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Abstract. An aerosol time-of-flight mass spectrometer
(ATOFMS) was employed to provide real-time single parti-
cle mixing state and thereby source information for aerosols
impacting the western Mediterranean basin during the
ChArMEx-ADRIMED and SAF-MED campaigns in sum-
mer 2013. The ATOFMS measurements were made at a
ground-based remote site on the northern tip of Corsica.

Twenty-seven distinct ATOFMS particle classes were
identified and subsequently grouped into eight general
categories: EC-rich (elemental carbon), K-rich, Na-rich,
amines, OC-rich (organic carbon), V-rich, Fe-rich and Ca-
rich particles. Mass concentrations were reconstructed for
the ATOFMS particle classes and found to be in good agree-
ment with other co-located quantitative measurements (PM1,
black carbon (BC), organic carbon, sulfate mass and am-
monium mass). Total ATOFMS reconstructed mass (PM2.5)

accounted for 70–90 % of measured PM10 mass and was
comprised of regionally transported fossil fuel (EC-rich)
and biomass burning (K-rich) particles. The accumulation
of these transported particles was favoured by repeated and

extended periods of air mass stagnation over the western
Mediterranean during the sampling campaigns. The single
particle mass spectra proved to be valuable source markers,
allowing the identification of fossil fuel and biomass burning
combustion sources, and was therefore highly complemen-
tary to quantitative measurements made by Particle into Liq-
uid Sampler ion chromatography (PILS-IC) and an aerosol
chemical speciation monitor (ACSM), which have demon-
strated that PM1 and PM10 were comprised predominantly
of sulfate, ammonium and OC. Good temporal agreement
was observed between ATOFMS EC-rich and K-rich parti-
cle mass concentrations and combined mass concentrations
of BC, sulfate, ammonium and low volatility oxygenated or-
ganic aerosol (LV-OOA). This combined information sug-
gests that combustion of fossil fuels and biomass produced
primary EC- and OC-containing particles, which then accu-
mulated ammonium, sulfate and alkylamines during regional
transport.

Three other sources were also identified: local biomass
burning, marine and shipping. Local combustion particles
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(emitted in Corsica) contributed little to PM2.5 particle num-
ber and mass concentrations but were easily distinguished
from regional combustion particles. Marine emissions com-
prised fresh and aged sea salt: the former was detected
mostly during a 5-day event during which it accounted for
50–80 % of sea salt aerosol mass, while the latter was de-
tected throughout the sampling period. Dust was not effi-
ciently detected by the ATOFMS, and support measurements
showed that it was mainly in the PM2.5–10 fraction. Shipping
particles, identified using markers for heavy fuel oil com-
bustion, were associated with regional emissions and repre-
sented only a small fraction of PM2.5 particle number and
mass concentration at the site.

1 Introduction

The atmosphere in the Mediterranean basin is strongly in-
fluenced by numerous and varied aerosol sources. Anthro-
pogenic emissions from heavily industrialised parts of south-
ern Europe (e.g. Genoa and Milan), the megacities of Istan-
bul and Cairo, a large range of smaller population centres
disseminated all over the basin, as well as intense shipping
activities render the Mediterranean basin one of the most air-
pollution-impacted zones on the planet (Karanasiou et al.,
2014; de la Paz et al., 2013). Natural sources such as Sa-
haran dust, sea-spray and frequent forest fires exert further
considerable stress on regional air quality (Kanakidou et al.,
2011). Transport of air pollution from outside the Mediter-
ranean region is one cause for increased concentrations of
primary and secondary pollutants (Lelieveld et al., 2002). In
the summertime upper troposphere, Asian monsoon outflow
transports pollution across northern Africa and the Mediter-
ranean (Scheeren et al., 2003). In the middle troposphere,
westerly winds prevail, transporting polluted air masses from
western Europe and North America (Marmer and Langmann,
2005). In the surface layer, land emissions from southern and
central Europe are transported to the eastern Mediterranean
by northerly winds (Sciare et al., 2003).

The geography and regional meteorological processes in
the western Mediterranean also favour the accumulation and
ageing of polluted air masses (Gangoiti et al., 2001; Lelieveld
et al., 2002; Millán et al., 2000, 2002; Millán and Salvador,
1997; Rodríguez et al., 2002; Salvador et al., 1999; Soriano
et al., 2001). Arid conditions, combined with high solar ra-
diation and photochemical conversion rates significantly en-
hance air pollution mostly in the form of PM2.5 and O3.
The highest particulate matter (PM) concentrations are gen-
erally found in southern and eastern Europe and attributed
to diverse emission sources such as industry, traffic, resus-
pended dust, shipping emissions and African dust intrusions
(Karanasiou et al., 2011, 2014, 2007, 2009; Lelieveld et al.,
2002; Querol et al., 2004; Rodríguez et al., 2007; Salameh
et al., 2015). A number of studies have reported that in rural

environments in the Mediterranean, airborne PM and ammo-
nium sulfate concentrations undergo a seasonal cycle char-
acterised by a summer maximum (Bergametti et al., 1989;
Kubilay and Saydam, 1995; Querol et al., 1998a, b; Ro-
dríguez et al., 2001, 2002). This seasonal cycle has not been
reported at rural sites in central and northern Europe, where
high PM events are mostly recorded in winter during stag-
nant episodes caused by cold temperature inversions and low
wind speed (Beekmann et al., 2015; Favez et al., 2007; Monn
et al., 1995; Röösli et al., 2001; Turnbull and Harrison, 2000).
Long-term measurements at sites in the western and east-
ern Mediterranean basin by Querol et al. (2009) showed that
mineral matter is the major component of PM10 (22–38 %)
in both areas, with relatively high proportions in PM2.5 (8–
14 %), followed by sulfate, organic matter (OM), nitrate and
ammonium.

Most studies to date have documented Mediterranean
aerosol properties in the eastern basin or at coastal continent-
based sites in the western basin, where they were subject
to the proximity of considerable urban or industrial emis-
sions. Land-based measurements of the background com-
position of western Mediterranean atmospheric aerosol is
best investigated on the shoreline of relatively industry-
free, less urbanised islands and studies in such locations
have thus far been limited. One of the central aims of the
ChArMEx (Chemistry-Aerosol Mediterranean Experiment;
https://charmex.lsce.ipsl.fr) project is to make background
aerosol observations on islands such as Corsica and the
Balearic Islands.

In addition, studies of the chemical composition of single
aerosol particles in the Mediterranean are particularly scarce
and are restricted to urban environments (Dall’Osto et al.,
2013, 2016; Dall’Osto and Harrison, 2006; McGillicuddy,
2014). Single particle mass spectrometers, such as the
aerosol time-of-flight mass spectrometer (ATOFMS), have
proven valuable in identifying and characterising a wide va-
riety of particle sources: sea salt, mineral dust, vehicle ex-
haust, tyre wear, solid fuel combustion (coal, peat and wood),
shipping and various industrial emissions (Beddows et al.,
2004; Bhave et al., 2001, 2002; Dall’Osto et al., 2014; Gio-
rio et al., 2012; Harrison et al., 2012; Healy et al., 2009,
2010, 2012; Liu et al., 2003; Spencer et al., 2008; Tao et
al., 2011). Mixing state information – both internal and ex-
ternal – provided by mass spectrometers has been used to
determine the type of atmospheric processing particles have
undergone (Gard et al., 1998), as well as their acidity and hy-
groscopicity (Denkenberger et al., 2007; Healy et al., 2014),
properties which affect their ability to act as CCN (cloud
condensation nuclei; Furutani et al., 2008). The combination
of ATOFMS and hygroscopicity tandem differential mobility
analyser (HTDMA) data has shown that sea salt and particles
containing amines and nitrate are hydrophilic, while the more
organic carbon (OC) particles contain the more hydrophobic
they are (Herich et al., 2009; Wang et al., 2014). Fresh par-
ticles can be distinguished from aged ones by the presence
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of secondary inorganic species such as nitrate, sulfate and
ammonium (Cahill et al., 2012; Healy et al., 2010; Liu et al.,
2003; Pratt and Prather, 2009), which is also helpful in differ-
entiating particles from local and transported sources (Healy
et al., 2012). Single particle chemical speciation is therefore
a useful tool for examining the effect aerosols have on air
quality and climate, and is complementary to characterising
particle optical and physical properties (Moffet and Prather,
2009). Measurements from the ATOFMS also provide useful
information to validate mixing-state resolved models (Zhu et
al., 2016). In air quality and climate models, mixing-state
information is essential as this property strongly impacts
aerosol composition, hygroscopicity, optical and CCN prop-
erties over urban areas (Zhu et al., 2016).

An important application of single-particle data is source
apportionment of ambient aerosol. If a unique particle com-
position signature can be linked to a specific source, then
number and mass concentration contributions can be esti-
mated at a receptor site (Allen et al., 2000; Bein et al., 2006;
Pratt and Prather, 2009; Qin et al., 2006; Reinard et al.,
2007). Most chemical speciation measurements to date in
the Mediterranean have focused on bulk aerosol and, while
they provide quantitative data, they do not resolve the mix-
ing states of ambient particles. As such, source identification
and therefore apportionment – often one of the main goals of
aerosol measurements – is limited with these techniques.

In this context, an aerosol time-of-flight mass spectrom-
eter (ATOFMS) was employed to provide real-time single
particle mixing state and thereby source information for
aerosols impacting the western Mediterranean basin during
two ChArMEx special observation periods in summer 2013:
ADRIMED (Aerosol Direct Radiative Impact on the regional
climate in the MEDiterranean region; Mallet et al., 2016) and
SAF-MED (Secondary Aerosol Formation in the MEDiter-
ranean).

2 Methodology

2.1 Sampling site and instrumentation

Measurements were performed at the atmospheric monitor-
ing station in Ersa (coordinates: 42◦58′09′′ N, 09◦22′49′′ E),
Cap Corse, near the northern tip of Corsica. This station is
well positioned to investigate polluted air masses transported
over the western Mediterranean basin from the highly indus-
trialised regions of the Po Valley (Royer et al., 2010) and/or
Marseille/Fos-Berre (El Haddad et al., 2011, 2013). The site
was fully equipped for the measurement of aerosol chemi-
cal, physical and optical properties. This ground-based re-
mote station is located at an altitude of 530 m a.s.l. at the
remote Cap Corse peninsula and has unobstructed views to
the sea over ∼ 270◦ (Lambert et al., 2011).

The ADRIMED and SAF-MED field campaigns took
place from 11 June to 5 July and from 12 July to 6 Au-

gust 2013 respectively, during the Mediterranean dry sea-
son over the western and central Mediterranean basins. Some
of the key instruments deployed during the campaigns are
given in Table 1. A full list of instruments deployed during
ADRIMED can be found in the overview for this campaign
by Mallet et al. (2016), while a summary of the main findings
of the SAF-MED campaign is currently in preparation.

The ATOFMS (TSI model 3800) was operated continu-
ously from 12 June to 6 August, with a period of downtime
from 12 to 18 July. A detailed description of the ATOFMS
can be found elsewhere (Gard et al., 1997). Briefly, it con-
sists of (i) an aerodynamic focusing lens (TSI AFL100) (Su
et al., 2004) that transmits particles in the aerodynamic di-
ameter (Da) range 100–3000, (ii) a particle sizing region,
and (iii) a bipolar reflectron time-of-flight mass spectrometer.
Single particles are desorbed/ionised using a pulsed Nd:YAG
laser (λ= 266 nm, ∼ 1 mJ pulse−1). Positive and negative
ion mass spectra of individual aerosol particles are obtained,
which enable identification of the chemical constituents. A
gradual degradation in the power of the sizing lasers dur-
ing the campaign was observed and resulted in effective size
ranges of 300–3000 nmDa for ADRIMED and 500–3000 nm
Da for SAF-MED.

2.2 ATOFMS data analysis

Over 1.2 million single particle mass spectra were generated
by the ATOFMS during the sampling period and clustered
using the K-means algorithm (K= 80), described in detail
elsewhere (Gross et al., 2010; Healy et al., 2009, 2010). Clus-
ters exhibiting very similar average mass spectra (including
those with the same major ions but varying relative signal in-
tensities), comparable temporal trends and size distributions
were merged. The final merged clusters were then identified
as particle classes – 27 in total.

The particle class labelling scheme used herein is regularly
used in the literature (Dall’Osto and Harrison, 2006; Spencer
and Prather, 2006; Ault et al., 2010; Pratt and Prather, 2012)
and indicates either the probable source (e.g. sea salt) or the
dominant species in the positive ion mass spectra (e.g. K,
EC, Fe), with the order of the ions indicating their relative
mass spectral intensities. For example, a particle class with
high-intensity mass spectral features for sodium and elemen-
tal carbon is labelled Na-EC. In some cases this is followed
by a secondary species detected in the negative mass spectra
(e.g. K-NOx), which usually provides insight into the atmo-
spheric ageing the particles have undergone locally or during
transport (Reinard et al., 2007).

Single-particle mass spectrometers such as the ATOFMS
do not provide quantitative information in the form of par-
ticle number or mass concentrations – rather the ATOFMS
provides speciation in particle counts classified by aerody-
namic diameter. The transmission biases of the AFL (aero-
dynamic focusing lens), the number of particles the system
can size and ionise at any given time (data acquisition busy
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Table 1. List of instruments deployed at Cap Corsica during the ADRIMED and SAF-MED field campaigns. See text for instrument defini-
tions.

Parameter Instrument Make and model Temporal Institution
resolution

Particle number size distribution
(10–500 nm, mobility diameter and
300 nm–20 µm, optical diameter)

SMPS TSI Instruments Ltd., DMA model
3080 and CPC model 3010

5 min
(continuous)

CNRM GAME

OPS TSI Instruments Ltd., model 3300 5 min
(continuous)

CNRM GAME

PM10 and PM1 mass concentration TEOM,
TEOM-FDS

continuous LSCE

Chemical composition and size distri-
bution of non-refractory and refractory
particles (100–3000 nm, vacuum aero-
dynamic diameter)

ATOFMS TSI Instruments Ltd., model 3800-
100

continuous UCC

Chemical composition of non-
refractory particles (30–1000 nm,
vacuum aerodynamic diameter)

ACSM Aerodyne Research Inc. 25 min
(continuous)

LSCE

Black carbon (BC), PM2.5 MAAP Thermo-Scientific, model 5012 5 min
(continuous)

LSCE

PM10 chemical composition (Na+,
Mg+, Cl−, Ca2+, K+, NH+4 , NO−2 ,

SO2−
4 , MSA, Oxalate)

PILS-IC 12/18 min
(continuous)

LSCE

Pressure, temperature, relative humid-
ity, solar radiation, rain, wind speed and
direction

Weather
station

Campbell Scientific, Model
CR1000

5 min
(continuous)

LSCE

UCC: University College Cork. LSCE: Laboratoire des Sciences du Climat et de l’Environnement. CNRM-GAME : Centre National de Recherches Météorologiques –
Groupe d’étude de l’Atmosphère Météorologique.

time) and a limited detection of particles < 150 nm (deter-
mined by wavelength of sizing lasers and the amount of scat-
tered light) hinder a full and accurate counting of particles
over the entire ATOFMS size range (100–3000 nm Da). The
desorption/ionisation laser used by the ATOFMS also com-
plicates quantitative speciation. Shot-to-shot fluctuations in
laser output power and variations in power density (Gaus-
sian) across the laser beam (Steele et al., 2005; Wenzel and
Prather, 2004) create variance in the amount of a particle that
is desorbed and can also lead to variations in resultant mass
spectral peak height and area (Reinard and Johnston, 2008).

Given these limitations, in order to produce meaningful
particle number and mass concentrations for ATOFMS parti-
cle classes the total ATOFMS counts were scaled using quan-
titative particle counting instruments operated concurrently:
an optical particle counter (OPC, TSI model 3300) and a
scanning mobility particle sizer (SMPS, TSI DMA model
3080 and CPC model 3010). Reconciling SMPS, OPS and
ATOFMS data requires conversion ofDm (electrical mobility
diameter; SMPS) and Do (optical diameter; OPC) measured
with the SMPS and OPS into the corresponding ATOFMSDa

(aerodynamic diameter), using the following relationship:

Da =
ρp

ρ0

Dve

χ
,

where ρp is the particle density (discussed hereafter), Dve
is the volume equivalent diameter (operationally equivalent
to Dm or Do), ρ0 is standard density (1 g cm−3) and χ is
the dynamic shape factor (assumed to be 1, thus represent-
ing spherical shape). This is a simplified version of particle
diameter, morphology and density relationships that are cov-
ered in much greater detail elsewhere (DeCarlo et al., 2004).
No correction factors were used to merge the SMPS and OPS
data: Dm and Do were both assumed to be equivalent to ge-
ometric diameter.

Knowledge of particle density is required for this conver-
sion. This value can be estimated from bulk mass concentra-
tion measurements made, for example, by an aerosol chem-
ical speciation monitor (ACSM) and an instrument which
measures black carbon (BC), such as a multi-angle absorp-
tion spectrometer (MAAP).
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Average density=
mBC+mOrg+mCl+mSO4 +mNO3 +mNH4

mBC
1.5 +

mOrg
1.2 +

mCl
1.52 +

mSO4+mNO3+mNH4
1.75

,

where m is the average mass of BC and ACSM species. 1.5,
1.2, 1.52 and 1.75 (Allan et al., 2003) are material densi-
ties for BC, organic aerosol (Org), non-sea salt Cl−, SO2−

4 ,
NO−3 and NH+4 respectively. An average estimated density of
1.4 g cm−3 was observed for bulk aerosol for the ADRIMED
and SAF-MED campaigns. From the density calculation it is
clear that neither metal-rich nor sea salt particles are taken
into account. From the PILS-IC (Particle into Liquid Sam-
pler ion chromatography) it was clear that sea salt particles
constituted a significant fraction of PM10 aerosol (6 % over-
all, 40–50 % during the major sea salt event). The average
density was therefore expected to be larger, thus a density of
1.7 (Reinard et al., 2007) was used to convert the diameters.

Mass concentrations can be obtained from the scaled num-
ber concentrations by (Reinard et al., 2007):

m=
π

6
ρpd

3
ve.

A precise transformation of number to mass concentration
requires knowledge of χ and ρp for each particle class. As
discussed above, χ is assumed to be 1. The use of a single
density, ρp, for ATOFMS scaling has previously resulted in
satisfactory PM mass reconstruction when compared to other
quantitative measurements (Healy et al., 2012, 2013; Qin et
al., 2006). However, a single density assumption is known to
be incorrect due to differing particle compositions (Maricq
and Xu, 2004; Spencer and Prather, 2006). Different parti-
cle classes will exhibit different particle densities. A range
of densities was therefore used to calculate mass concentra-
tions for each particle class, which can be found in Table 2.
The class densities were estimated from the bulk densities
of the chemical components indicated in the mass spectra as
described by Bein et al. (2006) and Reinard et al. (2007).

2.3 Correlations

Reconstructed ATOFMS mass concentrations were then
compared using regression analysis and the coefficient of de-
termination with those obtained by the TEOM (tapering el-
ement oscillating microbalance; PM10 and PM1 mass con-
centrations), PILS-IC (PM10 mass concentrations of SO2−

4 ,
NH+4 , NO−3 , K+, Ca2+, Na+, Mg+, Cl−, oxalate, methane-
sulfonate – MSA), MAAP (BC mass concentrations) and
ACSM (PM1 mass concentrations of SO2−

4 , NH+4 , NO−3 ,
Cl−, organic carbon). Positive matrix factorisation (PMF)
performed on the ACSM organic fragments produces fac-
tors which correspond to a group of OA constituents with
similar chemical composition and temporal behaviour that
are characteristic of different sources and/or atmospheric
processes (Zhang et al., 2011). Three factors were re-
solved: low-volatility oxygenated organic aerosol (LV-OOA,

aged and non-volatile), semi-volatile oxygenated organic
aerosol (SV-OOA, less oxidised and aged than LV-OOA)
and hydrocarbon-like organic aerosol (HOA, representative
of fossil fuel combustion). More information on ACSM re-
sults and source apportionment are available in Michoud et
al. (2017).

The coefficient of determination, R2, was used to evalu-
ate the effectiveness of the ATOFMS mass reconstruction.
All R2 values can be found in Table S1 in the Supplement.
This analysis was considered appropriate as the objective of
ATOFMS mass reconstruction was to produce mass concen-
trations as similar as possible to other mass measurement
techniques. R2 values of< 0.5,∼ 0.5–0.7 and> 0.7 are typi-
cally considered indicative of weak, moderate and strong lin-
ear (positive or negative) relationships respectively.

3 Results and discussion

3.1 Air mass back-trajectories

Back-trajectory analysis was performed using the HYSPLIT
model (Revision 631, July 2014) (Draxler and Hess, 1998)
to identify air masses influencing the sampling site. The
HYSPLIT model was run using PC Windows-based software
available online (http://www.ready.noaa.gov/HYSPLIT.php)
and meteorological input from the Global Data Assimilation
System (GDAS) archive. Then 120 h back-trajectories end-
ing 500 m above ground level (a.g.l.) at Ersa (Corsica) were
calculated for each hour between 12 June and 7 August 2013
(total: 1344 trajectories). Five broad periods with different
air mass regimes were identified in the period based on the
ATOFMS, OPS, ACSM, PM1 and PM10 temporal profiles.
Separate cluster analyses were performed to classify the tra-
jectories for each of these five campaign periods (Fig. 1). A
plot of total spatial variance as a function of the number of
clusters was used to determine the number of clusters. The
clustered HYSPLIT 120 h back-trajectories for each period
were used to determine which air masses most influenced
the ATOFMS measurements, and temporal profiles for parti-
cle numbers and mass concentrations have been labelled with
these air mass origins (France, Mediterranean, Spain, North
Atlantic, UK, Italy, eastern Europe).

Period 1 (12–20 June) was dominated by recirculating air
masses over the Mediterranean Sea, Period 2 (20–26 June)
by North Atlantic air masses, Period 3 (26 June–4 July)
by trajectories passing largely over France, Period 4 (4–
29 July) mostly by Mediterranean recirculations and Period 5
(29 July–7 August) by Mediterranean recirculations and con-
tinental European air masses. The sampling site was there-
fore influenced by long-range North Atlantic marine emis-
sions and European emissions which were subsequently re-
circulated over the Mediterranean Sea, with relatively infre-
quent input from the Sahara. Combined with a sampling pe-
riod of 8 weeks, it is clear that the site was well placed to pro-
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Figure 1. Cluster analysis of 120 h back-trajectories calculated using the HYSPLIT model, ending at Cap Corse sampling site at 500 m above
ground level every 1 h for the five periods identified during ADRIMED and SAF-MED.
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Table 2. Detailed composition of ATOFMS data set during ADRIMED and SAF-MED, by particle classes.

Category Particle No. of % of % particles No. of No. of Assumed % of Unscaled peak
class particles total with particles particles Density total aerodynamic

ionised negative containing containing (g cm−3) ATOFMS diameter
spectra Oxalate MSA mass (µm)

EC EC-SOx 329 555 28 3 1.4 22 0.74
EC-Oxalate 15 462 1 0.5 1.4 1 0.72
EC-K 40 666 3 16 222 1.4 4 0.76
EC-K-SOx 13 627 1 76 445 1.4 5 0.74
EC-K-Oxalate 23 399 2 0.3 1.4 1 0.74
K-EC-NOx 1391 0.1 100 1.4 7 0.74
K-EC-SOx 57 553 5 100 191 1.4 4 0.85
K-EC-Oxalate 161 225 13 0.3 1.4 7 0.74

K rich K-CN 41740 3 35 1.8 17 0.76
K-NOx 12 078 1 100 3118 1.8 1 0.91
K-SOx 296 512 25 9 782 1.8 3 0.85
K-SOx -Oxalate 28 754 2 100 4988 1.8 2 0.97
K-Aluminosilicate 3797 0.3 21 23 2 2 0.91
K-Na 2500 0.2 14 2 1 0.79

Na rich Sea salt fresh 26 175 2 68 2.2 6 1.54
Sea salt aged 69 566 6 59 270 2.2 3 1.81
Na-EC 1415 0.1 100 2.2 3 0.59

Amines K-TMA 25 603 2 0 1.5 1 0.74
TMA-EC 19 688 2 0.3 1.5 1 0.78
OC-TMA 3734 0.3 18 1.5 0.5 0.70

OC rich OC 13 323 1 2 110 1.8 2 0.74
K-OC-NOx 1368 0.1 100 1.8 0.2 0.66
K-OC-SOx 7435 1 95 1.8 1 0.64

V rich V 9810 1 9 71 65 3.1 2 0.70
EC-V 3827 0.3 43 198 3.1 1 0.69

Fe rich Fe 2199 0.2 71 215 37 3.6 0.5 0.88

Ca rich Ca 2400 0.2 82 352 14 2.6 1 1.08

vide an insight into the composition of Mediterranean aerosol
from diverse sources under a wide variety of meteorological
conditions.

3.2 ATOFMS particle classes

Twenty-seven distinct ATOFMS particle classes were identi-
fied and subsequently grouped into eight general categories
for clarity based on the dominant marker ions: EC-rich (53 %
of total mass spectra), K-rich (32 %), Na-rich (8 %), amines
(4 %), OC-rich (2 %), V-rich (1 %), Fe-rich (0.2 %) and Ca-
rich (0.2 %) particles. The contribution to total particle num-
ber and mass concentration of all particle classes can be
found in Table 2.

While the aerosol mixing state is varied, only a few par-
ticle classes represent the bulk of unscaled particle num-
bers. The dominant classes are EC-SOx , K-SOx and K-EC-
Oxalate. The Na-rich category is dominated by sea-salt-aged
particles, the EC-rich category by EC-SOx particles, the K-
rich category by K-SOx particles, the amines category by K-

TMA and EC-TMA particles, the OC-containing category by
OC particles and the V-rich category by V particles.

3.3 Mass concentrations

Reconstructed ATOFMS mass concentrations were com-
pared with those for PM10, total PILS-IC species (PM10) and
PM1 (total ACSM species+BC), shown in Fig. 2. Recon-
structed ATOFMS particulate mass accounted for 70–90 %
of PM10 mass for most of the sampling period. Note that
ATOFMS particles account for relatively little of the PM10
mass during periods when sea salt and dust are abundant,
which is expected given the upper size limit (3 µm) of the
instrument and the low detection efficiency for supermicron
particles (Cahill et al., 2014). Total ATOFMS reconstructed
mass concentrations were found to correlate well with to-
tal ACSM mass concentrations (R2

= 0.71), and moderately
with mass concentrations of PILS-IC SO2−

4 and NH+4 (R2
=

0.58, 0.44), the ACSM factors LV-OOA (R2
= 0.59) and SV-

OOA (R2
= 0.46), BC (R2

= 0.55) and PM1 (R2
= 0.44).
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Figure 2. Hourly mass concentrations of PM10, total ACSM species+BC (PM1), total PILS-IC species (PM10) and total ionised ATOFMS
particles during ADRIMED and SAF-MED.

ATOFMS reconstructed mass concentrations were domi-
nated by EC-rich particles (52%), followed by K-rich (25 %),
Na-rich (12 %), amines (3 %), OC-rich (3 %), V-rich (3 %),
Ca-rich (1 %) and Fe-rich (1 %) particles. The dominance
of EC and K-rich ATOFMS particles does not suggest that
PM2.5 mass is comprised mostly of EC and K. These species
are simply used as markers (and for naming conventions) in
ATOFMS analysis for fossil fuel and biomass combustion,
while truly quantitative measurements by the PILS-IC and
ACSM indicate that most of the PM10 mass was comprised
of organics (36 %), sulfate (16 %) and ammonium (10 %). A
detailed discussion follows in Sect. 3.4.1.

3.4 Particle sources

Four general sources of ATOFMS PM2.5 particles were iden-
tified during ADRIMED and SAF-MED, namely regionally
transported combustion, local biomass burning, marine, and
shipping. The composition of the particle classes that may
have originated from these sources and comparison of their
mass concentrations with other measurements are discussed
in the following sections.

3.4.1 Regionally transported combustion

Twelve ATOFMS particles classes were identified as origi-
nating from regionally transported combustion, all found in
the following three categories: EC rich, K rich and amines.
Average mass spectra for these particles classes are shown in
Fig. 3.

All of the EC-rich classes were characterised by elemen-
tal carbon fragments ions 12,24,36...C+ in the positive mass
spectra. EC-SOx and EC-Oxalate did not contain detectable

39K+, indicating that they most likely arise from fossil fuel
combustion (oil burning or traffic). EC-K, EC-K-SOx and
EC-K-Oxalate were characterised by a stronger signal for
36C+3 relative to 39K+. Similar particles have previously
been attributed to domestic coal combustion (Healy et al.,
2010), although other sources are certainly possible. K-EC-
NOx , K-EC-SOx and K-EC-Oxalate produced stronger sig-
nals for 39K+ relative to 36C+3 , a pattern usually associated
with biomass burning particles. Sulfate (97HSO−4 ) dominated
the SOx classes, but was also present to a lesser extent in
the other six EC-rich classes. Despite the average spectra for
the EC-rich classes showing large signals for sulfate and ni-
trate (46NO−2 , 62NO−3 ), most of the particles in these classes
produced no negative ion spectra or only weak negative ion
signals. It is therefore not possible to definitively describe
their anion mixing state; however certain conclusions can
still be drawn from their temporal profiles. Less nitrate, or
weaker signals for these species, relative to sulfate was ex-
pected given the high ambient temperatures. Nitrate is usu-
ally mixed with EC in the form of ammonium nitrate, which
is more volatile than ammonium sulfate (Querol et al., 2009;
Sciare et al., 2008). A smaller signal for MSA, 95CH3SO−3
(Neubauer et al., 1997) relative to sulfate was found in the K-
EC-SOx class, indicating processing with marine emissions
(Gaston et al., 2010). The oxalate classes are characterised
by their signal at m/z−89, a marker for deprotonated oxalic
acid (Yang et al., 2009) and aged aerosol. Very small sig-
nals for ammonium (18NH+4 ), not marked in the mass spec-
tra, were found in all classes with the exception of the EC-
Oxalate class.

The positive ion mass spectra for K-CN and K-SOx parti-
cles are exclusively dominated by 39K+, typical of biomass
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Figure 3. Average mass spectra of ATOFMS particle classes originating from regionally transported combustion sources during ADRIMED
and SAF-MED. Percentages refer to a fraction of ATOFMS category and total particle numbers.

burning particles detected by ATOFMS (Lea-Langton et al.,
2015; Pratt et al., 2010; Qin and Prather, 2006; Silva et al.,
1999). Sulfate (97HSO−4 ) dominates the negative ion mass
spectra of the K-SOx particles, with additional signals for
MSA (95CH3SO−3 ) and oxalate (89(COO)2H−). 26CN−. In-
ternally mixed carbon and nitrogen, probably in the form of
nitrogen-containing organic compounds (Silva et al., 1999),
dominates the negative ion mass spectra of K-CN particles.
EC fragments were found in all K-rich negative ion mass
spectra, indicating a biomass combustion source.

Trimethylamine (TMA, 59(CH3)3N+) was the most abun-
dant alkylamine marker ion in the three amine particle
classes. Also present in all three classes was a marker ion
for protonated dimethylamine (DMA, 46(CH3)2NH+2 ). A
comparison of ATOFMS data sets obtained in Cork, Paris,
Zurich, Dunkirk and Corsica (ADRIMED and SAF-MED)
found this ion only in the latter two data sets (Healy et
al., 2015). Ammonium (18NH+4 ) was also found in all three
amine classes. The K-TMA class was dominated by 39K+,
indicative of biomass burning, while EC-TMA particles pro-
duced 12,36C+ signals, indicating fossil fuel combustion ori-
gins. OC-TMA particles are characterised by strong 39,41K+,
OC (27C2H+3 ) and oxidised OC (43C2H3O+) signals, sug-
gesting biomass burning sources and atmospheric process-
ing during transport to the site. Sulfate (97HSO−4 ) and ni-
trate (46NO2, 62NO3, 125H(NO3)

−

2 ) were found in the aver-
age negative mass spectra of EC-TMA and OC-TMA; how-
ever only 0.3 and 18 % of these particles actually produced

negative mass spectra and K-TMA particles produced none.
Alkylaminium sulfate particles have been shown to readily
absorb water at low relative humidities (< 45 %) (Chan and
Chan, 2013; Hu et al., 2014), and particle-bound water has
been shown to suppress negative ion formation in mass spec-
trometers (Neubauer et al., 1997, 1998). The proportion of
amine particles with negative mass spectra is low in con-
trast to other particle classes which produced signals in up
to 100 % of their negative mass spectra (K-EC-SOx , K-SOx-
Oxalate). This suggests particle-bound water could have had
a significant effect on negative ion formation for these par-
ticles. The average negative mass spectra should therefore
not be considered representative of every particle in these
classes. Healy et al. (2015) previously assigned m/z−95 in
amine-containing particles from this data set to MSA. How-
ever, closer inspection of individual spectra suggests that at
least some of the signal at−95 arises from miscalibrated neg-
ative ion mass spectra, and is in fact associated with sulfate.
Although m/z−95 cannot therefore be definitively assigned
to MSA here, internal mixing of MSA and TMA is possi-
ble, as indicated by laboratory studies (Chen et al., 2015a,
b). Furthermore, MSA was also measured in bulk PM10 dur-
ing this campaign using the PILS-IC instrument, and is thus
inevitably contained in a fraction of particles at this location.

Temporal profiles for hourly summed particle numbers for
the regionally transported combustion classes are shown in
Fig. 4. There are three general temporal profiles: those of
EC-SOx , EC-K-SOx , EC-K and EC-Oxalate, those of K-
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Figure 4. Time series (stacked) of hourly unscaled particle numbers for ATOFMS EC and major K-rich particle classes (top) and amine
classes (bottom) observed during ADRIMED and SAF-MED. Dates are dd/mm/yyyy.

SOx , K-EC-SOx , K-CN and K-EC-Oxalate, and finally those
containing TMA. The EC-rich particle classes dominated Pe-
riod 1 and were considered markers for fossil fuel combus-
tion because most of these did not contain detectable 39K+.
Their particle numbers remained relatively similar through-
out the campaigns. For the first half of Period 1 regional air
masses passed over industrialised parts of France (Marseille)
and northern Italy (Po Valley) before reaching the site, while
during the latter half of this period these air masses were then
recirculated over the western Mediterranean (Fig. S1 in the
Supplement shows the air mass back-trajectories calculated
for this period using the HYSPLIT model).

Particle numbers for all EC-rich and major K-rich classes
decreased noticeably during Periods 2 and 5, which were
influenced by synoptic-scale air masses from the North At-
lantic, effectively removing aerosol accumulated during the
previous periods. On the other hand, K-rich particles, mark-
ers for biomass combustion, dominated Periods 3 and 4.
Fires were detected by MODIS (Fig. 5) over northern Italy,
Ukraine and Russia throughout the sampling period and the
site was heavily influenced by air masses passing over this
region (Fig. 1), which could explain the constant presence of
K-rich particles in the background aerosol. The increase in
these particles during Period 3 may be explained by longer

residence times of air masses over southern France and north-
ern Italy relative to Period 1, and particle numbers then began
to decrease when trajectories from the North Atlantic and UK
arrived at the end of Period 3.

A significant increase in fires was detected around the
Black Sea from 10 July until the end of the sampling pe-
riod (Fig. 5). The burning of wheat residuals has been pre-
viously documented in the eastern Mediterranean and it con-
tributed at least 30 % of EC and OC measured during similar
time periods between 2001 and 2006 (Sciare et al., 2008). For
∼ 4 days during Period 4, air masses from over the Black Sea
and eastern Europe influenced the site, followed by exten-
sive stagnation and recirculation of that air over the western
Mediterranean. These observations coincided with a further
increase in K-rich particle numbers relative to Period 3.

As shown in Fig. 4, the three amine particles classes, K-
TMA, EC-TMA and OC-TMA, presented similar temporal
profiles in Period 4 to those of major EC-rich and K-rich par-
ticles classes. Numbers of K-TMA and EC-TMA particles
peaked during Period 4, while K-TMA particles dominated
over EC-TMA particles during Period 3, as was the case for
the major K-rich and EC-rich classes. The dominant amine
class, K-TMA, correlated well with two major classes, K-
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Figure 5. Locations of fires detected by the MODIS sensor on board the Terra and Aqua satellites over 10-day periods during ADRIMED
and SAF-MED. Each red dot indicates a location where at least one fire was detected (http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/
firemaps.cgi).

SOx and K-EC-Oxalate, particularly during Period 4 (R2 is
0.76 and 0.70 respectively).

Partitioning of alkylamines from the gas phase to particles
has been found to be enhanced during periods of high relative
humidity or fog events, with uptake increasing with aerosol
acidity (Rehbein et al., 2011). No association between any
of the amine classes and local relative humidity was found in
this case, suggesting that this effect is not relevant close to the
site but may have played a role close to the point of emission
or during transport of the amine particles to the site. It also
provides further evidence that the amine particles were not
formed in the local environment.

To investigate how the dominant ATOFMS particle cat-
egories (EC and K rich) compared with the dominant bulk
PM10 (excluding sea salt) species, hourly mass concentra-
tions of PM10, BC, ACSM species (SO2−

4 , NH+4 and SV-
OOA) and reconstructed mass concentrations for ATOFMS
EC-rich and K-rich particle categories (combined particle
classes) were plotted (Fig. 6). EC and K-rich mass con-
centrations have been stacked to compare their values with
the contributions from BC, SV-OOA, LV-OOA, SO2−

4 and
NH+4 (also stacked). For the full sampling period, recon-
structed mass concentrations of all ATOFMS EC-rich parti-

cle classes correlated well with ACSM SO2−
4 (R2

= 0.61),
NH+4 (R2

= 0.62), the LV-OOA factor (R2
= 0.59) mass

concentrations (which accounted for the largest proportion
of organics mass, ∼ 54 %) and OPS (for the channel 0.3–
0.579 µm) number concentrations (R2

= 0.69) and moder-
ately with PM1 (R2

= 0.46) and BC (R2
= 0.50) mass con-

centrations. Reconstructed mass concentrations for all K-
rich classes (including local combustion) correlated with the
same species but only moderately (R2 ranged from 0.3 to
0.5). Individual particle classes did not produce stronger cor-
relations, suggesting that no single class was an important
contributor of PM2.5 composition.

The average mass spectra of ATOFMS EC and K-rich
classes showed that sulfate, nitrate, oxalate and MSA were
present. From the PILS-IC and ACSM measurements it was
clear that the dominant secondary inorganic ions were sul-
fate (19 % of PM1, 16 % of PM10) and ammonium (10 % of
PM1, 10 % of PM10), with nitrate contributing relatively lit-
tle to both PM1 (4 %) and PM10 (4 %) mass. K+, oxalate
and MSA contributed less again to PM10 (0.4, 0.1 and 0.2 %
respectively). K+ is readily ionised by the ATOFMS desorp-
tion/ionisation laser so its prevalence in ATOFMS particles
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Figure 6. Hourly mass concentrations of PM10, ACSM species (SO2−
4 , NH+4 , organic aerosol factors SV-OOA and LV-OOA), BC and

reconstructed ATOFMS EC and K-rich particles. BC and ACSM species profiles are stacked, as are both ATOFMS categories, but separately.
This compares the ATOFMS mass concentrations with BC+ACSM species. Inset is a scatter plot of mass concentrations of ATOFMS
EC-rich+K-rich particles compared with those for BC+SV-OOA+LV-OOA+SO2−

4 +NH+4 . Dates are dd/mm/yyyy.

is not necessarily representative of its mass concentration
(Gross et al., 2000a).

The high level of agreement between mass concentra-
tions of EC-rich+K-rich particles and BC+SV-OOA+LV-
OOA+SO2−

4 +NH+4 is shown in a scatter plot in Fig. 6. It
suggests that those particles were comprised of LV-OOA to a
considerable degree, consistent with the ageing of the aerosol
particles during regional transport, and of SV-OOA, which
suggests interaction with locally formed organic aerosol; de-
tails of organic aerosol formation and sources during the
campaigns can be found in Michoud et al. (2017). However,
no significant OC signals were found in any of the EC-rich or
K-rich classes. Particles which did produce strong signals for
OC ions contributed relatively little to total ATOFMS particle
numbers. Similarly to 39K+, the ATOFMS favours ionisation
of EC over OC (Ferge et al., 2006; Silva and Prather, 2000),
which results in weak signals for OC in particles which also
contain EC or K+. This may account for the underrepresen-
tation of organic aerosol in the ATOFMS measurements.

3.4.2 Local biomass burning

The sampling site on Corsica was chosen for its negligible
local anthropogenic sources relative to the regional back-
ground. However, a few local sources did influence the site,
though these did not contribute significantly to particle num-
ber or mass concentrations. Local combustion events were
detected in the form of K-NOx , K-OC-NOx , and K-OC-SOx
particles, and distinguished themselves from the dominating
regional aerosol by occurring mostly during Periods 1 and 2
over 5–7 h events (Fig. 7). The first event was observed on

12 June from 13:00 to 18:00 UTC and its source as biomass
burning (in the form of vegetation trimmings) was visually
confirmed on the north-eastern slopes of the site.

The composition of these particles is consistent with
this observation: K+ is a common marker for biomass
combustion, which typically also produces organic aerosol
(Pagels et al., 2013; Silva et al., 1999). Average mass
spectra for local biomass burning particles are shown in
Fig. 8. Nitrate (46NO−2 , 62NO−3 ) dominated the negative
mass spectra of K-NOx particles, but they also contained
sulfate (97HSO−4 ), nitrogen-containing organic compounds
(26CN−), EC (24,36,48C−) and oxygen (16O−). K-OC-NOx
and K-OC-SOx are characterised by a large signal for 39K+

(confirmed by the prominent signal for the 41K+ isotope), hy-
drocarbon fragments (27C2H+3 , 29C2H+5 , 51C4H+3 , 63C5H+3 )
in the positive mode and strong signals for 43C2H3O+,
a marker for oxidised organic aerosol (Silva and Prather,
2000). Sulfate was found in both OC-rich classes, but dom-
inated the negative mass spectra of K-OC-SOx particles. K-
OC-SOx particles also exhibited a small MSA (95CH3SO−3 )
signal, indicating at least some mixing with marine biogenic
emissions prior to detection. Nitrate dominated the K-OC-
NOx class and was also present to a lesser extent in the K-
OC-SOx classes.

Garden waste biomass was frequently burned in the sur-
rounding villages during June; such combustion was prohib-
ited from July onwards which explains the lack of similar lo-
cal events. No local wildfires or controlled agricultural burn-
ing was noted during the sampling period. Between 27 June
and 1 July, K-NOx , K-EC-NOx and possibly K-OC-SOx
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Figure 7. Time series of hourly unscaled particle numbers for ATOFMS particle classes associated with local biomass burning observed
during ADRIMED and SAF-MED. Dates are dd/mm/yyyy.

were of regional biomass burning origin, because their tem-
porality was noticeably different to the preceding short local
events; this period was influenced by short-range air masses
residing over southern France and northern Italy. Peak aero-
dynamic diameters for these particles were also larger during
this period compared to previous local combustion events:
700–900 nm (Da) versus 300–500 nm. This represents a sig-
nificant amount of growth through ageing, assuming these
particles were of a similar size at their point of origin to those
burned locally in Corsica. K-NOx and K-OC-SOx particles
were also present throughout both campaigns in low num-
bers outside of events, indicating persistent regional sources.

3.4.3 Sea salt

ATOFMS sea salt particles were separated into two classes,
fresh and aged. Their composition and comparison with other
sea salt measurements (e.g. Na and Cl mass concentrations
from PILS-IC) are the subject of a detailed study of primary
marine aerosols during ADRIMED (Claeys et al., 2016), so
will only be discussed briefly here.

Both sea salt classes are typical of those observed in other
coastal/marine environments (Gard et al., 1998; Dall’Osto
et al., 2004; Healy et al., 2010). Average mass spectra are
shown in Fig. 8. The positive modes for both fresh and aged
particles are similar and are characterised by sodium ions
(23Na+, 46Na+2 , 62Na2O+, 63Na2OH+ and 81,83Na2Cl+) and
39K+. Fresh and aged sea salt particles were differentiated by
their negative mass spectra, which showed peaks for 16O−,
35,37Cl−, nitrate (46NO−2 , 62NO−3 ) and 93,95NaCl−2 for fresh
sea salt particles, while the signals for nitrate dominate the
aged sea salt negative mode and sodium chloride adducts are
virtually absent. The absence of NaCl ions and strong ni-

trate signals indicates extensive replacement of Cl− by NO−3
(Gard et al., 1998), while the presence of nitrate in the nega-
tive mass spectra of the fresh sea salt particles suggests that
these are not truly fresh but have also undergone some Cl
replacement.

Temporal profiles for ATOFMS sea salt particle numbers,
OPS number concentrations, PILS-IC sea salt aerosol (SSA,
calculated using SSA= [Cl−]+ [Na+]× 1.47; Bates et al.,
2012) and ATOFMS fresh sea salt mass concentrations are
shown in Fig. 9. The two ATOFMS sea salt classes presented
noticeably different temporal profiles. Aged sea salt was con-
sistently present in the background throughout both cam-
paigns, while fresh sea salt was detected mostly during short
periods (20–26 June, 30 July). This coincided with increases
in OPS number concentrations in the 0.579–2.156 µm range
and PILS-IC SSA. Correlation between ATOFMS fresh sea
salt mass and SSA is particularly strong (R2

= 0.81) for the
sea salt event during Period 2. Reconstructed mass concen-
trations for fresh sea salt particles accounted for 50–80 % of
SSA during the main event. This and a strong correlation
between ATOFMS fresh sea salt mass concentrations and
0.579–2.156 µm particles (R2

= 0.81) suggests a significant
amount of fresh sea salt was in the PM2.5 fraction; an esti-
mated 30 % of PM10 SSA mass was accounted for by PM2.5
ATOFMS fresh sea salt during the 5-day event in Period 2.

3.4.4 Mineral dust

Three prominent mineral dust events were characterised by
increases in Ca2+ mass concentrations and 2.156–8.032 µm
particle number concentrations during 12–13 June, 17–
19 June and 23–26 June (Fig. 9). The third event coincided
with the main sea salt event and was also distinguished by
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Figure 8. Average mass spectra for ATOFMS particle classes from local biomass burning, marine, dust and shipping sources during
ADRIMED and SAF-MED.

contributions of K+. The 17–19 June event is likely related
to a moderate African dust event that passed over Corsica,
as shown by MSG/SEVIRI aerosol optical depth (Fig. S2).
The two other periods appear due to local dust. Two par-
ticle classes were identified as potential mineral dust by
the ATOFMS, Fe and Ca. Average mass spectra are shown
in Fig. 8. Fe and Ca, along with Al and aluminosilicates,
are typical dust tracers which produce ions detectable by

ATOFMS (Guazzotti et al., 2001; Silva et al., 2000; Sullivan
et al., 2007). K-rich dust is also a possibility.

The Fe particles detected in Corsica were internally mixed
with 39K+, 23Na+, 27Al+, sulfate (97HSO−4 ) and nitrate, al-
though only a weak signal for 27Al+ and no aluminosilicate
signals (e.g. 43AlO−, 59AlO−2 , 60SiO−2 , 76SiO−3 , 77HSiO−3 ,
103AlSiO−3 ) were found, which could also suggest industrial
origins (Corbin et al., 2012; Dall’Osto et al., 2008; Zhang et
al., 2009). Ca particles are dominated by 40Ca+, with weaker
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Figure 9. Time series of hourly ATOFMS sea salt particle numbers, OPS number concentrations, PILS-IC SSA (sea salt aerosol), Ca+, K+

and ATOFMS fresh sea salt mass concentrations, and PM10 fractions observed during ADRIMED and SAF-MED. Dates are dd/mm/yyyy.

signals for 56CaO+ and 96Ca2O+. 34 % of all Ca particles
produced positive EC ions, which suggests a vehicular traffic
source (Gross et al., 2000b; Silva and Prather, 1997; Song et
al., 2001) to and from the site and from a few local villages
in which tourist population increases during the summer.

The Fe and Ca classes only contributed a small number
of particles (0.2 % each) relative to the total number ionised
by the ATOFMS and no agreement between these potential
dust particles and PILS-IC or OPS measurements was found.
This indicates that mineral dust was not characterised well
by the ATOFMS. Indeed, the dust particle mass size distribu-
tion is mainly in the >PM2.5 fraction, but submicron parti-
cles dominate the dust particle number size distribution (see
Gomes et al., 1990; Guieu et al., 2010) as confirmed by in
situ and column-integrated particle size distribution measure-
ments during the campaign (Denjean et al., 2016; Renard et
al., 2016).

3.4.5 Shipping

Two V-rich particle classes (V and EC-V, 2 and 1 % of
ATOFMS mass respectively) were identified as originat-
ing from heavy fuel oil combustion. Both contained 51V+,
67VO+, 56Fe+, 58Ni+ and sulfate (97HSO−4 ), which are typ-
ical markers for particles emitted by ships or oil refineries

(Ault et al., 2009; Healy et al., 2009). A small signal for MSA
(95CH3SO−3 )was present in EC-V particles. Internally mixed
sodium, potassium, calcium, vanadium, nickel and iron par-
ticles have also been observed in ship exhaust particles us-
ing offline TEM-EDX and two-step laser mass spectrometry
(L2MS) (Moldanová et al., 2009). Small signals for 39K+

and 23Na+ were found in the Corsica V-rich particles, but
none for 40Ca+.

Heavy fuel oil combustion aerosols have a strong presence
in the Mediterranean (Becagli et al., 2017; Pey et al., 2010;
Querol et al., 2009). There are more than 15 passenger ferry
lanes incurring shipping traffic around the northern tip of the
island; the closest pass is ∼ 16.5 km north and ∼ 12.5 km
east of the site (Fig. 10). Ferries travelling around the north-
ern tip of Corsica take approx. 1 h to reach Bastia and be-
tween all five ferry companies ∼ 50 sailings take place per
week. Both V-rich classes displayed strong north-westerly
and south-westerly wind dependences (Fig. 10), consistent
with the distribution of most ferry lanes (Fig. 10).

V-rich particles were identified as aged regional emissions.
Most freshly emitted shipping particles are typically less than
300 nm Da (Healy et al., 2009). However, all shipping parti-
cles detected during this campaign had diameters larger than
300 nmDa. Furthermore, it was unlikely that any fresh heavy
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Figure 10. Passenger ferry lanes around the sampling site on Corsica (top) and wind speed and direction dependences (bottom) for ATOFMS
V-rich particles observed during ADRIMED and SAF-MED.

oil combustion emissions were observed with the ATOFMS
as the closest ferry lane is at least 12.5 km from the site.
There are also no local power plants or refineries that could
generate similar particles. EC-V and V particle numbers con-
sistently featured a mode around 740 nm Da, indicating that
the observed particles were aged to some degree.

3.5 Aged particle markers

As a substantial number of ionised ATOFMS particles pro-
duced low-intensity signals in their negative ion mass spec-
tra, or none at all, the average mass spectra are most rep-
resentative of those species that ionised most efficiently, i.e.

nitrate and sulfate. Ions that usually produce relatively small
signals, such as oxalate or MSA, were expected to be un-
derrepresented in the average mass spectra so an additional
querying approach was taken to examine the mixing state of
these species; particle numbers for classes found to contain
these species are shown in Table 2. Oxalate (89(COO)2H−)
and MSA (95CH3SO−3 ) ions were queried for peak height
between 1 and 5000 to include all mass spectra containing
these species. These particles were then clustered using the
K-means algorithm to produce particle classes.
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Figure 11. Hourly mass concentrations of the ACSM factor SV-OOA, BC (black carbon), WSOC (water soluble organic carbon) and
ATOFMS EC+K-rich particles during ADRIMED and SAF-MED. Dates are dd/mm/yyyy.

3.5.1 Oxalate

The mixing states of particles containing oxalate as identified
by single particle techniques is varied, and indicates oxalate
formation either in fog/cloud processing or photochemical
oxidation of biogenic and anthropogenic VOCs. Oxalate has
been found in biomass burning particles (Healy et al., 2010;
Yang et al., 2009) mixed with industrial combustion particles
containing Pb and Zn (Moffet et al., 2008a, b), in aged sea
salt (Yang et al., 2009) and in aged carbonaceous particles
containing highly oxidised organics, non-oxygenated organ-
ics and amines (Pratt et al., 2009; Qin et al., 2012). Oxalic
acid has been found preferentially enriched on Asian min-
eral dust over carbonaceous particles (Sullivan and Prather,
2007), while Fitzgerald et al. (2015) characterised cloud pro-
cessed African dust as rich in sulfate and oxalate.

In our study, oxalate was found in ∼ 9600 particles, i.e.
0.8 % of the total particles ionised. The mixing states derived
from this query are similar to those produced from general
clustering and are varied, suggesting that poor ionisation effi-
ciency did not prevent oxalate from being detected in certain
types of particles.

From the querying approach it was apparent that K-rich
particles produced more signals for oxalate than the more
abundant carbonaceous particles. This could indicate prefer-
ential partitioning to K-rich particles or more extensive oxi-
dation of the OC in those particles versus EC-rich ones. Of
the queried oxalate particles, 52 % were dominated by 39K+

and sulfate (∼ 90 % of all the queried particles contained
sulfate), supporting the identification of the K-SOx-Oxalate
class from the general approach. Particles most similar to
K-NOx accounted for a further 33 % and produced signals
for nitrate, EC, CN, CNO and sulfate. In contrast only 2 %

of queried oxalate particles produced EC-rich positive mass
spectra. Particles with typical dust tracers (Fe, Ca, Al, alumi-
nosilicates) accounted for 7 % of the queried particles; this
fraction applies to PM2.5 but would certainly be larger for
PM10. The remaining queried oxalate particles were classi-
fied as aged sea salt (3 %), OC (2 %), V (0.7 %) and Cu-Pb
(0.4 %). If the queried oxalate particle numbers were con-
sidered representative of the whole ATOFMS data set, then
biomass burning emissions play a large role in the fate of
particle phase oxalate in the western Mediterranean.

The ATOFMS querying approach indicated a prevalence
of oxalate mixed with K-rich particles; however correlations
between PILS-IC oxalate and K-rich mass were poor. Bet-
ter correlations were found with EC-rich and K-rich mass
concentrations combined (R2

= 0.55), suggesting either that
more EC particles actually contained oxalate than was de-
tected or another particle type transported in the same air
mass but which was not detected by the ATOFMS. Moderate
correlations were also found between oxalate and LV-OOA
(R2
= 0.54), WSOC (R2

= 0.55) and BC (R2
= 0.55) mass

concentrations (for the period 21 June–4 August); hourly
mass concentrations for these species are shown in Fig. 11
(mean concentration of oxalate: 9.8 ng m−3). Oxalic acid is
often the single most abundant water-soluble organic com-
pound identified in ambient aerosols (Yu et al., 2005), which
explains the agreement between oxalate and WSOC mass
concentrations. While the humidity was relatively high (av-
erage of 70 %) throughout the two campaigns, so too was
the solar radiation, with few instances of cloud or fog forma-
tion at the site. The association with SV-OOA also supports
photochemical oxidation as the dominant oxalate formation
mechanism.
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3.5.2 MSA

MSA is a well-established tracer for marine phytoplank-
ton activity (Andreae and Crutzen, 1997; Hallquist et al.,
2009; Gaston et al., 2010) formed from heterogeneous OH
(daytime) and homogeneous NO3 (night-time) oxidation of
DMS, the enzymatic cleavage product of dimethylsulfonio-
propionate (DMSP), a compound produced by oceanic phy-
toplankton. It is therefore a good indicator of biogenic (ma-
rine) sulfate and its presence in aerosols typically indicates
that they have undergone some marine transport, rather than
being produced locally (Gaston et al., 2010). While MSA
has been proposed to primarily contribute to particle growth
in the atmosphere (Kreidenweis et al., 1989; Wyslouzil et
al., 1991a, b), there is evidence that MSA can also con-
tribute to new particle formation (Dawson et al., 2012; Willis
et al., 2016). Recently, Sellegri et al. (2016) showed that
iodine-containing species are likely precursors to new parti-
cle formation in the Mediterranean: a query of the ATOFMS
ADRIMED and SAF-MED data set for iodine (m/z−127)
only returned 34 particles containing this ion. Iodine is rarely
reported in ATOFMS studies and even then it is usually
in low numbers of particles. Beddows et al. (2004) found
∼ 3600 PM2.5 ATOFMS particles containing iodine at a ru-
ral background site in the UK. Both MSA and sulfate influ-
ence particle hygroscopicity, meaning that the enhanced pro-
duction of either of these species by anthropogenic particle
types could have implications for subsequent cloud droplet
formation in both marine and inland environments (Lee et
al., 2010; O’Dowd et al., 2004).

MSA was identified in∼ 2700 particles (0.2 % of total par-
ticles ionised). Sulfate was also found in all of these. The
mixing states derived from the querying approach largely
agrees with those from the general approach. Similar to
oxalate, enhanced partitioning of MSA was observed for
biomass combustion particles. Particles similar to the K-SOx ,
EC-K-SOx and K-EC-SOx classes accounted for 45, 25 and
11 % of the MSA queried particles. EC-V, V and Cu-Pb
classes contributed 11, 4 and 1 % respectively.

The preference for partitioning to combustion particles
is in contrast to findings from Riverside, California (Gas-
ton et al., 2010) where only small fractions of carbona-
ceous ATOFMS particle types contained MSA, and Cork,
Ireland (Healy et al., 2010), where only one ATOFMS parti-
cle class of several carbonaceous classes identified was inter-
nally mixed with MSA. It has been suggested that accumula-
tion of secondary species during transport over urban regions
can potentially mask the detection of MSA by ATOFMS in
carbonaceous particles (Pratt and Prather, 2009).

In addition, it has been demonstrated that the oxidation
of biogenically emitted DMS to form MSA can be catal-
ysed by vanadium, which has also been shown to enhance
the conversion of anthropogenically produced SO2 to sul-
fate (Ault et al., 2010). About 40 % of OC-V-sulfate (residual
fuel combustion primarily from ships) particles and 33 % of

aged sea salt particles in Riverside contained MSA. No MSA
could be clearly identified in aged sea salt particles in Cor-
sica. m/z−95 was only found in fresh sea salt particles and
was likely a result of NaCl2 as it was present in the typical
isotopic ratio; i.e. its signal was smaller than m/z−93. This
is again in contrast to the study in Cork Harbour (Healy et
al., 2010), where none of the V-rich shipping classes were
associated with MSA. However, the authors note that the
sampling site in Cork Harbour was very close to shipping
berths, so most shipping particles detected were expected to
be freshly emitted.

K-OC-SOx particles that identified with the general clus-
tering approach produced average mass spectra with MSA
signals. This was not supported by the querying approach:
no OC-rich particles were found to contain MSA, or at least
so few as to not resolve into their own clusters. No amine par-
ticles were identified in the MSA query. As discussed earlier,
the presence of MSA in TMA and other amine-containing
particles is possible, as indicated by laboratory studies of
particle formation and growth from reactions between MSA,
TMA (or methylamine and DMA) and water (Chen et al.,
2015a, b). Amines have been frequently observed in marine
aerosol (Facchini et al., 2008; Gaston et al., 2010; Müller et
al., 2009; Sorooshian et al., 2009), and particulate amine lev-
els have been found to correlate with particulate MSA levels
(Sorooshian et al., 2009). Facchini et al. (2008) observed that
MSA, DMA, and diethylamine were the most abundant or-
ganic species detected in fine particles in the North Atlantic
during periods of high biological activity.

The remaining 3 % of MSA queried particles was ac-
counted for by particles containing dust tracers (Fe, Ca, Al).
The Riverside study found that no MSA was found on submi-
cron dust and only 3 % of supermicron dust contained MSA
(Gaston et al., 2010). The authors expected this since the dust
they observed was locally produced, unlike MSA. In con-
trast, internally mixed OC, sea salt, sulfate, titanium (dust)
and MSA formed particles 1–2 µm in size at Mace Head dur-
ing the EUCAARI project (Dall’Osto et al., 2010) and were
associated with a period of subtropical maritime air origi-
nating from the Azores high-pressure region. The number
of dust particles identified with the MSA query in this work
were statistically too few to consider submicron/supermicron
ratios. From these previous studies it is not unusual to de-
tect MSA on dust particles; however it is unlikely that they
represent significant surfaces for MSA to condense onto as
most of the MSA mass measured in the Mediterranean to
date has been found in the submicron fraction. This obser-
vation is also echoed by Gaston et al. (2010): 67 % of the
submicron particles in Riverside contained MSA.

In Riverside MSA-containing particles were also asso-
ciated with fog processing markers 81HSO−3 and hydrox-
ymethanesulfonate (HMS, −111HOCH2SO−3 ), highlighting
aqueous phase chemistry as an important pathway in MSA
formation (Bardouki and Rosa, 2002), as well as the hygro-
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Figure 12. Hourly mass concentrations of PILS-IC species MSA (methanesulfonate), NO−3 , SSA (sea salt aerosol), SO2−
4 and NH+4 during

ADRIMED and SAF-MED. Dates are dd/mm/yyyy.

scopic nature of MSA (Barnes et al., 2006). Other studies
correlated HMS with relative humidity (RH) during stagnant
fog events (Whiteaker and Prather, 2003); however in River-
side the HMS correlation with MSA suggested HMS for-
mation was not due to local increases in RH. Rather, MSA-
particles had undergone aqueous phase processing either in
the marine environment or during subsequent transport. Un-
fortunately queries for m/z−81 and −111 did not return a
statistically useful number of particles, and the summed sig-
nal for both of these groups was too low to produce a statis-
tically useful time series.

Hourly PILS-IC mass concentrations of MSA (average of
21 ng m−3; lower than those measured in Paris; average of
122 ng m−3; Crippa et al., 2013) compared to Mace Head,
Ireland and Erdemli, Turkey (shown in Fig. 12) did not cor-
relate with any ATOFMS particle numbers or mass concen-
trations or with any other measurements over the whole sam-
pling period. However, some correlations were found for cer-
tain periods. From 7 to 15 July MSA mass agreed well with
that of PILS-IC NO−3 , while from 23 July to 3 August moder-
ate correlations were found with PILS-IC NO−3 (R2

= 0.53),
SO2−

4 (R2
= 0.48) and NH+4 (R2

= 0.54), and ACSM NO−3
(R2
= 0.46). Increases in MSA mass coincided with sea salt

events during Period 2 (Fig. 12), although there were no good
correlations with SSA concentration, suggesting MSA was
not present on sea salt particles but formation was enhanced
by the influx of marine air masses.

4 Conclusions

As part of ChArMEx, two special observation periods on
Corsica aimed to understand how the physical, chemical, op-

tical properties and vertical distribution of aerosols affect the
Mediterranean climate (ADRIMED), as well as develop a
better understanding of the origins and particle properties of
secondary organic aerosols (SAF-MED). Chemical compo-
sition is critical to achieving these aims. A single particle
mass spectrometer (ATOFMS) provided detailed informa-
tion on the mixing states and thereby sources of background
aerosol in the western Mediterranean. Air mass trajectories
and concurrent observations at the site were used to interpret
ATOFMS observations. Overall, 27 distinct ATOFMS parti-
cle classes were identified from 1.2 million single particle
mass spectra and grouped into eight general categories: EC,
K-rich, Na-rich, amines, OC-rich, V-rich, Fe-rich and Ca-
rich particles. Mass concentrations were reconstructed for the
ATOFMS particle classes and were in good agreement with
other quantitative measurements (PM1, ACSM species, BC).
Total ATOFMS estimated mass (PM2.5) accounted for 70–
90 % of PM10 mass, most of which was comprised of region-
ally transported aerosols containing fossil fuel combustion
(EC-rich) particles, and K-rich particles from biomass burn-
ing in northern Italy and the region surrounding the Black
Sea. The accumulation of aerosols was favoured by repeated
and extended periods of air mass stagnation over the west-
ern Mediterranean. Amine-containing particles were also as-
signed to regionally transported combustion sources from
fossil fuel and biomass burning. Previous studies of amine-
containing particles found a strong dependence on relative
humidity; this was not the case during these two campaigns,
suggesting these particles were not formed locally.

Three other sources were also identified by the ATOFMS:
local biomass burning, marine and shipping. Local biomass
burning particles contributed little to PM2.5 particle numbers
and mass concentrations but were easily distinguished from
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regional combustion particles. No local sources of fossil fuel
combustion were identified. Although the local emissions
did not contribute significantly to particle number or mass
concentrations, the observations serve to highlight the abil-
ity of single particle measurements to distinguish between
local and regional aerosol sources. Marine emissions com-
prised fresh and aged sea salt, the former detected mostly
during one 5-day event and the latter detected throughout the
sampling period. Mineral dust was not efficiently detected by
the ATOFMS. Shipping particles were identified using mark-
ers for heavy fuel oil combustion as aged regional emissions
which made only a small contribution to PM2.5 particle num-
bers and mass concentrations.

A query of the mixing states of oxalate, a photochemically
aged aerosol marker, and MSA, a biogenic marine emissions
marker, showed that the majority of particles containing ox-
alate also contained K and sulfate, indicative of aged biomass
burning emissions. MSA was also strongly associated with
biomass burning particles and to a lesser extent with ship-
ping particles – probably related to transport time in the ma-
rine boundary layer.

Quantitative measurements by TEOM demonstrated that
PM1 particles accounted for most PM10 mass concentrations
over the whole sampling period. ACSM (PM1) and PILS-
IC (PM10) sulfate and ammonium mass concentrations were
very similar, indicating most of the mass of these species
was in the PM1 fraction. Accordingly, organics (36 %), sul-
fate (16 %) and ammonium (10 %) constituted most of the
PM10 mass. Mass concentrations of EC- and K-rich particles
were in good agreement with those of ACSM sulfate, am-
monium and the LV-OOA factor (which accounted for 54 %
of the organics), as well as BC. ATOFMS mass spectra pro-
vided valuable source markers, allowing the identification of
fossil fuel and biomass burning combustion sources. Com-
bined, this information shows that these sources provided the
primary particles, containing EC and OC, which then accu-
mulated ammonium, sulfate and alkylamines during regional
transport. The Mediterranean is a crossroad for air masses
transporting different types of aerosols from natural and an-
thropogenic origins. Identifying these sources and apportion-
ing aerosol mass to them is a key component of future work
to mitigate their effects on the Mediterranean climate.
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