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A New Approximate Godunov Scheme

With Application To Dense Gas-Solid Flows

Thierry Gallouet∗

Université Aix-Marseille I, 13453 Marseille cedex 13, France

Jean-Marc Hérard †

EDF-DRD, 78401 Chatou cedex, France

We present in this paper a new approximate Godunov solver called WFRoe which aims
at enforcing the stability of the approximate Riemann solver VFRoe-ncv. In order to assess
the method, we consider extreme situations and thus focus on the computation of some
two-phase models which enable to account for flows highly loaded with particles. We show
that the new solver WFRoe enables the computation of the propagation of shock waves
over near-vacuum, and computes admissible states at each cell interface. Numerical tests
confirm the efficiency of the scheme.

I. Introduction

One of the main problems when computing dense gas solid flows is that one needs to preserve the max-
imum principle for the void fraction (which is noted α herein) from a discrete point of view, and not only
at the continuous level. This means that α(x, t) is expected to lie in [0, αmax], where αmax ≤ 1. This point
is fundamental, otherwise, extensive use of the clipping approximation may result in many cases in a loss of
conservation of mass of the mixture, or of particles, depending on the model retained. This is a well known
fact for workers in the field of two phase flows, but also in classical single phase CFD (for shallow-water
applications for instance).

Thus our goal here is to provide some way to handle computations from a practical point of view. When
focusing on models for which the maximum principle holds in the solution of the exact Riemann problem,
a straightforward and efficient idea simply consists in implementing the exact Godunov scheme.1 Focusing
on the simple model A below for instance, one may benefit from the fact that the computed void fraction
in each cell at the end of the time step simply represents the projection of the exact solution of two half
Riemann problems, which guarantees that the maximum principle is fulfilled. This is due to the fact that
the one dimensional scheme is consistant with the integral form of the conservation law see.2 Nonetheless,
it is also well known that the Godunov scheme also suffers from two drawbacks. First of all, it is rather
expensive, and this is even actually true in our case where the variations of functions involved in the solution
of the Riemann problem will be hudge in the vicinity of an upper bound called αmax. Moreover, it is not
so easy to implement, since one also needs to handle in an efficient way the vacuum areas. Another point is
that the stability of strong double shock waves sometimes requires using rather small CFL number (that is
CFL or order 0.1 instead of classical value 0.5). All these restrictions lead us to investigate a new class of
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approximate Godunov schemes, which are quite different from the modified version of Roe scheme described
in,3 and also differ from other recent proposals of Liou and coworkers (see4). It indeed takes its grounds on
the earlier approximate Godunov scheme called VFRoe-ncv.

The paper will be organised as follows. Section 2 will be devoted to the presentation of the approximate
Godunov scheme introduced in,5 and to a new version called WFRoe, which aims at enforcing the numerical
stability in some extreme conditions which are detailed in the following sections.

In the next section, main emphasis will be given on one model which describes the motion of clouds of
particles in a vacuum of gas. We then will turn to a second model in section 4 which enables to describe a
two-phase flow of gas loaded with round rigid smooth particles. This second model is a conservative hyper-
bolic model which inherits hyperbolicity, owing to the local equilibrium velocity assumption. In all cases, we
prove that the maximum principle holds for the void fraction in the exact solution of the one dimensional
Riemann problem.

In the remaining sections 5 − 6, focus will be given on the numerical modelling of these two phase flow
models. The main properties of schemes VFRoe-ncv and WFRoe are detailed in each case. It will be shown
that the scheme WFRoe permits computation of the propagation of shock waves over near-vacuum, and
computes admissible states at each cell interface.

II. VFRoe-ncv and WFRoe schemes

We recall herein the basis of VFRoe-ncv scheme,5 which has also been investigated and compared with
various Riemann solvers in references,6,7,9.8 We restrict for the sake of simplicity to regular meshes of size
∆x such that: ∆x = xi+ 1

2
−xi− 1

2
, i ∈ Z. The time step is ∆t = tn+1−tn, n ∈ N. We define W : R×R+ → Rp

the exact solution of the hyperbolic system:
∂W

∂t
+
∂F (W )
∂x

= 0

W (x, 0) = W0(x)

where the spatial flux F is C1(Rp,Rp). Let Wn
i be the approximate value of

1
∆x

∫ x
i+ 1

2

x
i− 1

2

W (x, tn)dx. Inte-

grating over [xi− 1
2
;xi+ 1

2
]× [tn; tn+1] provides:

Wn+1
i = Wn

i −
∆t
∆x

(
φn

i+ 1
2
− φn

i− 1
2

)
where φn

i+ 1
2

stands for the numerical flux through the interface {xi+ 1
2
} × [tn; tn+1]. The time step is in

agreement with some CFL condition in order to gain stability. φn
i+ 1

2
usually only depends on Wn

i and Wn
i+1

when restricting to so-called first order schemes, that is φn
i+ 1

2
= φ(Wn

i ,W
n
i+1) . Whatever the scheme is, the

numerical flux must comply with the consistent condition (see10):

φ(V, V ) = F (V )

We present now approximate Godunov fluxes φ(WL,WR) associated with the 1D Riemann problem:
∂W

∂t
+
∂F (W )
∂x

= 0

W (x, 0) =

{
WL if x < 0
WR otherwise

(1)
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VFRoe-ncv scheme is an approximate Godunov scheme where the approximate value at the interface
between two cells is computed as detailed below. Let us consider some change of variable Y = Y (W ) in such
a way that W,Y (Y ) is invertible. The counterpart of above system for regular solutions is:

∂Y

∂t
+B(Y )

∂Y

∂x
= 0

where B(Y ) = (W,Y (Y ))−1A(W (Y )) W,Y (Y ) (A(W ) stands for the Jacobian matrix of flux F (W )).
Now, the numerical flux φ(WL,WR) is obtained by solving the linearized hyperbolic system:

∂Y

∂t
+B(Ŷ )

∂Y

∂x
= 0

Y (x, 0) =

{
YL = Y (WL) if x < 0
YR = Y (WR) otherwise

(2)

where Ŷ agrees with the condition: Ŷ (YL, YL) = YL, and also Ŷ (YL, YR) = Ŷ (YR, YL).

The classical choice for Ŷ in (2) is :

Ŷ (YL, YR) = Ŷ (1)(YL, YR) = (YL + YR)/2

Hence it enables to compute Y ∗(x
t ;YL, YR), and thus to set:

φ(WL,WR) = F (W (Y ∗(0;YL, YR)))

In order to compute Y ∗(x
t ;YL, YR), we need to introduce l̃k, λ̃k and r̃k, k = 1, ..., p, left eigenvectors,

eigenvalues and right eigenvectors of matrix B(Ŷ ) respectively. The solution Y ∗(x
t ;YL, YR) of the linear

Riemann problem (2) is defined everywhere (except along x
t = λ̃k):

Y ∗
(x
t
;YL, YR

)
= YL +

∑
x
t >λ̃k

(t l̃k.(YR − YL))r̃k

= YR −
∑

x
t <λ̃k

(t l̃k.(YR − YL))r̃k

Combining the last equalities enables to write the latter in a slightly different form:

YR − YL =
∑

k=1,p

(t l̃k.(YR − YL))r̃k =
∑

k=1,p

α̃kr̃k (3)

setting: α̃k =t l̃k.(YR − YL).

The explicit form of the Finite Volume method VFRoe-ncv is:

Wn+1
i −Wn

i +
∆t
∆x

(
F (W (Y ∗(0;Y n

i , Y
n
i+1)))− F (W (Y ∗(0;Y n

i−1, Y
n
i )))

)
= 0

Nonetheless, when one focuses on the first time iteration of a shock tube problem for instance, it obviously
occurs that the intermediate state computed by VFRoe-ncv with the choice Ŷ (YL, YR) = Ŷ (1)(YL, YR) -using
previous notations- is close to the intermediate state of the exact solution of the Riemann problem, but the
numerical wave speeds are poor approximations of exact wave speeds. For instance, we consider isentropic
Euler equations with perfect gas EOS. Using initial condition UL = UR = 0, PL = 105 and PR = 104 (where
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L and R subscripts refer to left and right state for velocity U and pressure P), the average will be based on
Û = 0 which is not a fair approximation of the exact value of the intermediate state U1 which is close to c1.
This has at least two drawbacks. First of all, the flow may be locally supersonic, whereas predicted values of
characteristics with the choice Ŷ (YL, YR) = Ŷ (1)(YL, YR) are subsonic, which may result in some unphysical
upwinding, and behind in a loss of stability. This may also be emphasised by the fact that the time step will
be twice the admissible value in this example (since the true value of U1 + c1 is about twice Û + ĉ), which of
course may also lead to a loss of stability . Actually, practical computations show that after a few (typically
5) iterations, the cell values computed by the Godunov scheme and the standard VFRoe-ncv scheme can
hardly be distinguished. So this (sometimes) poor approximation of numerical wave speeds does not have a
real influence on the whole computation, in this particular case.

Moreover, the problem may even become worse in some situations involving at least two strong shock
waves, as will be seen afterwards. By the way, it seems worth recalling that the (exact) Godunov scheme
may also encounter some difficulties in this situation.

Thus, in order to enforce the stability of the approximate Godunov scheme VFRoe-ncv, we propose now
to set :

Ŷ (YL, YR) = Ŷ (2)(YL, YR) = Y ∗(0;YL, YR)

where Y ∗(0;YL, YR) issues from a first computation with Ŷ (1)(YL, YR) = (YL + YR)/2. This new value
Ŷ (2)(YL, YR) is used to compute Y ∗∗(x

t ;YL, YR), following the same procedure as detailed above (to compute
Y ∗).

Once the exact solution Y ∗∗(x
t ;YL, YR) of this approximate problem is obtained, the numerical flux is

defined as:
φ(WL,WR) = F (W (Y ∗∗(0;YL, YR)))

The explicit form of the Finite Volume method called WFRoe will be:

Wn+1
i −Wn

i +
∆t
∆x

(
F (W (Y ∗∗(0;Y n

i , Y
n
i+1)))− F (W (Y ∗∗(0;Y n

i−1, Y
n
i )))

)
= 0

An important remark:
In some situations, the eigenvectors of B(Ŷ ) do not depend on Ŷ . An example will be given below (Model
A). In that case, the intermediate states will not depend on the choice of Ŷ , but the numerical wave speeds
will nonetheless depend on Ŷ . Thus Y ∗(0;Y n

i−1, Y
n
i ) is different from Y ∗∗(0;Y n

i−1, Y
n
i ). Nevertheless, a new

iteration using Ŷ (3)(YL, YR) = Y ∗∗(0;YL, YR) would lead to the same scheme.

III. A two-equation model to describe the motion of particles (model A)

In a one dimensional framework, the motion of particles in a vacuum of gas may be written as the
conservation of mass and momentum, using a pressure law to account for intergranular effects. Thus the
model A may be written in a conservative form, using conservative variable W = t(α, αU), and noting α
the void fraction of particles -which is assumed to lie in Iadm = [0, αmax]-. We recall that a typical value
for the upper bound is αmax = 0.64. Moreover, U and Q = αU will stand for the particle velocity and the
particle momentum respectively:

∂α

∂t
+
∂αU

∂x
= 0 (4)

∂αU

∂t
+
∂αU2 + θ(α)

∂x
=
∂µ

∂U

∂x
∂x

(5)
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µ is a positive constant, and the fucntion θ(α) is increasing, and agrees with θ(0) = 0 and limα−>αmax(θ(α)) =
+∞. For various choices of functions θ(α), we refer for instance to references,11,12,13,14 and references therein.
We will detail some specific forms afterwards when computing this system.

Property A
We set :

η(W ) = αU2

2 +H(α)
H(α) = α

∫ α

0
( θ(a)

a2 da)
Fη(W ) = U(η(α) + θ(α))

The following entropy inequality holds for system ((4), (5)):

∂η(W )
∂t

+
∂Fη(W )
∂x

≤ 0 (6)

The proof is rather classical and is not detailed herein. The reader is refered to,152 for instance.

Introducing c(a) = ((θ)′(a))1/2, we may check that the convective set (or left hand side) of system((4),(5))
is hyperbolic. Eigenvalues are :λ1 = U − c, λ2 = U + c, and both fields are genuinely non linear, as happens
for shallow-water equations. The Riemann invariants in the 1−wave and the 2−wave are I+ = U + g(α),
and I− = U − g(α) respectively, where : g(α) =

∫ α

0
( c(a)

a da).

Proposition A
The one-dimensional Riemann problem associated with the LHS of ((4),(5)) has a unique entropy consistent
solution composed of constant states separated by shocks and rarefaction waves, with no vacuum occurence,
provided that the initial data (αL, UL), (αR, UR) agrees with the following condition:

UR − UL < g((α)L) + g((α)R) (7)

still setting : g(a) =
∫ α

0
c(a)

a da. Moreover, the maximum principle for the void fraction holds, which means
that the solution α(x, t) of the Riemann problem lies in Iadm.

Proof:
The first part of the proof is again rather classical,15.2 The only specific point concerns the preservation of the
upper bound for α(x, t). Actually, the void fraction increases through shocks only (from the left to the right
in a 1-wave, and from the right to the left in a 2-wave). The only situation which requires attention is the one
where the initial data generates a double shock wave. Otherwise, the intermediate value α1 (indexing by 1
the intermediate state in the solution of the Riemann problem ) lies between min(αL, αR) and max(αL, αR).
Thus, if the two waves happen to be shock waves, we have, setting as usual (∆φ)lr = φr − φl for given left
and right states on each side of a discontinuity:

σ1 = (∆αU)L1/(∆α)L1 (8)

and :

U1 = UL − (
(∆α)L1(∆θ(α))L1

αLα1
)1/2 = UL − fL(α1) (9)

but also :
σ2 = (∆αU)1R/(∆α)1R (10)

and :

UR = U1 − (
(∆α)1R(∆θ(α))1R

αRα1
)1/2 = U1 − fR(α1) (11)
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Adding the second equation 9 to the fourth one (11) enables to eliminate the unknown velocity U1, and
then obtain the solution in terms of α1, solution of:

UR − UL = −fL(α1)− fR(α1) (12)

It can be easily checked that the positive solution α1 is bounded : α1 < αmax, owing to the crucial
property : limα−>αmax(θ(α)) = +∞. This completes the proof.

The previous analysis provides an interesting basic experiment. This one corresponds either to an im-
pinging jet on a wall boundary, or equivalently to two identical jets coming one to the other in a cylindrical
tube, while neglecting viscous effects. Owing to the previous analogy, we will denote it the IJWB test
(Impinging Jet on a Wall Boundary). The resulting flow pattern in the central region (or the wall interface
respectively) is a flow at rest with increasing granular pressure. This corresponds to a Riemann problem
with initial data WL = (αR,−αRUR) and WR = (αR, αRUR), with UR < 0. Still denoting 1 the subscript
for the intermediate state, we have due to symmetry U1 = 0 and the unique solution α1 in Iadm is given
through the solution of : [α]R1 /[θ(α)]R1

α1
= αR(UR)2.

Remark
In some situations, the governing equation for the total energy of particles cannot be disregarded. Hence
a natural counterpart of model A , will be governed by full Euler equations with a particular form of the
internal energy.

IV. A three equation hyperbolic conservative mixture model (model B)

We now consider a medium of gas (phase 1) loaded with heavy particles with constant density ρ2 (phase
2). We note α2 the void fraction of particles, and ρ1 the density of the gas. As usual, we will define P (α2, ρ1)
the mean pressure in the two phase flow, and will assume that the relative velocity is small compared with
the speed of density waves. A simple though efficient way to describe the motion of the two phase mixture
is to write conservation of mass of gas, mass of particles, and the mean momentum equation, that is to say:

∂W

∂t
+
∂F (W )
∂x

=
∂Gvisc

∂x
(13)

with :

W =

 (1− α2)ρ1

α2ρ2

ρ̃U

 and F (W ) =

 (1− α2)ρ1U

α2ρ2U

ρ̃U2 + P


The viscous flux contribution is provided through :

Gvisc = (0, 0, µ
∂U

∂x
)t

The mean pressure sums two contributions , thus : P (α2, ρ1) = p(ρ1) + ρ2θ(α2). The mean density is the
sum of partial masses:

ρ̃ = (1− α2)ρ1 + α2ρ2

The θ(α2) function is similar to the one described above in section 2. Both functions p and θ are assumed
to be monotone increasing wrt their argument. One also needs for conveniency to introduce celerities in
isolated phases, that is:

c1 = (
∂P (α2, ρ1)

∂ρ1
)1/2

c2 = ( 1
ρ2

∂P (α2, ρ1)
∂α2

)1/2
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but also :
c(α2, ρ1) = ( (1−α2)α2ρ2c2

2+ρ1c2
1

α1ρ̃ )1/2

This model may be obtained on the basis of a two fluid model by assuming local instantaneous velocity
equilibrium, and adding both momentum equations within each phase (for instance the basic model of Gi-
daspow, see,16,17 or alternatively the non conservative two-fluid model of18).

The convective subset of system (13) is hyperbolic, since the Jacobian matrix has three distinct eigenvalues
:λ1 = U − c, λ2 = U , λ3 = U + c. Both the 1-wave and the 3-wave are genuinely non linear, and the 2-wave
is linearly degenerated. The Riemann invariants in the 1−wave and the 3−wave are: (s = (1−α2)ρ1

α2ρ2
, I+ =

U + ψ(s, ρ1)), and: (s, I− = U − ψ(s, ρ1)) respectively, denoting:

ψ(s, ρ) =
∫ ρ

0

(
c(s, ρ1)

ρ1(1 + ρ1
ρ2s )

dρ1)

The Riemann invariants in the 2-wave are: (U,P ).
Property B

If we set :
η(W ) = ρ̃U2

2 +H(α2, ρ1)
H(α2, ρ1) = α1ρ1

∫ ρ1

0
(p(a)

a2 da) + α2ρ2

∫ α2

0
( θ(α)

α2 dα)
Fη(W ) = U(η(W ) + P (α2, ρ1))

The following entropy inequality holds for system (13):

∂η(W )
∂t

+
∂Fη(W )
∂x

≤ 0 (14)

Proposition B
The one-dimensional Riemann problem associated with the LHS of (13) has a unique entropy consistent
solution composed of constant states separated by shocks, contact discontinuities and rarefaction waves,
with no vacuum occurence, provided that the initial data ((α2)L, (ρ1)L, UL), ((α2)R, (ρ1)R, UR) complies
with :

UR − UL < ψ(sL, (ρ1)L) + ψ(sR, (ρ1)R) (15)

The maximum principle for the void fraction holds, since the solution α2(x, t) of the Riemann problem lies
in Iadm.

The reader is refered to19 for proof.

V. A Finite Volume scheme to compute model A

We note here again:

g(α) =
∫ α

0

c(a)
a
da (16)

still using c(a) = (
∂θ

∂a
)1/2. The LHS of system ((4),(5)) may be rewritten in terms of the non conservative

variable Y (W ) = t(g, u) in a symmetrized form:

∂Y

∂t
+ C(Y )

∂Y

∂x
= 0 (17)
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noting:

C(Y ) =

(
u c

c u

)
The matrix R(Y ) of right eigenvectors associated with λ1 = u− c and λ2 = u+ c simply is :

R(Y ) =

(
1 1

−1 1

)

We turn now to the associated linearised problem:

∂Y

∂t
+ C(ŶLR)

∂Y

∂x
= 0 (18)

We still note for any quantity φ: (∆φ)LR = φR − φL and (φ)LR = (φR + φL)/2. The computation of
the intermediate state in the linearised solver at each interface between two cells labelled L,R is recalled in
section II. Whatever the value of Ŷ is, the intermediate states are:

g1 = gLR −
(∆U)LR

2
and U1 = ULR −

(∆g)LR

2

A. Main properties

Property C:
(a)-Vacuum arises in the intermediate state of linearized Godunov solver if and only if initial data makes
vacuum occur in the exact solution of the Riemann problem associated with the non linear set of equations:

uR − uL < gL + gR (19)

(b) - The upper bound of the intermediate state in the solution of the linearised Riemann problem is preserved
if the condition holds on θ(α)): ∫ αmax

0

(
c(a)
a
da) = +∞ (20)

Proof:
(a) Owing to the expression of the intermediate g1 given above, we immediately check that g1 > o is equiv-
alent to uR − uL < gL + gR, which is precisely the exact condition of occurence of vacuum. Since the
function g(α) is increasing, and g(0) = 0, this guarantees positive values of the intermediate state α1 such
that g(α1) = g1.

(b) The condition
∫ αmax

0
( c(a)

a da) = +∞ obviously implies that the solution α1 of equation g(α1) = g1
will be smaller than αmax. This completes the proof.

The second condition is clearly related to the choice of the approximate Godunov scheme, since the latter
no longer distinguishes shock waves from rarefaction waves, unlike Godunov scheme.

B. The particular case of the IJWB

We focus thus on the initial data WL = (αL, αLUL) and WR = (αL,−αLUL), with UL > 0, and evenmore
assume that αR << αmax. We first note that due to the structure of R(Y ), intermediate states g1, u1 do
not depend on the average Ŷ (see above). A straightforward computation shows that the CFL condition for
VFRoe-ncv and WFRoe requires evaluations of λ(1)

1 = ULR− cLR = −c(α(gL)) and λ(2)
1 = U(Y ∗)− c(Y ∗) =

−c(α∗) = −c(α(gL(1 + uL/gL)) respectively. The ratio of the modulus of both may be set equal to any
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positive constant A. Thus, we can imagine that the time step based on the basic VFRoe-ncv scheme will be
totally diferent from the one obtained with WFRoe.

VI. A Finite Volume scheme to compute model B

We may write in a different way the three-equation model B. Still defining s = α1ρ1
α2ρ2

, and restricting to
regular solutions, the following holds:

∂Y

∂t
+ C(Y )

∂Y

∂x
= 0 (21)

with:
Y (W ) = t(s, U, P )

and:

C(Y ) =

 u 0 0
0 u 1

ρ̃

0 ρ̃c2 u

 .

Right eigenvectors of C(Y ) are:

r1(Y ) =

 0
1
−ρ̃c

 , r2(Y ) =

 1
0
0

 , r3(Y ) =

 0
1
ρ̃c

 .

Rather than computing the exact solution of the Riemann problem , we consider the linearised problem:

∂Y

∂t
+ C(ŶLR)

∂Y

∂x
= 0 (22)

Eigenvalues are: λ̃1 = U(Ŷ )− c(Ŷ ), λ̃2 = U(Ŷ ), λ̃3 = U(Ŷ ) + c(Ŷ ). Coefficients arising in the decompo-
sition of YR − YL on the basis of right eigenvectors of C(Ŷ ) enable to compute the two intermediate states
occuring in the solution of the linearised Riemann problem. Thus we have:

Y1 =

 s1

U1

P1

 and Y2 =

 s2

U2

P2

 .

s1 = sL (23)
s2 = sR (24)

U1 = U2 = ULR −
1

2ρ̃(Ŷ )c(Ŷ )
(∆P )LR (25)

P1 = P2 = PLR −
ρ̃(Ŷ )c(Ŷ )

2
(∆U)LR (26)

Property D:
The intermediate value P1 = P2 is positive provided that the initial conditions of the Riemann problem
agree with condition:

(∆U)LR <
2PLR

ρ̃( ˆYLR)c( ˆYLR)
(27)
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in that case, the intermediate values of density ρ1 and α2 remain positive.

Proof:
the first part of the proof is obvious due to the expression of P1 = P2 = P̃LR. We may now assume that
P̃LR is positive. The first intermediate states of density (ρ1)1 and (α2)1 are solutions to:

P ((α2)1, (ρ1)1) = P̃LR and
(1− (α2)1)(ρ1)1

(α2)1ρ2
= sL

eliminating (ρ1)1 = sL
(α2)1ρ2

(1−(α2)1)
and putting in the former equation provides (α2)1 solution of equation:

h((α2)1) = P̃ where h(a) = P (a, sLρ2a
1−a ). The function h(a) is monotone increasing since h′(a) = ρ2(c22 +

c21
sL

(1−a)2 ) > 0. Moreover, h(0) = P ((0, 0) = 0 and lima−>α−max
h(a) = +∞. Thus the previous non linear

scalar equation has only one solution (α2)1 in the admissible range Iadm. Therefore, the intermediate density
(ρ1)1 = sL

(α2)1ρ2
(1−(α2)1)

is positive, which completes the proof, since a similar result holds for both (ρ1)2 and
(α2)2.

VII. A few numerical results

The reader is refered to some enclosed results which depict the behaviour of WFRoe scheme when com-
puting the IJWB case, setting αL = 0.4 and UL = 10 (first series) αL = 0.4 and UL = 20 (second series
respectively). The CFL constant has been set to 0.4. The form of the intergranular pressure implies here
that : c(α) = αmax

αmax−α . The exact intermediate state of the void fraction in the first example is indeed very
close to αmax = 0.64 (approximately 0.63708); in the second series (CFL = 0.4, 8000 cells, 40000 time
steps), an approximation of the intermediate state is: 0.63906.

One may notice that close to the shock wave(s), the velocity profile is not perfectly monotone. We recall
that the exact Godunov scheme generates a similar behaviour. We emphasize that the mesh refinement
confirms that the scheme remains stable.

The last figure shows the behaviour of WFRoe when using initial condition WL = (αL, αLUL) and
WR = (αL,−αLUL), setting αL = 0.4 and UL = −100, which results in a strong double rarefaction wave
with a vacuum of particles. The time step agrees with the CFL condition CFL = 0.4, and the mesh contains
200 cells.

VIII. Conclusion

On the basis on several numerical experiments, the approximate Godunov scheme WFRoe seems to be an
interesting candidate for numerical industrial situations, when one cannot afford solving the exact Godunov
scheme on each cell interface, which is the case in practice in our framework. It more or less enables to
anticipate stiff time variations, and thus enables to control the time step on the basis of interface values.
We wish to emphasize here that WFRoe scheme does not increase the accuracy of VFRoe scheme, but only
affects the nonlinear stability of the whole cell scheme. Of course , this method may also be used to compute
systems arising in references,20,21,17,22 or any others involving acoustic speeds which depend much on one
argument. It also seems to be a promosing way to improve Finite Volume schemes dedicated to the approx-
imation of solutions of the shallow water equations with bottom gradients. The main reason in that case is
that the local velocity (defined as the ratio of the mass flow rate over the water height) is much sensistive in
near-vacuum areas.
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Figure 1. Velocity in impinging jets (two-equation model A). The wall is located at x=0.5
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Figure 3. Void fraction in impinging jets (two-equation model A)- Refined mesh. The wall is located at x=0.5
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Figure 4. Void fraction in impinging jets (two-equation model A)- Refined mesh (test 2) . The wall is located
at x=0.5
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Figure 5. Void fraction in a double rarefaction wave (two-equation model A). The wall is located at x=0.5
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