
HAL Id: hal-01584015
https://hal.science/hal-01584015v1

Preprint submitted on 8 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable NonLinear Model-Predictive Control via
Validated Simulation

Julien Alexandre Dit Sandretto

To cite this version:
Julien Alexandre Dit Sandretto. Reliable NonLinear Model-Predictive Control via Validated Simula-
tion. 2017. �hal-01584015�

https://hal.science/hal-01584015v1
https://hal.archives-ouvertes.fr

Reliable NonLinear Model-Predictive Control
via Validated Simulation

Julien Alexandre dit Sandretto12

September 8, 2017

1This research benefited from the support of the “Chair Complex Systems Engineering -
Ecole Polytechnique, FX, THALES, DGA, DASSAULT AVIATION, DCNS Research, ENSTA
ParisTech, Télécom ParisTech, Fondation ParisTech and FDO ENSTA”. This research is also
partially funded by DGA MRIS.

2Authors are with ENSTA ParisTech, Université Paris-Saclay, 828 bd des maréchaux, 91762
Palaiseau Cedex, France alexandre@ensta.fr

Abstract

Model-Predictive Control (MPC) is one of the most advanced control technique nowa-
days. Indeed, MPC approaches are well known for their robustness and stability prop-
erties. Nevertheless, Nonlinear Model-Predictive Control (NMPC), the extension of
MPC in the nonlinear world, still poses challenging theoretical, computational and im-
plementation issues. By the help of validated simulation, which can handle nonlinear
models, a new algorithm for a robust by-construction control strategy based on NMPC
is proposed.

Chapter 1

INTRODUCTION

In the large family of controllers, Model-Predictive Control (MPC), or Receding Hori-
zon Control, is a model-based control which provides stability and safety (in a certain
way) [1]. This approach has proven its efficiency in industrial processes, mainly for
systems with slow dynamics, as chemical processes [1, 2]. MPC has been used with
success for the control of a ducted fan [3]. MPC consists in computing the control input
of a system in order to (i) minimize a cost function, and (ii) to lead to a state respecting
physical constraints, which can be on state for safety or on control variables to model
the limitation of actuators. For a class of problems, a Lyapunov method can be used to
ensure the stability as in [4]. Nonlinear Model-Predictive Control (NMPC) consists in
the same approach than MPC, but considering a nonlinear model, a non-quadratic cost
function and/or some nonlinear constraints. The main idea behind MPC or NMPC ap-
proach is to used a model of the plant in order to predict its behavior following a given
control input and so to be able to select the right one considering the cost function and
the constraints.

For stability and safety issues, it is obvious that the quality of prediction is very
important, even in presence of uncertainties. One of the tools able to consider uncer-
tainties in a safety point of view is the one of interval analysis [5]. Interval analysis (IA)
has been already used in control field [6]. More precisely, IA can be a powerful way to
develop MPC methods such as in [7, 8] for discrete-time plant or as in [2, 9, 10, 11, 12]
for continuous-time model of the plant, see Section 3 for more details.

With the requirement of a reliable and safe-by-construction controller, NMPC prob-
lems are solved by the help of validated simulation methods. They are mainly based
on Taylor series [13, 14] or on Runge-Kutta methods [15, 16]. The latter is efficient in
short simulation with interval initial values and parameters. Moreover, it is also embed-
ded into the constraint satisfaction problems framework [17] offering new capabilities
that are the requirements for the synthesis of robust NMPC methods.

The contribution is a generic algorithm based on validated simulation and branch-
ing methods to address NMPC without any linearization or problem rewriting as found
in the previous works. An heuristic is also given to reduce the overall complexity of
the approach.

The paper is divided as follows. In Section 2, we introduce some preliminaries
on MPC, interval analysis and validated simulation. In this section, we also introduce
some notations used in the following. In Section 3, the validated NMPC is presented.
In Section 4, we present the main algorithm of our robust controller. In Section 5,
the whole approach is tested on one of the most famous example in the literature. A

1

conclusion is given in Section 6.

Chapter 2

Preliminary Notions

In this section, we present the three main tools exploited in this paper: MPC, interval
analysis and validated simulation.

2.1 Model-Predictive Control
Model-Predictive Control is a closed loop controller formulated as an iterative open-
loop controller. More precisely, the later consists in a finite horizon optimal control,
considering the system dynamics. In addition, this optimal controller is built in or-
der to validate some constraints on inputs and states. The controller is illustrated in
Figure 2.1. In this sketch, no disturbances are considered for the simplicity.

Plant

MPC:
- Model
- Constraints
- Cost function

Measured output ŷ

Setpoint r

Input u

Figure 2.1: Block diagram of a MPC.

2.1.1 Principle of MPC
Starting from measurements at time t, the controller predicts the dynamic behavior of
the system over a prediction horizon Tp = Np×Tc, with Np the number of optimal pre-
computed inputs U = {u1, . . . ,uNp} (or horizon size) and Tc the control sampling time.
Only the first input u1 is injected into the system, the others are forgotten. At the next
sampling period t +Tc, measurements are taken again. If there were no disturbances
and if the model-plant is sufficiently realistic, all the inputs computed previously can
be used. Obviously, it is never the case, and all the process is restarted. The timeline
of the principle is given in Figure 2.2.

3

Timet t+Tc t+Tp

Past Future

Control horizon

Prediction horizon

Control action

Output setpoint

Output measurement
Predicted output

Figure 2.2: Timeline of the MPC process.

2.1.2 Mathematical Formulation of MPC
In the block diagram (see Figure 2.1), the block of MPC makes appear a model, some
constraints and a cost function. In this paper, we consider the class of continuous-time
systems, approximated with a model described by the following nonlinear differential
equation

ẏ(t) = f (t,y(t),u(t)) (2.1)

subject to the constraints

y(t) ∈ Y,∀t ≥ 0 (2.2)
u(t) ∈ U,∀t ≥ 0 (2.3)

Here y(t) ∈ Rn and u(t) ∈ Rm denote the vector of states and inputs, respectively. Fi-
nally, the optimal control problem successively solved by the NMPC, at each sampling
time, is given by

Problem 1

Find û(.) = argmin
u(.)

J(y(t),u(.))

Subject to:
˙̂y(τ) = f (τ, ŷ(τ), û(τ)), ŷ(t) = y(t),
û(τ) ∈ U, ∀τ ∈ [t, t +Tp],

y(τ) ∈ Y, ∀τ ∈ [t, t +Tp],

with an additive constraint, due to the control sampling

û(τ) = û(t +(i+1)Tc), ∀τ ∈]t + iTc, t +(i+1)Tc],

∀i ∈ {0, . . . ,Np−1}, and a cost function

J(y(t), û(.)) =
∫ t+Tp

t
F(ŷ(τ), û(τ))dτ.

(2.4)

The cost functional J is defined as the integral of step cost F. The step cost can arise
from economical considerations such as fuel expenditure or from preservation of system
such as lifetime optimization. In general, F is used in a quadratic form:

F(y,u) = (y−ys)
T W(y−ys)+uT Zu. (2.5)

Here ys denotes the reference trajectory, constant or time-varying (ys ∈ Y is not nec-
essary), and W,Z are two weight matrices. Mainly three different techniques can be
used to choose these weight matrices:

• Lyapunov (linearization and closed-loop study), see [18]

• Normalization between control and state magnitude

• Artificial choice to privilege convergence to the set-point or control cost.

In this paper, we are interesting in a method to obtain a reliable controller, robust to
uncertainties. Under these requirements, interval analysis is a powerful tool, which has
already proved its efficiency.

2.2 Interval Analysis
The simplest and most common way to represent and manipulate sets of values is
interval arithmetic (see [5]). An interval [xi] = [xi,xi] defines the set of reals xi such
that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size or the width of
[xi] is denoted by w([xi]) = xi− xi.

Interval arithmetic extends to IR elementary functions over R. For instance, the
interval sum, i.e., [x1]+[x2] = [x1+x2,x1+x2], encloses the image of the sum function
over its arguments. An interval vector or a box [x] ∈ IRn, is a Cartesian product of n
intervals. The enclosing property basically defines what is called an interval extension
or an inclusion function.

Definition 1 (Inclusion function) Consider a function f : Rn→ Rm, then [f] : IRn→
IRm is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f]([x])⊇ { f (x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as ×, ÷,
sin, cos, exp, and so on. The natural inclusion function is the simplest to obtain: all
occurrences of the real variables are replaced by their interval counterpart and all arith-
metic operations are evaluated using interval arithmetic. More sophisticated inclusion
functions such as the centered form, or the Taylor inclusion function may also be used
(see [6] for more details).

2.3 Validated Simulation
When dealing with validated computation, mathematical representation of an IVP-
ODE is as follows: {

ẏ(t) = f (t,y(t))
y(0) ∈ [y0]⊆ Rn.

(2.6)

We assume that f : R×Rn → Rn is continuous in t and globally Lipschitz in y, so
Equation (2.6) admits a unique solution.

The set (expressed as a box) [y0] of initial conditions is used to model some (bounded)
uncertainties. For a given initial condition y0 ∈ [y0], the solution at time t > 0 when

it exists is denoted y(t;y0). The goal, for validated (or rigorous) numerical integra-
tion methods, is then to compute the set of solutions of (2.6), i.e., the set of possible
solutions at time t given the initial condition in the set of initial conditions [y0]:

y(t; [y0]) = {y(t;y0) | y0 ∈ [y0]}. (2.7)

Validated numerical integration schemes, exploiting set-membership framework, aims
at producing the solution of the IVP-ODE that is the set defined in (2.7). It results in
the computation of an outer approximation of y(t; [y0]).

The use of set-membership computation for the problem described above makes
possible the design of an inclusion function for the computation of [y](t; [y0]) which
is an outer approximation of y(t; [y0]) defined in (2.7). To do so, a sequence of time
instants t1, . . . , tn such that t1 < · · · < tn and a sequences of boxes [y1], . . . , [yn] such
that y(ti+1; [yi]) ⊆ [yi+1], ∀i ∈ [0,n− 1] are computed. From [yi], computing the box
[yi+1] is a classical 2-step method (see [13]):

• Phase 1: compute an a priori enclosure [y(ξ)] of the set {y(tk;yi) | tk ∈ [ti, ti+1],yi ∈
[yi]} such that y(tk; [yi]) is guaranteed to exist,

• Phase 2: compute a tight enclosure of the solution [yi+1] at time ti+1.

Two main approaches can be used to compute the tight enclosure in Phase 2. The first
one, and the most used, is the Taylor method [5, 14]. The second one, more recently
studied, is the validated Runge-Kutta method [16]. In this paper, we focus on system
described by ODEs, but validated simulation can handle Constrained ODEs [16] or
Differential Algebraic Equations (DAEs) [19].

Chapter 3

Validated Nonlinear Model
Predictive-Control

Different techniques have been tried to validate a NMPC. First one is based on inter-
val analysis and uses the fact that system is discrete with an explicit control [9]. This
approach allows authors to compute a validated control for the inverse pendulum. Nev-
ertheless, an inverse pendulum is a continuous system, and then the results obtained are
theoretical. Moreover, the control variable is not often explicit in the system equations.
An interesting approach is based on the sensitivity analysis (or adjoint) [2, 10]. The
adjoint is used to compute the derivatives of dynamics w.r.t. control variable, and to
define a least square method in order to optimize the control law. The idea is interest-
ing, but the search is local while a global solution is desired. Recently, a paper [12]
detailed the common algorithm of Branch&Bound applied to NMPC. This method is in
theory the best one for the purpose, but the problems of complexity and combinatorial
avoid its use in a general case. We focus in this paper on general continuous differential
equations which implies the use of other techniques.

3.1 Constraints Satisfaction Differential Problem
Firstly, the NMPC problem consists in a differential equation as shown in Equation (2.1)
and recalled here:

ẏ(t) = f (t,y(t),u(t))

and at least the two constraints:

• y(t) ∈ Y,∀t ≥ 0 for the safety of the system,

• u(t) ∈ U,∀t ≥ 0 for the input limits (or saturation).

An interesting value for Y can be the viability kernel, i.e., the set of viable states, as
computed in [20]. In a simple interval notation, the system is described by the following
constraint differential equation: ẏ(t) = f (t,y(t),u(t))

y(t) ∈ [Y],∀t ≥ 0
u(t) ∈ [U],∀t ≥ 0

(3.1)

7

A validated simulation procedure starts with the interval enclosures [y0] (initial condi-
tion of the sliding horizon) and a given constant input [u], and produces two lists of
boxes:

• the list of discretization time steps. {[y0], . . . , [yend]};

• the list of a priori enclosures: {[ỹ0], . . . , [ỹend]}.

Based on these lists, two functions depending on time can be defined

R :
{

R 7→ IRn

t→ [y] (3.2)

with {y(t;y0) : ∀y0 ⊆ [y0]} ⊆ [y], and

R̃ :
{

IR 7→ IRn

[t, t]→ [ỹ] (3.3)

with {y(t;y0) : ∀y0 ∈ [y0]∧∀t ∈ [t, t]} ⊆ [ỹ].
These functions are abstracted, but guaranteed, solutions of (3.1). Therefore, the

process of validated simulation, mixed with constraint programming and abstraction
of time functions provides an efficient tool for the prediction of the system evolution,
w.r.t. a given control input. A contractor approach to solve the constraints on state,
as in [9], provides an outer approximation of the control, but does not prove that the
safety is fulfilled. An approach based on Branch&Prune is then a better choice to show
that the safety is respected.

3.2 Optimization Cost
We consider the general class of continuous cost function

J(y(t), û(.)) =
∫ t+Tp

t
F(ŷ(τ), û(τ))dτ (3.4)

with ŷ(t) the solution of (2.1) driven by the input û(t). Considering the quadratic form
F as given in (2.5), the cost is computed by

J(y(t), û(.))

=
∫ t+Tp

t

[
(ŷ(τ)−ys)

T W(ŷ(τ)−ys)+ û(τ)T Zû(τ)
]
dτ

=
∫ t+Tp

t

[
(ŷ(τ)−ys)

T W(ŷ(τ)−ys)
]
dτ

+
∫ t+Tp

t

[
û(τ)T Zû(τ)

]
dτ

(3.5)

We consider in NMPC approach that û(.) is piece-wise constant, then

J(y(t), û(.))

=
∫ t+Tp

t

[
(ŷ(τ)−ys)

T W(ŷ(τ)−ys)
]
dτ +

Np

∑
i=1

[
ûT

i Zûi
] (3.6)

By the help of validated simulation (see Section 3.1), ŷ(τ) can be enclosed by R(τ).
From [5], the interval integral is bounded according to the following lemma.

Lemma 1 If f is continuous in X = [a,b], then
∫ b

a f (x)dx ∈ (b−a)[f](X)

Hence, on a given control horizon Ti = [t +(i−1)Tc, t + iTc], the following enclo-
sures hold:

• ŷ(τ) ∈ R̃(Ti),∀τ ∈ Ti

•
∫ t+Tp

t
[
(ŷ(τ)−ys)

T W(ŷ(τ)−ys)
]
dτ

∈ Tc ∑
Np
i=1(R̃(Ti)−ys)

T W(R̃(Ti)−ys)

Finally, the cost can be bounded by:

J(y(t), û(.))

∈ Tc

Np

∑
i=1

(R̃(Ti)−ys)
T W(R̃(Ti)−ys)+

Np

∑
i=1

[
ûT

i Zûi
]

≤ ub(Tc

Np

∑
i=1

(R̃(Ti)−ys)
T W(R̃(Ti)−ys)+

Np

∑
i=1

[
ûT

i Zûi
]
)

(3.7)

where ub() denotes the upper bound.

3.3 Global Approach
Taking into account all the previous tools and remarks, the proposed approach is the
following:

• First, starting from the interval of input (it validates the input limitations by con-
struction), a filtering w.r.t. safety is done with a Branch&Prune algorithm;

• Second, an optimization is performed on the inputs, w.r.t. cost function, with a
Branch&Bound algorithm.

To counteract the effect of the past (accepting values in the filtering part at t that not
permit to find a valid control at instant t +Tc), a restart procedure is needed. Finally, to
avoid the combinatorial issue, a direct pruning is used in both branching algorithms. An
important remark is that, in this paper, we are focusing on the constraint satisfaction
(i.e., safety of the system), and we relax the optimization part by accepting a sub-
optimal solution, in order to reduce the complexity of the algorithm.

Chapter 4

ALGORITHMS

The algorithms used to solve NMPC are now given.

4.1 Closed loop
The first algorithm is the main closed-loop presented in Figure 2.1. In Algorithm 1,
Tf is the final time, used to terminate the loop. In a simulated experiment, Acquire
is not a measurement but the result of a simulation from a previous value y(t − Tc).
A noise can be added to test the robustness of the NMPC. The function Send makes
nothing in simulation, otherwise it will be a communication with the motor controller
for example.

4.2 NMPC
In Algorithm 2, the two step method used to solve NMPC is presented. Filtering and
Optimization are described in the following.

4.3 Filtering
The first part of our NMPC approach is the filtering which consists in computing inputs
such that constraints are respected with guarantee, given in Algorithm 3. It consists into
two nested loops to allow a restart if the filtering arrives in a deadlock (as explained in
Section 3.3). The Prune function performs a bisection but keeps only one side (direct

Algorithm 1 Closed loop
Require: Tc, Tf , t = 0, yc

while t < Tf do
Acquire y(t)
û1 = NMPC(y(t),Tc,yc)
Send û1
t = t +Tc

end while

10

Algorithm 2 NMPC procedure
Require: y(t),Tc,yc

u = Filtering(u,y(t),Tc)
û1 = Optimization(u,yc)

pruning), more details are given in the following section. Simulation is done with a val-
idated integration method, see Section 2.3. If a simulation has been already computed
at the considered time instant, it is possible to use a propagation as described in [21].
The function Test adjoint exploits the result of a simulation with sensitivity analysis.
Sensitivity has been used in a different manner in [2]. It consists to simultaneously
simulate an ODE described by

ṡ =
∂ f
∂y
× s+

∂ f
∂u

. (4.1)

to obtain the adjoint function s(t) = ∂y
∂u , which is the evolution of state w.r.t. control.

Using the adjoint function, Test adjoint() returns the Boolean formula:

((∃τ ∈ [t, t +Tc] :: 0 ∈ [s(τ)] AND [s(τ)] 6⊂ [−ε,ε])

OR (∃τ ∈ [t, t +Tc] : y(τ) 6⊂ [Y]))
(4.2)

The first part of this formula means that the control (an interval of control) leads to two
opposite directions, and the second one is the safety constraint.

For a given box a = (a1,a2, ...,an), the function left(a) - resp. right(a) - returns the
left part of a after a bisection (with a largest first heuristic for example) - resp. the right
part of a), such that a = left(a)∪ right(a).

4.4 Pruning
As explained before, an important choice has been made in our approach that consists
in a direct elimination in the branch algorithm. Indeed, branches are not kept to avoid
combinatorial problem. The pruning part of Algorithm 3 is highly important and de-
cides the characteristic of the obtained solution (optimal or sub-optimal). Two main
ways can be considered:

• The pruning can be done w.r.t. optimum by eliminating a branch which leads to
a completely invalid state or with a cost strictly greater than the other branch (it
is rare with interval methods)

• Or w.r.t. sub-optimum, for example, by eliminating a branch leading to a state
further from the set-point or partially outside the safety set, with a cost with an
upper bound greater than the other branch, etc.

We will see in the experimentation that it is interesting to compare different pruning
methods. The cost computation for the left and right branches can be easily parallelized
and computed using propagation (see [21]).

4.5 Optimization
After the filtering procedure, the vector of inputs is valid w.r.t. state constraints. We
can then perform a final optimization procedure to find a punctual u1.

Algorithm 3 Filtering
Require: y(t),Tc,yc,Np,Tol

while not success do
i = 1
while i≤ Np do

if w(ui)> Tol then
ui=Prune(left(ui) or right(ui))

end if
y(t +Tc) = Simulation(y(t),ui,Tc) - or Propagate(ui)
if y(t +Tc)⊂ yc then

success = true
i = i+1; y(t) = y(t +Tc); t = t +Tc

else
if Test adjoint() then

if w(ui)> Tol then
ui=Prune(left(ui) or right(ui))

else
success = false and break the loop

end if
else

success = true
i = i+1; y(t) = y(t +Tc); t = t +Tc

end if
end if

end while
end while

Algorithm 4 Optimization
Require: y(t),U,Tol

while w(u1)> Tol do
Ul = {left(u1),u2, . . . ,uNp}
Ur = {right(u1),u2, . . . ,uNp}
if J(y(t),Ul)> J(y(t),Ur) then

U =Ur
else

U =Ul
end if

end while
if lb(|u1|)> ub(|u1|) then

u1 = ub(u1)
else

u1 = lb(u1)
end if

Chapter 5

EXPERIMENTS ON
INVERTED PENDULUM

We implement the presented algorithms with the library DynIbex1. This tool is based
on Runge-Kutta methods and provides some differential constraint programming fa-
cilities. We focus our experiments on the impact of different pruning. As example,
we consider the classical inverted pendulum benchmark. It is defined by the dynamic
equation: {

ẏ1 = y2

ẏ2 = Ks× siny1−Kc×u× cosy1
(5.1)

where Ks and Kc are the parameters of the pendulum and u the input of the system,
which is the acceleration of the carrier. We assume that friction is negligible and
pendulum is a rigid body. Values of parameters (in seconds and radians) are taken
from [9], they are Ks = 109, Kc = 11.11, Np = 10, Tc = 0.01, Tp = 0.1, y1(0) = −π ,
y2(0) = 0, and Tf = 0.5. The safety constraints on state variables and inputs are:
y1 ∈ [−5π/2,π/2], y2 ∈ [−50,50], u ∈ [−100,100], and yc ∈ [−0.2,0.2].

Remark 1 With a tolerance on box width equal to 1 for the bisection, the input given
in [−100,100] and with Np = 10, a classical branch algorithm leads to 20010 branches.

Three experiments are made, with a pruning based on cost functional with Z = 0.5 and
W = 100 (Figures 5.1 and 5.2), and W = 1000 (Figures 5.3 and 5.4), and with a pruning
based on the following rules (Figures 5.5 and 5.6):

1. If y(τ,Ul) 6⊂ [Y],∀τ ∈ [t, t +Tp] then we keep Ur

2. If y(τ,Ur) 6⊂ [Y],∀τ ∈ [t, t +Tp] then we keep Ul

3. If |y(Tp,Ul)− yc|< |y(Tp,Ul)− yc| then we keep Ul , otherwise Ur.

The Hausdorff distance is used. The cost is computed only in the optimization process,
with W = 100. It leads to a strong gain of time computation (divided by two). With
different pruning functions, we are able to obtain the three possible ways to control the
inverted pendulum:

1http://perso.ensta-paristech.fr/˜chapoutot/dynibex/

13

• with a long but decreasing impulse to try to catch the equilibrium and stabilize
at this instant (see Figure 5.2)

• with a strong impulse and a bang bang controller (see Figure 5.4 and theory on
inverted pendulum)

• with a too strong impulse and a balancing control around the equilibrium (see
Figure 5.6)

Discussion

The presented approach succeed to control and stabilize a complex system. By tuning
the pruning procedure, three different solutions can be found. This capability is inter-
esting but also implies to have an a priori knowledge about the behavior of the system
dynamics.

Figure 5.1: State of system w.r.t. time with a weight of 100.

Figure 5.2: Inputs computed by NMPC with a weight of 100.

Figure 5.3: State of system w.r.t. time with a weight of 1000.

Figure 5.4: Inputs computed by NMPC with a weight of 1000.

Figure 5.5: State of system w.r.t. time with other prune.

Figure 5.6: Inputs computed by NMPC with other prune.

Chapter 6

Conclusion and future work

In this paper, we proposed a complete algorithm to solve NMPC in a validated way.
We focused on the safety and relaxed the optimization in order to counteract the com-
binatorial problem. Different techniques can be used to prune between branches. We
showed two different approaches, as well as the impact of weight in the cost function.

As future work, it is important to optimize the implementation of NMPC and com-
plete the experiments on other examples, such as distillation column, as DynIBEX is
able to consider differential algebraic equations.

16

Bibliography

[1] F. Allgower, R. Findeisen, Z. K. Nagy et al., “Nonlinear model predictive con-
trol: from theory to application,” Journal of the Chinese Institute of Chemical
Engineers, vol. 35, no. 3, pp. 299–315, 2004.

[2] A. Rauh, L. Senkel, J. Kersten, and H. Aschemann, “Reliable control of high-
temperature fuel cell systems using interval-based sliding mode techniques,” IMA
Journal of Mathematical Control and Information, 2014.

[3] R. Franz, M. Milam, and J. Hauser, “Applied receding horizon control of the
caltech ducted fan,” in Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301), vol. 5. IEEE, 2002, pp. 3735–3740.

[4] A. Jadbabaie, J. Yu, and J. Hauser, “Stabilizing receding horizon control of non-
linear systems: a control lyapunov function approach,” in American Control Con-
ference, 1999. Proceedings of the 1999, vol. 3. IEEE, 1999, pp. 1535–1539.

[5] R. E. Moore, Interval Analysis, ser. Series in Automatic Computation. Prentice
Hall, 1966.

[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis.
Springer, 2001.

[7] J. M. Bravo, T. Alamo, and E. F. Camacho, “Robust MPC of constrained discrete-
time nonlinear systems based on approximated reachable sets,” Automatica,
vol. 42, no. 10, pp. 1745–1751, Oct. 2006.

[8] D. Limon, T. Alamo, J. M. Bravo, E. F. Camacho, D. R. Ramirez, D. Muñoz de la
Peña, I. Alvarado, and M. R. Arahal, Interval Arithmetic in Robust Nonlinear
MPC. Springer, 2007, pp. 317–326.

[9] F. Lydoire and P. Poignet, “Nonlinear model predictive control via interval anal-
ysis,” in Conference on Decision and Control. IEEE, 2005, pp. 3771–3776.

[10] A. Rauh and H. Aschemann, “Interval-based sliding mode control and state
estimation for uncertain systems,” in Methods and Models in Automation and
Robotics. IEEE, 2012, pp. 595–600.

[11] L. Senkel, A. Rauh, and H. Aschemann, “Interval-based sliding mode observer
design for nonlinear systems with bounded measurement and parameter uncer-
tainty,” in Methods and Models in Automation and Robotics. IEEE, 2013, pp.
818–823.

17

[12] B. J. Kubica, “Preliminary experiments with an interval model-predictive-control
solver,” in Parallel Processing and Applied Mathematics. Springer, 2016, pp.
464–473.

[13] R. J. Lohner, “Enclosing the Solutions of Ordinary Initial and Boundary Value
Problems,” Computer Arithmetic, pp. 255–286, 1987.

[14] N. S. Nedialkov, K. Jackson, and G. Corliss, “Validated solutions of initial value
problems for ordinary differential equations,” Appl. Math. and Comp., vol. 105,
no. 1, pp. 21 – 68, 1999.

[15] O. Bouissou and M. Martel, “GRKLib: a Guaranteed Runge-Kutta Library,” in
Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.

[16] J. Alexandre dit Sandretto and A. Chapoutot, “Validated explicit and implicit
Runge-Kutta methods,” Reliable Computing, vol. 22, pp. 79–103, 2016.

[17] J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier, “Formal verification of
robotic behaviors in presence of bounded uncertainties,” in International Confer-
ence on Robotic Computing. IEEE, 2017.

[18] H. Chen and F. Allgower, “A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205
– 1217, 1998.

[19] J. Alexandre dit Sandretto and A. Chapoutot, “Validated Simulation of Differen-
tial Algebraic Equations with Runge-Kutta Methods,” Reliable Computing elec-
tronic edition, vol. 22, 2016.

[20] D. Monnet, L. Jaulin, J. Ninin, J. Alexandre dit Sandretto, and A. Chapoutot,
“Viability kernel computation based on interval methods,” in Small Workshop on
Interval Methods, 2015.

[21] J. Alexandre dit Sandretto and A. Chapoutot, “Contraction, propagation and bi-
section on a validated simulation of ODE,” 2016.

