N
N

N

HAL

open science

Evaluation of a Robot Programming Framework for
Non- Experts Using Symbolic Planning Representations

Ying-Siu Liang, Damien Pellier, Humbert Fiorino, Sylvie Pesty

» To cite this version:

Ying-Siu Liang, Damien Pellier, Humbert Fiorino, Sylvie Pesty. Evaluation of a Robot Programming
Framework for Non- Experts Using Symbolic Planning Representations.

Symposium on Robot and Human Interactive Communication, Aug 2017, Lisbon, Portugal.

01583887

HAL Id: hal-01583887
https://hal.science/hal-01583887
Submitted on 8 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

26th IEEE International

https://hal.science/hal-01583887
https://hal.archives-ouvertes.fr

Evaluation of a Robot Programming Framework for Non-Experts using
Symbolic Planning Representations

Ying Siu Liang, Damien Pellier, Humbert Fiorino, and Sylvie Pesty

Abstract— Cobots (collaborative robots) are revolutionising
industries by allowing robots to work in close collaboration with
humans. But many companies hesitate their adoption, due to the
lack of programming experts. In this work, we evaluate a robot
programming framework for non-expert users, that requires
users to teach action models expressed in a symbolic planning
language (PDDL). These action models would allow the robot
to leverage modern automated planners to achieve any user-
defined goal. We conducted qualitative user experiments with
a Baxter robot to evaluate the non-expert user’s understanding
of the symbolic planning language and the usability of the
framework. We showed that users with little to no programming
experience can adopt the symbolic planning language, and use
the framework.

I. INTRODUCTION

Robots have been working in close collaboration with
humans. Cobotic systems [1] have been adopted in several
industries from the food-processing industry, to aeronautics,
to the health industry. However, many companies remain
robot resistant, as they lack programming experts to fully
exploit the robots. Programming by Demonstration (PbD)
allows non-experts to teach robots new skills by demonstrat-
ing a task, without writing any code [2]. It is an intuitive
robot programming approach, with the goal to refine the
robot’s performance, by providing repetitive demonstrations.
However, in existing PbD implementations the robot learns
an action sequence [3], [4], rather than atomic actions that
can be reused independently. Teaching full action sequences
is often complicated and time-consuming, as the robot has to
be demonstrated a new sequence, whenever the goal changes.

In our previous work [5], we addressed the question “Can
non-experts teach a robot atomic actions, which can be
reused to automatically generate novel action sequences?”
We proposed a framework that combines PbD and Auto-
mated Planning [6], where the robot learns action models by
demonstration, and the problem of finding an action sequence
is delegated to a planner. The robot programming process
consists of steps:

1) the non-expert user demonstrates atomic actions to
the robot, and teaches action models, expressed in a
symbolic planning language (STRIPS [7]),

2) the robot uses these action models with an automated
planner to generate solutions to user-defined goals,

3) the user can revisit the taught action model to refine
them.

Y. S.
with the

Liang, D. Pellier, H. Fiorino, and S. Pesty are
Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG,
F-38000 Grenoble France, *Institute of Engineering Univ.
Grenoble Alpes {ying-siu.liang, damien.pellier,
humbert.fiorino, sylvie.pesty}@imag.fr

Fig. 1. Programming by Demonstration of a move action by kinesthetic
manipulation of the Baxter robot.

As the framework is designed for non-expert users, we
first need to assess the framework’s usability and the user’s
adoption of the symbolic planning language. We evaluate the
user’s ability to construct symbolic action models, in terms
of preconditions and effects, used by automated planners.
Hence, we conducted two qualitative user experiments, to
assess the following questions:
Q1 How do non-expert users adopt the automated planning
language with its action model representation?
Q2 Can users teach a robot action models for automated
planning using the robot programming framework?
The remaining of this paper is organised as follows. In
Section II, we discuss the background and related work.
We provide an overview of the existing robot programming
framework in Section III. In Section IV, we discuss the
basic research questions that are answered in the following
sections. Section V presents experiments and results to
assess the user’s adoption of the symbolic planning language.
Similarly, we assess the overall framework’s usability in
Section VI. In Section VII, we discuss the overall results for
both experiments. Finally, we conclude and discuss future
work in Section VIIIL.

II. RELATED WORK

Programming by Demonstration (PbD) provides an intu-
itive medium that allows non-experts to teach a robot new
skills. Research in PbD can be split into two categories
[2]: trajectory encoding and symbolic encoding. The first
approach generalises low-level representations of the skill,
by using statistical modeling [8], [9] or dynamical systems
[10], but does not allow representation of complicated high-
level skills. The second approach allows this high-level

A. Programming by Demonstration

B. Automated Planning

¢ ‘ Initial world Action
User User e Planner e M e
| Sl [(C DU, action]
— .
action2
Action model
creation | L/
User C. Retro-active loop Robot
refinement execution

Fig. 2.

A robot programming framework for non-expert users: the user teaches action models, which are used by the robot with an automated planner,

to generate an action sequence to achieve a goal. After an unsuccessful robot execution, the user can refine the taught action models (dotted lines indicate

user actions, solid lines indicate robot actions).

representation, by segmenting a complex skill into a set
of predefined atomic actions. [11] learn a sequential task
plan from demonstrations by symbolically representing ac-
tion models. However, these action models are already pre-
programmed into the robot.

Moreover, the robot often tries to learn the teacher’s
goal [4], [12] and reproduces it from different initial states.
Once the goal changes, the teacher needs to demonstrate
a new action sequence. This can be very time-consuming,
especially in industrial environments, where the robot’s tasks
change, depending on the product specification. Symbolic
planners can generate action sequences automatically, using
atomic actions. Zita Haigh et al. [13] implement a planning
algorithm in a robot, but do not teach actions by demonstra-
tion. Our approach allows non-expert users to teach action
models by demonstration, that can be reused by a symbolic
planner. Non-expert users need to interact with the robot to
create symbolic action models. As far as we know, there
are no user studies in this area, which deal with the user’s
understanding of the symbolic planning language and action
model representation.

III. OVERVIEW

We work on the assumption that non-experts can teach
robots symbolic planning representations by demonstrating
atomic actions. In [5], we designed a 3-step robot program-
ming framework. Figure 2 illustrates the following steps:

A. Programming by Demonstration: user demonstrates
atomic actions and teaches symbolic action models,
in terms of preconditions and effects.

B. Automated Planning: robot uses action models to gen-
erate an action sequence to achieve a goal.

C. Retro-active Loop: user refines the learned action mod-
els in case of ambiguities.

In the following sections, we discuss each step in more
detail. We refer the reader to a video of the framework:
https://youtu.be/DTm2Y jiSNQM

A. Programming by Demonstration: teaching action models

Programming by demonstration (PbD) techniques gener-
ally consist of an iterative process. The user demonstrates

an atomic action, such as moving a cube from an initial
position A to a final position B (move cube A B). An
action execution results in a change in the world state, such
as the cube’s position. The robot observes the changes before
and after the action demonstration (Fig. 3 top), and extracts
the relevant preconditions and effects to build a generalised
action model, expressed in a symbolic planning language
(Fig. 3 bottom). The user validates the learned action model,
and provides additional demonstrations if necessary.

The robot learns from multiple demonstrations to gener-
alise trajectories and high-level conditions. In the framework,
we assume that the learned action trajectory is independent of
the trajectory performed by the teacher. Dynamic Movement
Primitives (DMP) can cope with the generalisation of a
demonstrated trajectory [14]. To learn high-level conditions,
the robot uses a perception system (e.g. SIFT [12] or
a database of object features [15]) that recognises object
properties in the state of the world. In our experiments,
we implemented a simple python algorithm with integrated
functionalities of the Robot Operating System (ROS), to
detect and move objects, based on their colour. Feature-based
algorithms, such as k-means clustering [16], can be used to
generalise over high-level conditions.

Existing PbD approaches try to teach the robot from a
small number of demonstrations [3], [17]. We propose an
interactive learning approach, where the user can directly
modify the learned action models using a user-interface.

B. Automated Planning: using action models

The robot uses the learned symbolic action models in
combination with an automated planner to achieve user-
defined goals. Automated planners try to model the robot’s
strategies, when operating in diverse environments [6]. Fig-
ure 4 illustrates an example of a planning problem. Given a
description of the world state, i.e. objects, types, properties
(Fig. 4a,b), a set of possible atomic actions, and a goal state
(Fig. 4d), a planner generates a sequence of actions (Fig. 4c),
which guarantees the transition from the initial world state
to the goal state. Predicates are used to describe actions and
object properties, such as “red cube is at position A”: they
can be instantiated (at redCube A) or generalised (at

Preconditions: (move cube A B) Effects:

(at cube A) (at cube B)

(empty B) (empty A)
Preconditions: (move ?0bj 7posA ?posB) Effects:

(at 20bj ?posA) (at ?0bj ?posB)
(empty ?posB) (empty ?posA)

{7 {J [
[A B/ [= B/ e - 4
Fig. 3. Action model representation of a move action in terms of

preconditions and effects: demonstrated action model for a cube (top), and
generalised action model for any object, variables are prefixed with *?
(bottom).

?cube ?posA), such that variables are prefixed with ‘?°.

To allow a correct transition between different states of
the world, actions are defined in terms of preconditions and
effects (Fig. 3). For a move action (move cube A B),
preconditions are the states required to perform the action
(at cube A), and effects are the states obtained after
the action (at cube B). Classical planning algorithms
use the Planning Domain Definition Language (PDDL) [6]
as their standard encoding language, which extends the
STRIPS [7] formalism with greater expressivity, such as
type structures (Fig. 4b). An example of a generalised
move action in PDDL, for moving an arbitrary cube, from
one position to another, is given below (?cube, ?posB,
?posA are variables for cube, initial position, final position
respectively):

(:action move
:parameters (?cube ?posA ?posB)
:precondition (and (at ?cube ?posA)
(empty ?posB))
ceffect (and (at ?cube ?posB)
(empty ?posA)))

The initial world state is automatically recognised by the
robot using the same perception system as in the PbD phase.
The user can change the initial object configuration of the
world state, and enter an arbitrary goal, that can be achieved
using the taught action models. If the user changes the goal, a
new action sequence is generated by the planner. Generating
a plan under different initial states allows the user to test the
created action models. There exist various planners that can
be used for symbolic planning with robots: Metric-FF [18],
or a fast downward planner [17].

C. Retro-active Loop: refining action models

The execution to a new context is an important step to test
the taught action models. It is likely that the execution of the
plan does not produce the desired outcome, especially if the
plan is executed in a context different to the demonstration
(e.g. different object colour or position). Missing precondi-
tions or effects for an action model can lead to suboptimal
or non-existing solutions and will need to be corrected by
the user. The retro-active loop allows the user to revisit the
created action models. Knowledge engineering tools provide

(a) Initial state: (c) Actions: (d) Goal state:

(at redCube A) (move blueCube B C) (at redCube B)

(at blueCube B) (move redCube A B) (at blueCube A)

(empty C) (move blueCube C A) (empty C)
B0 LI A0
(b) Objects — types: ‘illuiull

redCube — cube
blueCube — cube
A, B, C — position

33

Fig. 4. Definition of a planning problem (a) properties describing the
initial world state (b) object names and their types (c) instantiated actions
(d) properties describing the goal state.

a user-interface to facilitate this process of modifying action
models used for automated planners. They often provide
useful functionalities for dynamic testing, model checking
and visualisation [19], where the quality of the models
generated does not depend on the user’s expertise.

IV. BASIC RESEARCH QUESTIONS AND THEIR
EVALUATIONS

To evaluate the framework’s usability for non-expert users,
we conducted two qualitative user experiments to respond to
the questions mentioned in section I:

Q1 How do non-expert users adopt the automated planning
language with its action model representation? (Section
V)

Q2 Can users teach a robot action models for automated
planning using the robot programming framework?
(Section VI)

The experimental context was designed around a Baxter
robot (Fig. 1). In both experiments, we included elements
to assess the user’s understanding of action models used by
automated planners. Understanding this symbolic represen-
tation is a key requirement to use the framework. In the
following sections, we briefly outline the experimental setup,
measurements and results for each experiment.

V. HOW DO NON-EXPERT USERS ADOPT THE AUTOMATED
PLANNING LANGUAGE WITH ITS ACTION MODEL
REPRESENTATION?

In this experiment, users were introduced to a symbolic
planning language (a simplified version of PDDL), involving
the STRIPS formalism with type structures (Sec. III-B).
Users were instructed to describe world state configurations
to the robot. The goal was to assess the user’s adoption of
the planning concepts (object types, properties, generalised
properties, action models) and to verify that the symbolic
planning language is appropriate for non-expert users.

A. Experimental Setup & Participants

We recruited 10 participants (1 male, 9 female), who
were Sociology students at Université Grenoble Alpes. 3
participants reported no programming experience, 6 had
experience with office productivity software (‘beginner’),

(a) Initial state: (b) (move ball A1 B2) (c) (stackable ball cube)

(atball Al) PreC: (at ball A1) .

(at cube B2) Eff: (at ball B2)

(empty A2) / b'i'i'
(empty B1)

O

g7 () (empty B2)

\ O
h Al
s 2

Fig. 5. Users were instructed to provide a description of (a) the initial state
of the world and (b) an initial move action model. They derived additional
preconditions for moving the ball from position Al to B2: (¢) (stackable
ball cube): the ball can be stacked onto the cube, and (d) (empty B2): if the
ball cannot be stacked, the target position should be empty.

and 1 had previously taken a programming course before
(‘advanced’). The experimental setup consisted of a 2x2
board, 2 cubes, 1 ball, and 1 ball recipient. The participants
were given sheets with empty tables to complete for each
task. Each participant was allocated 1 hour, but the average
duration of the experiment was 49 minutes. The participants’
behaviour was observed by the experimenter and recorded on
camera.

B. Experimental Design & Measurements

Users were told that they needed to use a symbolic
planning language, to describe the state of the world, and
the semantic meaning of actions to the robot. Throughout the
experiment, users were faced with three different scenarios.
Figure 5 shows an example of the experimental design, where
the robot’s action was to move the ball to an occupied
position (B2). We evaluated their capability, to apply the
planning language to different situations. The experiment
consisted of the following phases:

o Training: Users were presented with an initial world
state and the symbolic planning language, to describe
the object types and properties. Users were shown how
to model a simple move action in terms of preconditions
and effects (Fig. 3). Additionally, they were introduced
to the concept of generalised properties and generalised
actions (Sec. III-B).

o Experimental test: Users were presented a new world
state and instructed to provide a description to the
robot in the symbolic planning language (Fig. 5a). After
defining an initial move action model (Fig. 5b), users
were faced with 3 different scenarios to refine the
preconditions. Users derived a (stackable ball
cube) property (Fig. 5c), which allowed a ball to be
stacked on top of a cube. When this property did not
hold, users proposed the empty property (Fig. 5d), which
the robot needed to verify before the action execution.
At each step, users had to give the generalised repre-
sentation of the properties and action models.

o Planning: Users were presented a description of a new
state of the world and a goal state. Then, they had to
define an action sequence, that allows the transition to
the goal state (similar to Fig. 4c), and explain their rea-
soning using the symbolic action model representation.

Bl Strongly disagree
I can describe a world state (object types, properties) E

Somewhat disagree Somewhat agree Strongly agree

I can generalise an object property

I can explain two contradicting properties in the same state

I can explain the difference between precondition and effect

I am able to use this language on my own

I did not encounter any difficulties during the experiment

No programming experience is required to learn this language
0 2 4 6 810

Fig. 6. Summary of questionnaire responses: Extract of the 26 questions
on the user’s understanding, after the introduction to the automated planning
language (Sec. V).

o Questionnaire: Users were given a questionnaire con-
taining 26 questions related to their experience, as well
as their understanding of the learned planning language
(Fig. 6).

o Debriefing: Throughout the experiment, users were
asked open-ended questions (“What properties do you
observe in the current world state?”), so that they were
guided as little as possible, and their responses were
unbiased. When the participant struggled to find an
answer, the experimenter guided the participant into a
possible direction (“Why can the ball not be placed on
the cube?”).

C. Results

We did not observe any significant differences in the per-
formance of users with or without programming experience.
9 (out of 10) participants found the symbolic representation
of properties and actions easy to understand. During the ex-
perimental test, the majority (9) of the participants managed
to describe the complete world state using the correct syntax.
When faced with different scenarios to refine the move action
model, half of the participants struggled to formalise the
stackable condition in the symbolic language. They provided
alternative formulations related to the cube’s properties (“if
the cube can hold the ball”). However, once the condition
was defined, the majority (8) of the participants had little
to no difficulties generalising this property. Due to time
constraints, only half (5) of the participants were presented
the planning phase. All 5 encountered no problems when
defining the action sequence to achieve the given goal.

In the questionnaire (Fig. 6), the majority (9) of the partic-
ipants understood the notion of states and object properties.
8 correctly pointed out two properties that could not exist in
the same state (e.g. (empty A) and (at cube A)). All
participants gave correct explanations for preconditions and
effects of action models, and provided correct examples. 9
participants encountered difficulties during the experiment,
6 stated problems with formalising the language, especially
at the beginning of the experiment. Half of the participants
believed that they could apply this language on their own.
No participants believed that an ‘expert’ programmer was
required to learn the symbolic planning language, but 7
participants believed that the minimum requirement was
a ‘beginner’ programming level, while 3 believed that no
programming experience was required.

(a) (move redCube A B) (b) (move cube A B) (¢) (move cube A B)
PreC: (at redCube A) PreC: (at cube A) PreC: (at cube A)
(empty B)
Eff: (at redCube B) Eff: (at cube B) Eff: (at cube B)
(empty A)

Fig. 7. Continuous refinement of the move action model: (a) initial action
model learned by demonstration, (b) action model for all cubes of any
colour, (c) action model with an additional condition, if the target position
is occupied and cubes can not be stacked.

VI. CAN USERS TEACH ACTION MODELS FOR
AUTOMATED PLANNING USING THE ROBOT
PROGRAMMING FRAMEWORK?

In this experiment, users were presented the robot pro-
gramming framework (Sec. III), and had to teach action
models by kinesthetic manipulation of a Baxter robot (Fig.
1). Users were instructed to demonstrate an atomic action
and assign preconditions and effects. The goal was to assess
the framework’s usability and difficulties encountered, when
teaching action models.

A. Experimental Setup & Participants

We recruited 11 participants (7 male, 4 female), who
were students and staff members at Université Grenoble
Alpes. 6 participants reported programming experience with
office productivity software (‘beginner’), 2 had previously
taken a programming course before (‘advanced’), and 3
were pursuing studies in Computer Science (‘expert’). The
experiments were conducted using a Baxter robot (Fig. 1),
mounted with a partial implementation of the framework
(e.g. ‘learn a new action’, ‘find an object’, ‘execute an
action sequence’). We used the Wizard-of-Oz technique to
simulate the remaining functionalities (e.g. ‘generate action
sequence’). Participants operated on a table with 2 positions
(A and B), 2 cubes (blue and red), that represented parts on
an assembly line. Each participant was allocated 1 hour, but
the average duration was 29.5 minutes. The experiments were
recorded, while the participant interacted with the robot.

B. Experimental Design & Measurements

The experiment was set in a simulated assembly line,
where objects of the same shape, but different colour arrived
consecutively at position A. Users had to teach Baxter the
action for moving an object from position A to position
B, where objects should not be stacked. Throughout the
experiment, users were faced with two different scenarios,
where Baxter had to apply the learned action model. We
evaluated the user’s capability to refine action models, when
faced with different situations, and wanted to assess the
framework’s overall usability. The experiment consisted of
the following phases:

o Training: Users were shown how to manipulate Bax-
ter’s arm, and given time to familiarise themselves with
the kinesthetic manipulation.

« Experimental test: Users were instructed to teach Bax-
ter a move action of a cube. Then, they were presented

Il Strongly disagree Somewhat disagree Somewhat agree Strongly agree

Baxter's behaviour was intelligent

I believe that | have taught Baxter a new task

I can explain how Baxter represented the new action

I can explain how Baxter learned from my demonstration

I can explain how Baxter represented the preconditions

I did not encounter any difficulties during the experiment

No programming experience is required to teach Baxter a new task
02 46 810

Fig. 8. Summary of questionnaire responses: Extract of 18 questions on
the user’s understanding, after the experiment to teach action models by
demonstration (Sec. VI).

the action model, with preconditions and effects, that
Baxter learned from the demonstration (Fig. 7a). In the
following, users were faced with two different scenarios,
to refine the conditions of the action model. Starting
with the initial action model for a red cube, users
modified the conditions, so that it was applicable to
all cubes of any colour (Fig. 7b), and when the target
position was occupied (Fig. 7c). At each step, users
observed how Baxter applied the learned action in the
new scenario. When Baxter failed to execute the action,
users had to refine the conditions of the action model.

o Planning: Users were presented a new scenario, where
Baxter was instructed to achieve a new goal using the
learned action model. The new goal was to switch the
positions of two cubes on the table. Baxter demonstrated
this by executing an action sequence generated by an
automated planner.

e Questionnaire: Users were given a questionnaire con-
taining 18 questions related to their experience (Fig. 8).

o Debriefing: Users were questioned about their expecta-
tions on Baxter’s behaviour, before applying the learned
action model to a new scenario. Users were asked open-
ended questions (“What will Baxter do when applying
the learned action model?”’), so that their responses were
unbiased. When they encountered failure scenarios, they
were asked to reason about Baxter’s behaviour.

C. Results

All (11) users were satisfied with the PbD process and
Baxter’s abilities to learn and reproduce the demonstrated
move action. All users understood the learned action model
and managed to adopt the notion of preconditions and
effects easily. As expected, no users pointed out the missing
conditions (Fig. 7c), when asked for improvements of the
initial action model (Fig. 7a). Even users who were ‘experts’
and who had heard of automated planning before, did not
manage to create a complete action model from the start.
However, all users detected the missing condition easily,
when faced with the relevant failure scenarios.

In the final phase, users with no experience in automated
planning (8) did not expect Baxter to solve the permutation
problem, and agreed unanimously that it acted in an intel-
ligent manner, when it did. At the end of the experiment,
all users believed that they had taught Baxter a new task
and the majority understood the representation of the action

models well. No users encountered any difficulties during
the experiment. § participants believed that no programming
experience was required to teach Baxter a task (Fig. 8).

VII. DISCUSSIONS AND LIMITATIONS

In both experiments, we did not observe a significant
difference in the performance between users with different
programming experience. The majority of users had issues
formulating the logical representations of object properties
used in action models. In the first experiments, users had dif-
ficulties formulating a single condition (e.g. (stackable
ball cube)), but stated equivalent conditions (‘only place
the ball, if it is stackable on the cube’). Similarly, in the sec-
ond experiment, users formulated the missing precondition
(‘position B is empty’) with other equivalent conditions (‘Do
not place the object on position B, if it is occupied’). This
means, that users should be provided with a predefined set
of conditions that can be added to the action model.

Some users made wide assumptions about the robot’s
capabilities. In the second experiments, when both arrival
and departure positions were occupied (Fig. 7c), less half
of the users (5) expected Baxter to consider the occupied
position, even though the condition was not mentioned
in its action model. This is a common problem in PbD
solutions as there is a difference in the perception of the
robot’s intelligence perceived by its teacher [20] and can
be addressed by reproducing the learned task in a new
context and verifying the robot’s knowledge base, as we did
throughout the experiment.

With these two qualitative experiments, we showed that
the automated planning language could easily be adopted by
users without any programming background. Moreover, the
action model representation, in terms of preconditions and
effects, seems to be intuitive for non-expert users. However,
these initial experiments only provide us with an idea of
how the users might perceive the proposed framework. We
intentionally limited the set of concepts that are necessary to
use the framework to the bare minimum. Further experiments
should test scalability and address more complicated actions
involving separate control groups (experts vs non-experts) in
less structured scenarios.

VIII. CONCLUSIONS

In this work, we evaluated the robot programming frame-
work for non-experts proposed in [5] in terms of qualita-
tive experiments. The framework combines two techniques,
Programming by Demonstration and Automated Planning,
and uses an action model representation, in terms of pre-
conditions and effects. We showed that non-expert users
understood the symbolic planning concepts well, despite
learning about them for the first time. Overall, the robot
programming process was considered to be very intuitive
and easily understood by users.

Now that we have verified the usability of the frame-
work, future work will focus on its full implementation.
This involves using state-of-the-art techniques to implement
functionalities, that were simulated with the Wizard-of-Oz

technique during the experiment. This can be divided into
three aspects: Creating an user-interface to facilitate the
symbolic language construction, learning low-level motion
trajectories [14], and, more importantly, learning high-level
representations of actions in terms of preconditions and
effects [16], [17], that can be used by symbolic planners.

REFERENCES

[1] J. E. Colgate, W. Wannasuphoprasit, M.A. Peshkin, “Cobots: Robots
for Collaboration with Human Operators”’, ASME Dynamic Systems
and Control Division, 433-440, 1996.

[2] A. Billard, S. Calinon, R. Dillmann, S. Schaal, “Survey: Robot
Programming by Demonstration”, Handbook of Robotics, chapter 59,
2008.

[3] E. M. Orendt, M. Fichtner, D. Henrich, “Robot Programming by
Non-Experts: Intuitiveness and Robustness of One-Shot Robot Pro-
gramming,” IEEE International Symposium on Robot and Human
Interactive Communication, 192-199. 2016.

[4] L. Peppoloni, A. Di Fava, E. Ruffaldi, C. Avizzano, “A ROS-integrated
architecture to learn manipulation tasks from a single demonstration.”
International Symposium on Robot and Human Interactive Communi-
cation, 537-542, 2014.

[5]1 Y.S. Liang, D. Pellier, H. Fiorino, S. Pesty, “A Framework for Robot
Programming in Cobotic Environments: First User Experiments”,
International Conference on Mechatronics and Robotics Engineering,
2017.

[6] M. Ghallab, D. Nau, P. Traverso, “Automated planning: theory and
practice”, Morgan Kaufmann Publishers, Elsevier, 2004.

[7]1 R.E. Fikes, N.J. Nilsson, “STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving”, Joint Conference on
Artificial Intelligence, 608-620, 1971

[8] S. Calinon, F. Guenter, A. Billard, “On Learning, Representing and
Generalizing a Task in a Humanoid Robot”, IEEE Transactions on
Systems, Man and Cybernetics, 286-298, 2007.

[9] J. Aleotti, S. Caselli, “Robust trajectory learning and approximation
for robot programming by demonstration”, Robotics and Autonomous
Systems, 409-413, 2006.

[10] A. Ijspeert, J. Nakanishi, S. Schaal, “Learning control policies for
movement imitation and movement recognition”, Neural Information
Processing System, 2003.

[11] H. Veeraraghavan, M. Veloso, “Teaching sequential tasks with rep-
etition through demonstration”, International Joint Conference on
Autonomous Agents and Multiagent Systems, 1357-1360, 2008.

[12] S.R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Kor-
mushev, D.G. Caldwell, “Learning symbolic representations of actions
from human demonstrations”, International Conference on Robotics
and Automation, 3801-3808, 2015.

[13] K. Zita Haigh, M. Veloso, “Interleaving planning and robot execution
for asynchronous user requests”, International Conference on Intelli-
gent Robots and Systems, 148-155, 1996.

[14] P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, “Learning and general-
ization of motor skills by learning from demonstration”, International
Conference on Robotics and Automation, 763-768, 2009.

[15] M. Mason, M. Lopes, “Robot self-initiative and personalization by
learning through repeated interactions”, International Conference on
Human-Robot Interaction, 433-440, 2011.

[16] Y. Mollard, T. Munzer, A. Baisero, M. Toussaint, M. Lopes, “Robot
programming from demonstration, feedback and transfer”, Interna-
tional Conference on Intelligent Robots and Systems, 1825-1831,
2015.

[17] N. Abdo, H. Kretzschmar, L. Spinello, C. Stachniss, “Learning Manip-
ulation Actions from a Few Demonstrations”, International Conference
on Robotics and Automation, 1268-1275, 2013.

[18] R. Cubek, W. Ertel, G. Palm, “High-level learning from demonstra-
tion with conceptual spaces and subspace clustering”, International
Conference on Robotics and Automation, 2592-2597, 2015.

[19] R.M. Simpson, D.E. Kitchin, T.L. McCluskey, “Planning domain
definition using GIPO”, The Knowledge Engineering Review, 117-
134, 2007.

[20] R. Toris, H.B. Suay, S. Chernova, “A practical comparison of three
robot learning from demonstration algorithms”, International Confer-
ence on Human-Robot Interaction, 261-262, 2012.

