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ABSTRACT

The true rate of convergence of some Finite Vol-
ume upwinding techniques is examined herein,
when focusing on Euler equations with an arbi-
trary equation of state (EOS), in one and two
space dimensions. Standard conservative explicit
schemes based on exact and approximate Godunov
schemes tend to yield unacceptable results on
coarse meshes, although they converge when the
meshes are refined. Here, a new hybrid scheme is
presented, which provides rather accurate results
on coarse meshes, unlike previous schemes. We
also show that perfect representation of unsteady
contact discontinuities requires adapting the mesh
interfaces in such a way that slip lines are tan-
gent to the cell interfaces, but also that a slightly
modified version of the conservative scheme may
be used when strong shear flows are computed on
coarse meshes.
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INTRODUCTION

Contact discontinuities occur in various CFD
convective systems. This is true of course for
Euler gas dynamics, but also when investigating
two phase flows with the help of homogeneous
models (see?,4,7.69), or with so-called two-fluid
models. Quite recently, some works related to the
two-fluid approach also suggest not to assume in-
stantaneous pressure relaxation; this may result in
the appearance of several contact discontinuities
(see®,18,10). This is also true when investigating
statistical turbulence with the help of Reynolds
stress closures in single phase flow. The problem
is that the contact discontinuities induce a weak
rate of convergence even for 1D flows, when
using standard conservative schemes. This will
be briefly recalled in the first part of the paper,
though the reader may refer to!® for more details
on the basic procedure. Troubles become even
worse in 2D simulations where the number of cells
is reduced due to CPU constraints, but also due
to the obvious fact that the mesh interfaces may
not be aligned with all the plane discontinuities
-as automatically occurs in the 1D framework-.
As a consequence, when focusing on the Euler
equations for instance, it immediately appears
that remedies obtained in a one dimensional
framework are not necessarily sufficient in the 2D
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framework due to the occurence of shear effects.

The aim of the present paper is thus to provide
some tools to deal with Euler equations with
any equation of state (EOS) on any type of
mesh, assuming an arbitrary highly sheared
medium. Schemes discussed herein rely on the
exact Godunov scheme'® and also on some
particular approximate Godunov schemes derived
from the VFRoe-ncv formalism with use of
Yt = (U, P,g(p,s),C,v) variables®,'2, see nota-
tions below. We start by recalling the basic ideas
initially proposed in'® when restricting to the 1D
framework. These contain previous proposals by
Abgrall (1) when restricting to stiffened gas EOS.
We then turn to the 2D framework, and propose
three distinct numerical procedures to compute
approximate solutions. The first one relies on the
basic conservative scheme. The second one is a
-straightforward- extension based on the work
described in'® in the 1D framework. The third
one is new and aims at improving accuracy on
coarse unstructured 2D meshes.

1D GOVERNING EQUATIONS AND EOS

We first start recalling some results obtained
in a purely one dimensional framework. Us-
ing standard notations, W = (p, pC, pU, E, p))
stands for the conservative variable and F'(W)
(pU, pCU, pU? + P,U(E + P), pyU) denotes the
physical flux in the 1D framework. The set of
equations reads:

oW  OF (W) -0
{ ot oxr (1)
W(.’IZ,O) = W()(.Z')

(p and P stand for density and pressure respec-
tively, U denotes the mean velocity, @ = pU is
the momentum, C is the mean concentration of a
pollutant, E is the total energy and 4 is the colour
function). The speed of acoustic waves is noted c.
We also need to provide suitable boundary condi-
tions. A physically relevant entropy inequality se-
lects admissible shocks, and requires introducing
the specific entropy s(P,p,C,). The total en-
ergy is written in terms of the kinetic energy plus
the internal energy pe :E = pU?/2 + pe, where
pe = ¢(P, p,C,1p). We then introduce classes Ty
and T, which contain EOS which respectively take

2

the form:

pe = ¢1(P,p,C,¢)

= p(a1(P) + b1 (P)C + 1 (P)y) + di(P)
pe = ¢2(P,C, 1)

= f2(C,¥)h2(P) + g2(C,9)

We recall here that both C, 1) are both transported
with velocity U, and thus are solutions of the first
equation of (13). For any EOS, the internal energy
may be decomposed in terms of contributions in
T1 UT;, and a remaining part if necessary:

pe — ¢1(P, p, C, ) — ¢a(P, C, 1)
= ¢3(P7p707¢)

The perfect gas single component EOS, the Tait
EOS and the Tamman law belong to 77. The mix-
ture of perfect gases or equivalently the stiffened
gas EOS lie in Ty exactly. Obviously, the Mie-
Griineisen EOS belongs to T5. We emphasize that
if the EOS lies in 71, the standard conservative
Godunov scheme (or the conservative approximate
Godunov scheme VFRoe-ncv with the above men-
tionned variable Y) will perfectly represent un-
steady contact discontinuities on any mesh. In-
deed, when using the standard algorithm, the cell
value of pressure (which is used to initialize the
local Riemann problem at the interface between
cells i and (i + 1)) is given by p?* = P/ solution of:

CHI-

207
Introducing standard notations for the time step
dt, the mesh size h; = x;41/2—7;_1/2, let us denote
W(Y;,,,,) the interface value predicted by the
exact or approximate Godunov scheme at z;, /2,

then the mean value of the conservative variable

(2)

(3)

(4)

W over cell i at time kdt, namely W}, which is
obtained through:
hy(WiH — W) = (6)
—SHEW (Y, ) = FW (Y, )

satisfies the property of "perfectly preserving
the unsteady contact discontinuity" as defined
below. Note that in the case of an exact Godunov
scheme, we have formally V(W) = W.

Definition 1: Contact discontinuities are per-
fectly preserved by a first-order three-point
scheme, if, for any values of density, concentration
and colour, and for any velocity and pressure sat-
isfying: U' = Up and pf} = Py, for k =4i—1,4,i+1,
then the computed velocity and pressure at time
"+ satisfy: pI't' = Py, and UM = U,.

i
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HYBRID GODUNOV SCHEME IN A 1D
FRAMEWORK

We first present the hybrid scheme, which is valid
for any EOS, but is no longer fully conserva-
tive. In this hybrid scheme, we no longer use
p? = PP, where PP issues from (5). For any
EOS which does not lie in T1, we set: go(C,v¢) =
f2(C,p)ha(Pres) + 92(C, ) (the only useful val-
ues will be ha(Prey) = 0 and ho(Prer) = 1) The
first-order scheme is, setting v = pc?/P:

hi (Win-i-l _ Wzn) (7)
HSHEW(YS,,,)) - FOW (Y, ) =0
hi((90)7*" = (90)7) (8)

+6tUi(90(Y,,, ,) —90(Y7,_, ;) =0
hi((¢3)i ™ — (¢3)7) 9)
+6tUi(s(Yy,,, ) — ¢3(Y7_, 2))
+OtH;(U;,, ., —Us. ) =0
2U’ = U:i+1/2 + U;i—1/2 (10)
o phs 065
2HZ - (’YP 6P + p 6p )(Yxi_l/g) (11)
6¢3 6¢3 *
+(’YP6—P +P6—p)( 2i41/2)

The definition of the numerical flux is:

F(W(Y™) = (p"U*, p*U*C*, p*(U*)* + P,
U*(p*(U*)?/2+ P* + (pe)*), p*U™")

(pe)™ = ¢1(P7, p*, C*, %) + fo(C™, 4% ha(P)
+92(C%,9%) + ¢3(P%, p*, C7, %)

Both sequences (f2)¥ and (g2)* are computed set-
ting go equal to hy(Pres) =0 and to ho(Pres) =1
successively. The cell pressure used to compute
the local Riemann problems at the beginning of
the next time step, namely pPt! = 15{”'1, is ob-

i .
tained by computing the solution Pi"Jrl of equa-

tion:
+1 (QTL+1)2 pn+1 +1 +1 +1
n T T (3 n
E; T - 2;7}+1 = ¢ (Pz pi O )
2

+(F)PH ha (PP + (g2) 7
+(ga)7 (12)

with given values EMt' QUt!) pitt Cntl yntt
provided by the discrete conservative equations
(7)7 and (f2);'1+17 (92)?+17 (¢3)?+1 provided by
discrete non-conservative equations ((8),(9)). The
resulting value of the cell pressure is used to ini-
tialize the Riemann problems at each cell interface

3

at the beginning of the following time step. Dis-
crete equations (8-9) provide numerical approxi-
mations of solutions of the non conservative gov-
erning equations:

990 090 _

0 LU =0 (13)
O3 03 O3 dp3\ oU

ot Vb +<7Pap +”ap> 5z

The latter two provide redundent information for
regular solutions. Note that, for Chemkin EOS
or for some complex analytic laws, the CPU time
required to compute P is lower than the CPU
time for P'. It is also important to note that
when both ¢2 and ¢3 are null, the cell pressure
P computed using (12) identifies with the
standard cell value of pressure P;* issuing from
(5). Obviously in that case, one does not need
to compute equations (8-9). Unsteady contact
discontinuities are now perfectly represented for

any mesh size since we have:

Property 1: For any EOS, the modified Godunov
or the present VFRoe-ncv scheme (7-11) together
with (12) and variable Y* = (U, P, g(p, s),C, )
perfectly preserves contact discontinuities, in the
sense of definition 1.

ONE-DIMENSIONAL NUMERICAL
RESULTS

We focus here on the behaviour of the schemes
when at least one shock wave occurs in the
solution. A detailed investigation of the rates of
convergence of the basic approximate Godunov
scheme is available in'?, when restricting to EOS
in T} such as the perfect gas state law or the
Tamman EOS. In addition the rate of convergence
of variables which are affected by the contact
discontinuity such as the mean concentration
is clearly 1 (see'?). Numerical tests have been
obtained using Y* (U, P,p,C,%). TFor more
details on the 1D procedure, we refer to'®. Most
of the test cases were inspired by numerical

experiments arising in the literature (26241 27),

EOS in the second class We start with
results obtained wusing the stiffened gas
EOS, which has been widely investigated
by Abgrall and co-workers!,?”.  The most
straightforward  decomposition leads  to:
pe = ¢2(P7 C7 ¢) - fQ(C, ¢)P + 92(07 ¢)
with:f>(C,9) = —k— and: go(C,p) = Z2ale).
Thus ¢1 (Pa P Ca ¢) = ¢3(P7 Ps Ca ¢) = 0. Figure
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1 provides the measure of the L' norm of the
error when computing a pure right-going 3-shock
wave followed by a contact discontinuity, with
help of the hybrid scheme (7-11), (12). The
hybrid scheme induces a rate of convergence
close to i for the density p, and 1 for both
variables U and P. The rate of convergence for
the conservative VFRoe-ncv scheme ((7) with
(5), and Y* = (U, P,p,C,)) is approximately 3
for all variables. The coarser and finer meshes
respectively contain 100 regular cells and 160000
cells.

Stiffened gas. Modified scheme : density (circles), velocity (squares), pressure (triangles up)
Basic conservative scheme : density (stars), velocity (diamonds), pressure (triangles down)

Log(error)

-6

-15
-12

-8
Log(h)
Fi1G. 1: Pure unsteady 3-shock wave - stiffened

gas EOS - L' error norm

I
-10 -4

EOS in the third class The next example is de-
voted to Van der Waals EOS (see?®). In this case,
the decomposition reads: pe = ¢1(P,p,C,¢) +
¢3(PJ P CJ w) with ¢2 (PJ CJ ’lvb) = 07 where by (P) =
ca(P) = 0, di(P) %, a1 (P) ;%113, and
¢3(P,p,C,9) = ap®(=bp+ 2 —)(y — 1)~". The
measure of the L' norm of the error, which is ob-
tained by computing a 3 shock wave with the hy-
brid scheme and the basic conservative scheme (for
which the rate of convergence is still % for p, U,
P), is provided in figure 2 . Regular meshes con-
tain from 100 to 20000 cells. It thus clearly proved
that approximate solutions including shocks such
as those described in?® may not converge towards
the right solution when applying for the hybrid
scheme. Convergence to the right shock solution
needs for instance some modification such as the
one presented in'3.

4

Van der Waals. Modified scheme: density(circles), velocity (squares), presure (triangles up)
Basic conservative scheme : density (stars), velocity (diamonds), pressure (triangles down)

-3 T T

Log(error)

-6 4

-8 L I
-10 -8 -6

-4
Log(h)
F1G. 2: Pure unsteady 3-shock wave - Van der
Waals EOS - L! error norm

MODIFIED GODUNOV SCHEME IN A
2D FRAMEWORK

Introduction

We may first introduce a preliminary step in which
we examine the behaviour of the one dimensional
evolution of a conservative 2D variable. This
means that we focus on the conservative variable:
W = (p, pU, pV, E, pC, pp) and the governing set
of equations is:

ow n OF (W) -0
{ ot or
W(.’L‘,O) = W()(.CL')

(14)

where F(W) (pU,pU? + P,pUV,U(E +
P), pUC, pU4) denotes the physical flux. (U and
V respectively stand for the velocity components
in the z and y directions). This corresponds to
the one dimensional Riemann problem which is
solved at each interface of control volumes in a
2D framework. Thus, the total energy is now:
E =pU?/2 + pV?/2 + pe.

We now assume that the initial condition of the
Riemann problem is such that : P, = P = Py
and : Ur = Ugr = Up ; moreover we take pr, = pr
and Cp = Cg, ¥ = g, but assume some
strong shear: Vp = —Vg = V4. This initial
structure ensures that a pure moving contact
discontinuity will travel to the right (Uy > 0),
and hence : W(z,t > 0) = Wy(z — Upt) for all
z in R and ¢ > 0. Unfortunately, even when
restricting to perfect gas EOS (which lies in

Ty), pe 7_131’ the conservative scheme will
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develop solutions which do not comply with
this structure since the cell pressure predicted
on the first cell on the right side of the initial
discontinuity, will agree with (A = §t/h): Ul = U,
and P! = Py + 2(7 — 1)(p0(V0)2(1 - )\Uo))\U())
(6t and h still denote the time step and the size
of a regular mesh respectively). Thus, though
the pure conservative scheme still converges
towards the right weak solution, the numerical
approximations on coarse meshes will be polluted
by strong shear flows. We will now show how
to simply get rid of these numerical perturbations.

We still decompose the internal energy using (2-
4). We then rewrite the total energy E as:

E = pU?/2+ ¢:1(P,p,C, 1) + ¢ (P, C, 1)) (15)
+(¢3 (Pa P, C7 'l:[}) + pV2/2)

Thus, we may apply for the generic algorithm re-
placing ¢3 by its counterpart 3 defined as:

903(P3 P CMP:V) = ¢3(Papa Ca ¢) + pV2/2 (16)

The governing equation of 3 is:
Ops  OUgps ( O3 )
P —¢s
dp

ot + oz +
The moving contact discontinuity will be perfectly
preserved in the following sense:

PO,

ou
opP 0

o

Property 2: For any EOS, if: U} = Uy and
pp = P for k = i —1,4,4 + 1, the correspond-
ing modified Godunov scheme or the modified
approximate Godunov scheme VFRoe with
variable Y* = (U,V, P, g(p, s),C, 1) ensure that
pitt = Py, and UM = Up.

At this stage, we first note that even when
focusing on the perfect gas EOS, the scheme
will no longer converge towards the right weak
solution, as soon as some shock is contained in
the computational domain (seel” for a similar
result in the scalar case). We nonetheless recall
that the amount of error on industrial meshes
is so small when compared to the one occuring
with the "good" conservative scheme, that the
blended scheme described in'® is obviously quite
appealing. A second point is that the formulation
(16) is not invariant under frame rotation. We
thus now turn to the real 2D framework.

5

The 2D framework

Given some EQOS, the standard decomposition is
performed, using notations from (2-4).

pe = ¢1(P7p7 C:¢) + ¢2(P7 C:¢) + ¢3(P7p7 C:¢)
The governing equations are now:

oW OF(W)  9G(W)
ot ox oy
W(:’E: Y, 0) = W()(Z', y)

=0 ap

The conservative variable is: w
(p, pU, pV, E, pC, p1). Convective fluxes are:
F(W) = (pU, pU>+P, pUV,U(E+P), pUC, pUt)),
GW) = (pV,pUV, pV*+P,V(E+P), pVC, pV)).
We define U = (U, V) and introduce :

$3(P,p,U,V,C, ) = ¢3(P,p,C, ) + W

Unlike in the previous section, q~53 is invariant un-
der frame rotation. Actually, the total energy now
reads:

E= ¢1(P,P, Ca ¢)+¢2(P5 Ca¢)+<$3(P,P, Ua Va Ca ¢)

and the basic idea is to derive and compute in
a suitable way the governing equation for ¢s
instead of ¢3. As a consequence, the appropriate
definition of p?* will issue from (23) instead of its

counterpart (12) in a pure 1D framework.

In the scheme below, V(i) refers to the in-
dexes of the neighbouring cells of a cell ;,
0t still denotes the time step, S;; stands for
the length of interface between cells 2; and
Qj, and n;; = (ng,ny)i; is the unit outward
normal vector pointing to cell ;. We also note
nt = (ng,ny) with (ny)?> + (ny)> = 1. For
any EOS which does not lie in Tj, we still set:

go(C, ¢) = fZ(C; w)h2(Pref) + 92(07 ¢)

We also need to define ’perfect local preserva-
tion of contact discontinuities’ when computing
Euler equations on triangular meshes:

Definition 2: We consider a triangular mesh,
and a contact discontinuity travelling in the n
direction. We suppose that some cell ; has
an interface ijo (triangle Q;, is a neighbour of
;) which is aligned with n : ng;,.n = 1. We
assume that: (Up).n = Uy, pp = B, for k in
i UV(i), but also that: (Ug).7 = Vi, (p)} = i,
Cp = Ci, (Y)} = 1y if the interface ik is on the
left side of the interface ijo, and (U}).7 = V,,

American Institute of Aeronautics and Astronautics



P = pr, C} = Cy , ()} = o, if interface ik
is on the right side of the interface ijo. Then,
a first-order four-point scheme will perfectly
preserve local contact discontinuities travelling in
the n direction, if it computes p?“ = Py, and
(U™1).n = Uy when using the previous data.

We now introduce the 2D first-order scheme:
mes(Qi)(Wi’H'1 -WMh (18)
+4t Z ((nzF+nyG)(W(Yz;),n”)S”) =0

JEV()
mes(2:)((90)71" — (90)7)
+0t( ) (90)5;(Un)3;Si5)
JEV(4)
—btgo;( Y, (Un)}Si) =0
JEV(3)
mes(:)((¢3)7 ! — (83)7)
+6t( Y (P + (93)5;)(U.n)3; Sij)
JEV(d)
JEV(3)
card(V(i))H; =
0
> P2 4 )
JEV(3)

OP
card(V(i))do; = Z (90)7;
JEV(3)

(19)

(20)

(21)
O3

8 b — P)*
s % )

(22)

The cell pressure pz’-bJrl = f’i"“ is computed solv-
ing :

P+t = gy (BPH, g, opt, gt
+H(F)7 o (P + (g2)7 T
+(gs) !

Obviously, the following one-dimensional Riemann
problem needs to be solved at each interface be-
tween cells Q; and Q;, while noting J(W,) =

(pU’m p(Un)2+P7 pUnU‘H Un(E+P)7 pUnC, pUnw)a
Wn = (pa PUnaPUraE;PC;mP); Un =n,U + nyva

(23)

Ur = —nyU+n,V, and n;; the unit normal vector
pointing from cell Q; to cell ; :

ow,  oJ(W,)

=0
ot on (24)

Wy(z.n; <0,t=0) = (Wy)?

Wa(znij > 0,t =0) = (W,)7?
When restricting to perfect gas EOS or stiffened
gas EOS, note that H = —P since (20) corre-

sponds to the governing equation of kinetic energy.

6

Property 3: For any EOS, the modified Go-
dunov scheme and the modified Godunov scheme
VFRoe based on (18)-(22) with variable V¢ =
(U,V,P,g(p,s),C,v) perfectly preserve local con-
tact discontinuities in the sense of definition 2.

In other words, when the mesh interfaces are
aligned with the local slip line, the profiles are
"perfectly" accounted for by the scheme. This
seems at first glance to be in favour of meshes
which have a great number of faces, rather than
triangles.  These initial conditions may thus
contain some rather strong shear. The property
is no longer true when none among the interfaces
of cell €; is aligned with n. We may also wonder
what happens when using more uniform initial
condition on the velocity field. Actually, the
above scheme obviously also enjoys the following
property :

Property 4: For any EOS, and for given initial
data in agreement with: Uy = Uy, V' = W
and p} = P, with k in ¢ U V(i), the modified
Godunov scheme or the modified approximate
Godunov scheme VFRoe based on (18)-(22) with
variable Y* = (U,V, P, g(p, s),C, 1) ensure that

p?—H = PO, U,in+1 = U(], and VZH_I = Vo.

Another way to handle the 2D computation
consists in using a straightforward extension of
the original scheme (7)-(11) (this may be easily
checked using the rule A(ab) = aA(b) + bA(a),
setting Aa = a, —a; and @ = (a, + a;)/2):

mes(Q;) (W — W) (25)
+6t Y (e F +nyG)(W(Y3),m45)Si5) =

JEV(3)
mes(€:)((90)7* — (90)7") (26)
+6t( Y (90)5(Un)};Sij)

JEV(4)
—dtgo;( D (U.n)§Si) =0

JEV()

mes(Q)((43)7H — (¢3)7") (27)

+0t( Y ((¢3);;(U-n)5;85)
i€v(i)
+OtH;( Y (U.n)j;Si;) =0
jev(i)
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using the notations:

card(V(i))H; = (28)
Z (’yP% + p% — #3)j;
JEV(i) P
card(V(i))go; = ) (90);; (29)
JEV(i)

The cell pressure p?™ = P is now computed
solving :
pt!
B = B (U ()
¢1 (Pin+17 p?+17 Cin+17 ¢z~n+1)
+(f2)7 R (P + (g2)7

+(gs) T

Property 5: For any EOS, and for given initial
data in agreement with: Uy = Uy, V' = W
and pp = Py with k in ¢ U V(i), the modified
Godunov scheme or the modified approximate
Godunov scheme VFRoe based on (25)-(29) with
variable Yt = (U,V, P, g(p,s),C,) ensure that

pitt = Py, UM = Up, and V" =V,

(30)

The scheme ((25)-(29)) clearly does not pre-
serve local contact discontinuities (as defined in
definition 2) as the former ((18)-(22)) does.

2D NUMERICAL RESULTS

Computational results given below for the first
three test cases have been obtained using the hy-
brid scheme (18-22) and the fully conservative
scheme. The computational domain is [0, 1]x[0, 1].
It contains 3 nodes in the y-direction when focus-
ing on the first three test cases since the mesh
contains rectangular cells. The number of mesh
points refers to the number of cells in the z direc-
tion. The CFL number is always set to 0.5, unless
otherwise specified. Results are plotted along the
straight line y = 0.5. The fourth test case involves
triangular meshes.

Plane travelling contact discontinuity with
strong shear

We show below results obtained using the per-
fect gas EOS in a 2D framework. Initial con-
ditions on each side of the line z = 0.5 are:
Up = 100,V = —100,P;, = 10%,p;, = 1, and :
Ur = 100,V = 50,Pr = 10%,pr = 2. As ex-
pected, the axial velocity and the pressure remain
uniform in the whole computational domain when
applying for the hybrid scheme.

7

Moving contact discontinuity with strong shear (CFL=0.5)

Mean axial velocity U (triangles wp) and transverse velocity V (squares)

100 4
50 -
>
s O 1
_50 . -
-100 !
0 100 200 300 400
Mesh points
Fi1G. 3: Hybrid scheme with strong shear -coarse
mesh-
Moving contact discontinujty with strong shear (CFL=0.5)
Mean axial velocity U (triangles up), and transverse velocity V (squares)
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50 -
>
s O 1
_50 . -
-100 !
0 1000 2000 3000 4000
Mesh points
F1G. 4: Hybrid scheme with strong shear -fine
mesh-

American Institute of Aeronautics and Astronautics



The "odd-even" test case

We now assume some travelling contact discon-
tinuity, that is: Uy = 100,Pp, = 10%,p; = 1,
and : Ug = 100, Pg = 105, pg = 2 on the left
and right side of the initial membrane located at
z = 0.5. Besides, the transverse velocity obeys:
Vij + Viyr; = 0, with Vi ; = 100. The coarse
mesh and the fine mesh contain 400 and 4000 uni-
form cells respectively in the z direction. Figures
5 and 6 show the computed solution at t = T
and t = 0+ = 6t. It clearly appears that the ini-
tial odd-even decoupling is damped w.r.t. time.
Once again, the axial velocity U and the pressure
P remain uniform over the whole computational
domain when using the hybrid scheme.

Moving contact discontinuitwwith perfect gas EOS (CFL=0.5)

Transverse velocity V (t=0+)- squares-, and V(T) - continuous line—

100 T T T

-100

0 100 200 300 400
Mesh points

FiG. 5: Hybrid scheme with even-odd initial
condition on V on coarse mesh

Plane shock tube on a rectangular mesh

Results on figures 7, 8, 9 correspond to a shock
tube aparatus with initial data generating a strong
supersonic shock tube with strong initial shear
on V. These are : Ur = 0,V = —-100,P; =
105,/)[, =1 and UR = O,VR = 50,PR = 103,pR =
0.0125 apart from z = 0.5. The time step is still
in agreement with CFL = 0.5. Computational
results on a fine mesh with 8000 cells in the z
direction enable to check that the behaviour of
the sonic point is not altered, and that both the
velocity and the pressure remain almost uniform
around the moving contact discontinuity, which is
easly located by variations of transverse velocity.
Results below show both approximations obtained
using the hybrid scheme or the conservative ei-
ther. Obviously, the conservative scheme provides

Moving contact discontinuitwwith perfect gas EOS (CFL=0.5)

Transcerse velocity V(t=0+), gsquares-, V(T) - continuous line-

100 w ’ ‘
50 - 1
> 0 T T
50 |- 1
100 1000 2000 3000 4000

Mesh points
FiG. 6: Hybrid scheme with even-odd initial
condition on V on fine mesh

Shock tube with strong shear (CFL0.5) - Hybrid and conservative schemes

Axial velocity U (Hybrid in solid line) and transverse velocity V (Hybrid in long dashed)

600 T T

e

_200 1 I 1
0 2000 4000 6000 8000

Mesh points
FiG. 7: Hybrid scheme and conservative scheme -
velocity in shock tube with strong shear on fine
mesh

American Institute of Aeronautics and Astronautics



Shock tube with strong shear (CFL50.5) - Hybrid and conservative schemes

Pressure (Hybrid in solid line)

1e+05 T
80000 b
60000 b
2
0
c
[
a}
40000 - b
20000 - 1
0 . . .
0 2000 4000 6000 8000
Mesh points

Fic. 8: Hybrid scheme and conservative scheme -
pressure in shock tube with strong shear on fine
mesh

approximations of both U, P which only slightly
vary through the contact discontinuity. On the
other side, one may notice that the occurence of
the shock wave inhibits the convergence of the hy-
brid scheme towards the right solution.

Shock tube with strong shear (CFL50.5) - Hybrid and conservative schemes

Density (Hybrid in solid line)
1 T

0.8 1
06 - 1
Pl
2
[9)
[a}
04 - 1
02 - 1
0 L L L
0 2000 4000 6000 8000
Mesh points

Fi1G. 9: Hybrid scheme and conservative scheme -
density in shock tube with strong shear on fine
mesh

Plane travelling contact discontinuity on a
triangular mesh

Results presented in figure 10, correspond to the
measure of the L! error norm when computing a
plane contact discontinuity with strong shear ef-

9

fects on a triangular mesh with the conservative
scheme. On the basis of previous remarks, we ex-
pect to find a convergence rate h®® for both ve-
locity and pressure variables. The domain is now :
Q =[0,2] %[0, 2]. The initial conditions apart from
the axis = 0.5 are: U, = 100,V = —100, P,
105,pL = 1, UR = IOO,VR = 507PR = 105,pR
2. The CFL number is 0.5. Triangular meshes
include from 1300 up to 1331200 cells.

L norm of relative error

- U
. AV
0 = P

— 0an'?
:

2 -1

10" 10
h=meas(Q)/(number of triangles)

F1G. 10: Conservative scheme - Error norm for
pressure and for axial velocity

112

30

FiG. 11: Conservative scheme - Moving contact
discontinuity- Cell values of pressure

CONCLUSION

The hybrid scheme is thus useful both in the 1D
and 2D framework. Furthermore, the blended
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FiG. 12: Conservative scheme - Moving contact
discontinuity- Cell values of axial velocity

FiG. 13: Conservative scheme - Moving contact
discontinuity- Cell values of transverse vellocity

10

scheme which turns off the hybrid scheme when
the mesh size tends to 0 :

p} =a(h) P! + (1 —a(h)P; (31)

-where P! issues from (23)- enables to get rid of
small deficiencies of the hybrid scheme on very
fine meshes (that is non convergence towards the
right shock solution). A point that is not obvious
from a theoretical point of view is how to define
an optimal smoothing function a(h) which agrees
with a(h = +00) = 1 and a(h = 0) = 0, which
would minimize the error on any mesh. This
may be achieved in academic conditions, but
this is more tough in a practical computation.
Nonetheless, we emphasize that this is not a real
problem nowadays, since the error of the hybrid
scheme on industrial meshes (thus including at
most a few hundred points in each direction) is
indeed much lower than the error associated with
the conservative scheme. This however should
probably be reconsidered in a few years, owing to
the increasing capacity of computers.
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