flux estimates at much coarser spatial
resolution. Second, whereas atmospheric inverse problems
aim to infer/estimate historical flux distributions that were
never observed directly, the accuracy and precision of numer-
ical weather forecast estimates can largely be verified, eval-
uated, and diagnosed simply by waiting for weather patterns
to unfold. This is perhaps best illustrated through the long-
standing comparisons of forecast skill among the world’s
weather forecasting bureaus (Simmons and Hollingsworth,
2002; WMO-LCDNV, 2016).

Another useful example is that of the development of re-
trieval algorithms for remote sensing observations of atmo-
spheric constituents (e.g., Rodgers, 2000). Let us take as a
prototypical example the process of obtaining estimates of
column-integrated dry air mole fractions of atmospheric car-
bon dioxide (XCO2) from the spectrum of reflected sunlight
measured by the Orbiting Carbon Observatory-2 (OCO-2)
space-borne instrument (e.g., Crisp et al., 2012). In this case,
the observations are radiances at specific wavelengths within
the spectrum of reflected light, with a focus on specific ab-
sorption bands that are observed at high spectral resolution.
The forward problem involves the solution of radiative trans-
fer equations. The target variable of primary interest is XCO2 .
This problem has analogies to the flux estimation problem
in that the column-integrated CO2 concentrations cannot be
measured directly per se. A key difference, however, is that a
number of validation data sets are available to help diagnose
the retrieval algorithm (e.g., Osterman et al., 2011). These
include, among others, observations from ground-based re-
mote sensing instruments (that look up at the sun, rather than
down at the Earth, e.g., Wunch et al., 2011) and targeted
campaigns of in situ airborne observations that can capture
CO2 concentration variability within a portion of the atmo-
spheric column (e.g., Tadić et al., 2014; Frankenberg et al.,
2016). Unlike in the flux estimation problem, there is no di-
rect conflict between using these additional measurements
for validation/diagnosis versus using them to directly inform
the solution of the inverse problem itself, as there is no clear
mechanism by which these additional observations could be
routinely incorporated within the core retrieval algorithm, al-
though they can be used for additional empirical bias correc-
tion.

Overall, then, while the need for diagnostics to evaluate
the scientific validity and statistical self-consistency of flux
estimates derived via the solution of atmospheric inverse
problems is clear, this need poses very substantial challenges.
These include the lack of independent measures of flux at
comparable spatiotemporal scales and the inherent dilemma
between using available atmospheric observations for esti-
mation versus validation. These features make the process of
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developing and implementing diagnostics particularly chal-
lenging and fundamentally different from the challenges ob-
served in other fields that might at first glance appear to be
somewhat analogous.

3 Overview of existing diagnostics

Researchers have taken a number of approaches in tackling
the challenges associated with the development of diagnos-
tics that are both practical, given the unavoidable limitations
in available data, and genuinely informative, in terms of as-
sessing the accuracy and precision of flux estimates. Here we
describe existing diagnostics that have been used as part of
inverse modeling efforts. We focus primarily on diagnostics
that evaluate the validity and self-consistency of the inversion
setup, rather than on diagnostics designed to assess the in-
formation content of specific data sets. We also discuss how
diagnostics are used to inform adjustments to model setup
and the trade-offs inherent to alternative possible approaches
to model evaluation. We focus primarily on examples from
papers published between 2010 and 2016 and on papers that
present recent applications of specific diagnostics rather than
on the studies where these diagnostics were originally intro-
duced. We do so in order to get a contemporary snapshot
of approaches that are currently being used for diagnosing
atmospheric inversions. The groupings of diagnostics are or-
dered here by starting with diagnostics that are most closely
related to the actual scientific problem or question being tar-
geted by the inversion to those that are most closely tied to
the statistical and computational setup of the inversion frame-
work itself. More fundamental overriding questions about the
types of insights that the range of currently available diag-
nostics can (or cannot) actually provide are then discussed in
Sect. 4.

3.1 Assessment against independent information

The most natural starting point for assessing the solution of
an atmospheric inverse problem is through evaluation against
independent information. Although, as discussed in earlier
sections, direct observations of surface fluxes are seldom
available at compatible scales, at least two additional avenues
are available. The first is to evaluate flux estimates against
unused atmospheric observations, whether from in situ mon-
itoring or remote sensing. This is accomplished through the
solution of the “forward” problem, which translates esti-
mated fluxes into modeled atmospheric concentration fluctu-
ations. The second is to compare estimates against any avail-
able large-scale scientific constraints. This approach can be
challenging especially when large-scale constraints are them-
selves uncertain.

3.1.1 Evaluation against unused atmospheric
observations

If any atmospheric observations are available that have not
been used as a constraint in the solution of the inverse prob-
lem, they can be leveraged to evaluate final flux estimates.
To do so, final flux estimates are used as an input into the at-
mospheric chemistry and transport model used as part of the
inversion, and predicted concentrations at the times and lo-
cations of the additional available atmospheric observations
are then compared to the measured concentrations. These ad-
ditional observations can be of several types and inform the
inversion setup in various ways, given differences in vertical
information, spatial coverage, and precision.

Evaluating inversion results constrained by in situ obser-
vations using independent surface or satellite total column
measurements can provide additional information about re-
gional fluxes. The much broader spatial coverage of satel-
lite observations makes it possible to assess flux estimates at
large spatial scales and thus can help to identify large-scale
spatial biases that are related to a lack of in situ coverage in
some regions (e.g., biases in the latitudinal gradient or over
land versus ocean; Lindqvist et al., 2015). However, it is im-
portant to note in the context of these comparisons that the
satellite retrievals themselves may have regional biases, as
will be discussed later.

Conversely, for inversions constrained by satellite obser-
vation of total column concentrations, evaluating results us-
ing in situ measurements can reveal errors in the column-
constrained system’s ability to reproduce surface fluxes,
which can be related to aspects of the retrieval (such as bi-
ases) or to the transport model’s representation of boundary
layer dynamics (e.g., Locatelli et al., 2015; Cressot et al.,
2014).

Comparisons to independent measurements can also be
used to isolate transport errors from the other confounding
errors. For example, comparing the total column mixing ra-
tios simulated based on posterior flux estimates obtained us-
ing surface data to independent observations of total column
mixing ratios can diagnose a transport model’s skill in sim-
ulating the seasonality of the tropopause height and of the
stratospheric partial column (e.g., Houweling et al., 2014).
Performing this type of assessment for multiple inversions
constrained by different types of measurements but using the
same transport model can provide insight into whether sea-
sonal biases in the inversion are caused by seasonal biases
in an observing system or by seasonal biases in the transport
model (e.g., Houweling et al., 2014). More generally, verti-
cal transport bias can be assessed by comparing the vertical
gradients of posterior vertical profiles to those of observed
profiles (e.g., Pickett-Heaps et al., 2011; Saeki et al., 2013b;
Liu and Bowman, 2016), because vertical gradients provide
information about vertical mixing and convection.

More broadly, evaluation against all types of independent
atmospheric observations provides an additional window into
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the degree to which estimated fluxes capture key features of
the atmospheric signal, such as the seasonal cycle, latitudinal
gradients, or regional patterns of concentrations (e.g., Zhang
et al., 2014; Jiang et al., 2014; Díaz Isaac et al., 2014; Pandey
et al., 2016; Liu and Bowman, 2016; Johnson et al., 2016).

3.1.2 Evaluation at aggregated scales against
large-scale scientific constraints

The accuracy of inversion-derived flux estimates and the va-
lidity of the overall inversion framework can be assessed, at
large scales, based on existing understanding of carbon cy-
cle and atmospheric dynamics. This type of evaluation may
involve comparisons of the inversion-derived estimates to
existing information about flux magnitudes at large scales,
about the overall direction of the net flux in a region (i.e.,
emission vs. uptake), or about flux seasonality. Care must be
taken, however, for the approach not to become circular, i.e.,
for inversion results not to be evaluated by comparing them
to assumed features of the very processes that the inversion
is trying to inform.

In the simplest case, spatially aggregated posterior fluxes
can be assessed based on expert knowledge of the system.
For example, methane emissions in regions dominated by
natural gas extraction, urbanization, wetlands, or cattle feed-
lots are expected to substantially outweigh soil methane up-
take, and negative estimated emissions in such regions would
point to errors in the inversion (e.g., Berchet et al., 2013).
Similarly, global decadal atmospheric growth rates and lati-
tudinal gradients of greenhouse gases are well constrained by
long-term baseline observations (e.g., Conway et al., 1994),
and posterior flux estimates can be evaluated against such
large-scale constraints (e.g., Cressot et al., 2014). Evalua-
tion against observed latitudinal gradients provides informa-
tion not only about global total fluxes but can also inform
the accuracy of the representation of interhemispheric trans-
port, although more so for gases with limited uptake at the
Earth surface (e.g., Thompson et al., 2014). This compari-
son is especially helpful when performed using both surface
and upper-troposphere or total column concentrations, be-
cause this makes it possible to assess how both meridional
and vertical transport are represented (e.g., Thompson et al.,
2014).

More broadly, inversion-derived fluxes can be compared
against independent estimates of fluxes for comparable re-
gions, although the fact that both the inversion-derived and
the independent estimates of fluxes are uncertain must be
recognized. For example, the fraction of the global CO2
sink attributable to land versus ocean can be compared be-
tween inversions and independent model or mass-balance
estimates (e.g., Le Quéré et al., 2015). For specific regions
and periods, inversion results can also be compared against
detailed inventory estimates of fluxes (e.g., Lauvaux et al.,
2012; Schuh et al., 2013). A third example (noted already in
Sect. 3.1.1) is the comparison of large-scale seasonal cycles

of modeled trace gas concentrations to observations. For in-
versions constrained by remotely sensed data, checking for
consistency in seasonal cycles between observations, esti-
mates from a satellite-data-constrained inversion, and esti-
mates from an in situ data-constrained inversion may draw
attention to the need for seasonal bias correction in the ob-
servations, while also exploring other potential causes of re-
gional or seasonal bias, such as seasonal biases in vertical
transport (e.g., Houweling et al., 2014). Lastly, bottom-up
studies also provide regional budget estimates at the annual
or pluriannual scale that can be compared to inverse mod-
eling results (e.g., Gourdji et al., 2012; Miller et al., 2013,
2014). The comparison may reveal convergence (e.g., Ciais
et al., 2010b) or divergence (e.g., Chevallier et al., 2014;
Miller et al., 2013, 2014) of the estimates. However, the attri-
bution of any divergence remains subjective, given the uncer-
tainty of the bottom-up estimates themselves (e.g., Chevallier
et al., 2014; Reuter et al., 2014; Gourdji et al., 2012).

Finally, large dipoles in estimated fluxes between large re-
gions can point to a lack of observational constraint for cer-
tain regions, to overfitting of the observations that do exist,
and/or to biases in large-scale transport (e.g., Alexe et al.,
2015; Nassar et al., 2011). The presence of flux dipoles can,
however, also be representative of real spatial flux patterns,
and sensitivity tests focusing on factors such as the coverage
of observational constraints can help to evaluate such pat-
terns in posterior fluxes (Cressot et al., 2014; Rivier et al.,
2010). This point is also discussed in Sect. 3.3.

3.2 Statistical diagnostics of inversion results

Rather than comparing flux estimates against independent
information directly, a second set of strategies focuses in-
stead on assessing whether the prior and posterior flux esti-
mates, uncertainties, and covariances are consistent with the
assumptions built into the design of the implemented inver-
sion framework. These strategies thereby focus on statistical
self-consistency of the inversion setup and in this way can
point to discrepancies that can signal unreliable results.

The majority of inverse modeling approaches used for
greenhouse gas flux estimation leverage a combination of
prior information and an observational constraint. Within the
mathematical framework of the inversion, the uncertainty
and spatiotemporal covariance structure of the prior infor-
mation (i.e., prior error statistics), as well as the reliability
with which the researchers expect to be able to reproduce the
atmospheric observations (i.e., model-data-mismatch statis-
tics), are represented through error covariances. These er-
ror covariances, the prior information, the observational data,
and the chemistry and transport model are then also used to
quantify the uncertainty associated with posterior estimates
(see e.g., Rayner et al., 2016, for a detailed discussion). This
framework provides an opportunity to evaluate the statistical
self-consistency of the inversion setup.
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For example, under the assumption of Gaussian and un-
biased errors and for a given set of assumptions about error
correlations, the sum of squared errors follows a chi-squared
distribution with a known number of degrees of freedom;
for this reason, posterior errors can be used to evaluate or
scale assumed prior error variances (e.g., Michalak et al.,
2005; Desroziers et al., 2006; Wu et al., 2013; Lauvaux et
al., 2016; Cressot et al., 2014). In some cases, deviations
between concentrations modeled based on posterior fluxes
and atmospheric observations not included in the original
inversion can be used for this purpose (e.g., Chevallier and
O’Dell, 2013). This approach can also be used to assess how
model-data-mismatch errors vary seasonally (e.g., Gourdji et
al., 2012; Kim et al., 2011). Additionally, the very high res-
olution of some regional inversions and the availability of
plot-scale flux measurements make it possible to validate the
posterior uncertainty of fluxes directly in some cases (e.g.,
Broquet et al., 2013).

The spatial and temporal autocorrelation of posterior er-
rors can also be used to inform model setup (Díaz Isaac et
al., 2014) or to assess the identifiability of underlying fluxes
(Yadav et al., 2016).

Other than assessing self-consistency, statistical diagnos-
tics can also be used to quantify the error reduction (or in-
formation gain) made possible by the assimilation of atmo-
spheric observations. In this approach, posterior uncertain-
ties are compared to prior uncertainties. In cases where the
explicit quantification of posterior flux uncertainties is pro-
hibitively computationally expensive, it can also be approxi-
mated through approaches such as the use of a Monte Carlo
ensemble of inversions in which model parameters are per-
turbed for each run (e.g., Chevallier et al., 2007; Cressot et
al., 2014; Pandey et al., 2016). More simply, the deviations
between atmospheric observations not included in the inver-
sion and modeled concentrations based on posterior vs. prior
fluxes can be used as a measure of error reduction (e.g., Liu
and Bowman, 2016; Johnson et al., 2016; Lauvaux et al.,
2016).

3.3 Sensitivity tests and analysis of robustness

The validity and robustness of inversion-derived estimates
can also be assessed through sensitivity tests. These tests
involve running additional inversions where one or several
components have been altered. The most common of these
are changes to the chemistry and transport model used to
translate fluxes into atmospheric concentrations, changes to
the set of atmospheric observations used to constrain flux es-
timates, and changes to the implemented statistical or com-
putational framework. Examples of the latter include changes
to prior estimates, boundary conditions, and flux spatiotem-
poral resolutions. Results shed light on the degree to which
results are robust to specific implementation choices.

3.3.1 Chemistry and transport model

Recently, as inversions have become more sophisticated,
transport model sensitivity tests have become more computa-
tionally expensive. As a result, it has become more difficult to
assess the impact of model choice on inversion results (e.g.,
Gurney et al., 2002; Baker et al., 2006). Applications focus-
ing exclusively on synthetic data are covered in Sect. 3.4,
while here we present a few examples that included real ob-
servations.

Examining the effect of the choice of a chemistry and
transport model can lead to various insights. For example,
the transport model used by an inversion may be run using
different boundary layer schemes to assess how the represen-
tation of vertical mixing affects the interpretation of assim-
ilated data (e.g., Peters et al., 2009). Another aspect is the
impact of the spatial resolution of the transport model and
particularly the use of finer grids within mesoscale domains
versus the coarser grids typical of global transport models.
For example, including a finer-scale nested grid and chang-
ing the transport representation at these finer scales provides
information about the effect of transport representation at
scales finer than the grid scale of global transport models
(e.g., Rivier et al., 2010). In addition, posterior meridional
concentration gradients can be compared across inversions
that use different global transport models to assess the effect
of interhemispheric transport (e.g., Thompson et al., 2014).

The implementation of more than one transport model in
a forward run can also shed light on consistent differences in
the ability to represent observed atmospheric concentration
signals, seasonal cycles of mixing ratios, or vertical profiles
(e.g., Pillai et al., 2012; Díaz Isaac et al., 2014).

3.3.2 Atmospheric observations

Performing inversion sensitivity tests in which only the con-
straining observational data set is changed between inver-
sions can shed light on the impact of various observations
on flux estimates, and therefore on their relative information
content with regard to underlying fluxes, and also makes it
possible to assess the extent to which conclusions are robust
to the choice of observations used to constrain the inversion.

For example, a major effort has been made to quantify the
effects of including remotely sensed observations (specifi-
cally, satellite retrievals) as an additional constraint beyond
in situ observations. This is distinct from the applications
discussed in Sect. 3.1.1, where remote sensing observations
were not included in the inversions but were instead used to
evaluate inversion-derived flux estimates. Satellite data pro-
vide the benefit of broader spatial coverage than in situ mea-
surements, potentially informing fluxes in regions not well
constrained by current in situ networks. However, the infor-
mational value and robustness of the information provided
by satellite observations is still the subject of ongoing re-
search, and thus their use as constraints in inversions requires
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special consideration of the impacts of any potential biases.
Several studies have included satellite total column or mixing
ratio data as an additional constraint on a model otherwise
constrained only by in situ concentration measurements to
determine whether remotely sensed total column concentra-
tions provide a significant amount of additional information
(e.g., Alexe et al., 2015; Houweling et al., 2014; Nassar et al.,
2011; Pandey et al., 2016; Saeki et al., 2013a). An inversion
constrained only by in situ measurements may also be com-
pared to an inversion constrained only by satellite measure-
ments (e.g., Cressot et al., 2014). The spatial distribution and
magnitude of fluxes and the source/sink status of particular
regions are often the major posterior features compared be-
tween inversions constrained by different subsets of available
data (e.g., Alexe et al., 2015; Cressot et al., 2014; Houwel-
ing et al., 2014; Nassar et al., 2011). The differences in the
geographical flux patterns can be attributed through the use
of various methods focusing on quantifying the information
content and geographical coverage of satellite data. The rel-
ative information content of the different observational data
sets can be quantified via the degrees of freedom (a metric
based on posterior error covariances) provided to the inver-
sion (see e.g., Rodgers, 2000), whereby data sets that rep-
resent a stronger constraint provide more degrees of free-
dom (e.g., Nassar et al., 2011). The constraint provided for
specific regions by observations with extensive geographi-
cal coverage can also be qualitatively analyzed by creating
visualizations of the sensitivity to fluxes from a certain re-
gion (e.g., Nassar et al., 2011). If satellite retrievals provide a
large increase in coverage over a particular region, then this
method may help to explain large changes in posterior fluxes
in upwind areas.

In addition, the robustness of conclusions about flux dis-
tributions derived from satellite observations can be explored
by using alternative sets of satellite-derived observations.
Studies have checked for agreement in posterior fluxes for
inversions run using different satellite instruments and re-
trieval algorithms (e.g., Alexe et al., 2015; Chevallier et al.,
2014; Takagi et al., 2014). The effect of the bias correction
scheme used for satellite retrieval post-processing has also
been a subject of several sensitivity studies (e.g., Houweling
et al., 2014; Alexe et al., 2015; Nassar et al., 2011; Cressot et
al., 2014, Basu et al., 2013).

Sensitivity tests based on inversions constrained by differ-
ent subsets of available observations have been used to exam-
ine the incremental gain in information obtained by expand-
ing the in situ observation network. Such experiments can be
used to estimate the uncertainty reduction (see Sect. 3.2) that
could potentially be achieved by assimilating more observa-
tions over or downwind from poorly constrained regions as
well as the effects of a more extensive observational network
on the estimated spatial and temporal variability of fluxes
(e.g., Butler et al., 2010; Saeki et al., 2013b; Kadygrov et al.,
2015; Jiang et al., 2014; Peters et al., 2010). They can also
be used to determine the value of episodic versus continuous

observations (e.g., Peters et al., 2010). These sensitivity tests
can also determine whether strong fluxes in some regions,
such as the “dipoles” discussed in Sect. 3.1.2, are simply due
to a relative lack of constraint for certain regions (e.g., Rivier
et al., 2010).

Last, sensitivity tests have also been used to examine the
potential role of bias of in situ measurements at a specific
site. In such studies, an offset is added to specific observa-
tions, and the results of the control inversion and the inver-
sion with the offset can be compared to determine the effect
of potential biases on the posterior flux field (e.g., Peters et
al., 2010; Masarie et al., 2011).

3.3.3 Statistical and computational framework

Sensitivity tests can be used to explore the impact of the sta-
tistical assumptions and computational framework used in in-
versions.

For example, the impact of assumptions about the statis-
tical representation of prior errors and model-data-mismatch
errors can be examined by performing multiple inversions, as
can the impact of approaches aimed at optimizing these error
statistics (e.g., Bousquet et al., 2011; Cressot et al., 2014; Wu
et al., 2013; Ganesan et al., 2014; Berchet et al., 2013). Sen-
sitivity tests may also be run on other statistical parameters
such as the assumed correlation length of fluxes (Corazza et
al., 2011).

Another key aspect of regional inversions that can be ex-
plored through sensitivity tests is the impact of the choice
of a data set used to represent background concentrations
of greenhouse gases entering the model domain. This can
be done through the implementation of alternative boundary
conditions and/or the exploration of the impact of uncertainty
in individual sets of boundary conditions (e.g., Göckede et
al., 2010b; Bréon et al., 2015; Schuh et al., 2010; Gourdji et
al., 2012).

Similar to the case of boundary conditions, inversions aim-
ing to isolate one component of greenhouse gas budgets (e.g.,
biospheric CO2 in the case of CO2 inversions) must rely
on pre-existing estimates of other components of the budget
(e.g., fossil fuel CO2 emissions). The impact of the choice
of an estimate can be explored through sensitivity tests (e.g.,
Peylin et al., 2011; Peters et al., 2010).

The choice of a model or data set to be used as an a pri-
ori estimate in Bayesian inversions is another source of un-
certainty in the inferred fluxes, particularly in areas where
the observation constraint is weak. Inversions using alterna-
tive inventories or process-based models with different spa-
tial and seasonal flux patterns as priors can be compared in
terms of the spatial and temporal distributions of the pos-
terior fluxes to assess the robustness of flux estimates (e.g.,
Kim et al., 2011; Göckede et al., 2010b; Bergamaschi et al.,
2015; Corazza et al., 2011; Peters et al., 2010).

A final example is the use of sensitivity tests to explore
the effect of the spatial and temporal aggregation and resolu-
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tion of the unknown fluxes in the modeling framework. The
impact of the choice of flux regions, model grid resolution,
model grid nesting, or model time step can all be explored
(e.g., Rivier et al., 2010; Göckede et al., 2010a; Kim et al.,
2014; Peters et al., 2010).

3.4 Synthetic data experiments

Observing system simulation experiments (OSSEs) are stud-
ies in which synthetic observations are constructed at obser-
vation times and locations using a prescribed set of fluxes
and a chemistry and transport model. These synthetic obser-
vations are then used instead of actual observations as data
constraints on an inversion. OSSEs are particularly useful
for diagnostics because the “true” transport and fluxes are
known and can be manipulated. These types of studies con-
stitute a necessary but certainly not sufficient condition for
ensuring a good inversion setup, as many complexities of in-
versions using real observations can only be approximated
within a synthetic data experiment context. OSSEs have be-
come a key component of inversion model development, es-
pecially as models have become more complex.

Because the “true” fluxes are known in an OSSE, various
metrics can be used to assess how well the inversion can re-
cover fluxes. OSSEs can be used to quantify the magnitude
and geographical distribution of uncertainty that stems from
specific errors or assumptions in the inversion framework,
such as transport model errors (e.g., Houweling et al., 2010;
Berchet et al., 2015), spatiotemporal flux patterns within re-
gions (e.g., Berchet et al. 2015), biased priors (e.g., Berchet
et al., 2015), flux spatiotemporal resolutions (e.g., Wu et al.,
2011), or parameter choices within computational data as-
similation systems (e.g., Miyazaki et al., 2011, Chatterjee et
al., 2012). Posterior flux errors and error covariances can be
used to assess the impact of modeling simplifications or data
limitations on the accuracy and precision of flux estimation
(e.g., Berchet et al., 2015; Gourdji et al., 2010). OSSEs can
also be used to understand sources of bias through a simple
differencing of posterior and “true” fluxes (e.g., Locatelli et
al., 2013; Thompson et al., 2011; Basu et al., 2016; Bloom et
al., 2016). Similar tests can be run to determine the effects of
observational biases and mistuning of error statistics on the
accuracy of posterior estimates (e.g., Baker et al., 2010).

OSSEs can also be used to determine the sensitivity of in-
versions to transport errors. The model-data mismatch may
be compared between an inversion that uses the “true” trans-
port to calculate the sensitivity matrix versus that of an in-
version that uses a different transport model (e.g., Chevallier
et al., 2010; Houweling et al., 2010; Berchet et al., 2015;
Locatelli et al., 2013). Assuming that the difference in per-
formance between these two transport models is comparable
to the difference between transport models used in real-data
inversions, the inversion with inconsistent transport can be
compared to the inversion with consistent transport to deter-
mine how much the inconsistencies in transport affect the

inversion. A similar test can be conducted simply by adding
transport or chemistry errors to the pseudo-observations for
one run of the model (e.g., Gourdji et al., 2010; Baker et al.,
2010; Thompson et al., 2011). In addition, the meteorological
forcing field may be perturbed independently of the transport
model itself to determine how the underlying meteorologi-
cal assumptions affect the inversion; this is particularly im-
portant because the meteorology is often not optimized for
transport runs (as noted by Berchet et al., 2015).

OSSEs are also useful for determining the sensitivity of
the inversion to the choice of priors. Within a Bayesian inver-
sion, perturbations of prior fluxes from the “true” fluxes in
terms of spatial distribution, temporal distribution, and flux
magnitude by region can be used for a synthetic data sensi-
tivity test (e.g., Berchet et al., 2015). This type of study is
useful for determining prior-related biases in cases when the
bottom-up inventories for a particular trace gas in the model
domain are highly uncertain.

OSSEs can also provide information about how much in-
formation can be obtained from the current observational net-
work. Pseudo-observation sites and types of data (for exam-
ple, mixing ratios, profiles, column averages, or isotopic sig-
natures from flask samples) can be added or taken away from
the inversion to determine how the density and distribution
of observations affect the precision and accuracy of the pos-
terior flux field (Villani et al., 2010; Miyazaki et al., 2011;
Hungershoefer et al., 2010; Shiga et al., 2013; Basu et al.,
2016; Bloom et al., 2016). In addition, the ability of existing
monitoring network sites to detect specific types of fluxes or
flux patterns can be explored, as well as the impact of var-
ious sources of uncertainty on detection (e.g., Shiga et al.,
2014; Fang et al., 2014; Miller et al., 2016a). Such experi-
ments can determine how much information about the true
flux field is provided by an observational network. The un-
certainty reduction from the prior to the posterior estimates
(see Sect. 3.2 and 3.3.2) provides an overall metric for evalu-
ating the information provided by hypothetical observations
(e.g., Chevallier et al., 2010; Baker et al., 2010; Hungershoe-
fer et al., 2010).

Finally, through sensitivity tests, OSSEs can help to de-
termine optimal model resolution and observational averag-
ing for obtaining the most accurate posterior fluxes. This has
been done for model temporal resolution and observational
temporal averaging (e.g., Gourdji et al., 2010). OSSEs can
also be used to test the performance of the optimization of
multi-scale grids, which can decrease computational costs
relative to regularly spaced grids (e.g., Wu et al., 2011).

4 Evaluation of existing diagnostics

We have presented diagnostics as an approach to the needs
of quality control and of quality assurance for atmospheric
inversion systems. The diagnostics that were presented in
Sect. 3, in many ways, address this question well. The di-
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versity of diagnostics may even give the impression that they
can compensate for the lack of direct independent validation
measurements described in Sect. 2 and thereby ensure sta-
tistical optimality of inverse modeling systems. Indeed, even
uncertain parameters (hyperparameters) of the prior and ob-
servation error covariance matrices are optimizable from the
assimilated data (e.g., Sect. 3.3.3). In most cases, however,
such an interpretation would be overly optimistic. The di-
agnostic approaches described in Sect. 3 provide a crucial
toolbox for evaluating and improving flux estimates obtained
through the solution of atmospheric inverse problems. With-
out diagnostics, it is impossible to assess whether flux esti-
mates are reliable or to make sense of differences among al-
ternative sets of estimates. At the same time, however, none
of the presented approaches overcome the fundamental chal-
lenges described in Sect. 2. As such, the information pro-
vided by diagnostic tests must itself be taken with a prover-
bial “grain of salt”, and it is equally important to be aware
of the aspects of an inversion that cannot be evaluated using
existing diagnostics as it is to assess those that can.

The key information lies in available measurements; di-
agnostics can only help to reformulate this information by
bringing to light the impact of specific assumptions, in the
same way that the atmospheric inversion reformulates ob-
served concentrations in terms of surface fluxes or that a re-
trieval scheme for an Earth-observing system reformulates
the measured radiance information into a geophysical quan-
tity. For instance, the principle of objectively tuning error
statistics for atmospheric inversions (e.g., Michalak et al.,
2004, 2005) ultimately relies on disentangling deviations be-
tween prior flux assumptions and observations into com-
ponents attributable to prior uncertainty versus model-data-
mismatch errors. The attribution to these two components
of error is based on leveraging differences in their space-
time structure, however, and is made easier when the two
sources of error have features that are statistically distinct
(e.g., Desroziers et al., 2005). Alternatively, some of the
statistics may be well known from some other information
source and can then play the role of a fixed point to deduce
the other ones (e.g., Kuppel et al., 2013). It is important to re-
member, however, that diagnostics cannot bring original in-
formation to the problem, but rather provide a framework for
interpreting available information. This is particularly obvi-
ous when no real measurements are assimilated (the synthetic
data experiments of Sect. 3.4).

The interpretation of diagnostics is also complicated by
the fact that many of them are not independent of the under-
lying assumptions of the inversion systems themselves (e.g.,
independence of prior errors from model-data-mismatch er-
rors, uncorrelated nature of model-data-mismatch errors, lin-
ear observation operator, Gaussian error statistics). As a re-
sult, they may simply express the inadequacy of these as-
sumptions rather than the misspecification of some particu-
lar component of the inversion setup. A common example
is the inflation of observation error variances to compensate

for neglecting observation error correlations, which yields a
too-small model-data mismatch (see Sect. 3.2.2) that cannot
be adequately resolved without removing the decorrelation
hypothesis (e.g., Chevallier, 2007).

The comparison of inversion results with independent (un-
assimilated) concentration measurements (Sect. 3.1.1) is also
partly ambiguous, because an unknown fraction of the misfit
is simply caused by the chemistry and transport model that
simulates the independent measurements. Similarly, the in-
terpretation of differences between inversion results and flux
estimates from bottom-up inventories (Sect. 3.1.2) may re-
volve around estimating the uncertainty of the latter (see,
e.g., the diverging conclusions of Chevallier et al., 2014, and
Reuter et al., 2014, about the quality of the inferred carbon
sink of Europe).

Sensitivity tests about some components of the inver-
sion systems, like the chemistry and transport model (see
Sect. 3.3.1), are implemented in an attempt to sample the
same error statistics as those specified by the model-data-
mismatch and prior error covariance matrices. In practice,
however, they may instead reflect different opinions about
the error statistics. For instance, intercomparisons of inver-
sion results like those of Transcom (e.g., Gurney et al., 2002;
Peylin et al., 2013) form “ensembles of convenience” rather
than statistically coherent ensembles. They may underesti-
mate the quality of state-of-the-art inversions (because some
systems would underperform due to particularly coarse hor-
izontal resolution or due to an outdated transport simulation
configuration) as well as overestimate it (because the few
participants cannot sample the whole uncertainty space). To
represent inversion uncertainty, inversion intercomparisons
should explore the space of uncertainty widely (e.g., the en-
semble would not be limited to one particular source of in-
formation for its prior fluxes for a given source-sink pro-
cess) and in a balanced way (e.g., the ensemble would not
oversample marginally different versions of a single trans-
port model at the expense of other transport model types).
However, this goal is usually hampered by limited resources
that favor existing setups over the design of systematic ex-
plorations of other plausible and defensible setups.

Overall then, satisfying the diagnostics described in Sect. 3
is, strictly speaking, neither a sufficient nor a necessary con-
dition for optimality (see also the discussion in Talagrand,
2014). The degree of usefulness of diagnostics is propor-
tional to the amount of information that is input to them;
conversely, lack of independent information can lead to prob-
lems of equifinality, where similar apparent skill is achieved
through widely different setups and assumptions. In some
cases, the process of identifying and improving weak com-
ponents of an inverse system itself represents an inference
problem that may be ill-posed or under-determined. As a re-
sult, the interpretation of diagnostics itself often requires sub-
jective expert knowledge.

Despite their ambiguity, however, the role and diversity
of diagnostics has increased over the years, and this is an
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important and positive development. Indeed, the diagnostics
described in Sect. 3 have proven their practical usefulness in
understanding the behavior of inversion systems by provid-
ing a fresh perspective on inversion results. Moreover, they
can reveal, or at least suggest, the presence of hidden flaws
in inversion systems by shedding light on the symptoms of
these flaws. As such, they form a critical basis for the credi-
bility of the inversion approach to flux estimation. While ex-
isting diagnostics tools have limitations, some of which are
unavoidable given the challenges described in Sect. 2, a care-
ful review of the literature makes it clear that the implemen-
tation of diagnostics is a necessary step in the “exploration”
of an inversion system.

5 Looking ahead

Atmospheric inversions are increasingly expected to con-
tribute to national reporting of greenhouse gas emissions un-
der future international treaties (see the discussions in Ogle et
al., 2015, for biogenic emissions, Miller and Michalak, 2017,
for anthropogenic emissions, and Wu et al., 2016, for ur-
ban emissions). The routine run of atmospheric inversion
systems will necessitate reinforcing the robustness and the
transparency of their process through commonly agreed upon
quality insurance and quality control procedures. In prac-
tice, this implies systematically providing reliable associated
uncertainty statistics together with the posterior fluxes and
some evidence of the statistical consistency of these fluxes
with the inversion assumptions. Such norms will have to rely
on the systematic implementation of diagnostics of the type
discussed here to a large extent, even for emerging applica-
tions like the quantification of urban emissions (McKain et
al., 2012).

As we have seen in Sect. 4, many more measurements
are needed to decrease diagnostics ambiguities. This require-
ment primarily relates to concentration measurements rather
than flux measurements because scale mismatches usually
hamper the comparison of inversions with the latter (see
Sect. 2). A step in data density may be achieved by hypothet-
ical low cost sensors (Wu et al., 2016) or from future satel-
lite imagers (e.g., Rayner et al., 2014), provided these new
data do not suffer from significant systematic errors. Efforts
to substantially increase observational coverage are already
underway (see, e.g., Climate-KIC, 2017, Ciais et al., 2015),
but the feasibility of sufficiently limiting systematic errors
remains to be demonstrated.

Interestingly, a (large) increase in the horizontal resolu-
tion of the inversion systems would also make it possible to
incorporate direct flux measurements in the diagnostics, even
when the targeted scales are coarser (see discussion in Sect. 2
and Lauvaux et al., 2009, or Meesters et al., 2012). Inversion
systems could also be run at very high resolution for the ex-
press purpose of comparing estimates to flux measurements.
The validation with accurate flux measurements would avoid

some of the ambiguity imposed by the chemistry and trans-
port models on the concentration-based diagnostics.

This would also open up new directions for diagnostics
development. For example, direct comparison to flux obser-
vations would make it possible to better assess posterior un-
certainties, for instance by building on diagnostics developed
in the context of ensemble prediction systems – diagnostics
that have not yet been used for atmospheric inversions (e.g.,
the reliability diagram of Talagrand et al., 1999). These ideas
were explored, for example, by Broquet et al. (2013), using
aggregates of flux measurements. Among other benefits, the
direct validation of the posterior uncertainties would reveal
possible departures from normality for flux errors, which
may be especially important in the case of systematically
positive emissions (e.g., Koohkan et al., 2013). Such diag-
nostics would certainly help to guide future developments of
inversion systems.

Taken together, it is clear that the importance of develop-
ing and implementing carefully designed diagnostics for at-
mospheric inversions of long-lived greenhouse gases is only
going to grow over time.
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