
HAL Id: hal-01584078
https://hal.science/hal-01584078v1

Preprint submitted on 8 Sep 2017 (v1), last revised 28 Aug 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nearest embedded and embedding self-nested trees
Romain Azaïs

To cite this version:

Romain Azaïs. Nearest embedded and embedding self-nested trees. 2017. �hal-01584078v1�

https://hal.science/hal-01584078v1
https://hal.archives-ouvertes.fr

NEAREST EMBEDDED AND EMBEDDING SELF-NESTED TREES

Romain Azaı̈s

Inria project-team BIGS, Institut Élie Cartan de Lorraine, Nancy, France

Abstract

Self-nested trees present a systematic form of redundancy in their subtrees and thus achieve optimal com-
pression rates by DAG compression. A method for quantifying the degree of self-similarity of plants
through self-nested trees has been introduced by Godin and Ferraro in 2010. The procedure consists in
computing a self-nested approximation, called the nearest embedding self-nested tree, that both embeds
the plant and is the closest to it. In this paper, we propose a new algorithm that computes the nearest em-
bedding self-nested tree with a smaller overall complexity, but also the nearest embedded self-nested tree.
We show from simulations that the latter is mostly the closest to the initial data, which suggests that this
better approximation should be used as a privileged measure of the degree of self-similarity of plants.

keywords: unordered trees; self-nested trees; approximation of trees; structural self-similarity

1 Introduction

Trees form a wide family of combinatorial objects that offers many application fields, e.g., plant
modeling and XML files analysis. Modern databases are huge and thus stored in compressed
form. Compression methods take advantage of repeated substructures appearing in the tree. As
explained in [2], one often considers the following two types of repeated substructures: subtree
repeat (used in DAG compression [3, 4, 6, 7]) and tree pattern repeat (exploited in tree grammars
[5, 9] and top tree compression [2]). We restrict ourselves to DAG compression of unordered
rooted trees, which consists in building a Directed Acyclic Graph (DAG) that represents a tree
without the redundancy of its identical subtrees (see Fig. 1). Two different algorithms exist for
computing the DAG reduction of a tree τ [7, 2.2 Computing Tree Reduction], which share the
same time-complexity inO(#V(τ)2×D(τ)× log(D(τ))) where V(τ) denotes the set of vertices of τ
and D(τ) its outdegree.

Trees that are the most compressed by DAG compression present the highest level of redundancy
in their subtrees: all the subtrees of a given height are isomorphic. In this case, the DAG related to
a tree τ is linear, i.e., there exists a path going through all vertices, with exactly H(τ) + 1 vertices,
H(τ) denoting the height of τ, which is the minimal number of vertices among trees of this height
(see τ3 in Fig. 1). This family of trees has been introduced in [8] as the first interesting class of
trees for which the subtree isomorphism problem is in NC2. It has been known under the name
of nested trees [8] and next self-nested trees [7] to insist on their recursive structure and their
proximity to the notion of structural self-similarity.

1

τ1

21

11

12

1

τ2

21

111

111

1 1

τ3

1

1

3

1

Figure 1: Trees and their DAG reduction. In the tree, roots of isomorphic subtrees are colored iden-
tically. In the DAG, vertices are equivalence classes colored according to the class of isomorphic
subtrees that they represent.

The authors of [7] are interested in capturing the self-similarity of plants through self-nested trees.
They propose to construct a self-nested tree that minimizes the distance of the original tree to the
set of self-nested trees that embed the initial tree. The distance to this Nearest Embedding Self-
nested Tree (NEST) is then used to quantify the self-nestedness of the tree and thus its structural
self-similarity (see τ and NEST(τ) in Fig. 2). The main result of [7, Theorem 1 and E. NEST Algo-
rithm] is an algorithm that computes the NEST of a tree τ from its DAG reduction in O(H(τ)2 ×
D(τ)).

NeST(τ) τ NEST(τ)

Figure 2: A tree τ (middle) with 50 nodes and its approximations NeST(τ) (left) with 29 nodes and
NEST(τ) (right) with 97 nodes.

The goal of the present article is threefold. We aim at proposing a new and more explicit algorithm
that computes the NEST of a tree τ with the same time-complexity O(H(τ)2 × D(τ)) as in [7] but
that takes as input the height profile of τ and not its DAG reduction. We establish that the height
profile of a tree τ can be computed in O(#V(τ)×D(τ)) reducing the overall complexity of a linear
factor. Based on this work, we also provide an algorithm in O(H(τ)2) that computes the Nearest
embedded Self-nested Tree (NeST) of a tree τ (see τ and NeST(τ) in Fig. 2). Finally, we show from
numerical simulations that the distance of a tree τ to its NeST is much lower than the distance to
its NEST. The NeST is most of the time a better approximation of a tree than the NEST and thus
should be privileged to quantify the degree of self-nestedness of plants.

The paper is organized as follows. The structures of interest in this paper, namely unordered
trees, DAG compression and self-nested trees, are defined in Section 2. Section 3 is dedicated
to the definition and the study of the height profile of a tree. The approximation algorithms are
presented in Section 4. We give a new insight on the definitions of the NEST and of the NeST
in Subsection 4.1. Our NEST algorithm is presented in Subsection 4.2, while the NeST algorithm
is given in Subsection 4.3. Section 5 is devoted to simulations. We state that the NeST is mostly

2

a better approximation of a tree than the NEST in Subsection 5.1. An application to a real rice
panicle is presented in Subsection 5.2.

2 Preliminaries

2.1 Unordered rooted trees

A rooted tree τ is a connected graph containing no cycle, that is, without chain from any vertex
v to itself, and such that there exists a unique vertex R(τ), called the root, which has no parent,
and any vertex different from the root has exactly one parent. The leaves of τ are all the vertices
without children. The set of vertices of τ is denoted by V(τ). The height of a vertex v may be
recursively defined asH(v) = 0 if v is a leaf of τ and

H(v) = 1+ max
w∈Cτ(v)

H(w)

otherwise, Cτ(v) denoting the set of children of v in τ. The height of the tree τ is defined as the
height of its root, H(τ) = H(R(τ)).The outdegree D(τ) of τ is the maximal branching factor that
can be found in τ, that is

D(τ) = max
v∈τ

#Cτ(v).

A subtree τ[v] rooted in v is a particular connected subgraph of τ. Precisely, τ[v] = (V [v], E[v])
where V [v] is the set of the descendants of v in τ and E[v] is defined as

E[v] =
{
(ξ, ξ ′) ∈ E(τ) : ξ ∈ V, ξ ′ ∈ V

}
,

with E(τ) the set of edges of τ.

In all the sequel, we consider unordered rooted trees for which the order among the sibling
vertices of any vertex is not significant. A precise characterization is obtained from the addi-
tional definition of isomorphic trees. Let τ and θ two rooted trees. A one-to-one correspondence
ϕ : V(τ) → V(θ) is called a tree isomorphism if, for any edge (v,w) ∈ E(τ), (ϕ(v), ϕ(w)) ∈ E(θ).
Structures τ1 and τ2 are called isomorphic trees whenever there exists a tree isomorphism between
them. One can determine if two n-vertex trees are isomorphic in O(n) [1, Example 3.2 and Theo-
rem 3.3]. The existence of a tree isomorphism defines an equivalence relation on the set of rooted
trees. The class of unordered rooted trees is the set of equivalence classes for this relation, i.e., the
quotient set of rooted trees by the existence of a tree isomorphism.

2.2 DAG compression

Now we consider the equivalence relation “existence of a tree isomorphism” on the set of the
subtrees of a tree τ. We consider the quotient graph Q(τ) = (V, E) obtained from τ using this
equivalence relation. V is the set of equivalence classes on the subtrees of τ, while E is a set of
pairs of equivalence classes (C1, C2) such that R(C2) ∈ Cτ(R(C1)) up to an isomorphism. The
graph Q(τ) is a DAG [7, Proposition 1] that is a connected directed graph without path from any
vertex v to itself.

Let (C1, C2) be an edge of the DAG Q(τ). We define N(C1, C2) as the number of occurrences of a
tree of C2 just below the root of any tree of C1. The tree reduction R(τ) is defined as the quotient

3

graph Q(τ) augmented with labels N(C1, C2) on its edges [7, Definition 3 (Reduction of a tree)].
Intuitively, the graph R(τ) represents the original tree τ without its structural redundancies (see
Fig. 1).

2.3 Self-nested trees

A tree τ is called self-nested [7, III. Self-nested trees] if for any pair of vertices v and w, either the
subtrees τ[v] and τ[w] are isomorphic, or one is (isomorphic to) a subtree of the other. This char-
acterization of self-nested trees is equivalent to the following statement: for any pair of vertices v
and w such thatH(v) = H(w), τ[x] = τ[y], i.e., all the subtrees of the same height are isomorphic.

Linear DAGs are DAGs containing at least one path that goes through all their vertices. They are
closely connected with self-nested trees by virtue of the following result.

Proposition 2.1 (Godin and Ferraro [7]). A tree τ is self-nested if and only if its reduction R(τ) is a
linear DAG.

This result proves that self-nested trees achieve optimal compression rates among trees of the
same height whatever their number of nodes (compare τ3 with τ1 and τ2 in Fig. 1). Indeed, R(τ)
has at leastH(τ) + 1 nodes and the inequality is saturated if and only if τ is self-nested.

3 Height profile of the tree structure

3.1 Definition and complexity

This section is devoted to the definition of the height profile ρτ of a tree τ and to the presentation
of an algorithm to calculate it. In the sequel, we assume that the tree τ is always traversed in the
same order, depth-first search to set the ideas down. In particular, when vectors are indexed by
nodes of τ sharing the same property, the order of the vector is important and should be always
the same.

Given a vertex v ∈ V(τ),
γh(v) = # {v ′ ∈ Cτ(v) : H(τ[v ′]) = h}

is the number of subtrees of height h directly under v. Now, we consider the vector

ρτ(h1, h2) = (γh2(v) : v ∈ V(τ), H(τ[v]) = h1)

made of the concatenation of the integers γh2(v) over subtrees τ[v] of height h1 ordered in depth-
first search. Consequently, ρτ is an array made of vectors with varying lengths.

LetA1 andA2 be two arrays for which each entry is a vector. We say thatA1 andA2 are equivalent
if, for any line i, there exists a permutation σi such that, for any column j,

A1(i, j) = σi(A2(i, j)).

In particular, i being fixed, all the vectors A1(i, j) and A2(i, j) must have the same length. This
condition defines an equivalence relation. The height profile of τ is the array ρτ as an element of
the quotient space of arrays of vectors under this equivalence relation. In other words, the vectors

4

ρτ(h1, h2), 0 ≤ h2 < h1 and h1 fixed, must be ordered in the same way but the choice of the order
is not significant. Finally, it should be already remarked that ρτ(h1, h2) = ∅ when h2 ≥ h1 or
h1 > H(τ). Consequently, the height profile can be reduced to the triangular array

ρτ =
[
ρτ(h1, h2)

]
0≤h2<h1≤H(τ)

.

The application ρτ provides the distribution of subtrees of height h2 just below the root of subtrees
of height h1 for all couples (h1, h2), which typically represents the height profile of τ. For clarity’s
sake, we give the values of ρτk for the trees τk of Fig. 1, coefficient (i, j) of the matrix being ρτk(i, j−
1),

ρτ1 = ρτ2 =


(1,1,2) ∅ ∅
(0,1,1) (1,1,1) ∅
(0) (0) (3)

 and ρτ3 =


(1,1,1) ∅ ∅
(1,1,1) (1,1,1) ∅
(0) (0) (3)

. (1)

It should be noticed that the height profile does not contain all the topology of the tree since trees
τ1 and τ2 of Fig. 1 are different but share the same height profile (1). However, the height of a tree
τ can be recovered from its height profile through the relation H(τ) = dim(ρτ), the dimension of
ρτ being defined by

dim(ρτ) = min
{
n ≥ 0 : ∀ i ≥ 0, ρτ(n+ 1, i) = ∅

}
.

Proposition 3.1. ρτ can be computed in O(#V(τ)×D(τ))-time.

Proof. First, attribute to each node v ∈ V(τ) the height of the subtree τ[v] with complexityO(#V(τ)).
Next, traverse the tree in depth-first search in O(#V(τ)) and calculate for each vertex v the vector
(γh(v))0≤h<H(τ[v]) in #Cτ(v) ≤ D(τ) operations. Finally, append this vector to ρτ(H(τ[v]), ·) compo-
nent by component. f

3.2 Relation with self-nested trees

Self-nested trees are characterized by their height profile in light of the following result.

Proposition 3.2. τ is self-nested if and only if, for any 0 ≤ h2 < h1 ≤ H(τ), all the components of the
vector ρτ(h1, h2) are the same (for instance see the profile (1) of the tree τ3 presented in Fig. 1). In addition,
a self-nested tree τ may be reconstructed from ρτ (see Algorithm 1).

Proof. If τ is self-nested, theNh1 subtrees of height h1 appearing in τ are isomorphic and thus have
the same number nh1,h2 of subtrees of height h2 just below their root. As a consequence,

ρτ(h1, h2) = (nh1,h2 , . . . , nh1,h2←−−−−−−−−−−−→
Nh1

).

The reciprocal result may be established in light of the following lemma which proof presents no
difficulty.

Lemma 3.3. If all the subtrees of height 0 ≤ h < H appearing in a tree τ are isomorphic, and if all the
subtrees of height H have the same number of subtrees of height 0 ≤ h < H just below their root, then all
the subtrees of height H appearing in τ are isomorphic.

5

All the subtrees of height 1 in τ are isomorphic because all the components of ρτ(1, 0) are the same.
The expected result is shown by induction on the height thanks to the previous lemma which
assumptions are satisfied since ρτ always contains vectors for which all the entries are equal. The
previous reasoning also provides a way (presented in Algorithm 1) to build a unique (self-nested)
tree T from the height profile ρτ. In addition, this is easy to see that τ and T are isomorphic. f

In order to present the algorithm of reconstruction of a self-nested tree from its height profile, we
need to define the restriction of a height profile to some height. Let p be a height profile. The
restriction p|h of p to height h ≥ 0 is the array defined by{

∀ 1 ≤ h1 ≤ h, ∀h2 ≥ 0, p|h(h1, h2) = p(h1, h2),

∀h1 > h, ∀h2 ≥ 0, p|h(h1, h2) = ∅.

Consequently, dim(p|h) = min(dim(p), h). A peculiar case is p|0 for which each entry is the empty
set and thus dim(p|0) = 0. It should be also remarked that there may exist no tree τ such that p|h
is the height profile of τ.

Algorithm 1: Construction of a self-nested tree from its height profile

1 Function SN(p):
Data: a height profile p such that all the components of p(h1, h2) are the same
Result: the unique self-nested tree τ such that ρτ = p

2 τ = •
3 for i from 0 to dim(p) − 1 do
4 add SN (p|i) as child ofR(τ) p(dim(p), i)1 times

5 return τ

As we can see in the proof of Proposition 3.2 or in Algorithm 1, the lengths of the vectors ρτ(h1, h2)
are not significant to reconstruct a self-nested tree τ. Consequently, since all the components of
ρτ(h1, h2) are the same, we can identify the height profile of a self-nested tree with the integer-
valued array [ρτ(h1, h2)1].

Proposition 3.4. The number of nodes of a self-nested tree τ can be computed from ρτ in O(H(τ)2).

Proof. By induction on the height, one has #V(τ) = N (H(τ)), where the sequence N is defined by
N (0) = 1 (number of nodes of a tree reduced to a root) and,

∀ 1 ≤ H ≤ H(τ), N (H) = 1+

H−1∑
h=0

ρτ(H,h)N (h). (2)

The number of operations required to compute N (H(τ)) is of order O(H(τ)2). f

The authors of [7, Proposition 6] calculate the number of nodes of a tree (self-nested or not) from
its DAG reduction by a formula very similar to (2), and which achieve the same complexity on self-
nested trees. As mentioned before, a tree can not be recovered from its height profile in general,
thus we can not expect such a result from the height profile of any tree.

6

4 Approximation algorithms

4.1 Definitions

4.1.1 Editing operations

We shall define the NEST and the NeST of a tree τ. As in [7, eq. (5)], we ask these approximations
to be consistent with Zhang’s edit distance between unordered trees [10] denotedDZ in this paper.
Thus, as in [10, 2.2 Editing Operations], we consider the following two types of editing operations:
adding a node and deleting a node. Deleting a node w means making the children of w become
the children of the parent v of w and then removing w (see Fig. 3). Adding w as a child of v will
make w the parent of a subset of the current children of v (see Fig. 4).

−→∑
Figure 3: Deleting a node.

−→∑
Figure 4: Inserting a node.

4.1.2 Constrained editing operations

Zhang’s edit distance is defined from the above editing operations and from constrained map-
pings between trees [10, 3.1 Constrained Edit Distance Mappings]. A constrained mapping be-
tween two trees τ and θ is a mapping [10, 2.3.2 Editing Distance Mappings], i.e., a one-to-one
correspondence ϕ from a subset of V(τ) into a subset of V(θ) preserving the ancestor order, with
an additional condition on the Least Common Ancestors (LCAs) [10, condition (2) p. 208]: if, for
1 ≤ i ≤ 3, vi ∈ V(τ) and wi = ϕ(vi) ∈ V(θ), then LCA(v1, v2) is a proper ancestor of v3 if and only
if LCA(w1, w2) is a proper ancestor of w3.

Let θ be a tree that approximates τ obtained by inserting nodes in τ only and consider the induced
mapping Mτ→θ that associates nodes of τ with theirselves in θ. We want the approximation pro-
cess to be consistent with Zhang’s edit distance DZ, i.e., we want the mapping Mτ→θ to be a
constrained mapping in the sense of Zhang, which in particular impliesDZ(θ, τ) = #V(θ)− #V(τ).
We shall prove that this requirement excludes some inserting operations in our context.

Indeed, the mapping Mτ→θ involved in the inserting operation of Fig. 4 is partially displayed in
Fig. 5, nodes vi of τ being associated with nodes wi of θ. The LCA of v1 and v2 in τ is a proper an-
cestor of v3. However, the LCA ofw1 andw2 in θ is not a proper ancestor ofw3. As a consequence,
this mapping is not a constrained mapping as defined by Zhang. A necessary and sufficient con-
dition forMτ→θ to be a constrained mapping is given in Lemma 4.1

Lemma 4.1. Let τ be a tree and v ∈ V(τ). Let θ be the tree obtained from τ by adding a nodew as a child of
v making the nodes of the subset C ⊂ Cτ(v) children of w. The mapping Mτ→θ induced by these inserting
operations is a constrained mapping in the sense of Zhang if and only if C = ∅, #C = 1 or #C = #Cτ(v).

7

τ
LCA(v1, v2)

v3 v1 v2

θ

w3

w1

LCA(w1, w2)

w2

Figure 5: The tree θ is obtained from τ by inserting an internal node. The associated mapping
does not satisfy the conditions imposed by Zhang [10] because the LCA of v1 and v2 is a proper
ancestor of v3 whereas the LCA of w1 and w2 is not a proper ancestor of w3.

Proof. The proof is obvious if v has one or two children. Thus we assume that v has at least three
children c1, c2 and c3. In τ, the LCA of c1 and c2 is v and v is an ancestor of c3. Adding w as
the parent of c1 and c2 makes it the LCA of these two nodes, but not an ancestor of c3 in θ. The
additional condition on the LCAs is then not satisfied. This problem appears only when making
w the parent of at least two children and of not all the children of v. f

Consequently, we restrict ourselves to the following inserting operations which are the only ones
that ensure that the associated mapping satisfies Zhang’s condition: adding w as a child of v will
make w (i) a leaf, (ii) the parent of one current child of v, or (iii) the parent of all the current
children of v. However, it should be noticed that (iii) can always be expressed as (ii) (see Fig. 6).
Finally, we only consider the inserting operations that make the new child of v the parent of zero
or one current child of v. For obvious reasons of symmetry, the allowed deleting operations are
the complement of inserting operations, i.e., one can delete an internal node if and only if it has a
unique child, which also ensures that the induced mapping is constrained in the sense of Zhang.

v

w

−→∑
v

w

−→∑
v

w

v

w

−→∑
v

w

−→∑
v

w

Figure 6: Adding a node as new child of w making all the current children of w children of this
new node (top) provides the same topology as adding a new node between v and its child w
(bottom).

4.1.3 Preserving the height of the pre-existing nodes

In [7, Definition 9 and Fig. 6], the NEST of a tree τ is obtained by successive partial linearizations
of the (non-linear) DAG of τwhich consist in merging all the nodes at the same height of the DAG.

8

A consequence is that the height of any pre-existing node of τ is not changed by the inserting op-
erations. For the sake of consistency with [7], we only consider inserting and deleting operations
that preserve the height of all the pre-existing nodes of τ.

The next two results deal with inserting operations that preserve the height of the pre-existing
nodes.

Lemma 4.2. Let τ be a tree, v ∈ V(τ) and c ∈ Cτ(v). Let θ be the tree obtained from τ by adding the
internal node w as a child of v making w the parent of c. Then,

∀u ∈ V(τ), H(θ[u]) = H(τ[u]) ⇐⇒ H(τ[c]) + 1 < H(τ[v]).

Proof. Adding w may only increase the height of v and the one of its ancestors in τ. If the height
of v is not changed by adding w, the height of its ancestors will not be modified. The height of
v remains unchanged if and only if the height of w in θ, i.e., H(τ[c]) + 1, is strictly less than the
height of τ[v]. f

Lemma 4.3. Let τ be a tree and v ∈ V(τ). Let θ be the tree obtained from τ by adding a tree t as a child of
v. Then,

∀u ∈ V(τ), H(θ[u]) = H(τ[u]) ⇐⇒ H(t) + 1 ≤ H(τ[v]).

Proof. Adding a subtree t under vmay only increase the height of v and the one of its ancestors in
τ. If the height of v is not changed by adding t, the height of its ancestors will not be modified.
Adding t will make the height of v increase if H(t) is strictly greater than the height of the higher
child of v. f

A particular case of Lemma 4.3 is the insertion of leaves in a tree. In light of the above result, a
leaf can be added under v if and only if H(τ[v]) ≥ 1, i.e., v is not a leaf. The below results concern
deleting operations that preserve the height of the remaining nodes of τ.

Lemma 4.4. Let τ be a tree, v ∈ V(τ), w ∈ Cτ(v) and Cτ(w) = {c}. Let θ be the tree obtained from τ by
deleting the internal node w making its unique child c a child of v. Then,

∀u ∈ V(θ), H(θ[u]) = H(τ[u]) ⇐⇒ ∃w ′ ∈ Cτ(v) \ {w}, H(τ[w ′]) + 1 = H(τ[v]).

Proof. Deleting w may only decrease the height of v and the one of its ancestors in τ. If the height
of v is not changed by deleting w, the height of its ancestors will not be modified. The height of v
remains unchanged if and only if it has a child different of w of heightH(τ[v]) − 1. f

Lemma 4.5. Let τ be a tree, v ∈ V(τ), c ∈ Cτ(v). Let θ be the tree obtained from τ by deleting the subtree
τ[c]. Then,

∀u ∈ V(θ), H(θ[u]) = H(τ[u]) ⇐⇒ ∃ c ′ ∈ Cτ(v) \ {c}, H(τ[c ′]) + 1 = H(τ[v]).

Proof. The proof follows the same reasoning as in the previous result. f

9

4.1.4 NEST and NeST

In view of the foregoing, we consider the set of inserting and deleting operations that fulfill the
below requirements.

Adding operations (see Fig. 7)

f Internal nodes (AI): adding w as a child of v making w the parent of the child c of v can be
done only ifH(τ[c]) + 1 < H(τ[v]).

f Subtrees (AS): adding t as a child of v can be done only ifH(t) + 1 ≤ H(τ[v]).

X 7 X 7

Figure 7: Allowed (X) and forbidden (7) inserting operations to construct the NEST of a tree.

Deleting operations (see Fig. 8)

f Internal nodes (DI): deleting v ∈ Cτ(u) (making the unique child w of v a child of u) can be
done only if there exists v ′ ∈ Cτ(u), v 6= v ′, such thatH(τ[v ′]) ≥ H(τ[v]).

f Subtrees (DS): deleting the subtree τ[w], w ∈ Cτ(v), of τ can be done if there exists w ′ ∈ Cτ(v),
w ′ 6= w, such thatH(τ[w ′]) + 1 = H(τ[v]).

X 7 X 7

Figure 8: Allowed (X) and forbidden (7) deleting operations to construct the NeST of a tree.

Proposition 4.6. The editing operations AI and AS (DI and DS, respectively) are the only inserting (delet-
ing, respectively) operations that ensure that (i) the induced mapping is a constrained mapping and that (ii)
the height of all the pre-existing nodes is unchanged.

Proof. This result is a direct corollary of Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5. f

The NEST (the NeST, respectively) of a tree τ is the self-nested tree obtained by the set of inserting
operations AI and AS (of deleting operations DI and DS, respectively) of minimal cost, the cost

10

of inserting a subtree being its number of nodes. Existence and uniqueness of the NEST are not
obvious at this stage. The NeST exists because the (self-nested) tree composed of a unique root
can be easily obtained by deleting operations from any tree, but its uniqueness is not evident.

4.2 NEST algorithm

In order to present our NEST algorithm in a concise form in Algorithm 2, we need to define the
following operations involving two vectors u and v of the same size n and a real number γ,

u + v = (u1 + v1 , . . . , un + vn),
u + γ = (u1 + γ , . . . , un + γ),
u ∨ γ = (max(u1, γ) , . . . , max(un, γ)).

In other words, these operations must be understood component by component. In addition, in a
condition, u = 0 (u 6= 0, respectively) means that for all 1 ≤ i ≤ n, ui = 0 (ui 6= 0, respectively).
Finally, for 1 ≤ i ≤ j ≤ n, ui...j denotes the vector (ui, . . . , uj) of length j− i+ 1. This notation will
also be used in Algorithm 3 for calculating the NeST.

Algorithm 2: Construction of the nearest embedding self-nested tree

1 Function NEST(τ):
Data: the height profile ρ of an unordered tree τ
Result: the nearest embedding self-nested tree of τ

2 for h1 from 1 toH(τ) do
3 for h2 from h1 − 1 to 0 do
4 ∆← max ρh1,h2 − ρh1,h2
5 ρh1,h2 ← max ρh1,h2
6 i← 1

7 while ∆ 6= 0 and i ≤ h2 do
8 ∆← (∆− ρh1,h2−i)∨ 0
9 ρh1,h2−i ← ρh1,h2−i − ∆

10 i← i+ 1

11 return SN(ρ)

The relation between the above algorithm and the NEST of a tree is provided in the following
result, which states in particular the existence of the NEST.

Proposition 4.7. For any tree τ, Algorithm 2 returns the unique NEST of τ in O(H(τ)2 ×D(τ)).

Proof. By definition of the NEST, the height of all the pre-existing nodes of τ can not be modified.
Thus, the number of nodes of height h− 1 under a node of height h can only increase by inserting
subtrees in the structure. Then we have

ρNEST(τ)(h, h− 1) ≥ max ρτ(h, h− 1). (3)

Let v be a vertex of height h in τ. We recall that γi(v) denotes the number of subtrees of height
i under v. Our objective is to understand the consequences for γi(v) of inserting operations to

11

obtain ρNEST(τ)(h, h − 1) subtrees of height h − 1 under v. To this aim, we shall define a sequence

γ
(h−1,j)
i (v) starting from γ

(h−1,0)
i (v) = γi(v) that corresponds to the modified versions of τ. The first

exponent h−1means that this sequence concerns editing operations used to get the good number
of subtrees of height h− 1 under v.

Let ∆(0)
h−1(v) = ρNEST(τ)(h, h − 1) − γ

(0)
h−1(v) be the number of subtrees of height h − 1 that must be

added under v to obtain the height profile of the NEST under v, i.e.,

γ
(h−1,1)
h−1 (v) = ρNEST(τ)(h, h− 1).

Implicitly, it means that γ(h−1,1)i (v) = γi(0)(v) for i 6= h − 1. The subtrees of height h − 1 that we
have to add are isomorphic, self-nested and embed all the subtrees of height h− 2 appearing in τ
by definition of the NEST. In particular, they can be obtained by the allowed inserting operations
from the subtrees of height h− 2 under v, by first adding an internal node to increase their height
to h − 1. In addition, it is less costly in terms of editing operations to construct the subtrees of
height h− 1 from the subtrees of height h− 2 available under v than to directly add these subtrees
under v. If all the subtrees of height h − 2 under v must be reconstructed later, it will be possible
to insert them and the total cost will be same as by directly adding the subtrees of height h − 1
under v. As a consequence, all the available subtrees of height h− 2 are used to construct subtrees
of height h− 1 under v and it remains

∆
(1)
h−1 =

(
∆
(0)
h−1(v) − γ

(h−1,1)
h−2

)
∨ 0

subtrees of height h− 1 to be built under v. Furthermore, in the new version of τ, we have

γ
(h−1,2)
h−2 (v) = γ

(h−1,1)
h−2 (v) − ∆

(1)
h−1(v).

The ∆(1)
h−1 subtrees of height h − 1 can be constructed from subtrees of height h − 3 (with a larger

cost than from subtrees of height h − 2), and so on. To this aim, we define the sequence of the
modified versions of τ by, for 0 ≤ j ≤ h− 2, ∆

(j+1)
h−1 (v) =

(
∆
(j)
h−1(v) − γ

(h−1,j+1)
h−1−(j+1)(v)

)
∨ 0,

γ
(h−1,j+2)
h−(j+2) (v) = γ

(h−1,j+1)
h−(j+2) (v) − ∆

(j+1)
h−1 (v).

At the final step j = h− 2, the ∆(0)
h−1(v) subtrees of height h− 1 have been constructed from all the

available subtrees appearing under v, starting from subtrees of height h − 2, then h − 3, etc, and
then have been added if necessary.
From now on, the number of subtrees of height h − 2 under v will not decrease. Indeed, it would
mean that an internal node has been added between v and the root of a subtree of height h − 2.
This would have the consequence to increase of one unit the number of subtrees of height h− 1 in
subtrees of height h, which cost is (strictly) larger than adding a subtree of height h − 2 in all the
subtrees of height h. Consequently, we obtain

ρNEST(τ)(h, h− 2) ≥ max
{v∈V(τ) :H(τ[v])=h}

γ
(h−1,h)
h−2 (v).

12

We can reproduce the above reasoning to construct under v subtrees of height h − i, i from 2 to
h − 1, from subtrees with a smaller height, which defines a sequence γ(h−i,j)i of modified versions
of τ, which size is h− i+ 1, and we get the following inequality,

∀ 2 ≤ i ≤ h, ρNEST(τ)(h, h− i) ≥ max
{v∈V(τ) :H(τ[v])=h}

γ
(h−i+1,h−i+2)
h−i (v). (4)

The tree returned by Algorithm 2 is self-nested and its height profile saturates the inequalities (3)
and (4) for all the possible values of h and i by construction. In addition, we have shown that
this tree can be obtained from τ by the allowed inserting operations. Since increasing of one unit
the height profile at (h1, h2) has a (strictly) positive cost, this tree is thus the (unique) NEST of τ.
As seen previously, the number of iterations of the while loop at line 7 is the number of subtrees
of height h2 < h1 available to construct a tree of height h1, i.e., the degree of τ in the worst case,
which states the complexity. f

4.3 NeST algorithm

This section is devoted to the presentation of the calculation of the NeST in Algorithm 3.

Algorithm 3: Construction of the nearest embedded self-nested tree

1 Function NeST(τ):
Data: the height profile ρ of an unordered tree τ
Result: the nearest embedded self-nested tree of τ

2 for h1 from 1 toH(τ) do
3 for h2 from h1 − 1 to 0 do
4 ∆← ρh1,h2 − min ρh1,h2
5 ρh1,h2 ← min ρh1,h2
6 if ρh1−1,0 ... h1−3 = 0 and ρh1−1,h1−2 = 1 then
7 ρh1,h2−1 ← ρh1,h2−1 + ∆

8 return SN(ρ)

Proposition 4.8. For any tree τ, Algorithm 3 returns the unique NeST of τ in O(H(τ)2).

Proof. The proof follows the same reasoning as the proof of Proposition 4.7. First, one may remark
that

ρNeST(τ)(h, h− 1) ≤ min ρτ(h, h− 1), (5)

because the number of subtrees of height h − 1 under a node v of height h can only decrease
by the allowed deleting operations. Let v be a node of height h in τ and γi(v) the number of
subtrees of height i under v. If a subtree of height h − i under v that has to be deleted is not self-
nested, one can first modify it to get a self-nested tree and then remove it with the same overall
cost. Thus, we can assume without loss of generality that all the subtrees under v are self-nested.
∆h−1(v) = γh−1(v) − ρNeST(τ)(h, h − 1) denotes the number of subtrees of height h − 1 that have

to be removed from v. Let γ(j)i (v) the sequence of the modifications to obtain ρNeST(τ)(h, h − 1)

13

subtrees of height h− 1 under v, with γ(0)i (v) = γi(v). Instead of deleting a subtree of height h− 1,
it is always less costly to decrease its height of one unit by deleting its root. However it is possible
only if this internal node has only one child, i.e., if ρτ(h − 1, h − 2) = 1 and ρτ(h − 1, i) = 0 for
0 ≤ i < h − 2. If this new tree of height h − 2 has to be deleted in the sequel, it will be done with
the same global cost as by directly deleting the subtree of height h− 1. As a consequence,{

γ
(1)
h−1(v) = ρNeST(τ)(h, h− 1),

γ
(1)
h−2(v) = γ

(0)
h−2(v) + ∆h−1(v)1{ρτ(h−1,h−2)=1, ∀ 3≤i≤h, ρτ(h−1,h−i)=0}.

From now on, the number of subtrees of height h− 2 under vwill thus not increase and we obtain

ρNeST(τ)(h, h− 2) ≤ min
{v∈V(τ) :H(τ[v])=h}

γ
(1)
h−2(v).

There are ∆h−2(v) = γ
(1)
h−2(v) − ρNeST(τ)(h, h− 2) subtrees of height h− 2 to be deleted under v. We

can repeat the previous reasoning and delete the root of subtrees of height h− 2 if possible rather
than delete the whole structure, and so on for any height. Thus the sequence γ(j)i is defined from

∆h−1−i(v) = γ
(i)
h−1−i(v) − ρNeST(τ)(h, h− 1− i),

γ
(i+1)
h−1−i(v) = ρNeST(τ)(h, h− 1− i),

γ
(i+1)
h−2−i(v) = γ

(i)
h−2−i(v) + ∆h−1−i(v)1{ρτ(h−1,h−2)=1, ∀ i+2≤j≤h, ρτ(h−i,h−j)=0},

and we have

∀ 0 ≤ i ≤ h− 2, ρNeST(τ(h, h− 2− i) ≤ min
{v∈V(τ) :H(τ[v])=h}

γ
(i+1)
h−2−i(v). (6)

The tree returned by Algorithm 3 saturates the inequalities (5) and (6) for all the possible values
of h and i. Decreasing of one unit the height profile at (h1, h2) has a (strictly) positive cost. Thus
this tree is the (unique) NeST of τ. The time-complexity is given by the size of the height profile
array. f

5 Numerical illustration

5.1 Random trees

The aim of this section is to illustrate the behavior of the NEST and of the NeST on a set of sim-
ulated random trees regarding both the quality of the approximation and the computation time.
We have simulated 3 000 random trees of size 10, 20, 30, 40, 50, 75, 100, 150, 200 and 250. For each
tree, we have calculated the NEST and the NeST. The number of nodes of these approximations is
displayed in Fig. 9. We can observe that the number of nodes of the NEST is very large in regards
with the size of the initial tree: approximately one thousand nodes on average for a tree of 150
nodes, that is to say an approximation error of 750 vertices. Remarkably, the NEST has never been
a better approximation than the NeST on the set of simulated trees.

The computation time required to compute the NEST or the NeST of one tree on a 2.8 GHz In-
tel Core i7 has also been estimated on the set of simulated trees and is presented in Fig. 10. As
predicted by the theoretical complexities given in Propositions 4.7 and 4.8, the NeST algorithm re-
quires less computation time than the NEST. As a consequence, the NeST provides a much better
and faster approximation of the initial data than the NEST.

14

50 100 150 200 250

0
10

00
20

00
30

00

Number of nodes of the initial tree

N
um

be
r

of
 n

od
es

 o
f t

he
 N

E
S

T

50 100 150 200 250

0
20

40
60

80
10

0

Number of nodes of the initial tree

N
um

be
r

of
 n

od
es

 o
f t

he
 N

eS
T

Figure 9: Number of nodes of the NEST (left) and of the NeST (right) estimated from 3 000 random
trees: average (full lines) and first and third quartiles (dashed lines).

50 100 150 200 250

0.
00

0
0.

00
4

0.
00

8

Number of nodes of the initial tree

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

NEST

NeST

Figure 10: Average running time required to compute the NEST (dashed line) or the NeST (full
line) estimated from 3 000 simulated trees.

5.2 Structural analysis of a rice panicle

In light of [7], we propose to quantify the degree of self-nestedness of a tree τ by the following
indicator based on the calculation of NEST(τ),

δNEST(τ) = 1−
DZ(NEST(τ), τ)

#V(τ)
=
2#V(τ) − #V(NEST(τ))

#V(τ)
. (7)

In [7, eq. (6)], the degree of self-nestedness of a plant is defined as in (7) but normalizing by the
number of nodes of the NEST and not the size of the initial data, which avoids the indicator to be
negative. In the present paper, we prefer normalizing by the number of nodes of τ to obtain the
following comparable self-nestedness measure based on the calculation of NeST(τ),

δNeST(τ) = 1−
DZ(NeST(τ), τ)

#V(τ)
=

#V(NeST(τ))
#V(τ)

.

15

The main advantage of this normalization is that, if the NEST and the NeST offer equally good
approximations, i.e., DZ(NEST(τ), τ) = DZ(NeST(τ), τ), then the degree of self-nestedness does
not depend on the chosen approximation scheme, δNEST(τ) = δNeST(τ).

We propose to investigate the degree of structural self-similarity of the topological structure of the
rice panicle studied in [7, 4.2 Analysis of a Real Plant] through these self-nested approximations.
The rice panicle V1 is made of a main axis bearing a main inflorescence P1 and lateral systems
Vi, 2 ≤ i ≤ 5, each composed of inflorescences Pj, 2 ≤ j ≤ 8 (see Fig. 11). We have computed
the indicators of self-nestedness δNEST ∨ 0 and δNeST for each substructure composing the whole
panicle (see Fig. 12). The numerical values and the shape of these indicators are similar. However,
δNeST is always greater than δNEST, in particular for the largest structures Vi. Based on a better
approximation procedure as highlighted in the previous section, the NeST better captures the self-
nestedness of the rice panicle.

Figure 11: The rice panicle is composed of a main axis and lateral systems Vi, each made of one or
several inflorescences Pj.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Structure

D
eg

re
e

of
 s

el
f−

ne
st

ed
ne

ss

V1 V2 V3 V4 V5

NEST

NeST

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Structure

D
eg

re
e

of
 s

el
f−

ne
st

ed
ne

ss

P1 P2 P3 P4 P5 P6 P7 P8

NEST

NeST

Figure 12: Degree of self-nestedness measured by δNEST ∨ 0 (dashed lines) and δNeST (full lines) of
the different substructures appearing in the rice panicle.

16

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1974.

[2] Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Tree compression with top
trees. Information and Computation, 243:166 – 177, 2015. 40th International Colloquium on
Automata, Languages and Programming (ICALP 2013).

[3] Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML compres-
sion via directed acyclic graphs. Theory of Computing Systems, pages 1–50, 2014.

[4] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML. In
Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, VLDB ’03,
pages 141–152. VLDB Endowment, 2003.

[5] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory representation of
XML document trees. Inf. Syst., 33(4-5):456–474, June 2008.

[6] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees. In
Logic in Computer Science, 2003. Proceedings. 18th Annual IEEE Symposium on, pages 188–197.
IEEE, 2003.

[7] Christophe Godin and Pascal Ferraro. Quantifying the degree of self-nestedness of trees.
Application to the structural analysis of plants. IEEE TCBB, 7(4):688–703, October 2010.

[8] Raymond Greenlaw. Subtree isomorphism is in dlog for nested trees. International Journal of
Foundations of Computer Science, 07(02):161–167, 1996.

[9] Markus Lohrey and Sebastian Maneth. The Complexity of Tree Automata and XPath on
Grammar-compressed Trees. Theor. Comput. Sci., 363(2):196–210, October 2006.

[10] Kaizhong Zhang. A constrained edit distance between unordered labeled trees. Algorithmica,
15(3):205–222, Mar 1996.

17

	Introduction
	Preliminaries
	Unordered rooted trees
	DAG compression
	Self-nested trees

	Height profile of the tree structure
	Definition and complexity
	Relation with self-nested trees

	Approximation algorithms
	Definitions
	Editing operations
	Constrained editing operations
	Preserving the height of the pre-existing nodes
	NEST and NeST

	NEST algorithm
	NeST algorithm

	Numerical illustration
	Random trees
	Structural analysis of a rice panicle

