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Introduction

General introduction

Network and link analysis is a highly studied field, subject of much recent work in various areas of science: applied mathematics, computer science, social science, physics, chemistry, pattern recognition, applied statistics, data mining and machine learning, to name a few [START_REF] Barabasi | Network science[END_REF][START_REF] Chung | Complex Graphs and Networks[END_REF][START_REF] Estrada | The structure of complex networks[END_REF][START_REF] Kolaczyk | Statistical analysis of network data: methods and models[END_REF][START_REF] Lewis | Network science: theory and applications[END_REF][START_REF] Newman | Networks: an introduction[END_REF][START_REF] Silva | Machine learning in complex networks[END_REF][START_REF] Thelwall | Link analysis: An information science approach[END_REF][START_REF] Wasserman | Social network analysis: methods and applications[END_REF]. Within this context, one key issue is the proper quantification of the structural relatedness between nodes of a network by taking both direct and indirect connections into account [START_REF] Lü | Link prediction in complex networks: a survey[END_REF]. This problem is faced in all disciplines involving networks in various types of problems such as link prediction, community detection, node classification, and network visualization to name a few popular ones.

The main contribution of this paper is in presenting in detail the bag-ofpaths (BoP) framework and defining relatedness as well as distance measures between nodes from this framework. The BoP builds on and extends previous work dedicated to the exploratory analysis of network data [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF][START_REF] Kivimäki | Two betweenness centrality measures based on randomized shortest paths[END_REF][START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF]. The introduced distances are constructed to capture the global structure of the graph by using paths on the graph as a building block. In addition to relatedness/distance measures, various other quantities of interest can be derived within the probabilistic BoP framework in a principled way, such as betweenness measures quantifying to which extent a node is in between two sets of nodes [START_REF] Lebichot | Semi-supervised classification through the bag-of-paths group betweenness[END_REF], extensions of the modularity criterion for, e.g., community detection [START_REF] Devooght | Random walks based modularity: Application to semi-supervised learning[END_REF], measures capturing the criticality of the nodes or robustness of the network [START_REF] Lebichot | A bag-of-paths node criticality measure[END_REF], graph cuts based on BoP probabilities, and so on.

The bag-of-paths framework

More precisely, we assume given a weighted directed, strongly connected, graph or network G where a cost is associated to each edge. Within this context, we consider a bag containing all the possible (either absorbing or non-absorbing -see later for details) paths1 between pairs of nodes in G. In a first step, following [START_REF] Akamatsu | Cyclic flows, markov process and stochastic traffic assignment[END_REF][START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF][START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF], a probability distribution on this countable set of paths can be defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Gibbs-Boltzmann distribution, depending on a temperature parameter T , on the set of paths such that long (high-cost) paths have a low probability of being sampled from the bag, while short (low-cost) paths have a high probability of being sampled.

In this probabilistic framework, the BoP probabilities, P(s = i, e = j), that a sampled path has node i as its starting node and node j as its ending node can easily be computed in closed form by a simple n × n matrix inversion, where n is the number of nodes in the graph. These BoP probabilities play a crucial role in our framework for that they capture the relatedness (in terms of accessibility) between each pair of nodes (i, j): the BoP probability will be high when the two nodes are connected by many, short, paths. In summary, the BoP framework has several interesting properties:

• It has a clear, intuitive, interpretation.

• The temperature parameter T allows to monitor randomness by controlling the balance between exploitation and exploration.

• The introduction of independent costs results in a large degree of customization of the model, according to the problem requirements: some paths could be penalized because they visit undesirable nodes having adverse features.

• The framework is rich. Many useful quantities of interest can be defined according to the BoP probabilistic framework: similarity and distance measures, betweenness measures, etc. This is discussed extensively in the sequel.

• The quantities of interest are easy to compute.

It, however, also suffers from a drawback: the different quantities are computed by solving a system of linear equations, or by matrix inversion. More precisely, the distance between a particular node and all the other nodes can be computed by solving a system of n linear equations, while all pairwise distances can be computed at once by inverting an n × n square matrix. This results in O(n 3 ) computational complexity. Even more importantly, the matrix of distances necessitates O(n 2 ) storage, although this can be alleviated by using, e.g., incomplete matrix factorization techniques.

This means that the different quantities can only be computed reasonably on small to medium size graphs (containing a few tens of thousand nodes). However, in specific applications like classification or extraction of top eigenvectors, we can avoid computing explicitly the matrix inversion (see PageRank and the power method [START_REF] Langville | Google's PageRank and Beyond: The Science of Search Engine Rankings[END_REF], or large scale semi-supervised classification on graphs [START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF]). In addition, it is also possible to restrict the set of paths to "efficient paths", that is, paths that do not backtrack (always getting further from the starting node), and compute efficiently the distances from the starting node by a recurrence formula, as proposed in transportation theory [START_REF] Dial | A probabilistic multipath assignment model that obviates path enumeration[END_REF].

Defining node distances from the bag-of-paths framework

The paper first introduces the BoP framework in detail and derives the BoP probabilities from this framework. Thereafter, two families of distances between nodes are defined, and are coined the surprisal distance and the potential distance. Both distance measures satisfy the triangle inequality, and thus satisfy the axioms of a metric. Moreover, the potential distance has the interesting property of generalizing the shortest-path and the commute-cost distances by computing an intermediate distance, depending on a temperature parameter T . When T is close to zero, the distance reduces to the standard shortestpath distance (emphasizing exploitation) while for T → ∞, it reduces to the commute-cost distance (focusing on exploration). The commute-cost distance is closely related to the resistance distance and the commute-time distance [START_REF] Fouss | Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation[END_REF][START_REF] Klein | Resistance distance[END_REF], as the three functions are proportional to each other [START_REF] Chandra | The electrical resistance of a graph captures its commute and cover times[END_REF][START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF]. This is of primary interest as it has been shown that both the shortest-path distance and the resistance distance suffer from some significant flaws. While relevant in many applications, the shortest-path distance cannot always be considered as a good candidate distance in network data. Indeed, this measure only depends on the shortest paths and thus does not integrate the "degree of connectivity" between the two nodes. In many applications, for a constant shortest-path distance, nodes connected by many indirect paths should be considered as "closer" than nodes connected by only a few paths. This is especially relevant when considering relatedness of nodes based on communication, movement, etc, in a network which do not always happen optimally, nor completely randomly. Moreover, the shortest path distance suffers from another flaw: when computing the distance from a given node, the shortest-path distance usually provides many ties, that is, many nodes with the same distance, especially in weighted, undirected, graphs. Breaking these ties can be done by considering other properties, like the amount of connectivity.

While the shortest-path distance fails to take the whole structure of the graph into account, it has also been shown that the resistance and the commutetime distances converge to a useless value, only depending on the degrees of the two nodes, when the size of the graph increases (the random walker is getting "lost in space" because the Markov chain mixes too fast; see [START_REF] Luxburg | Getting lost in space: large sample analysis of the commute distance[END_REF][START_REF] Luxburg | Hitting and commute times in large random neighborhood graphs[END_REF]). Moreover, the resistance distance, which is proportional to the commute-time distance, assumes completely random movements or communication in the network, which is also unrealistic.

In short, shortest paths do not integrate the amount of connectivity between the two nodes whereas random walks quickly loose the notion of proximity to the initial node when the graph becomes larger [START_REF] Luxburg | Getting lost in space: large sample analysis of the commute distance[END_REF][START_REF] Luxburg | Hitting and commute times in large random neighborhood graphs[END_REF].

There is therefore a need for introducing distances interpolating between the shortest-path distance and the resistance distance, thus hopefully avoiding the drawbacks appearing at the ends of the spectrum. These quantities capture the notion of relative accessibility between nodes, a combination of both proximity in the network and amount of connectivity (see the next Section 2 for a short survey).

Furthermore, and interestingly, a simple local recurrence expression, extending the Bellman-Ford formula for computing the potential distances from one node of interest to all the other nodes is also derived. It relies on the use of the so-called soft minimum operator [START_REF] Cook | Basic properties of the soft maximum[END_REF] instead of the usual minimum. Finally, our experiments show that these distance families provide competitive results in semi-supervised learning.

Contributions and organization of the paper

Thus, in summary, this work has several contributions:

• It introduces a well-founded bag-of-paths framework capturing the global structure of the graph by using network paths as a building block.

• It is shown that the bag-of-hitting-paths probabilities can easily be computed in closed form. This fundamental quantity defines an intuitive relatedness measure between nodes.

• It defines two families of distances from the bag-of-paths probabilities, capturing the structural dissimilarity between the nodes in terms of relative accessibility. The distances between all pairs of nodes can be computed conveniently by inverting an n × n matrix.

• It is shown that one of these distance measures has some interesting properties; for instance it is cutpoint additive and it interpolates between the shortest-path distance and the resistance distance (up to a scaling factor).

• The framework is extended to the case where non-uniform priors are defined on the nodes.

• We prove that this distance generalizes the Bellman-Ford formula computing shortest-path distances, by simply replacing the min operator by the softmin operator.

• The distances obtain promising empirical results in semi-supervised classification tasks when compared to other, kernel-based, methods.

Section 2 develops related work and introduces the necessary background and notation. Section 3 introduces the BoP framework, defines BoP probabilities and shows how it can be computed in closed form. Section 4 extends the framework to hitting, or absorbing, paths. In Section 5, the two families of distances as well as their properties are derived. Section 6 generalizes the framework to non-uniform priors on the nodes. An experimental study of the BoP framework with application to semi-supervised classification is presented in Section 7. Concluding remarks and extensions are discussed in Section 8.

Related work, background, and notation

Related work

This work is related to similarity measures on graphs for which some background is presented in this section, largely inspired by the surveys appearing in [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF][START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF][START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF][START_REF] Yen | Graph nodes clustering with the sigmoid commute-time kernel: A comprehensive study[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF]. The presented BoP framework also has applications in semi-supervised classification, on which our experimental section will focus on in Section 7. A short survey related to this problem can be found in subsection 7.1.

Similarity measures on a graph determine to what extent two nodes in a graph resemble each other, either based on the information contained in the node attributes or based on the graph structure. In this work, only measures based on the graph structure will be investigated. Structural similarity measures can be categorized into two groups: local and global [START_REF] Lü | Link prediction in complex networks: a survey[END_REF]. On the one hand, local similarity measures between nodes consider the direct links from a node to the other nodes as features and use these features in various way to provide similarities. Examples include the cosine coefficient [START_REF] Dunham | Data Mining: Introductory and Advanced Topics[END_REF] and the standard correlation [START_REF] Wasserman | Social network analysis: methods and applications[END_REF]. On the other hand, global similarity measures consider the whole graph structure to compute similarities.

Certainly the most popular and useful distance between nodes of a graph is the shortest-path distance. However, as discussed in the introduction, it is not always relevant for quantifying the similarity of nodes in a network.

Alternatively, similarity measures can be based on random walk models on the graph, seen as a Markov chain. As an example, the commute-time (CT) kernel has been introduced in [START_REF] Fouss | Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation[END_REF][START_REF] Saerens | The principal components analysis of a graph, and its relationships to spectral clustering[END_REF] as the Moore-Penrose pseudoinverse, L + , of the Laplacian matrix. The CT kernel was inspired by the work of Klein & Randic [START_REF] Klein | Resistance distance[END_REF] and Chandra et al. [START_REF] Chandra | The electrical resistance of a graph captures its commute and cover times[END_REF]. More precisely, Klein & Randic [START_REF] Klein | Resistance distance[END_REF] suggested to use the effective resistance between two nodes as a meaningful distance measure, called the resistance distance. Chandra et al. [START_REF] Chandra | The electrical resistance of a graph captures its commute and cover times[END_REF] then showed that the resistance distance equals the commute-time distance (but also the commute-cost distance), up to a constant factor. The CT distance is defined as the average number of steps that a random walker, starting in a given node, will take before entering another node for the first time (this is called the average first-passage time [START_REF] Norris | Markov chains[END_REF]) and going back to the initial node.

It was then shown [START_REF] Saerens | The principal components analysis of a graph, and its relationships to spectral clustering[END_REF] that the elements of L + are inner products of the node vectors in the Euclidean space where these node vectors are exactly separated by the square root of the CT distance. The square root of the CT distance is therein called the Euclidean CT distance. The relationships between the Laplacian matrix and the commute-cost distance (the expected cost (and not steps as for the CT) of reaching a destination node from a starting node and going back to the starting node) were studied in [START_REF] Fouss | Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation[END_REF]. Finally, an electrical interpretation of the elements of L + can be found in [START_REF] Yen | Graph nodes clustering with the sigmoid commute-time kernel: A comprehensive study[END_REF]. However, we saw in the introduction that these random-walk based distances suffer from some drawbacks (e.g., the so-called "lost in space" problem, [START_REF] Luxburg | Getting lost in space: large sample analysis of the commute distance[END_REF][START_REF] Luxburg | Hitting and commute times in large random neighborhood graphs[END_REF]).

Sarkar et al. [START_REF] Sarkar | A tractable approach to finding closest truncated-commutetime neighbors in large graphs[END_REF] suggested a fast method for computing truncated commutetime neighbors. At the same time, several authors defined an embedding that preserves the commute-time distance with applications in various fields such as clustering [START_REF] Yen | Clustering using a random-walk based distance measure[END_REF], collaborative filtering [START_REF] Fouss | Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation[END_REF][START_REF] Brand | A random walks perspective on maximizing satisfaction and profit[END_REF], dimensionality reduction of manifolds [START_REF] Ham | A kernel view of the dimensionality reduction of manifolds[END_REF] and image segmentation [START_REF] Qiu | Image segmentation using commute times[END_REF].

Instead of taking the pseudoinverse of the Laplacian matrix, a simple regularization leads to a kernel called the regularized commute-time kernel [START_REF] Ito | Application of kernels to link analysis[END_REF], with a nice interpretation in terms of the matrix-forest theorem [START_REF] Chebotarev | The matrix-forest theorem and measuring relations in small social groups[END_REF][START_REF] Chebotarev | On proximity measures for graph vertices[END_REF]. Ito et al. [START_REF] Ito | Application of kernels to link analysis[END_REF], further propose the modified regularized Laplacian kernel by introducing another parameter controlling the importance of nodes. This modified regularized Laplacian kernel is also closely related to a graph regularization framework introduced by Zhou & Scholkopf in [START_REF] Zhou | Learning from labeled and unlabeled data using random walks[END_REF], extended to directed graphs in [START_REF] Zhou | Learning from labeled and unlabeled data on a directed graph[END_REF].

The adjacency-based exponential diffusion kernel, a member of the more general exponential diffusion kernel family introduced by Kondor & Lafferty [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF] and investigated in [START_REF] Fouss | An experimental investigation of graph kernels on a collaborative recommendation task[END_REF][START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF], as well as the Neumann diffusion kernel introduced in [START_REF] Scholkopf | Learning with kernels[END_REF], are both based on power series of the adjacency matrix. A meaningful alternative to the adjacency-based exponential diffusion kernel, called the Laplacian exponential diffusion kernel [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF][START_REF] Smola | Kernels and regularization on graphs[END_REF], is a diffusion model that substitutes the adjacency matrix with minus the Laplacian matrix, and is closely related to the heat kernel [START_REF] Chung | Spectral graph theory[END_REF]. It is also a member of the more general exponential diffusion kernel family, computing the matrix exponential of a matrix reflecting the local structure of the graph (e.g., the adjacency matrix or the Laplacian matrix, see [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF][START_REF] Smola | Kernels and regularization on graphs[END_REF] and [START_REF] Fouss | An experimental investigation of graph kernels on a collaborative recommendation task[END_REF][START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF] for empirical comparisons). Note that the adjacency-based exponential diffusion kernel is also known as the communicability measure in the physics community [START_REF] Estrada | Communicability in complex networks[END_REF][START_REF] Estrada | The structure of complex networks[END_REF].

Random walk with restart kernels, inspired by the PageRank algorithm and adapted to provide relative similarities between nodes, appeared relatively recently in [START_REF] Pucci | A random-walk based scoring algorithm applied to recommender engines[END_REF][START_REF] Pan | Automatic multimedia cross-modal correlation discovery[END_REF][START_REF] Tong | Random walk with restart: fast solutions and applications[END_REF]. Nadler et al. [START_REF] Nadler | Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators[END_REF][START_REF] Nadler | Diffusion maps, spectral clustering and reaction coordinate of dynamical systems[END_REF] and Pons et al. [START_REF] Pons | Computing communities in large networks using random walks[END_REF][START_REF] Pons | Computing communities in large networks using random walks[END_REF] suggested a distance measure between nodes of a graph based on a diffusion process, called the diffusion distance. The Markov diffusion kernel has been derived from this distance measure in [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF] and [START_REF] Yen | A link analysis extension of correspondence analysis for mining relational databases[END_REF]. The natural embedding induced by the diffusion distance was called diffusion map by Nadler et al. [START_REF] Nadler | Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators[END_REF][START_REF] Nadler | Diffusion maps, spectral clustering and reaction coordinate of dynamical systems[END_REF] and is related to correspondence analysis [START_REF] Yen | A link analysis extension of correspondence analysis for mining relational databases[END_REF].

More recently, Mantrach et al. [START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF], inspired by [START_REF] Akamatsu | Cyclic flows, markov process and stochastic traffic assignment[END_REF][START_REF] Bell | Alternatives to dial's logit assignment algorithm[END_REF] and subsequently by [START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF], introduced a link-based covariance measure between nodes of a weighted directed graph, called the sum-over-paths covariance. They consider, in a similar manner as in this paper, a Gibbs-Boltzmann distribution on the set of paths such that high-cost paths occur with low probability whereas low-cost paths occur with a high probability. Their main goal was to define a well-founded covariance/correlation measure between nodes based on the following property: two nodes are considered as highly correlated if they often co-occur together on the same -preferably short -paths. In other words, two nodes obtain a high correlation index when they are likely to appear on the same walk. Note that a related co-betweenness measure between nodes has been introduced in [START_REF] Kolaczyk | Group betweenness and co-betweenness: inter-related notions of coalition centrality[END_REF]. The present work re-interprets the idea introduced in [START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF] from a bag-ofpaths point of view, extends the results, and focuses on the study of accessibility measures between pairs of nodes, integrating both proximity in the graph and high connectivity between the nodes. Indeed, as both the shortest-path distance and the resistance distance show some issues, there were several attempts to define families of distances interpolating between the shortest-path and more "global" distances, such as the resistance distance. In this context, inspired by [START_REF] Akamatsu | Cyclic flows, markov process and stochastic traffic assignment[END_REF][START_REF] Bell | Alternatives to dial's logit assignment algorithm[END_REF][START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF], a parametrized family of dissimilarity measures, called the randomized shortest-path (RSP) dissimilarity, reducing to the shortest-path distance at one end of the parameter range, and to the resistance distance (up to a constant scaling factor) at the other end, was proposed in [START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF] and extended in [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF], for the efficient computation of the entire matrix of dissimilarities. The RSP dissimilarity between two nodes i, j is simply the expected cost for visiting a node j for the first time when starting from a node i, under the assumption that paths between i and j are chosen thanks to a Gibbs-Boltzmann distribution. The calculation of this quantity requires the computation of a forward and a backward variable, as in hidden Markov models [START_REF] García-Díez | A sum-over-paths extension of edit distances accounting for all sequence alignments[END_REF]. Similar ideas appeared at the same time in [START_REF] Chebotarev | A class of graph-geodetic distances generalizing the shortest-path and the resistance distances[END_REF][START_REF] Chebotarev | The walk distances in graphs[END_REF][START_REF] Chebotarev | Studying new classes of graph metrics[END_REF], based on considering the co-occurences of nodes in forests of a graph or walks on the graph, and in [START_REF] Herbster | Predicting the labelling of a graph via minimum pseminorm interpolation[END_REF][START_REF] Alamgir | Phase transition in the family of p-resistances[END_REF], based on a generalization of the effective resistance in electric circuits. These two last families are metrics while the RSP dissimilarity does not satisfy the triangle inequality. The potential and the surprisal distances introduced in this work fall under the same catalogue of distance families. See also [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF][START_REF] Guex | Flow-based dissimilarities: shortest path, commute time, max-flow and free energy[END_REF][START_REF] Guex | Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets[END_REF] for other, closely related, formulations of families of distances based on free energy and network flows.

Some background and notation

We now introduce the necessary notation for the bag-of-paths (BoP) framework. First, note that, in the sequel, column vectors are written in bold lowercase while matrices are in bold uppercase.

Consider a weighted directed graph or network, G = (V, E), assumed strongly connected, with a set V of n nodes (or vertices) and a set E of edges (or arcs, links). An edge between node i and node j is denoted by i → j or (i, j). Furthermore, it is assumed that we are given an adjacency matrix A with elements a ij ≥ 0 quantifying in some way the affinity between node i and node j. When a ij > 0, node i and node j are said to be adjacent, that is, connected by an edge. Conversely, a ij = 0 means that i and j are not connected. We further assume that there are no self-loops, that is, the a ii = 0.

From this adjacency matrix, a standard random walk on the graph is defined in the usual way. The transition probabilities associated to each node are simply proportional to the affinities and then normalized:

p ref ij = a ij n j =1 a ij (1) 
Note that these transition probabilities will be used as reference probabilities later; hence the superscript "ref". The matrix P ref , containing elements p ref ij , is stochastic and called the transition matrix of the natural or reference random walk on the graph.

In addition, we assume that a transition cost, c ij ≥ 0, is associated to each edge i → j of the graph G. If there is no edge between i and j, the cost is assumed to take an infinite value, c ij = ∞. For consistency, c ij = ∞ if and only if a ij = 0. The cost matrix C is the matrix containing the immediate costs c ij as elements. We will assume that at least one element of C is strictly positive. A path ℘ is a finite sequence of jumps to adjacent nodes on G (including loops), initiated from a starting node s = i, and stopping in an ending node e = j. The total cost of a path ℘ is simply the sum of the local costs c ij along ℘, while the length of a path is the number of steps, or jumps, needed for following that path.

The costs are set independently of the adjacency matrix; they quantify the cost of a transition, depending on the problem at hand. They can, e.g., be defined according to some properties, or features, of the nodes or the edges in order to bias the probability distribution of choosing a path. In the case of a social network, we may, for instance, want to bias the paths in favor of domain experts. In that case, the cost of jumping to a node could be set proportional to the degree of expertise of the corresponding person. Therefore, walks visiting a large proportion of persons with a low degree of expertise would be penalized versus walks visiting persons with a high degree. Another example aims to favor hub-avoiding paths penalizing paths visiting hubs. Then, the cost can be simply set to the degree of the node. If there are no natural costs associated to edges and there is no reason to bias the paths with respect to some features, costs are simply set equal to 1 (paths are penalized by their length) or set to c ij = 1/a ij (the elements of the adjacency matrix can then be considered as conductances and the costs as resistances).

The basic bag-of-paths framework

Recall that the bag-of-paths (BoP) model will be based on the probability that a path drawn from a "bag of paths" has nodes i and j as its starting and ending nodes, respectively. This probability distribution then serves as a building block for various extensions.

In this section, the bag-of-paths framework is introduced by first considering bounded paths and then paths of arbitrary length. For simplicity, we discuss non-hitting (or non-absorbing) paths first and then develop the more interesting bag-of-hitting-paths framework in the next section 4.

Sampling bounded paths according to a Gibbs-Boltzmann distribution

Following [START_REF] Akamatsu | Cyclic flows, markov process and stochastic traffic assignment[END_REF][START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF][START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF], the present section describes how the probability distribution on the set of paths is assigned. In order to make the presentation more rigorous, we will first have to consider paths of bounded length t. Later, we will extend the results for paths with arbitrary length. Let us first choose two nodes, a starting node i and an ending node j and define the set of paths (including cycles) of length t from i to j as P ij (t) = {℘ ij (t)}. Thus, P ij (t) contains all the paths ℘ ij (t) allowing to reach node j from node i in exactly t steps.

Let us further denote as c(℘ ij (t)) the total cost associated to path ℘ ij (t). Here, we assume that ℘ ij (t) is a valid path from node i to node j, that is, it consists of a sequence of nodes (k

0 = i) → k 1 → k 2 → • • • → (k t = j) where c kτ-1kτ < ∞ for all τ ∈ [1, t].
As already mentioned, we assume that the total cost associated to a path is additive, i.e. c(℘ ij (t)) = t τ =1 c kτ-1kτ . Then, let us define the set of all t-length paths through the graph between all pairs of nodes as P(t) = ∪ n i,j=1 P ij (t). Finally, the set of all bounded paths up to length t is denoted by P(≤ t) = ∪ t τ =0 P(τ ). Note that, by convention, for i = j and t = 0, zero-length paths are allowed with zero associated cost. Other types of paths will be introduced later; a summary of the mathematical notation appears in Table 1. Now, we consider a probability distribution on this finite set P(≤ t), representing the probability of drawing a path ℘ ∈ P(≤ t) from a bag containing all paths up to length t. We search for the distribution of paths P(℘) minimizing the expected total cost-to-go, E[c(℘)], among all the distributions having a fixed relative entropy J 0 with respect to a reference distribution, here the natural random walk on the graph (see Equation ( 1)). This choice naturally defines a probability distribution on the set of paths of maximal length t such that high-cost paths occur with a low probability while short paths occur with a high probability. In other words, we are seeking for path probabilities, P(℘), ℘ ∈ P(≤ t), minimizing the expected total cost subject to a constant relative entropy constraint2 : minimize

{P(℘)}, ℘∈P(≤t) ℘∈P(≤t) P(℘)c(℘) subject to ℘∈P(≤t) P(℘) log(P(℘)/ Pref (℘)) = J 0 ℘∈P(≤t) P(℘) = 1 (2) 
where J 0 > 0 is provided a priori by the user, according to the desired degree of randomness and Pref (℘) represents the probability of following the path ℘ when walking according to the reference transition probabilities p ref ij of the natural random walk on G (see Equation ( 1)).

More precisely, we define πref (℘) =

t τ =1 p ref kτ-1kτ
, that is, the product of the transition probabilities along path ℘ -the likelihood of the path when the starting and ending nodes are known. Now, if we assume a uniform (non-uniform priors are considered in Section 4), independent, a priori probability, 1/n, for choosing the starting and the ending node, then we set Pref (℘) = πref (℘)/ ℘ ∈P(≤t) πref (℘ ), which ensures that the reference probability is properly normalized 3 .

The problem (2) can be solved by introducing the following Lagrange function

L = ℘∈P(≤t) P(℘)c(℘)+λ   ℘∈P(≤t) P(℘) log P(℘) Pref (℘) -J 0   +µ   ℘∈P(≤t) P(℘) -1  
(3) and optimizing over the set of path probabilities {P(℘)} ℘∈P(≤t) . As could be expected (the problem is similar to a maximum entropy problem [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Kapur | Entropy optimization principles with applications[END_REF]), set-ting its partial derivative with respect to P(℘) to zero and solving the equation yields a Gibbs-Boltzmann probability distribution on the set of paths up to length t [START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF],

P(℘) = Pref (℘) exp[-θc(℘)] ℘ ∈P(≤t) Pref (℘ ) exp[-θc(℘ )] (4) 
where the Lagrange parameter λ plays the role of a temperature T and θ = 1/λ is the inverse temperature. Thus, as desired, short paths ℘ (having a low cost c(℘)) are favored in that they have a large probability of being followed. Moreover, from Equation (4), we clearly observe that when θ → 0, the path probabilities reduce to the probabilities generated by the natural random walk on the graph (characterized by the transition probabilities p ref ij as defined in Equation ( 1)). In this case, J 0 → 0 as well. But when θ is large, the probability distribution defined by Equation ( 4) is biased towards low-cost paths (the most likely paths are the shortest ones).

Note that, in the sequel, it will be assumed that the user provides the value of the parameter θ instead of J 0 , with θ > 0. Also notice that the model could be derived thanks to a maximum entropy principle instead [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Kapur | Entropy optimization principles with applications[END_REF].

The bag-of-paths probabilities

Let us now derive an important quantity from Equation ( 4), namely the probability of drawing a path starting in some node s = i and ending in some other node e = j from the bag of paths. These quantities will be called the (bounded) bag-of-paths (BoP) probabilities. For paths up to length t this is provided by

P (≤t) (s = i, e = j) = ℘∈Pij (≤t) Pref (℘) exp[-θc(℘)] ℘ ∈P(≤t) Pref (℘ ) exp[-θc(℘ )] = ℘∈Pij (≤t) πref (℘) exp[-θc(℘)] ℘ ∈P(≤t) πref (℘ ) exp[-θc(℘ )] (5) 
where we recall that P ij (≤ t) is the set of paths up to length t connecting node i to node j. From (4), this quantity simply computes the probability mass of drawing a path connecting i to j. The paths in P ij (≤ t) can contain loops and could visit nodes i and j several times during the trajectory4 .

Computation of the bag-of-paths probabilities for bounded paths

The analytical expression allowing to compute the quantity defined by Equation (5) will be derived in this subsection. Then, in the following subsection, its ℘ a particular path visiting nodes k0, k1, . . . , kt P(℘) the probability of drawing path ℘ Pij(t) set of paths connecting i to j in exactly t steps Pij(≤ t) set of paths connecting i to j in at most t steps

P(≤ t) = ∪ n i,j=1 Pij(≤ t)
set of all paths of at most t steps Pij set of paths of arbitrary length connecting i to j P = ∪ n i,j=1 Pij set of all paths of arbitrary length

P ref transition probability matrix with elements p ref ij C cost matrix with elements cij πref (℘) = t τ =1 p ref k τ -1 kτ likelihood of following path ℘ according to p ref ij Pref (℘) = πref (℘)/ ℘ ∈P πref (℘ ) normalized likelihood of following path ℘ c(℘)
total cumulated cost when following path ℘ Table 1: Summary of notation for the enumeration of paths in a graph G.

definition will be extended to the set of paths of arbitrary length (unbounded paths) by taking the limit t → ∞.

We start from the cost matrix, C, from which we build a new matrix, W, as

W = P ref • exp[-θC] = exp -θC + log P ref (6) 
where P ref is the transition probability matrix5 of the natural random walk on the graph containing the elements p ref ij , and the logarithm/exponential functions are taken elementwise. Moreover, • is the elementwise (Hadamard) matrix product. Note that the matrix W is not symmetric in general.

Then, let us first compute the numerator of Equation [START_REF] Belkin | Tikhonov regularization and semi-supervised learning on large graphs[END_REF]. Because all the quantities in the exponential of Equation ( 5) are summed along a path, log πref (℘) =

t τ =1 log p ref kτ-1kτ and c(℘) = t τ =1 c kτ-1kτ
where each link k τ -1 → k τ lies on path ℘, we immediately observe that element i, j of the matrix

W τ (W to the power τ ) is [W τ ] ij = ℘∈Pij (τ ) exp[-θc(℘) + log πref (℘)]
where P ij (τ ) is the set of paths connecting the starting node i to the ending node j in exactly τ steps.

Consequently, the sum in the numerator of Equation ( 5) is

℘∈Pij (≤t) πref (℘) exp[-θc(℘)] = t τ =0 ℘∈Pij (τ ) πref (℘) exp[-θc(℘)] = t τ =0 [W τ ] ij = t τ =0 W τ ij = e T i t τ =0 W τ e j (7) 
where e i is a column vector full of 0's, except in position i where it contains a 1. By convention, at time step 0, the random walker appears in node i with probability one and a zero cost: W 0 = I. This means that zero-length paths (without any transition step) are allowed in P ij (≤ t). If, on the contrary, we want to dismiss zero-length paths, we could redefine P ij (≤ t) as the set of paths of length at least one (the summation starts at t = 1 instead of t = 0) and proceed in the same manner. This previous Equation ( 7) allows to derive the analytical form of the probability of drawing a bounded path (up to length t) starting in node i and ending in j. Indeed, replacing Equation [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF] in Equation ( 5), and recalling that P(≤ t) = ∪ n i,j=1 P ij (≤ t), we obtain

P (≤t) (s = i, e = j) = e T i t τ =0 W τ e j n i,j=1 e T i t τ =0 W τ e j = e T i t τ =0 W τ e j e T t τ =0 W τ e (8) 
where e = [1, 1, . . . , 1] T is a vector of 1's. But, of course, there is no a priori reason to choose a particular path length; we will therefore consider paths of arbitrary length in the next section.

Proceeding with paths of arbitrary length

Let us now consider the problem of computing the probability of drawing a path starting in i and ending in j from a bag containing paths of arbitrary length, and therefore usually containing an infinite, but countable, number of paths. Following the definition in the bounded case (Equation ( 5)), this quantity will be denoted as and defined by P(s = i, e = j) = lim t→∞

P (≤t) (s = i, e = j) = ℘∈Pij πref (℘) exp[-θc(℘)] ℘ ∈P πref (℘ ) exp[-θc(℘ )] (9)
where P ij is the set of paths (of all lengths) connecting i to j in the graph and the denominator is called the partition function of the bag-of-paths system,

Z = ℘∈P πref (℘) exp[-θc(℘)] (10) 
As already stated before, the quantity P(s = i, e = j) in Equation ( 9) will be called the bag-of-paths probability of drawing a path of arbitrary length starting from node i and ending in node j. This key quantity captures a notion of accessibility (and thus relatedness or similarity in terms of accessibility), between nodes of G. From Equation ( 9), we observe that two nodes are considered as highly accessible (high probability of sampling them) when they are connected by many, preferably low-cost paths. The quantity therefore integrates the concept of connectivity (amount of paths), in addition to proximity (low-cost paths). Now, from Equation (8), we need to compute

P(s = i, e = j) = lim t→∞ P (≤t) (s = i, e = j) = lim t→∞ e T i t τ =0 W τ e j e T t τ =0 W τ e (11) 
We thus need to compute the well-known power series of W

lim t→∞ t τ =0 W τ = ∞ t=0 W t = (I -W) -1 (12) 
which converges if the spectral radius of W is less than 1, ρ(W) < 1. Because the matrix W only contains non-negative elements and G is strongly connected, a sufficient condition for ρ(W) < 1 is that it is substochastic [START_REF] Meyer | Matrix analysis and applied linear algebra[END_REF], which is always achieved for θ > 0 as c ij ≥ 0 for all i, j and we assume that at least one element of C is strictly positive. We therefore assume a θ > 0. Now, if we pose

Z = (I -W) -1 (13) 
with W given by Equation ( 6), we can pursue the computation of the numerator of Equation ( 11),

e T i ∞ t=0 W t e j = e T i (I -W) -1 e j = e T i Ze j = [Z] ij = z ij ( 14 
)
where z ij is element i, j of Z. By analogy with Markov chain theory, Z is called the fundamental matrix [START_REF] Kemeny | Finite Markov Chains[END_REF]. Elementwise, following Equations ( 7) and ( 14), we have that

z ij = ℘∈Pij πref (℘) exp[-θc(℘)] = (I -W) -1 ij (15) 
which is actually related to the potential of a Markov chain [START_REF] Cinlar | Introduction to Stochastic Processes[END_REF][START_REF] Norris | Markov chains[END_REF]. From the previous equation, z ij can be interpreted as

z ij = ∞ t=0 [W t ] ij = δ ij + p ref ij e -θcij + n k1=1 p ref ik1 p ref k1j e -θ(c ik 1 +c k 1 j ) + n k1=1 n k2=1 p ref ik1 p ref k1k2 p ref k2j e -θc ik 1 e -θc k 1 k 2 e -θc k 2 j + • • • (16)
For the denominator of Equation ( 9) and ( 11), we immediately find

Z = e T Ze = z •• (17) 
where z •• = n i,j=1 z ij is the value of the partition function Z. Therefore, from Equation [START_REF] Callut | Semi-supervised classification from discriminative random walks[END_REF], the probability of drawing a path starting in i and ending in j in our bag-of-paths model is simply

P(s = i, e = j) = z ij Z , with Z = (I -W) -1 and Z = z •• (18) 
or, in matrix form,

Π = Z z •• , with Z = (I -W) -1 (19) 
where Π, called the bag-of-paths probability matrix, contains the probabilities for each starting-ending pair of nodes. Note that this matrix is not symmetric in general; therefore, in the case of an undirected graph, we might instead compute the probability of drawing a path i j or j i. The result is a symmetric matrix,

Π sym = Π + Π T (20) 
and only the upper (or lower) triangular part of the matrix is relevant.

An intuitive interpretation of the z ij in terms of killed random walk

An intuitive interpretation of the elements z ij of the Z matrix can be provided as follows [START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF][START_REF] Mantrach | The sumover-paths covariance kernel: a novel covariance between nodes of a directed graph[END_REF]. Consider a special random walk defined by the transition probability matrix W whose elements are

[W] ij = p ref ij exp[-c ij ].
As W has some row sums less than one (the rows i of C containing at least one strictly positive cost c ij ), the random walker has a nonzero probability of disappearing in each of these nodes which is equal to (1 -n j=1 w ij ) at each time step. Indeed, from Equation ( 6), it can be observed that the probability of surviving during a transition i → j is proportional to exp[-θc ij ], which makes sense: there is a smaller probability to survive edges with a high cost. In this case, the elements of the Z matrix, z ij = [Z] ij , can be interpreted as the expected number of times that a "killed" random walk, starting from node i, visits node j (see for instance [START_REF] Doyle | Random Walks and Electric Networks[END_REF][START_REF] Kemeny | Finite Markov Chains[END_REF]) before being killed. This special stochastic process has been called an "evaporating random walk" in [START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF] or an "exponentially killed random walk" in [START_REF] Steele | Stochastic calculus and financial application[END_REF].

Working with hitting/absorbing paths: the bag of hitting paths

The bag-of-hitting-paths model described in this section is a restriction of the previously introduced bag-of-paths model in which the ending node of each path only appears once -at the end of the path. In other words, no intermediate node on the path is allowed to be the ending node j, thus prohibiting looping on this node j. Technically this constraint will be enforced by making the ending node absorbing 6 , as in the case of an absorbing Markov chain [START_REF] Doyle | Random Walks and Electric Networks[END_REF][START_REF] Isaacson | Markov chains theory and applications[END_REF][START_REF] Kemeny | Finite Markov Chains[END_REF][START_REF] Norris | Markov chains[END_REF]. We will see later in this section that this model has some nice properties.

Definition of the bag-of-hitting-paths probabilities

Let P h ij be the set of hitting paths starting from i and stopping once node j has been reached for the first time (j is made absorbing and killing). Let P h = ∪ ij P h ij be the complete set of such hitting paths. Following the same reasoning as in the previous subsection, from Equation ( 9), when putting a Gibbs-Boltzmann distribution on P h , the probability of drawing a hitting path starting in i and ending in j is

P h (s = i, e = j) = ℘∈P h ij πref (℘) exp[-θc(℘)] ℘ ∈P h πref (℘ ) exp[-θc(℘ )] = ℘∈P h ij πref (℘) exp[-θc(℘)] Z h (21)
and the denominator of this expression is also called the partition function,

Z h = ℘∈P h πref (℘) exp[-θc(℘)],
for the hitting paths system this time. The quantity P h (s = i, e = j) will be called the bag-of-hitting-paths probability of drawing a hitting path starting in i and ending in j. Note that in the case of unbounded hitting paths, the reference path probabilities can simply be defined as Pref = 1 n 2 πref if we assume a uniform reference probability for drawing the 6 And killing, see later.

starting and ending nodes. With this definition, it is shown in Appendix A that the probability is properly normalized, i.e., ℘∈P h Pref (℘) = 1. Obviously, for hitting paths, if we adopt the convention that zero-length paths are allowed, paths of length greater than 0 starting in node i and ending in the same node i are prohibited -in that case, the zero-length path is the only allowed path starting and ending in i and we set its πref equal to 1. Now, following the same reasoning as in previous section, the numerator of Equation ( 21) is

℘∈P h ij πref (℘) exp[-θc(℘)] = e T i ∞ t=0 (W (-j) ) t e j = e T i (I -W (-j) ) -1 e j = e T i Z (-j) e j = z (-j) ij (22) 
where W (-j) is now matrix W of Equation ( 6) where the jth row has been set to 0 T (node i is absorbing and killing meaning that the jth row of the transition matrix, P ref , is equal to zero) and Z (-j) = (I -W (-j) ) -1 . This means that when the random walker reaches node j, it immediately stops its walk there. In other words, the walker can only follow hitting paths, as required. This matrix is given by W (-j) = We j (w r j ) T with w r j = col j (W T ) = W T e j being a column vector containing the jth row of W.

Computation of the bag-of-hitting-paths probabilities

In Appendix B, it is shown from a bag-of-paths framework point of view that the elements of Z (-j) can be computed simply and efficiently by z

(-j) ij = [Z (-j) ] ij = z ij z jj (23) 
which is a noteworthy result by itself. Note that this result has been re-derived in a more conventional, but also more tedious, way through the Sherman-Morrison formula by [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF] in the context of computing randomized shortest paths dissimilarities in closed form. Using this result, Equation ( 22) can be developed as

℘∈P h ij πref (℘) exp[-θc(℘)] = z (-j) ij = z ij z jj z h ij ( 24 
)
where we define the matrix containing the elements z

(-j) ij
= z ij /z jj as Z h -the fundamental matrix for hitting paths. The elements of the matrix Z h are denoted by z h ij . From Equation [START_REF] Cook | Basic properties of the soft maximum[END_REF], this matrix can be computed as

Z h = ZD -1
h with D h = Diag(Z). Note that the diagonal elements of Z h are equal to 1, z h ii = 1. Moreover, when θ → ∞, z jj → 1 and z h ij → z ij (at the limit, only shortest paths, without loops, are considered).

From these results, we immediately deduce the bag-of-hitting-paths proba-bility including zero-length paths (Equation ( 21)),

P h (s = i, e = j) = ℘∈P h ij πref (℘) exp[-θc(℘)] n i ,j =1 ℘ ∈P h i j πref (℘ ) exp[-θc(℘ )] = z ij /z jj n i ,j =1 (z i j /z j j ) = z h ij Z h ( 25 
)
where the denominator of Equation ( 25) is the partition function of the hitting paths model,

Z h = n i,j=1 ℘∈P h ij πref (℘) exp[-θc(℘)] = n i,j=1 (z ij /z jj ) (26) 
In matrix form, denoting by Π h the matrix of bag-of-hitting-paths probabilities P h (s = i, e = j),

Π h = ZD -1 h e T ZD -1 h e , with Z = (I -W) -1 and D h = Diag(Z) (27) 
The algorithm for computing the matrix Π h is shown in Algorithm 1. The symmetric version for hitting paths is obtained by applying Equation [START_REF] Christofides | Graph theory: An algorithmic approach[END_REF] after the computation of Π h . An interesting application would be to investigate graph cuts based on bag-of-hitting-paths probabilities instead of the standard adjacency matrix.

An intuitive interpretation of the z h

ij in terms of killed random walk In this subsection, we provide an intuitive description of the elements of the hitting paths fundamental matrix, Z h . As for non-hitting paths, let us consider a special killed random walk with absorbing state α on the graph G whose transition probabilities are given by the elements of W (-j) , that is,

w ij = p ref ij exp[-θc ij
] when i = α and w αj = 0 otherwise. In other words, the node α is made absorbing and killing -it corresponds to hitting paths with node α as hitting node. When the walker reaches this node, he stops his walk and disappears. Moreover, as exp[-θc ij ] ≤ 1 for all i, j, the matrix of transition probabilities w ij is substochastic and the random walker has also a nonzero probability (1 -n j=1 w ij ) of disappearing at each step of its random walk and in each node i for which (1 -n j=1 w ij ) > 0. Now, let us consider column α (corresponding to the hitting, or absorbing, node) of the fundamental matrix of non-hitting paths, col α (Z) = Ze α . Because the fundamental matrix is Z = (I -W) -1 (Equation ( 13)), we easily obtain (I -W)(Ze α ) = Ie α = e α . Or, in elementwise form,

z iα = n j=1 w ij z jα for each i = α z αα = n j=1 w αj z jα + 1 for absorbing node α (28)
Algorithm 1 Computing the bag-of-hitting-paths probability matrix of a graph.

Input:

-A weighted, possibly directed, strongly connected, graph G containing n nodes.

-The n × n adjacency matrix A associated to G, containing affinities.

-The n × n cost matrix C associated to G.

-The inverse temperature parameter θ. Output:

-The n × n bag-of-hitting-paths probability matrix Π h containing the probability of drawing a path starting in node i and ending in node j, when sampling paths according to a Gibbs-Boltzmann distribution. When considering hitting paths instead, z h αα = 1 (see Equation ( 24)) because w αj = 0 for all j (node α is made absorbing and killing) so that the second line of Equation ( 28) -the boundary condition -becomes simply z h αα = 1 for hitting paths. Moreover, we know that z h iα = z iα /z αα for any i = α. Thus, dividing the first line of Equation ( 28) by z αα provides

z h iα = n j=1 w ij z h jα for each i = α z h αα = 1
for absorbing node α

Interestingly, this is exactly the set of recurrence equations computing the probability of hitting node α when starting from node i (see, e.g., [START_REF] Kemeny | Finite Markov Chains[END_REF][START_REF] Ross | Introduction to probability models[END_REF][START_REF] Taylor | An introduction to stochastic modeling[END_REF]). Therefore, the z h iα represent the probability of surviving during the killed random walk from i to α with transition probabilities w ij and node α made absorbing. Said differently, it corresponds to the probability of reaching absorbing node j without being killed during the walk.

Two novel families of distances based on hitting paths probabilities

In this section, two families of distance measures are derived from the hitting paths probabilities including zero-length paths 7 . The second one benefits from some nice properties that will be detailed.

A first distance measure: the surprisal distance

The first distance measure is directly derived from the bag-of-paths probabilities introduced in the previous section.

Definition of the distance

This section shows that the associated (directed) surprisal measure,

-log P h (s = i, e = j),
quantifying the "surprise" generated by the outcome (s = i) ∧ (e = j), when symmetrized, is a distance measure. This distance ∆ sur ij associated to the bagof-hitting-paths is defined as follows

∆ sur ij    - log P h (s = i, e = j) + log P h (s = j, e = i) 2 if i = j 0 if i = j (30) 
where P h (s = i, e = j) and P h (s = j, e = i) are computed according to Equation ( 25) or [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF] for the matix form. Obviously, ∆ sur ij ≥ 0 and ∆ sur ij is symmetric. Moreover, ∆ sur ij is equal to zero if and only if i = j. It is shown in Appendix C that this quantity is a distance measure since it satisfies the triangle inequality, in addition to the other mentioned properties. This distance will be called the bag-of-hitting-paths surprisal distance.

Computation of the distance

The surprisal distance can easily be computed by adding the following matrix operations to Algorithm 1:

• ∆ sur ← - 1 2 log(Π h ) + log(Π T h ) take elementwise logarithm for computing the surprisal distances

• ∆ sur ← ∆ sur -Diag(∆ sur ) put diagonal to zero
We now turn to the development of the second distance measure.

A second distance measure: the potential distance

This subsection introduces a second measure enjoying some nice properties, based on the same ideas. Note that the same distance also appeared in [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF], where a distance closely related to the randomized shortest paths dissimilarity [START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF] was derived from a different perspective (minimizing free energy), and called the free energy distance in that work.

Definition of the distance

The second distance measure automatically follows from Inequality (C.5) in Appendix C and is based on the quantity φ(i, j) = -1 θ log z h ij , which is necessarily nonnegative because z h ij can be interpreted as a probability (see Subsection 4.3). For convenience, let us recall this inequality, P h (s = i, e = k) ≥ Z h P h (s = i, e = j) P h (s = j, e = k) Then, from P h (s = i, e = j) = z h ij /Z h (Equation ( 25)), we directly obtain

z h ik ≥ z h ij z h jk . Taking -1 θ log of both sides provides -1 θ log z h ik ≤ -1 θ log z h ij - 1 θ log z h jk , or, φ(i, k) ≤ φ(i, j) + φ(j, k) (31) 
where we defined

φ(i, j) - 1 θ log z h ij = - 1 θ log z ij z jj (32) 
and, from [START_REF] Dunham | Data Mining: Introductory and Advanced Topics[END_REF], the φ(i, j) verify the triangle inequality.

The quantity φ(i, j) will be called the directed potential [START_REF] Cinlar | Introduction to Stochastic Processes[END_REF] of node i with respect to node j. Indeed, it has been shown [START_REF] García-Díez | A continuous-state version of discrete randomized shortest-paths[END_REF] that when computing the continuous-state continuous-time equivalent of the randomized shortest paths framework [START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF], φ(x, y) plays the role of a potential inducing a drift (external force) ∇φ in the corresponding diffusion equation.

From the properties and the probabilistic interpretation of the z h ij , both φ(i, j) ≥ 0 (as 0 ≤ z h ij ≤ 1) and φ(i, i) = 0 (as z h ii = 1) hold. This directed distance measure has three intuitive interpretations.

• First, let us recall from Equation ( 24) that z h ij is given by z

h ij = ℘∈P h ij πref (℘) exp[-θc(℘)] = z ij /z jj
where z ij is element i, j of the fundamental matrix Z (see Equation ( 13)). From this last expression, φ(i, j) can be interpreted (up to a scaling factor) as the logarithm of the expectation of the reward exp[-θc(℘)] with respect to the path likelihoods, when considering absorbing random walks starting from node i and ending in node j.

• In addition, from Equation [START_REF] Dial | A probabilistic multipath assignment model that obviates path enumeration[END_REF], it also corresponds to minus the loglikelihood of surviving during the killed, absorbing, random walk from i to j.

• Finally, it was shown in [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF], investigating further developments of the randomized shortest paths (RSP) dissimilarity, that the potential distance also corresponds to the minimal free energy of the system of hitting paths from i to j. Indeed, the RSP dissimilarity, defined as the expected total cost between i and j, is not a distance measure as it does not satisfy the triangle inequality. However, subtracting the entropy multiplied by the temperature from the expected total cost (that is, computing the free energy) leads to a distance measure that was shown to be equivalent to the potential distance. Therefore the potential distance was called the free energy distance in [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF], which provides still another interpretation to the potential distance.

Inequality [START_REF] Dunham | Data Mining: Introductory and Advanced Topics[END_REF] suggests to define the distance ∆ φ ij = (φ(i, j) + φ(j, i))/2. It has all the properties of a distance measure, including the triangle inequality, which is verified thanks to Inequality [START_REF] Dunham | Data Mining: Introductory and Advanced Topics[END_REF]. Note that this distance measure can be expressed as a function of the surprisal distance (see Equation ( 30)) as ∆ φ ij = (∆ sur ij -log Z h )/θ for i = j. This shows that the newly introduced distance is equivalent to the previous one, up to the addition of a constant and a rescaling.

The definition of the bag-of-hitting-paths (free energy) potential distance is therefore

∆ φ ij    φ(i, j) + φ(j, i) 2 if i = j 0 if i = j
, where φ(i, j) = -

1 θ log z ij z jj (33) 
and z ij is element i, j of the fundamental matrix Z (see Equation ( 13)).

Computation of the distance

From Equation ( 27), it can be easily seen that the matrix Z h containing the z h ij can be computed thanks to Algorithm 1 without the normalization steps 7 and 8. The distance matrix with elements ∆ φ ij is denoted as ∆ φ and can easily be obtained by adding the following matrix operations to Algorithm 1:

• Φ ← -log(Z h )/θ
take elementwise logarithm for computing the potentials

• ∆ φ ← (Φ + Φ T )/2
symmetrize the matrix

• ∆ φ ← ∆ φ -Diag(∆ φ ) put diagonal to zero
Note that both the surprisal and the potential distances are well-defined as we assumed that G is strongly connected.

Some properties of the potential and surprisal distances

The potential distance ∆ φ benefits from some interesting properties proved in the appendix:

• The potential distance is cutpoint additive, meaning that ∆ φ ik = ∆ φ ij + ∆ φ jk if and only if every path from i to k passes through node j [15] (see Appendix D for the proof).

• For an undirected graph G, the distance ∆ φ ij approaches the shortest-path distance when θ becomes large, θ → ∞. In that case, the Equation (33) reduces to the Bellman-Ford formula (see, e.g., [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF][START_REF] Christofides | Graph theory: An algorithmic approach[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF]) for computing the shortest-path distance, ∆ SP ik = min j∈Succ(i) {c ij + ∆ SP jk } and ∆ SP kk = 0 (see Appendix E for the proof). The convergence is, however, slow 8 and numerical underflows could appear before complete convergence to the shortest-path distances (convergence is linear in θ -see the appendix for details). Therefore, if solutions close to the shortest-path distance are needed (with very large θ), computational tricks such as those used in hidden Markov models should be implemented. See for instance the appendix in [START_REF] Huang | Hidden Markov models for speech recognition[END_REF].

• For an undirected graph G, the distance ∆ φ ij approaches half the commute-cost distance when θ becomes small, θ → 0 + (see Appendix F for the proof). Note that, for a given graph G, the commute cost between two nodes is proportional to the commute time between these two nodes, and therefore also proportional to the resistance distance (see [START_REF] Chandra | The electrical resistance of a graph captures its commute and cover times[END_REF][START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF]).

• The distance ∆ φ ij extends the Bellman-Ford formula computing the shortest-path distance to integrate sub-optimal paths (exploration) by simply replacing the min operator by the softmin operator in the recurrence formula. This property is discussed in the next subsection.

All of these properties make the potential distance quite attractive as it defines a family of distances interpolating between the shortest-path and the resistance distance. Our conjecture is that interpolating between these two distances hopefully alleviates the "lost in space" effect [START_REF] Luxburg | Getting lost in space: large sample analysis of the commute distance[END_REF][START_REF] Luxburg | Hitting and commute times in large random neighborhood graphs[END_REF] as the distance gradually focuses on shorter paths, while still exploring sub-optimal paths, when parameter θ increases. A recent paper [START_REF] Hashimoto | From random walks to distances on unweighted graphs[END_REF] addresses this question by showing the consistency and the robustness of the Laplacian transformed hitting time (the Laplace transform of hitting times), a measure related to the potential distance. One of our future work will be to evaluate if their analysis can be transposed to our measures. But, of course, ultimately, the "best" distance is application-and data-dependent and it is difficult to know in advance which one will perform best.

Note that, even if the potential distance converges to the commute cost when θ → 0 + , we have to stress that θ should not become equal to zero because the matrix W becomes rank-deficient when θ = 0. This means that the Equation ( 13) cannot be used for computing the commute cost when θ is exactly equal to zero. Despite this annoying fact, we found that the approximation is quite accurate for small values of θ.

Concerning the surprisal distance, because it was shown in the previous section that ∆ sur ij = θ∆ φ ij + log Z h for all i = j, we deduce that the ranking of the node distances for a given θ is the same for the two distances.

Relationships with the Bellman-Ford formula

As shown in Appendix E (Equation (E.7)) the potential φ(i, k) for a fixed ending node k can be computed thanks to the following recurrence formula

φ(i, k) =        - 1 θ log   j∈Succ(i) p ref ij exp[-θ(c ij + φ(j, k))]   if i = k 0 if i = k (34) 
which is an extension of Bellman-Ford's formula for computing the shortest-path distance in a graph [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF][START_REF] Christofides | Graph theory: An algorithmic approach[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF][START_REF] Jungnickel | Graphs, networks, and algorithms[END_REF][START_REF] Rardin | Optimization in operations research[END_REF][START_REF] Sedgewick | Algorithms[END_REF]. The Equation [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF] has to be iterated until convergence. Note that this result seems to be related to the concept of "path integral control" developed in control theory; see, e.g., the survey [START_REF] Kappen | An introduction to stochastic control theory, path integrals and reinforcement learning[END_REF]. The nonlinear recurrence ( 34) is also a generalization of the distributed consensus algorithm developed in [START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF], and considering binary costs only. Interestingly and intriguingly, this expression is obtained by simply replacing the min operator by a weighted version of the softmin operator [START_REF] Cook | Basic properties of the soft maximum[END_REF] in the Bellman-Ford recurrence formula, softmin q,θ (x) = -1 θ log n j=1 q j exp[-θx j ] with all q j ≥ 0 and n j=1 q j = 1 [START_REF] Fouss | Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation[END_REF] which interpolates between weighted average and minimum operators (see Appendix E or [START_REF] Cook | Basic properties of the soft maximum[END_REF][START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF]). The consequence is that the potential φ(i, j) tends to the average first-passage cost when θ → 0 + and to the shortest-path cost when θ → ∞ (see Appendix E).

Extending the bag of paths by considering non-uniform priors on nodes

This section extends the bag of hitting paths model by considering nonuniform a priori probabilities of selecting the starting and ending nodes 9 . For instance, if the nodes represent cities, it could be natural to weigh each city by its population. These prior probabilities, weighting each node of G, will be denoted as q s i and q e j with n i=1 q s i = 1, n j=1 q e j = 1 and all weights non-negative. In this situation, because the reference probability Pref (℘ ij ) becomes

Pref (℘ ij ) = q s i q e j πref (℘ ij ), (36) 
instead of 1

n 2
πref (℘ ij ), the probability of sampling a hitting path i j in Equation ( 21) is redefined as

P h (s = i, e = j) = ℘∈P h ij Pref (℘) exp[-θc(℘)] ℘ ∈P h Pref (℘ ) exp[-θc(℘ )] = q s i   ℘∈P h ij πref (℘) exp[-θc(℘)]   q e j n i ,j =1 q s i    ℘ ∈P h i j πref (℘ ) exp[-θc(℘ )]   q e j ( 37 
)
where πref (℘ ij ) is, as before, the likelihood of the path ℘ ij given that the starting and ending nodes are i, j. Therefore this expression can be computed thanks to Equation [START_REF] Cook | Basic properties of the soft maximum[END_REF] as the weighted quantity

P h (s = i, e = j) = q s i z ij z jj q e j n i ,j =1 q s i z i j z j j q e j = q s i z ij z jj q e j Z hw (38) 
and the denominator

Z hw = n i,j=1 q s i z ij z jj q e j ( 39 
)
9

The development for non-hitting paths is similar and will therefore be omitted.

22

is the new, weighted by priors, partition function. The numerator of (38) defines the fundamental matrix of the hitting paths system for weighted nodes, containing elements

q s i z ij z jj q e j = q s i z h ij q e j
where, as before,

z h ij = z ij z jj (40) 
In matrix form, the counterpart of Equation ( 27) -but now including priors on the nodes -is

Π h = Diag(q s )ZD -1 h Diag(q e ) q T s ZD -1 h q e , with D h = Diag(Z) (41) 
where the vectors q s and q e contain the a priori probabilities q s i and q e i . Of course, we recover Equation ( 27) when q s = q e = e/n.

Interestingly, the surprisal and potential distances defined on the weighted nodes still verify the triangle inequality and are therefore distance measures; this is shown in Appendix G. Therefore, both the surprisal and the potential distances are defined in the same way as in previous section (see Equations ( 30) and ( 33)), but based this time on the weighted quantities defined in Equations ( 38) and [START_REF] Guex | Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets[END_REF].

More precisely, the directed surprisal distance is computed by taking -log of the probabilities [START_REF] García-Díez | A continuous-state version of discrete randomized shortest-paths[END_REF] or ( 41) (matrix form) while the directed potential distance is redefined as (see Appendix G for details)

φ(i, j) = - 1 θ log(q s i z h ij q e j ) (42) 

Experiments on semi-supervised classification tasks

This experimental section aims at investigating the performance of the bagof-hitting-paths distances, and kernels derived from them, in a semi-supervised classification task, on which they are compared with other competitive techniques.

Notice, however, that the goal of this experiment is not to design a stateof-the-art classifier. Rather, the main objective is to study the results of the proposed distances in comparison with other measures and therefore investigate their usefulness in solving pattern recognition tasks. More precisely, this experiment investigates to which extent the distance measures are able to accurately capture the global structure of the graph through a spectral method.

Graph based semi-supervised classification

Semi-supervised graph node classification has received an increasing interest in recent years (see [START_REF] Abney | Semisupervised learning for computational linguistics[END_REF][START_REF] Chapelle | Semi-supervised learning[END_REF][START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Subramanya | Graph-based semi-supervised learning[END_REF]121,[START_REF] Zhu | Introduction to semi-supervised learning[END_REF] for surveys). It considers the task of using the graph structure and other available information for inferring the class labels of unlabeled nodes of a network in which only a part of the class labels of nodes are known a priori. Several categories of approaches have been suggested for this problem. Among them, we may mention random walks [START_REF] Zhou | Learning from labeled and unlabeled data using random walks[END_REF][START_REF] Szummer | Partially labeled classification with markov random walks[END_REF][START_REF] Callut | Semi-supervised classification from discriminative random walks[END_REF], graph mincuts [START_REF] Blum | Learning from labeled and unlabeled data using graph mincuts[END_REF], spectral methods [START_REF] Chapelle | Cluster kernels for semi-supervised learning[END_REF][START_REF] Smola | Kernels and regularization on graphs[END_REF][START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF][START_REF] Kapoor | Hyperparameter and kernel learning for graph based semi-supervised classification[END_REF], regularization frameworks [START_REF] Belkin | Tikhonov regularization and semi-supervised learning on large graphs[END_REF][START_REF] Wang | Linear neighborhood propagation and its applications[END_REF][START_REF] Yajima | Efficient formulations for 1-svm and their application to recommendation tasks[END_REF][START_REF] Zhou | Learning with local and global consistency[END_REF][START_REF] Zhou | Learning from labeled and unlabeled data on a directed graph[END_REF], transductive and spectral support vector machines (SVM) [START_REF] Joachims | Transductive learning via spectral graph partitioning[END_REF], to name a few. [START_REF] Yen | Graph nodes clustering based on the commute-time kernel[END_REF][START_REF] Yen | Graph nodes clustering with the sigmoid commute-time kernel: A comprehensive study[END_REF]. Each class is composed of 200 documents.

Still another family of approaches is based on kernel methods, which embed the nodes of the input graph into a Euclidean feature space where a decision boundary can be estimated using standard kernel (semi-)supervised methods, such as SVMs. Fouss et al. [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF] investigated the applicability of nine such graph kernels in collaborative recommendation and semi-supervised classification by adopting a simple sum-of-similarities10 rule (SoS). Zhang et al. [START_REF] Zhang | A new kernel for classification of networked entities[END_REF][START_REF] Zhang | Classifying networked entities with modularity kernels[END_REF] as well as Tang et al. [START_REF] Tang | Relational learning via latent social dimensions[END_REF][START_REF] Tang | Scalable learning of collective behavior based on sparse social dimensions[END_REF][START_REF] Tang | Toward predicting collective behavior via social dimension extraction[END_REF] extract the dominant eigenvectors (a "latent space") of graph kernels or similarity matrices and then input them to a supervised classification method, such as a logistic regression or a SVM, to categorize the nodes. These techniques based on similarities and eigenvectors extraction allow to scale to large graphs, depending on the kernel.

Another category of classification methods relies on random walks performed on a weighted and possibly directed graph seen as a Markov chain. The random walk with restart [START_REF] Pan | Automatic multimedia cross-modal correlation discovery[END_REF][START_REF] Tong | Fast random walk with restart and its applications[END_REF][START_REF] Tong | Random walk with restart: fast solutions and applications[END_REF], directly inspired by the PageRank algorithm, is one of them. The method of Callut et al. [START_REF] Callut | Semi-supervised classification from discriminative random walks[END_REF], based on discriminative random walks, or D-walks, belongs to the same category. It defines, for each class, a group betweenness measure based on passage times during special random walks of bounded length. Those walks are constrained to start and end in nodes within the same class, defining distinct random walks for each class. The number of passages on nodes is computed for each type of such random walk, therefore defining a distinct betweenness for each class. The main advantage of some of these random walk-based approaches is that class labels can be computed efficiently (in linear time) while providing competitive results.

Datasets description

Comparison of the different methods will be performed on several well-known real world graph datasets (14 in total). Note that, in some cases, only the largest connected component of the following graphs has been selected:

• 20 Newsgroups (9 subsets): this dataset11 is composed of 20000 text documents taken from 20 discussion groups of the Usenet diffusion list (available on UCI [START_REF] Lichman | UCI machine learning repository[END_REF]). Nine subsets related to different topics are extracted from the original dataset, as listed in Table 2 [START_REF] Yen | Graph nodes clustering based on the commute-time kernel[END_REF][START_REF] Yen | Graph nodes clustering with the sigmoid commute-time kernel: A comprehensive study[END_REF]. Each subset is composed of 200 documents extracted randomly from the different newsgroups. The subsets with two classes (news-2cl-1,2,3) contain 400 documents, 200 in each class. In the same way, subsets with three classes contain 600 documents and subsets with five classes contain 1000 documents. Each subset is composed of different topics, each of which are either easy to separate (Computer/windowsx and Religion/christian) or harder to separate (Computer/graphics and Computer/pchardware). Initially, this dataset does not have a graph structure but is represented in a word vector space of high dimensionality. To transform this dataset into a graph structure, a fairly standard preprocessing has been performed, which is directly inspired by the paper of Yen et al. [START_REF] Yen | Graph nodes clustering with the sigmoid commute-time kernel: A comprehensive study[END_REF].

Basically, the first step is to reduce the high dimensionality of the feature space (terms), by removing stop words, applying a stemming algorithm on each term, removing too common or uncommon terms and by removing terms with low mutual information with documents. Second, a term-document matrix W is constructed with the remaining terms and documents. The elements w ij are tf-idf values [START_REF] Manning | Introduction to information retrieval[END_REF] of term i in document j. Each row of the term-document matrix W is then normalized to 1. Finally, the adjacency matrix defining the links between documents is given by A = W T W.

• IMDB: the collaborative Internet Movie Database (IMDb, [START_REF] Macskassy | Classification in networked data: A toolkit and a univariate case study[END_REF]) has several applications such as making movie recommendations, clustering or movie category classification. It contains a graph of movies linked together whenever they share the same production company. The weight of an edge in the resulting graph is the number of production companies two movies have in common. The classification problem focuses on identifying clusters of movies that share the same notoriety (whether the movie is a box-office hit or not).

• WebKB (4 datasets): these networks consist of sets of web pages gathered from four computer science departments (one for each university, [START_REF] Macskassy | Classification in networked data: A toolkit and a univariate case study[END_REF]), with each page manually labeled into 6 categories: course, department, faculty, project, staff, and student. Two pages are linked by cocitation (if x links to z and y links to z, then x and y are co-citing z).

The adjacency matrices extracted from these datasets are all symmetric and some are weighted. In a standard way, the costs associated to the edges are set to c ij = 1/a ij . That is, the elements of the adjacency matrix are considered as conductances and the costs as resistances. For unweighted graphs, affinities and costs are both equal to 1 for existing edges, meaning that the paths are weighted by their total length (number of steps).

Compared distances, kernels, and algorithms

This paper derived distance measures from the bag-of-paths probabilities. In order to use these distances in machine learning and pattern recognition methods, it is convenient to transform them into similarity matrices, simply called kernels for convenience.

Deriving a kernel from a distance

From classical multidimensional scaling (MDS, see, e.g., [START_REF] Borg | Modern multidimensional scaling: Theory and applications[END_REF][START_REF] Cox | Multidimensional scaling[END_REF]), a centered kernel matrix K can be derived from a matrix of squared distances ∆ (2) as follows

K mds = - 1 2 H∆ (2) H (43) 
where H = (I -ee T /n) is the centering matrix and matrix ∆ (2) contains the elementwise squared distances. Then, computing the dominant eigenvectors of this matrix (see the next section on Experimental settings) corresponds exactly to classical multidimensional scaling. Still another popular way to map the distance matrix to a kernel matrix aims to use the Gaussian mapping or kernel (see, e.g., [START_REF] Scholkopf | Learning with kernels[END_REF])

K g = exp -∆ (2) /2σ 2 (44) 
where the exponential is taken elementwise. Both approaches will be investigated. Computing the dominant eigenvectors of this matrix corresponds to a kernel principal components analysis [START_REF] Scholkopf | Learning with kernels[END_REF][START_REF] Scholkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]. However, the obtained kernels are not necessarily positive semi-definite until the distance is Euclidean, which is required for kernel methods. This problem can be fixed by removing the negative eigenvalues in the spectral decomposition (see, e.g., [START_REF] Mardia | Multivariate analysis[END_REF]), which will be applied in all our experiments 12 .

For classifying the nodes, the five dominant eigenvectors of the resulting kernels will be extracted and then injected into a SVM classifier (see the next Subsection 7.4 for details).

Compared methods

The following list presents the methods based on kernels computed from the distances introduced in this paper, as well as from two other recent families of dissimilarities, for comparison. The derived kernels are computed by using both (1) multidimensional scaling (mds, Equation ( 43)) and (2) a Gaussian kernel (g, Equation ( 44)).

• The kernels associated to the bag-of-hitting-paths potential distance (K mds BoPP , K g BoPP ) (Equations ( 33) and ( 43)-( 44)). The corresponding methods are denoted as BoPP-mds and BoPP-g.

• The kernels associated to the bag-of-hitting-paths surprisal distance (K mds BoPS , K g BoPS ) (Equations [START_REF] Doyle | Random Walks and Electric Networks[END_REF]) and ( 43)-( 44)). The corresponding methods are denoted as BoPS-mds and BoPS-g.

• The randomized shortest-path (RSP) kernel (K mds RSP , K g RSP ) computed from the RSP family of dissimilarities (see [START_REF] Kivimäki | Developments in the theory of randomized shortest paths with a comparison of graph node distances[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF][START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF] and Equations ( 43)-( 44)). The corresponding methods are denoted as RSP-mds and RSP-g.

• The logarithmic forest (LF) kernel (K mds LF , K g LF ) computed from the logarithmic forest family of distance (see [START_REF] Chebotarev | A class of graph-geodetic distances generalizing the shortest-path and the resistance distances[END_REF][START_REF] Chebotarev | The walk distances in graphs[END_REF] and Equations ( 43)-( 44)). The corresponding methods are denoted as LF-mds and LF-g.

In addition, five state-of-the-art similarity matrices and kernels on a graph are added to this list and compared to the previous ones. We selected the three kernels providing consistently the best results in [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF], which were based on a sum-of-similarities instead of the spectral method investigated in this paper.

• The modularity matrix (Q) [START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Newman | Networks: an introduction[END_REF], which was used as a kernel for semisupervised learning earlier by Zhang et al. [START_REF] Zhang | A new kernel for classification of networked entities[END_REF][START_REF] Zhang | Classifying networked entities with modularity kernels[END_REF] as well as Tang et al. [START_REF] Tang | Relational learning via latent social dimensions[END_REF][START_REF] Tang | Scalable learning of collective behavior based on sparse social dimensions[END_REF][START_REF] Tang | Toward predicting collective behavior via social dimension extraction[END_REF]. The modularity matrix performed best in their experiments, in comparison with other state-of-the-art methods. This is our first baseline method, denoted as Q.

• The Markov diffusion kernel (K MD ) [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF] computed from the Markov diffusion map distance [START_REF] Nadler | Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators[END_REF][START_REF] Nadler | Diffusion maps, spectral clustering and reaction coordinate of dynamical systems[END_REF][START_REF] Pons | Computing communities in large networks using random walks[END_REF][START_REF] Pons | Computing communities in large networks using random walks[END_REF] and studied in [START_REF] Yen | A link analysis extension of correspondence analysis for mining relational databases[END_REF][START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF]. This kernel, as well as the two following ones, provided good results in [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF]. The corresponding method is denoted as MD.

• The regularized Laplacian, or matrix forest, kernel (K RL ) [START_REF] Ito | Application of kernels to link analysis[END_REF][START_REF] Chebotarev | The matrix-forest theorem and measuring relations in small social groups[END_REF][START_REF] Chebotarev | On proximity measures for graph vertices[END_REF][START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF]. The corresponding method is denoted as RL.

• The regularized commute-time kernel (K RCT ) [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF][START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF]. The corresponding method is denoted as RCT.

• The bag-of-paths modularity matrix (K BoPM ) studied in [START_REF] Devooght | Random walks based modularity: Application to semi-supervised learning[END_REF]. The corresponding method is denoted as BoPM.

Finally, our introduced distances are also compared to an efficient, alternative, way of performing semi-supervised classification on a network:

• A sum-of-similarities (SoS) algorithm based on the regularized commutetime kernel, which provided good results on large datasets in [START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF]; see this paper for details. This is our second baseline method, denoted as SoS.

These kernels and similarity matrices are real symmetric when working with undirected graphs. All the above kernels and methods will be compared by following the experimental settings described hereafter. For illustration, a picture of some of the kernels is shown in Figure 1.

Experimental settings

In this experiment, we address the task of classification of unlabeled nodes in partially labelled graphs. The method we use is directly inspired from [START_REF] Tang | Relational learning via latent social dimensions[END_REF]. It consists of two steps: 1. Extracting the "latent social" dimensions, which may be done using any matrix decomposition technique or by using a graphical topic model. Here, we used, as in [START_REF] Tang | Relational learning via latent social dimensions[END_REF], a simple spectral decomposition of the relevant matrices. More precisely, we extracted the top eigenvectors of the compared kernel matrices just described (see Subection 7.3). This aims to perform a classical multidimensional scaling from distances when using the MDS transformation of Equation ( 43) and a kernel principal components analysis when using the Gaussian mapping of Equation ( 44). 2. Training a classifier on the extracted latent space. In this space, each feature corresponds to one latent variable (i.e. one of the top eigenvectors).

The number of social dimensions has been set to 5 for all the suggested measures and the classifier is a one-vs-rest linear SVM. Note that we also investigated different numbers of social dimensions [START_REF] Brand | A random walks perspective on maximizing satisfaction and profit[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF]500] but the performance did not change significantly -these results are therefore not reported here.

The classification accuracy is computed for a labeling rate of 20%, i.e. proportion of nodes for which the label is known 13 . The labels of remaining nodes (80%) are removed and used as test data. For this considered labeling rate, an external stratified 5-fold cross-validation (each fold defining in turn the 20% labeled data) was performed, on which classification accuracies are averaged. For each fold of the external cross-validation, a 5-fold internal cross-validation is performed on the remaining labelled nodes in order to tune the hyper-parameters of the SVM and each kernel/distance (θ = {0.01, 0.1, 1, 2, 5, 10} for the bag-ofpaths based approaches and c = {0.01, 0.1, 1, 10, 100} for the SVM). Then, the performance obtained for each external fold is assessed on the remaining, unlabeled, nodes (test data) with the hyper-parameter tuned during the internal cross-validation.

For each unlabeled node, the various classifiers predict the most suitable category according to the procedure described below. We compute, for each method, the average classification accuracy obtained on the five folds of the cross-validation. Then, a Borda ranking as well as a nonparametric Friedman-Nemenyi statistical test [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF] are performed across all datasets in order to compare the different methods. Finally, pairwise comparisons between some specific methods are investigated.

Results and discussion

Table 3 reports average classification accuracies (in percent) of the methods on all the datasets, for a proportion of 20% of labeling rate and five latent dimensions (components). The method performing best is presented in boldface for each data set. Then, a simple Borda ranking of the methods is performed and shown in Table 4. Each method is given a score equal to its rank (methods are sorted in ascending order of accuracy, worst first and best last) for each dataset. The best method overall is the one showing the highest Borda score.

From these tables, it can be observed that the bag-of-paths (BoP) and the randomized shortest paths (RSP) based approaches obtain competitive results in comparison with the other methods. Indeed, both the BoPP and the BoPS consistently provide good results. The logarithmic forest distance also obtains good overall results. However, we can further observe that the best method is dataset-dependent; this shows that it is often useful to investigate different methods when facing a network-based semi-supervised classification problem. Moreover, the differences in performance among the best performing methods are often small. For instance, for the five best techniques (BoPP-g, BoPS-mds, BoPP-mds, RSP-g, BoPS-g; see Table 4), the average difference between the accuracy (see Table 3) of the best performing method and the other methods across all datasets is 0.79 and the maximum difference is only 4.58. This can be understood by the fact that we selected the most promising candidate methods for the comparisons, but also by the fact that several investigated distances are derived from a similar framework. Moreover, in order to rate globally the results of each method, we use a nonparametric Friedman-Nemenyi statistical test [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF] allowing to compare them across all the datasets. The obtained ranking scores are presented in Figure 2 and are similar to those provided by the Borda ranking. The figure confirms that the BoP and RSP distances provide good results, although not significantly different from the logarithmic forest and the two baseline methods (the modularity matrix Q and the sum-of-similarities SoS). This is partly because the Friedman-Nemenyi test is rather conservative, especially when comparing many different techniques.

Therefore, in order to further investigate the results, we also computed some pairwise comparisons through a nonparametric one-sided Wilcoxon signed-rank test for matched data (α = 0.05). These paired tests show that all the introduced bag-of-paths methods (BoPP-g, BoPP-mds, BoPS-g, BoPS-mds) are significantly better than our first baseline (Q, eigenvectors extracted from the modularity matrix), but not necessarily better than the second baseline (SoS, the sum-of-similarities method). Indeed, only one method, BoPS-mds, provided significantly better results than SoS (but close to the critical value, p-value = 0.033). This confirms that the SoS can be considered as a good baseline which, in addition, is simple to implement, efficient, and scales to large, sparse, networks [START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF]. Moreover, by examining further Table 3, SoS is the only method achieving good performance on the imdb dataset while almost all the other methods fail on this dataset.

Although a little under the bag-of-paths based approaches, note that the randomized shortest path (RSP) and the logarithmic forest (LF) methods associated to the gaussian transformation are also competitive, consistently providing good results, and significantly better than our first baseline (Q). Note also that this simple modularity matrix based method Q, although below the best methods, especially in the 5-classes setting, provides reasonable results.

Curiously, the spectral method applied to the three kernels (the Markov diffusion kernel (MD), the regularized commute-time kernel (RCT) and the regularized Laplacian kernel (RL)) provides bad results (all three kernels perform significantly worse than the two baselines). This is especially odd, as these kernels obtained good results when used in a sum-of-similarities context [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF][START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF] -see the results obtained by the sum-of-similarities based on the RCT kernel (SoS) in Table 3 which is not statistically different from the best method. This could be related to the recent comparison in [START_REF] Ivashkin | Logarithmic proximity measures outperform plain ones in graph nodes clustering[END_REF] showing that taking the logarithm of some well-known kernels improves the results in node clustering tasks.

Concerning the transformation from distances to inner products of Equations ( 43) and ( 44), the Gaussian kernel often provides slightly better results than multidimensional scaling, but not always so.

In summary, these experiments showed that the introduced BoP families of distances (BoPP, BoPS), but also the already known randomized shortest path (RSP) and the logarithmic forest (LF) distances, achieve good results in comparison with our two baseline methods (Q and SoS) on the investigated datasets. However, we found that the introduced distances are not necessarily significantly better (although globally ranked better) than the second baseline, the sum-ofsimilarities method (SoS) based on the RCT kernel [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF][START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF]. Because this SoS technique is fast and scales to large graphs [START_REF] Mantrach | Semi-supervised classification and betweenness computation on large, sparse, directed graphs[END_REF], it can be concluded that the introduced distances do not bring much added value here in our semi-supervised Friedman-Nemenyi ranking over the 14 datasets (the larger, the better). Two methods are considered as significantly different when their confidence intervals do not overlap. The best ranked method (BoPP-g) is highlighted.

Conclusion and further work

This work introduced the bag-of-paths framework considering a bag containing the set of paths in the network. By defining a Gibbs-Boltzmann distribution on this set of paths penalizing long paths, we were able to derive various interesting quantities such as distance measures between nodes. It is also shown that one of the two introduced distance measures has some nice properties, like interpolating between the shortest-path distance and the resistance distance (up to a constant factor). Experiments have shown that the BoP framework can provide competitive algorithms within a clear theoretical framework.

Indeed, as demonstrated in semi-supervised classification experiments, the kernels associated to the distance measures derived from the bag-of-paths probabilities achieve good results. Consistency of performance across the different datasets (except imdb) shows that the bag-of-paths framework seems to induce some promising distance and similarity measures on graphs, based on its structure.

The framework is rich and other quantities of interest can be defined, which is pursued in parallel. For instance, a betweenness measure can be defined as P(int = j|s = i, e = k), the probability that a path starting in i and ending in k visits j as an intermediate node [START_REF] Lebichot | Semi-supervised classification through the bag-of-paths group betweenness[END_REF]. Another idea is to reformulate the modularity matrix in terms of paths instead of direct links [START_REF] Devooght | Random walks based modularity: Application to semi-supervised learning[END_REF]. Still another application is the definition of a new robustness measure capturing the criticality of the nodes [START_REF] Lebichot | A bag-of-paths node criticality measure[END_REF]. The idea then would be to compute the change in accessibility between nodes when deleting one node within the BoP framework. Nodes having a wide impact on reachability are then considered as highly critical.

Another idea would be to investigate graph cuts by considering paths instead of links. We also plan to evaluate experimentally the potential distance (see Equation [START_REF] Fouss | An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification[END_REF]) as a distance between sequences of characters by adapting it to a directed acyclic graph, as in [START_REF] García-Díez | A sum-over-paths extension of edit distances accounting for all sequence alignments[END_REF].

Finally, we plan to make a systematic experimental comparison between families of distances and kernels on clustering, semi-supervised classification and dimensionality reduction tasks, while trying to analyze the theoretical properties of the proposed distances families by following [START_REF] Hashimoto | From random walks to distances on unweighted graphs[END_REF]. In particular, we will investigate the new kernels introduced recently in [START_REF] Ivashkin | Logarithmic proximity measures outperform plain ones in graph nodes clustering[END_REF] where it is shown on node clustering tasks that taking the logarithm of well-known kernels improves significantly the performance.

i, e = k) = z ik /Z and P(s = j, e = k) = z jk /Z, in the previous Inequality (C.4) provides z ik /Z ≥ Z h P h (s = i, e = j) z jk /Z. Further dividing each member by (Z h z kk ) gives z ik /(Z h z kk ) ≥ Z h P h (s = i, e = j) z jk /(Z h z kk ). Finally, using P h (s = i, e = k) = z ik /(Z h z kk ) (see Equation ( 25)), we obtain P h (s = i, e = k) ≥ Z h P h (s = i, e = j) P h (s = j, e = k) (C.5) for i = j = k = i. Now, from Equation ( 26) and the fact that the z ij are nonnegative, it is clear that Z h ≥ 1; thus

P h (s = i, e = k) ≥ P h (s = i, e = j) P h (s = j, e = k), for i = j = k = i (C.6)
Finally, by taking -log of Inequality (C.6),

-log P h (s = i, e = k) ≤ -log P h (s = i, e = j) -log P h (s = j, e = k), (C.7)

for i = j = k = i. Thus, the (directed) surprisal measure, -log P h (s = i, e = j), obeys the triangle inequality. Therefore the surprisal distance ∆ sur ij = -(log P h (s = i, e = j) + log P h (s = j, e = i))/2 also enjoys this property.

Appendix D. Proof of the cutpoint additive property of the potential distance

From the definition of the bag-of-paths probability (Equation ( 9)), as well as Equation (C. Here, the last limit applies because, following Equation (E.3), the expression inside the logarithm is finite and strictly positive (the first term is a positive value and the second is positive and bounded (see Equation (E.3))). Moreover, observing that, in the case of an undirected graph, the lowest cost from j to i is equal to the lowest cost from i to j (i.e., c * ), the distance ∆ φ ij = φ(i,j)+φ(j,i) 2 θ→∞ ---→ c * . Therefore, the bag-of-hitting-paths potential distance provides the shortest-path distance when θ → ∞ for undirected graphs. Let us now study the behavior of this equation when θ → ∞. We first observe that both the numerator and the denominator tend to +∞. Now, in order to simplify the notations, we will study the softmin function [START_REF] Cook | Basic properties of the soft maximum[END_REF][START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF], softmin q,θ (x) = -log( n j=1 q j exp[-θx j ])/θ with n j=1 q j = 1 and all q j ≥ 0 instead, where we define x j = (c ij + φ(j, k)) and q j = p ref ij (the development is inspired by [START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF]). Let us further define x * = min j (x j ) so that (x j -x * ) ≥ 0; we then have and the last limit is 0 because no term in the exponential is positive and at least one of the x j is exactly equal to x * (the minimum) so that the sum n j=1 q j exp[-θ(x j -x * )] is non-zero, and thus strictly positive.

instead of θ → ∞ in Equation (E.8), and apply as before l'Hospital's rule lim θ→0 + softmin q,θ (x) = lim ) for i = k, together with the boundary condition φ(k, k) = 0. But this is exactly the recurrence formula computing the average first-passage cost in a regular Markov chain [START_REF] Kemeny | Finite Markov Chains[END_REF][START_REF] Norris | Markov chains[END_REF][START_REF] Ross | Introduction to probability models[END_REF][START_REF] Taylor | An introduction to stochastic modeling[END_REF]. Thus, when θ → 0 + , ∆ φ = (φ(i, j) + φ(j, i))/2 reduces to half the commute-cost distance between i and j.

Appendix G. Triangle inequality for hitting paths and weighted nodes

To prove the result we simply adapt the corresponding proof of Appendix C. Note that Equation (C.2) still holds. Moreover, Equation (C. where Z w = n i,j=1 q s i z ij q e j is the partition function for non-hitting paths (the counterpart of Equation (39) for non-hitting paths).

As for Equation (C.4), combining this last result with (C.2) yields P(s = i, e = k) ≥ Z hw q s j q e j P h (s = i, e = j) P(s = j, e = k),

for i = j = k = i (G.2)
Then, by further considering that, from Equation (39), the following inequality holds Z hw q s j q e j = 1 q s j q e j n i,k=1

q s i z ik z kk q e k ≥ 1 (G.3) because the term i = k = j in the double sum is equal to 1 and all terms are non-negative. We deduce that P(s = i, e = k) ≥ P h (s = i, e = j) P(s = j, e = k). Then, dividing both sides by (z kk Z hw ) and using P(s = i, e = k) = (q s i z ik q e k )/Z w for weighted nodes and non-hitting paths, provides (q s i z ik q e k )/(z kk Z hw ) ≥ P h (s = i, e = j) (q s j z jk q e k )/(z kk Z hw ). Then, from the expression of P h (s = i, e = k) in Equation [START_REF] García-Díez | A continuous-state version of discrete randomized shortest-paths[END_REF] and by taking -log of both sides of the inequality, we have -log P h (s = i, e = k) ≤ -log P h (s = i, e = j) -log P h (s = j, e = k) (G.4) which shows the triangle inequality for the directed surprisal distance and, hence, the surprisal distance, in the case of weighted nodes.

The same triangle inequality result holds for the directed potential distance with weighted nodes, defined as φ(i, j) -1 θ log(q s i z h ij q e j ), and z h ij given in Equation [START_REF] Guex | Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets[END_REF]. Indeed, by replacing P(•) and P h (•) by their expressions in function of the z h ij in Equation (G.2) and dividing both sides by z kk provides q s i z h ik q e k ≥ 1 q s j q e j (q s i z h ij q e j ) (q s j z h jk q e k ) (G.5)

Then, because 1/q s j q e j ≥ 1 for every j, we obtain after taking -1 θ log of both sides -1 θ log(q s i z h ik q e k ) ≤ -1 θ log(q s i z h ij q e j ) -1 θ log(q s j z h jk q e k ) (G.6) which proves triangle inequality for the directed potential distance, and therefore also for the potential distance with priors on nodes.

Figure 1 :

 1 Figure 1: Images of the different similarity matrices, (a) K mds BoPP , (b) K mds BoPS , and (c) Q, computed on the news-3cl-1 dataset. Nodes have been sorted according to classes. We observe that classes are clearly visible in (a) and (b). For the standard modularity (c), the class discrimination is less clear.

Figure 2 :

 2 Figure2: Friedman-Nemenyi ranking over the 14 datasets (the larger, the better). Two methods are considered as significantly different when their confidence intervals do not overlap. The best ranked method (BoPP-g) is highlighted.
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 24 1) defining P(s = i, int = j, e = k), we have for i = j = k = iP(s = i, e = k) = ℘∈P ik πref (℘) exp[-θc(℘)] Z = ℘∈P ik δ(j ∈ ℘) πref (℘) exp[-θc(℘)] Z + ℘∈P ik (1 -δ(j ∈ ℘)) πref (℘) exp[-θc(℘)] Z = P(s = i, int = j, e = k) + ℘∈P ik δ(j / ∈ ℘) πref (℘) exp[-θc(℘)] Z (D.1)Now, substituting P(s = i, int = j, e = k) by Z h P h (s = i, e = j)P(s = j, e = k) (see Equation (C.3)) in the previous equation yieldsP(s = i, e = k) =Z h P h (s = i, e = j)P(s = j, e = k) + ℘∈P ik δ(j / ∈ ℘) πref (℘) exp[-θc(℘)]Further recalling that P(s = i, e = k) = z ik /Z (Equation (18)) and P h (s = i, e = j) = z h ij /Z h (Equation (25)), we transform Equation (D.2) intoz ik = z h ij z jk + ℘∈P ik δ(j / ∈ ℘) πref (℘) exp[-θc(exp[-θc(℘)] = exp[-θc * ] ℘∈P h ij πref (℘) exp[-θ(c(℘) -c * )] = exp[-θc * ] >c * πref (℘) exp[-θ(c(℘) -c * )]Let us now compute the potential φ(i, j) = -1 θ log z h ij when θ → ∞. Using Equation (E.4), we get φ(i, j) = ->c * πref (℘) exp[-θ(c(℘) -c * )] >c * πref (℘) exp[-θ(c(℘) -c * )]

i

  = k (when i = k, φ(k, k) = -1 θ log(z kk /z kk ) = 0), φ(i, k) =ij exp[-θc ij ] exp[-θφ(j, k)] ij exp[-θ(c ij + φ(j, k))]   (E.7)which provides a recurrence formula for computing φ(i, k), together with the boundary condition φ(k, k) = 0.

qq

  exp[-θx * ] n j=1 q j exp[-θ(x j -x * )] j exp[-θ(x j -x * )] j exp[-θ(x j -x * )]

q

  j x j (F.3) Therefore, as in our case x j = (c ij +φ(j, k)) andq j = p ref ij with n j=1 p ref ij = 1, we obtain φ(i, k) = n j=1 p ref ij (c ij +φ(j, k)

P

  3) becomes P(s = i, int = j, e = k) =q s i q e k ℘∈P ik δ(j ∈ ℘) πref (℘) exp[-θc(℘)] ij ℘ jk ∈P jk πref (℘ ij )π ref (℘ jk ) exp[-θ(c(℘ ij ) + c(℘ jk ))] ij ) exp[-θc(℘ ij )]   q e j × q s j   ℘ jk ∈P jk πref (℘ jk ) exp[-θc(℘ jk )] ij ) exp[-θc(℘ ij )] q e jk πref (℘ jk ) exp[-θc(℘ jk )] q e h (s = i, e = j) P(s = j, e = k), for i = j = k = i (G.1)

  1. D ← Diag(Ae) the outdegree diagonal matrix with e being a column vector full of 1's 2. P ref ← D -1 A the reference transition probabilities matrix 3. W ← P ref • exp[-θC] elementwise exponential and multiplication • 4. Z ← (I -W) -1 the fundamental matrix 5. D h ← Diag(Z) the column-normalization diagonal matrix needed for computing hitting paths probabilities 6. Z h ← ZD -1 h column-normalize the fundamental matrix 7. Z h ← e T Z h e compute the partition function

	8. Π h ← 9. return Π h Z h Z h	the bag-of-hitting-paths probability matrix

Table 2 :

 2 Document subsets for semi-supervised classification experiments. Nine subsets have been extracted from the original 20 Newsgroups dataset, with 2, 3 and 5 topics as proposed in

	Topic	Size Topic	Size Topic	Size
	news-2cl-1	news-2cl-2	news-2cl-3	
	Politics/general	200 Computer/graphics	200 Space/general	200
	Sport/baseball	200 Motor/motorcycles	200 Politics/mideast	200
	news-3cl-1	news-3cl-2	news-3cl-3	
	Sport/baseball	200 Computer/windows	200 Sport/hockey	200
	Space/general	200 Motor/autos	200 Religion/atheism	200
	Politics/mideast	200 Religion/general	200 Medicine/general	200
	news-5cl-1	news-5cl-2	news-5cl-3	
	Computer/windowsx	200 Computer/graphics	200 Computer/machardware 200
	Cryptography/general 200 Computer/pchardware 200 Sport/hockey	200
	Politics/mideast	200 Motor/autos	200 Medicine/general	200
	Politics/guns	200 Religion/atheism	200 Religion/general	200
	Religion/christian	200 Politics/mideast	200 Forsale/general	200

Table 3 :

 3 Classification accuracy (correct classification rate) in percent for the bag-of-paths based distances and the competing methods, obtained on each dataset, using 5 social dimensions. Only the results for graphs with 20% labeling rate are reported. The best performing method of each data set is highlighted in boldface.

Table 4 :

 4 Ranking of the different classification methods according to Borda's method (the higher score, the better). classification tasks. Still, this has to be confirmed in larger experiments. Indeed, in further work, we plan to conduct a systematic, comprehensive, comparison of families of distances and kernels on clustering, classification and dimensionality reduction tasks.

					Ranking of methods				
	BoPM								
	BoPP-g								
	BoPP-mds								
	BoPS-g								
	BoPS-mds								
	LF-g								
	LF-mds								
	MD								
	Q								
	RCT								
	RL								
	RSP-g								
	RSP-mds								
	SoS								
	-2	0	2	4	6	8	10	12	14
			3 groups have mean column ranks significantly different from BoPP-g		

These are also called walks in the literature.

In theory, non-negativity constraints should be added, but this is not necessary as the resulting probabilities are automatically non-negative.

We will see later that the path likelihoods πref (℘) are already properly normalized in the case of hitting, or absorbing, paths:℘∈P h πref (℘) = 1. See next section and Appendix A. On the contrary, for regular paths as considered in this section, it can be shown that ℘∈P(≤t) πref (℘) = (t + 1)n (we thank Dr. Guillaume Guex for deriving and letting us know this result).

Note that another interesting class of paths, the hitting, or absorbing, paths -allowing only one single visit to the ending node j -will be considered in the next section 4.

Do not confuse matrix P ref in bold with Pref (℘) representing the reference probability of path ℘. A summary of the notation appears in Table1.

Note that the results do not hold for a bag of paths excluding zero-length paths. Furthermore, the distances are developed only for the hitting paths case because the equivalent definitions applied to non-hitting paths are less satisfying or even ill-defined.

It was observed, e.g., that the convergence of the RSP dissimilarity[START_REF] Saerens | Randomized shortest-path problems: Two related models[END_REF][START_REF] Yen | A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances[END_REF] is much faster when θ increases.

The equivalent of nearest neighbors classification when dealing with similarities (a kernel matrix) instead of distances.

Available, e.g., from http://people.csail.mit.edu/jrennie/20Newsgroups/.

Note that, probably because only the dominant eigenvectors are extracted, we did not observe any significant difference in the experimental results when removing and not removing the negative eigenvalues of the kernels (results not reported).

Other settings were also investigated, leading to similar conclusions; they are therefore omitted here.
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Appendix

Appendix A. Sum of reference probabilities over hitting paths

In this appendix, it is shown that the sum over all hitting paths of the reference probabilities is equal to one. We thus have to compute

where P h (t) is the set of all hitting paths of length exactly equal to t and P h ij (t) the set of such hitting paths connecting i to j. As stated before, because we assume that the a priori probability of choosing the starting node and ending node is uniform, Pref (℘ ij ) = 1 n 2 π ref (℘ ij ) with π ref (℘ ij ) being the likelihood of the path ℘ ij , i.e., the product of transition probabilities p ref ll along the path of length t, π ref (℘ ij ) = t τ =1 p ref kτ-1kτ with k 0 = i, k t = j and no intermediate node being equal to node j.

As we are concerned with hitting paths stopping in node j, let us consider the absorbing, killing, Markov chain on G with transition probabilities p ref ll for l = j and p ref jl = 0 for all l . In other words, node j is made killing and absorbing. We now introduce a new quantity, q (ij) k (t), on this absorbing Markov chain, defined as the probability of finding the process in state k at time t when considering walks from starting node i to absorbing node j. This probability can easily be computed thanks to the following recurrence relation

which says that the probability of being in node k at time t is the sum of the probabilities of being in any node l (except node j which is absorbing) at time t -1 times the probability of jumping from l to k. When k = j, the quantity computes the probability of being absorbed in node j at time t, given that we started from i at time 0.

Let us now examine the last quantity appearing in Equation (A.1), the sum of hitting paths likelihoods from i to j, assuming i = j,

for t > 0 (A.3) and it is equal to 0 when t = 0 because there is no path of length zero connecting two different nodes.

But the second-hand quantity in this last equation is nothing else than the sequential application of recurrence (A.2) for t, t -1, . . . , 0, therefore computing q (ij) j (t), that is, the probability of being absorbed in node j in exactly t steps. Therefore, ℘ij ∈P h

Moreover, as we know that the process necessarily ends in absorbing node j at some point (see, e.g., [START_REF] Grinstead | Introduction to probability[END_REF]), ∞ t=0 q (ij) j (t) = 1 holds when i = j. Conversely, when i = j, the probability of finding the process in node j is 1 at t = 0 (a zero-length path) and then collapses to 0 when t > 0, which also provides

which is the desired result. In addition, this also shows that

that is, the sum over the path likelihoods is equal to 1 for paths.

Appendix B. Computation of the entries of Z (-j) in terms of the fundamental matrix

All the entries of Z (-j) can be computed efficiently in terms of the funda-

This result can be understood as follows. Each non-hitting path ℘ ij ∈ P ij can be split uniquely into two sub-paths, before hitting node j for the first time, ℘ h ij ∈ P h ij , and after hitting node j, ℘ jj ∈ P jj . These two sub-paths can be chosen independently because their concatenation is a valid path, with ℘ h ij • ℘ jj ∈ P ij being the concatenation of the two paths. Now, as c(

and therefore z

Using this result, Equation ( 22) can be developed as

Appendix C. Triangle inequality proof for the surprisal distance

In order for ∆ sur ij to be a distance measure, it has to be shown that it obeys the triangle inequality, ∆ sur ik ≤ ∆ sur ij + ∆ sur jk for all i, j, k. Note that ∆ sur ij = ∞ when node i and node j are not connected (they belong to different connected components) -this is why we require G to be strongly connected. In addition, note that the triangle inequality is trivially satisfied if either i = j, j = k or i = k. Thus, we only need to prove the case i = j = k = i.

In order to prove the result, consider the set of paths P ik from node i to node k. We now compute the probability that such paths pass through an intermediate node int = j where i = j = k = i,

where δ(j ∈ ℘) is a Kronecker delta equal to 1 if the path ℘ contains (at least once) node j, and 0 otherwise. It is clear from Equations ( 21) and (C.1) that

Let us transform Equation (C.1), using the fact that each path ℘ ik between i and k passing through j can be decomposed uniquely into a hitting sub-path ℘ ij from i to j and a non-hitting sub-path ℘ jk from j to k. The sub-path ℘ ij is found by following path ℘ ik until reaching j for the first time. Therefore, for i = j = k = i, Replacing the non-hitting bag-of-paths probabilities by their expressions (see Equation ( 18)) in function of the elements of the fundamental matrix, P(s = Dividing both sides of the previous equation by z kk and recalling that z h ik = z ik /z kk (Equation ( 24)) provides

and we recover z h ik ≥ z h ij z h jk (Equation ( 31)). The equality

∈ ℘) πref (℘) exp[-θc(℘)] = 0, which only occurs when all paths connecting i and k visit node j. Thus, it is clear that

and only if all paths ℘ ∈ P h ik and ℘ ∈ P h ki connecting node i and node k pass through node j. This property is called the cutpoint additivity or graph-geodetic property in [START_REF] Chebotarev | A class of graph-geodetic distances generalizing the shortest-path and the resistance distances[END_REF].

Appendix E. Asymptotic result: for an undirected graph, the ∆ φ distance converges to the shortest-path distance when θ → ∞

There are two ways to prove this property, each of them having its own benefits. The first proof is based on the bag-of-paths framework and is shorter. The second proof is inspired by [START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF] and is longer, but establishes some interesting links with the Bellman-Ford formula for computing the shortest-path distance in a network (see, e.g., [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF][START_REF] Christofides | Graph theory: An algorithmic approach[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF][START_REF] Rardin | Optimization in operations research[END_REF][START_REF] Sedgewick | Algorithms[END_REF]).

Appendix E.1. First proof

Assuming i = j and θ > 0, let us recall (Equation ( 33)), that is, ∆ φ ij = (φ(i, j)+φ(j, i))/2 with φ(i, j) = -1 θ log z h ij , and where z h ij is given by (Equation [START_REF] Cook | Basic properties of the soft maximum[END_REF], recalled here for convenience):

which is always positive for a strongly connected graph. We now have to compute the asymptotic form of z h ij for θ → ∞ or, equivalently, T → 0. Let the lowest-cost (shortest) paths from i to j be denoted as {℘ * k } and let c * = c(℘ * k ) be the cost of such a lowest-cost path. c * is therefore the minimum cost among all possible paths from i to j. Say there are m ≥ 1 such lowest-cost paths. Now, as

and is therefore finite. We also observe that it converges exponentially to 0 when θ → ∞. Moreover, this last inequality implies

which shows that the quantity on the left-hand side is bounded.

Appendix E.2. Second proof

The second proof starts from Equation ( 29), where we replace

Let us now compute the value of the potential φ(i, k) (Equation ( 33)) for Thus, when θ → ∞, Equation (E.7) becomes φ(i, k) = min j (c ij + φ(j, k)) for i = k and φ(k, k) = 0 which is the well-known Bellman-Ford formula for computing the shortest-path distance in an undirected graph (see, e.g., [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF][START_REF] Christofides | Graph theory: An algorithmic approach[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF][START_REF] Jungnickel | Graphs, networks, and algorithms[END_REF][START_REF] Rardin | Optimization in operations research[END_REF][START_REF] Sedgewick | Algorithms[END_REF]). Moreover, for such an undirected graph, the shortest path from i to j is equal to the shortest path from j to i, which implies that ∆ φ reduces to the shortest-path distance too when θ → ∞.

Appendix F. Asymptotic result: for an undirected graph, the ∆ φ distance converges to half the commute cost distance when θ → 0 + Let us show that the ∆ φ distance is half the commute-cost distance when θ → 0 + . As before, there are two ways to prove this property. The first proof is based on the bag-of-paths framework and is somewhat shorter. The second proof, also inspired by [START_REF] Tahbaz | A one-parameter family of distributed consensus algorithms with boundary: from shortest paths to mean hitting times[END_REF], establishes some interesting links with the Bellman-Ford recurrence formula [START_REF] Kemeny | Finite Markov Chains[END_REF][START_REF] Norris | Markov chains[END_REF][START_REF] Ross | Introduction to probability models[END_REF][START_REF] Taylor | An introduction to stochastic modeling[END_REF].

Appendix F.1. First proof

From Equations ( 33) and (E.1),

and, because ℘∈P h ij πref (℘) = 1 for hitting paths (see Equation A.5), both the numerator and the denominator tend to zero when θ → 0 + . For taking the limit θ → 0 + of the whole expression (F.1), we apply l'Hospital's rule (taking the derivative of the numerator and the denominator with respect to θ and then the limit lim θ→0 + of the resulting expression). Because the Gibbs-Boltzmann probability distribution over the hitting paths tends to πref when θ → 0 + (see Equation The quantity ℘∈P h ij πref (℘) c(℘) can be interpreted as the average firstpassage cost from i to j, i.e. the average cost undergone by a random walker using transition probabilities p ref ij for reaching destination node j for the first time when starting from i. Consequently, the average of the two quantities defined in (F.2) is half the commute-cost distance.

Appendix F.2. Second proof

Restarting from Equation (E.7), we now have to take the limit θ → 0 + . Assuming n j=1 q j = 1, let us compute the limit θ → 0 + of softmin q,θ (x),