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Abstract
The year 2015 was, at the time, the warmest since 1880, and many regions in the Northern
Hemisphere (NH) registered record breaking annual temperatures. Simultaneously, a remarkable
and widespread growing season greening was observed over most of the NH in the record from
the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation
index (NDVI). While the response of vegetation to climate change (i.e. the long term trend) is
assumed to be predictable, it is still unclear whether it is also possible to predict the interannual
variability in vegetation activity.

Here, we evaluate whether the unprecedented magnitude and extent of the greening observed
in 2015 corresponds to an expected response to the 2015 climate anomaly, or to a change in the
sensitivity of NH vegetation to climate. We decompose NDVI into the long-term and interannual
variability components, and find that the Pacific Decadal Oscillation (PDO) and the Atlantic
Multidecadal Oscillation (AMO) explain about half of NDVI interannual variability. This
response is in addition to the long-term temperature and human-induced greening trend. We use
a simple statistical approach to predict the NDVI anomaly in 2015, using the PDO and AMO
states as predictors for interannual variability, and temperature and precipitation trends for the
long-term component.

We show that the 2015 anomaly can be predicted as an expected vegetation response to
temperature and water-availability associated with the very strong state of the PDO in 2015. The
link found between climate variability patterns and vegetation activity should contribute to
increase the predictability of carbon-cycle processes at interannual time-scales, which may be
relevant, for instance, for optimizing land-management strategies.
1. Introduction

The sustained increasing vegetation activity trend
(greening) in the Northern Hemisphere (NH) has
been a prominent feature in satellite observations since
the 1980s and is consistently simulated by models
[1–3]. The trend in vegetation greenness has been
linked to increasing growing season length at high
© 2017 The Author(s). Published by IOP Publishing Ltd
latitudes [1] and enhancemed terrestrial CO2 uptake
in northern ecosystems [2, 4]. The greening pace has
been associated with asymmetric effects of climate
trends in vegetation activity [5] or variations in the
climate forcing [6]. It has also been shown that
regional greening trends are further attributed to land
use change, land management, CO2 fertilization, and
nitrogen deposition [3, 7].
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Figure 1. Northern Hemisphere ‘greening’ in 2015. (a) spatial distribution of growing season NDVI fromMODIS Terra, calculated as
the Jun–Sep standardized anomalies relative to 2000–2014 (NDVI in 2000–2014 standard-deviation units sref). The regions where
NDVI in 2015 ranks 1 st in the 2000–2015 period are highlighted with markers. (b) Pixel-scale distribution of NDVI anomalies in 2015
(green) compared with 2000–2014 (warm colours, one probability density function (PDF) per year, with light red corresponding to
2000 and dark red to 2014); (c) Time-series of observed NH NDVI (bold green line), and the time-series corresponding to the long-
term trend (NDVIPC1, dashed green) and interannual variability (NDVIIAV, dotted green) components calculated from rPCA
decomposition (SI). The resulting fit between 2000–2014 and corresponding 95% confidence interval (black line and grey interval
respectively) calculated by the two MLRMs and the predicted anomaly in 2015 (dark grey line). (d), (e) the spatial distribution of
NDVIPC1 and NDVIIAV for 2015, respectively. All NDVI values are in sref units. For a comparison of NDVI anomalies from MODIS
Terra and Aqua see figure S1 available at stacks.iop.org/ERL/12/044016/mmedia.
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Northern ecosystems also present strong interan-
nual variability (IAV), liked with climate variability
[8–10] and extremes [11, 12], although the underlying
mechanisms are less well understood [2, 8]. Luo et al
[13] have pointed that while the response of
ecosystems to climate change is intrinsically predict-
able, the predictability of IAV is largely unknown.
Previous studies have linked IAV in vegetation activity
and the carbon balance of ecosystems with atmo-
spheric circulation variability [10, 14, 15]. In fact,
Hallet et al [16] proposed that climate indices relating
to atmospheric circulation patterns (or teleconnec-
tions) may be better predictors of ecological variability,
because they integrate the co-variation between the
different drivers of ecological activity. Bastos et al [10]
have described how changes in sea-level pressure in the
North Atlantic associated with two such patterns
influence heat andmoisture advection towards Europe,
ultimately driving variations in vegetation activity.

In 2015, the Moderate resolution Imaging Spec-
troradiometer (MODIS) shows widespread record
2

greening during the growing season in NH mid- and
high-latitudes (figure 1(a)). The normalized difference
vegetation index (NDVI) has been proven to be a good
surrogate of vegetation activity and is widely used in
studies of vegetation phenology, productivity, and in
disturbance monitoring [17, 18]. Over the 16 yr period
the mean NH NDVI has steadily increased, but the
broadening of the distribution (figure 1(b)) also
indicates increasing spatial heterogeneity. NDVI in
2015 clearly stands out as an anomaly to the 2000–2014
distribution, extending to values 3–4 standard devia-
tions above the reference mean (sref). At hemispheric
scale, 2015produced the largest absoluteNDVIvalue on
record, and ranked highest for 38% of the NH pixels
(figures 1(a) and (c)).

While abnormally highgrowing season temperature
was registered at hemispheric scale [19], climate
anomalies in 2015 were spatially heterogeneous, with
some regions at high-latitudes actually experiencing
temperatures below the previous 15 yr average
(figure 2). By contrast, southern and central Eurasia

http://stacks.iop.org/ERL/12/044016/mmedia
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Figure 2. Climate anomalies during 2015. (a) Temperature (T, in °C); (b) precipitation (P, in mm.d�1) and (c) soil water content
down to 3 m (SWC, in %). Climate variables are from the ERA-Interim Reanalysis, and anomalies are calculated as departure of the
2000–2014 average. The regions where 2015 anomalies were extreme (either ranking as the highest or lowest in the 2000–2015 period)
are highlighted with markers.
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registered precipitation deficits combined with warm-
ing, resulting in strong dry conditions [20]. In spite of
low summer precipitation, soil moisture was exception-
ally high in central USA, mostly due to positive
anomalies in rainfall and snow during previous seasons.

Someof the factors influencing thegreening trend in
the NH such as nitrogen deposition, CO2 fertilization
and land-use change [3], are unlikely to produce the
rapid greening needed to explain the 2015 anomaly. The
unprecedentedmagnitude and extent of the greening in
2015 may be due to (i) the acceleration of the climate-
change related trend [6], (ii) a response to an extreme
climate anomaly in 2015, or (iii) changes in the
sensitivity of NH vegetation to the climate forcing [8].

Vegetation presents distinct responses to climate at
different time-scales, and the drivers of the long-term
greening and the interannual anomalies are not
necessarily the same [5, 7, 8, 21]. Therefore, we use
principal component analysis (PCA) to decompose
NDVI into its dominant spatio-temporal patterns: (a)
a non-monotonic trend and (b) anomalies due to IAV
and extremes. We then identify the corresponding
climate-related drivers by evaluating the sensitivity of
NDVI components to temperature, light and soil
moisture, as well as to several teleconnection indices.
We finally develop simple statistical models to evaluate
the predictability of each NDVI component and of the
2015 anomaly.
2. Methods
2.1. Vegetation greenness
The NDVI is calculated from contrasting surface
reflectance in the near-infrared (rnir) and red (rred)
3

bands and is related to the amount of photosyntheti-
cally active radiation (400 to 700 nm) absorbed by
vegetation [22].

Here we use the NDVI from the Terra MODIS
Collection 6 standard product [23], spanning from
2000 to 2015 with 16 d temporal composite at
0.05°lat/lon. The Collection 6 is the latest version of
the MODIS product, which has been improved in
various ways from its predecessor (i.e. Collection 5):
Level 1 B calibration, snow/cloud detection, aerosol
retrieval/correction, polarization correction, [24, 25].
Furthermore, a refined temporal compositing ap-
proach has enabled it to provide less biased
radiometric observation of the Earth’s surface for
the last 16 yr [26]. All selected data are processed
from MODIS land surface reflectance data and
thoroughly corrected for atmospheric effects. To
obtain valid observations for surface vegetation, we
applied a strict quality control strategy to minimize
non-vegetative signals (i.e. snow and clouds). Land
cover was assessed by the MCD12C1 for the year 2007
(MODIS Land Cover Type: IGBP classes, available
from 2001–2012 only) [27], and urban, permanent
snow and ice, and sparsely vegetated or barren areas
were excluded. Three quality control strategies with
increasing strictness in order to further filter out low
quality pixels were compared. Results were consistent
between the quality control strategies; here we show
the least conservative one as it keeps the largest
number of pixels.

Data were first aggregated to monthly time step
and growing season NDVI was calculated by averaging
Jun–Sep observations. The growing season standard-
ized NDVI anomaly (henceforth simply NDVI) is
defined as the departure from the long-term
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climatology for 2000–2014; this procedure avoids the
influence of the abnormal greening in 2015. The data
were resampled to the coarser resolution of climate
data (0.75°lat/lon and selected for the latitudes above
30°N. NDVI values were further compared with the
ones derived from MODIS Aqua for the common
period (2003–2015, figure S1).

2.2. Climate data
The climate variables used in this study were obtained
from ERA-Interim reanalysis [28] (http://apps.ecmwf.
int/datasets/) as monthly means of daily values for the
period 2000–2015, at 0.75°lat/lon resolution, for
latitudes above 30°N. Seasonal anomalies (Jun–Sep)
were calculated with reference to the period 2000-
–2014 for: 2 m air temperature (T, °C), average daily
precipitation (P, mm.d�1), photosynthetically active
radiation (PAR, %), and volumetric soil water content
(depth 0�2.89 m, SWC, %). Climate anomalies in
2015 are shown in figure 2.

2.3. Climate variability patterns
We select three main coupled atmosphere-ocean
variability patterns influencing global climate anoma-
lies: the El-Niño/Southern Oscillation (ENSO) [29],
the Pacic Decadal Oscillation (PDO) [30] and the
Atlantic Multidecadal Oscillation (AMO) [31]. We
further analysed two patterns of atmospheric variabil-
ity in the North Atlantic, influencing both Eurasia and
North America: the North Atlantic Oscillation (NAO),
the East-Atlantic Pattern (EA), which have been
shown to modulate the interannual variability of
ecosystem activity in Europe [10].

The PDO and AMO indices correspond to leading
modes of Sea Surafce Temperature (SST) variability in
the North Pacific [30] and the North Atlantic [32]
oceans, respectively, and are provided by NOAA’s
Physical Sciences Division (www.ncdc.noaa.gov/tele
connections/). The Multivariate ENSO Index (MEI)
[33], NAO and EA indices are provided by NOAA
Climate Prediction Centre (www.cpc.ncep.noaa.gov/).

Monthly values of the five indices between
December 1999 and December 2015 were selected.

2.4. NDVI decomposition
In order to separate the long-term and interannual
components of NDVI, we performed a rotated
principal component analysis (rPCA) on NDVI.
The rPCA is a multivariate statistical technique that
allows decomposing a data set into a given number of
uncorrelated components explaining most of the
variance in decreasing order. The components
explaining most of the variance are referred to as
leading modes. This transformation allows the
reconstruction of the original time-series from all,
or only a given set of principal-components. More
details are given in SI.

The leading mode presents high spatial (r ¼ 0.96)
and temporal coherence (r¼ 0.97) with the linear trend
4

of NDVI, but it further captures year-to-year variations
of thegreeningpace [3, 6].We reconstruct the long-term
NDVI component (NDVIPC1, i.e. ‘trend’) by retaining
only the first component of NDVI and reversing the
PCA transformation. The other components (2�16)
were similarly used to reconstruct the IAV component
(NDVIIAV).Thecontributionofeachcomponent (trend
and IAV) to NDVI in 2015 can then be calculated for
each pixel (figure S3).

2.5. NDVI driving factors and prediction
In order to evaluate the drivers of NDVIPC1 (i.e. trend)
we calculate its correlation with T, PAR and P, as well as
with their principal-components (calculated as de-
scribed for NDVI). NDVIPC1 correlates significantly
with T and P and their leading modes, as well as one
component (fifth) of PAR (figure S4). A set of multiple
linear regression models (MLRM) using these
variables as predictors of NDVIPC1 were trained at
hemispheric and pixel scale during 2000–2014. The
best and most parsimonious fit (according to Akaike’s
information criterion, AIC) was found for the MLRM
using the leading modes of T (first) and P (first two) as
predictors (figure S5), consistent with the stronger
correlations found. The MLRM was trained at
hemispheric and pixel-scale for 2000–2014 and used
to predict NDVIPC1 in 2015 (figure S6).

We calculated the correlation between the different
teleconnections in winter (DJF, as atmospheric
circulation is stronger in winter) and during the
growing season with the five leading NDVI compo-
nents (54% of the variance) and NDVIIAV (table S1).
All leading components except the first (trend) and
NDVIIAV present significant correlation with at least
one teleconnection, consistent with their prominent
influence in global and hemispheric climate anomalies
and consequent vegetation response [10, 14]. A set of
MLRMs were trained using combinations of T, P, PAR
or, alternatively, the five teleconnection indices. The
winter PDO and AMO were found to provide the best
fit (lowest AIC). An MLRM using these indices as
predictors was trained during 2000–2014 at hemi-
spheric and pixel level (figures S7(a) and (b)) and then
used to predict NDVIIAV (figure 3).

The 2015 NDVI field was then reconstructed
based on the predictions of the two MLRMs (figure 4
(a)) and the corresponding model residuals were
evaluated for each pixel (figure 4(b)). The same
procedure was repeated for shorter training periods
(figure S8).

2.6. Disturbance and extremes
To understand the poor skill of climate-based
prediction in the pixels with residuals greater than
±1sref, we investigate the occurrence of climate
extremes and/or disturbances.

The occurrence of climate extremes is assessed
separately for positive and negative residuals by
evaluating the distribution of T, P, PAR and SWC

http://apps.ecmwf.int/datasets/
http://apps.ecmwf.int/datasets/
www.ncdc.noaa.gov/teleconnections/
www.ncdc.noaa.gov/teleconnections/
www.cpc.ncep.noaa.gov/


Environ. Res. Lett. 12 (2017) 044016
anomalies ranking highest or lowest in 2015 (figure 4
(c) and figure S9). As it is convenient to distinguish
regions with water-limited and energy-limited regimes
[34], we perform the analysis separately for the arid,
transitional and humid regions defined in [35].

The occurrence of fire was assessed by the GFED4s
burned-area fraction product [36], downloaded at
0.25°lat/lon spatial resolution from http://globalfire
data.org. Monthly data were re-gridded to the
common 0.75°lat/lon resolution and aggregated for
January–September.
3. Results
3.1. NDVI decomposition
The leading mode of NDVI (figure S2) explains 22%
of the variance and corresponds to a generalized and
spatially coherent greening trend over most of the NH
(figures 1(c) and (d)), excepting the region north of
the Black and Caspian seas (browning trend). The
other four leading components present variability at
interannual to decadal time-scales (figure S2), and all
present significant relationships with atmospheric
circulation patterns (table S1).

The decomposition of NDVI into its long-term
(figure 1(d)) and interannual variability (figure 1(e))
components indicates different contributions of the
trend and IAV to 2015 NDVI (figure S3). While
NDVIPC1 explains most (83%) of the NH average
NDVI anomaly in 2015 (figure 1(a)), it explains only
57% of the pixel-scale anomalies and does not capture
anomalies above 2sref (figure 1(d)). The strongest
pixel-scale anomalies (extending to±3sref, figure 1(e))
are mostly captured by NDVIIAV. NDVIPC1 explains
most of the 2015 values in the North American and
east-Asian tundra regions, as well as in eastern Europe,
parts of central USA and east Asia (figure S3), regions
dominated by managed ecosystems [3]. On the other
hand, the biggest anomalies, such as the high NDVI
observed in central Eurasia and southern USA and the
negative anomalies (browning) in Europe and western
North-America, are mostly explained by NDVIIAV.
The cancelling regional greening and browning
anomalies explains why NDVIIAV does not contribute
to the hemispheric average NDVI as much as the
trend.

3.2. MLR model fit
The leading modes of growing season temperature
and precipitation were found to be the best climate-
related predictors of the spatio-temporal patterns
of 2000–2014 NDVIPC1, as they filter out anomalies
due to natural climate variability (figures S4 and S5).
The MLRM based on the leading components of
T and P (explaining 22% and 27% of T and P
variance, respectively) trained for 2000–2014 (R2 ¼
0.63 figure S6(a)), predicts the strong hemispheric
greening in 2015 and its spatial pattern, with most
5

residuals smaller than ±0.5sref, but predominantly
negative (figures S6(b) and (c)), of �0.15sref for the
NH average.

Hemispheric NDVIIAV is predominantly high
before 2008, followed by a period of lower but highly
variable values (figure 3(a)). The winter states of the
PDO and the AMO (figure 3(b)), explain about half of
the variance in NDVIIAV between 2000–2014 and allow
NH NDVIIAV in 2015 to be predicted with a very small
difference (0.02sref). Most of the predicted pixel-scale
anomalies (figure 3(c)) remain within ±1sref of
observations (75%), although some pixels still present
errors above ±2sref.

The coefficients of the model fit at pixel-scale
(NDVIIAV sensitivity to PDO and AMO) are shown in
figures. S7(a) and S7(b). The spatial pattern of NDVI
sensitivity to AMO is consistent with the spatial
configuration of the second leading mode of NDVI,
adding robustness to the temporal correlations found
(table S1). A consistent pattern is also found between
pixel-scale NDVIIAV sensitivity to PDO and the second
and third leading modes of NDVI. While the strong
sensitivity of NDVI to PDO in southeastern USA is
reflected in the second component, the browning in
central Europe accompanied by greening in central
Eurasia (with positive PDO) is more evident in the
third.

3.3. Predicting 2015 NDVI anomalies
The reconstruction of NDVI in 2015 as the sum of
predicted NDVIPC1 and NDVIIAV by the two MLRMs
described above allows reproducing most of the
spatio-temporal variability in NDVI over the 16 yr
MODIS record and accurately predict the strong
greening in 2015, with 74% of the residuals below 1sref
(figures 4(a) and (b)). The variables used as predictors
of NDVIPC1 (leading modes of T and P) and NDVIIAV
(PDO and AMO) appear to be robust, because they
still present predictive skill when trained for shorter
periods (figure S8).

3.4. Evaluating the model residuals
High residuals (above ±1sref) are dominated by
negative values (i.e. 2015 NDVI is underestimated) in
pixels where 2015 NDVI was exceptionally high (2sref
or more) and mostly explained by IAV (figure S3). We
analyse the occurrence of climate extremes or fire
disturbance in 2015 as a possible explanation for poor-
model skill in (figure 4(c), S9).

Negative residuals (underestimates of greening)
are generally found in regions experiencing climate
extremes favourable for vegetation growth: extreme
wetness in arid and transitional regions which are
water-limited [2, 34, 35] as, for example, in Turkey;
and extreme warming and light in humid regions
(energy-limited) as in far-east Russia.

Positive residuals (overestimates) are generally
associated with extreme heat and dryness in water-
limited regions, e.g. western USA and southern

http://globalfiredata.org
http://globalfiredata.org
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Eurasia. NDVI was also overestimated in areas
experiencing conditions generally favourable for
vegetation growth but associated with fire occurrence,
e.g. energy-limited regions with extremely high T and
PAR (e.g. eastern Europe) or water-limited regions
registering extreme wetness (south of Caspian Sea).
Overall, 69% (81%) of the pixels with residuals above
1sref (2sref) are associated with burned areas.
4. Discussion

The leading modes of temperature and precipitation
(associated with trends) generally provide a good fit
for NDVIPC1 and allow capturing the main patterns of
the trend-related 2015 NDVI. This is consistent with
the predominance of climate-related trends in NH
vegetation [1, 2, 3, 5]. The magnitude of predicted
NDVIPC1 is systematically underestimated, as the
climate-based MLRM does not include the effect of
CO2 fertilization, nitrogen deposition or structural
changes related with land-use change that further
influence the greening trend.

The significant correlation found between the
winter PDO and AMO and the components associated
with IAV is likely due to their modulation of the multi-
annual variability pattern that dominates NDVIIAV
during the 16 year period (figure 3(a) and (b)), and
consistent with the long time-scales of variability of
these patterns. In winter, atmospheric circulation
variability is generally stronger, and may influence
vegetation in spring and summer through phenology
and delayed physical effects (e.g. snow cover or soil
moisture) [10, 21].

The PDO is a decadal basin-wide Pacific SST
variability pattern with spatial similarities to the
ENSO pattern but with stronger expression in the
North Pacific [30]. The winter of 2015 registered the
highest PDO value (warmer than average SST along
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the North American western coast) in the 16 yr
record (figure 3(b)), likely amplified by the develop-
ment of El Niño conditions in the autumn of 2014
[37]. The effect of the PDO in NDVIIAV may be
generally linked to its influence on the temperature-
moisture feedback [38]: greening is associated with
cooler and cloudier conditions and enhanced soil
moisture in response to positive PDO (e.g. south-
eastern USA), while browning occurs in regions
where positive PDO leads to warmer and drier
growing season with increased radiation; these
conditions increase soil water depletion (e.g. central
Europe, part of the interior lowlands and western
North America).

The AMO is a multi-decadal variability pattern in
North Atlantic SST, likely linked to natural changes in
the thermohaline circulation [31]. Winter AMO
remained generally positive (warmer conditions)
during the 16 year period, peaking in 2004–2007
and registering a low value in 2015 (figure 3(b)). The
AMO influences NDVI especially in higher latitudes,
with greening response to high AMO in the eastern
edge of Russia and Alaska linked to higher tempera-
ture and radiation (the latter mostly in Alaska). High
AMO induces browning at the very high latitudes in
eastern Eurasia and eastern Canada, due to cooling
and cloudier conditions (figure S7). The opposite
response is expected for low AMO.

The climate anomalies observed in 2015 (figure 2)
are consistent with a very strong positive phase of the
PDO with low AMO: the sharp drought/wet patterns
and abnormal warming over most mid-latitude regions
andcentral Eurasia; this explains the greening/browning
patterns found in NDVIIAV (figure S7). The MLRM
using PDO and AMO indices generally captures
the patterns of NDVIIAV in 2015: the greening over
central Eurasia and southern USA as well as the
browning in central Europe andwesternNorthAmerica
(figure 3(c)).
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Figure 4. Analysis of the prediction residuals. (a) Pixel-scale predicted NDVI for 2015, calculated as the sum of the two predictions for
the interannual variability and long-term components (figure 3 and figure S5), to be compared with figures 1(a) and (b) the
corresponding residuals (predicted minus observed). Negative (positive) residuals in green (purple) indicate that the observed NDVI
in 2015 was higher (lower) than the climate-based prediction. (c) Analysis of disturbances or climate extremes in the regions where
residuals exceed ±1sref: occurrence of fires during Jan–Sep 2015 (black squares), highest (upward triangles) or lowest (downward
pointing triangles) values of temperature (red), precipitation (dark blue), soil moisture (cyan) and photosynthetically active radiation
(yellow) in 2015. The positive extremes of radiation and temperature are generally linked with reduced cloudiness and negative
extremes in precipitation and soil moisture, which were not represented to improve readability. Arid (dark shade), transitional (light
shade), and humid regions (white) as in [35] shown in (c).
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The statistical approach used here is based solely on
climate variables (T and P for NDVIPC1 and tele-
connection indices for NDVIIAV). The poor skill in
predictingNDVI in 2015may be due to: (i) non-climate
related trends, associated for instance with land-use/
land-cover change, changes in nutrient availability, CO2

fertilization or management practices [3], (ii) the
occurrenceof climate extremes, explainedneither by the
trends inTandP (predictors ofNDVIPC1), nor byAMO
and PDO states (predictors of NDVIIAV); (iii) the
occurrence of disturbances during the growing season
or during the preceding months. Since the highest
residuals (figure 4(b)) are found in regions dominated
by large IAV (figure S3), the processes described in (i)
unlikely explain the high residuals in 2015.

In those regionswhereNDVIpredictedbyour linear
model was too high, generally the ‘potential’ (climate-
related) greeningwas not observed either because offire
occurrence or leaf wilting in response to extreme heat
and soil dryness. In regions where the model under-
estimated thegreening, extremely favourable climate for
vegetation growthwasobserved. These extremesmay be
partly linkedwith the influenceofother teleconnections,
in particular the 2014/15 El Niño which may have
reinforced PDO anomalies [37, 39].

Still, not all pixels with high residuals can be
explained by climate extremes or fire, pointing to
other processes not directly linked with climate (e.g.
land use/land cover change, forest demography,
pests). Also, in water-limited regions, vegetation
may react more positively to wetness than predicted
7

by a linear model, consistent with the strong and
non-linear sensitivity of the predominant grassland
and shrub ecosystems in these regions to climate
variability, in particular under high soil moisture
conditions [9, 40, 41].
5. Conclusion

Here we show that the record greening observed
throughout the Northern Hemisphere in 2015 can be
explained by the very strong state of the PDO
embedded into a long-term greening trend, rather
than changes in the greening pace [6] or in vegetation
sensitivity to climate at the hemispheric-scale [8].

We further show that understanding the links
between low-frequency climate variability patterns and
NDVI allows predicting, to some extent, variability in
vegetation activity at interannual time scales. The poor
predictive skill found in somepixels is generally linked to
extreme climate anomalies not controlled by PDO or
AMO (used here to predict IAV) and the occurrence of
fires and may further be due to other disturbances and
possiblenon-linear responses that couldnotbecaptured
with a simple linear model of IAV.

Since the AMO and PDO are potentially predict-
able a few years in advance [42], our results show that
IAV in ecosystem activity might after all be potentially
predictable for certain biomes [13]. The link found
between AMO and PDO indices and growing season
NDVImay be used to develop simple statistical models
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to predict growing season vegetation productivity in
the forthcoming seasons, although it might not
perform so well for years with weaker PDO and likely
needs to be re-evaluated for periods with negative
AMO. Although simple, this approach may prove
useful for governments, land managers and farmers.

However, it should be noted that the relationships
found may not be stationary, as teleconnections may
interact [10, 39, 43] or respond to anthropogenic
influences [44]. Due to the long variability time-scales
of these patterns (in the order of several decades), the
full depiction of their influence on global ecosystems is
still not possible. Yet, this may be feasible in the near
future, as the length of the period of continuous global
ecosystem monitoring increases.
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