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Abstract—This paper presents an approach for guessing the de-
gree of “social” connection among individuals and groups mov-
ing and evolving within real environments that uses information 
gleaned from omnipresent surveillance and individuals digital 
foot prints. This task is supported by observations of individu-
als’ behaviour within urban spaces when they are alone, and 
when they are part of a group (i.e., crowd).  This knowledge is 
used as reference to predict their possibility of forming commu-
nities and how they can establish relationships with other com-
munities in the presence of specific events (e.g., alarm, disaster). 
We address the challenge of combining an individual’s location 
with a real-time graphic vision of the urban environment she is 
moving within, using data produced by GPS, mobile and tele-
phone networks, and security cameras. Discovering communi-
ties within crowds leads to social graphs. Computing and pro-
cessing these graphs requires computing and memory resources 
we therefore on our HPC infrastructure for performing tests. 

Graph storage; graph analytics; social connections in crowds; 
data correlation. 

I.  INTRODUCTION  
We are living in the era of massive exodus and delicate 

security issues, where millions of children are lost in Europe, 
adults migrating from the LATAM region to North America 
are missing, women disappear without trace as they flee from 
war, hunger, disease and very bad local economic and political 
situations. These people certainly act as individuals but also 
as part of crowds that are moving across different regions. 
These exoduses create security problems that countries must 
deal with, to provide aid as they cross their territories, and par-
ticularly to be sure that they are not contacted by mafias that 
take advantage from their situation to act against society. We 
believe that technology, and particularly data management 
and visualization, can provide tools that can help to control 
this complex situation. For instance, by providing tools for 
monitoring exoduses’ behaviour (i.e., on-line and post-mor-
tem analytics), one could identify behavioural patterns and 
adapt decision making in real-time.  

This paper presents an approach for guessing the degree of 
“social connection” among individuals and groups evolving 
within real environments that uses information gleaned from 
omnipresent surveillance and individuals digital foot prints. 
This task is supported by observations of individuals’ behav-
iour within urban spaces when they are alone, and when they 

are part of a group (i.e., crowd).  This knowledge is used as 
reference to predict their possibility of forming communities 
and how they can establish relationships with other communi-
ties in the presence of specific events (e.g., alarm, disaster). 
We address the challenge of combining an individual’s loca-
tion (like the one performed by the application Friends by 
Google) with a real-time graphic vision of the urban environ-
ment she is moving within (like the one provided by Google 
earth) using data produced by GPS, mobile and telephone net-
works and security cameras.  

The level of detail depends on the size of individuals’ dig-
ital footprints, on the degree of access control associated to 
these data, on her access rights to personal information and on 
the privacy laws of the geographic space in which observed 
people is moving. For example, a consumer with few access 
rights would see people in a video as points or avatars (like 
video game characters) moving in the street. Yet a consumer 
with enough access rights can see the actual person walking 
in a given street. Since there are no cameras everywhere and 
videos do not provide enough information for deciding the de-
gree of “social cohesion” among people, in our approach the 
footprint consists of the digital data related to an individual 
available on Internet (on social networks, files, seen in cam-
eras, or explicitly provided by people). Discovering commu-
nities within crowds leads to social graphs. Computing and 
processing these graphs requires computing and memory re-
sources and therefore our HPC infrastructure for performing 
tests. 

The remainder of the paper is organized as follows. Sec-
tion II synthesizes related work concerning the data mining, 
social graphs exploitation techniques and computational sci-
ence methods that address the generation and exploitation of 
social graphs. Section III introduces our approach for collect-
ing footprints data for computing social graphs. Section IV 
describes the experiments we designed to qualitatively and 
quantitatively asses our proposal. Finally, Section V con-
cludes the paper and discusses future work. 

II. RELATED WORK  
We are interested in techniques that use crowdsourcing 

(explicit and implicit) for collecting data that contain infor-
mation about the way people evolve in public and private 
places. These data collections can be used as input for learning 



crowd behaviour and simulating it in a more accurate and re-
alistic manner. The advance of location-acquisition technolo-
gies like GPS and Wi-Fi has enabled people to record their 
location history with a sequence of time-stamped locations, 
called trajectories. Some work has been carried out using cel-
lular networks for user tracking, profiting from call delivery 
that uses transitions between wireless cells as input to a Mar-
kov model [3]. Wolf and others [12] used stopping time to 
mark the starting and ending points of trips. The comMotion 
system  [10] used loss of GPS signals to detect buildings. 
When the GPS signal was lost and then later re–acquired 
within a certain radius, comMotion considered this to be in-
dicative of a building. This approach avoided false detection 
of buildings when passing through urban canyons or suffering 
from hardware issues such as battery loss. [12] introduces a 
social networking service, called GeoLife, which aims to un-
derstand trajectories, locations and users, and mine the corre-
lation between users and locations in terms of user-generated 
GPS trajectories. GeoLife offers three key applications sce-
narios: (1) sharing life experiences based on GPS trajectories; 
(2) generic travel recommendations, e.g., the top interesting 
locations, travel sequences among locations and travel experts 
in a given region; and (3) personalized friend and location rec-
ommendation. 

Existing work in robotics and autonomous vehicles for ex-
ample applies automatic learning techniques for making them 
autonomous while they evolve in open spaces. They often use 
collected data for example, for training classifiers, to repro-
duce the behaviour of the crowd in synthetic environment. 
One of the challenges in data analytics is to do prediction by 
deducing behaviour models of the observed subject. A model 
is a collection of data on some aspect of a subject’s behaviour 
that, when associated with a limited set of contextual clues, 
yields predictions on what behaviour the subject will engage 
in next. Based on this notion, there is work like the one de-
scribed in [1] that use location as context to infer other data 
such as the presence of other people. Predestination [8] is an 
approach that leverages an open-world modelling methodol-
ogy that considers the likelihood of users visiting previously 
unobserved locations based on trends in the data and on the 
background properties of locations. Multiple components of 
the analysis are fused via Bayesian inference to produce a 
probabilistic map of destinations. The proposed algorithm was 
trained and tested using a database of GPS driving data gath-
ered from 169 different subjects who drove 7,335 different 
trips. 

The challenge with respect to social density within crowds 
is that the prediction and understanding of the crowd through 
observed data must be combined with personal data to deter-
mine whether individuals can be related among each other and 
form a community. Once communities are identified within 
crowds, it can be possible to determine the influence that such 
communities have among each other depending on the situa-
tion. For example, whether a community puts pressure on 
other groups or individuals in the crowd, or whether they cre-
ate fear and instability. Social networks analytics, data min-
ing, network science, and more recently social digital science 
research have addressed this issue and proposed different 
methodologies. Viral marketing, for instance is a vast domain 

willing to understand the degree of influence of individuals 
within social to study how this influence is spread across these 
networks. These methods work on existing social networks 
making abstractions on the process in which social connec-
tions are established. Other academic and industrial works 
(e.g. social network providers) focus on the discovery of so-
cial connections for individuals according to different criteria. 
The easiest strategy for example is to connect people that 
share some social connection with others if they can have 
some social link (“I am related with the friends of my 
friends”). Works like [6] apply data mining and network sci-
ence techniques [4], or bioinspired methods to discover some 
kind or “social” connection among people. The possibility of 
applying one technique or another depends on the amount of 
information available from the people that can have potential 
social links. The more information about their profile, the eas-
ier and more accurate are the discovered social links. In some 
scenarios, the information about the individuals that can po-
tentially establish some social link is sparse or it is not inte-
grated in one single collection. Information about individuals 
must be first harvested, correlated and filtered to generate use-
ful data that can be then analysed. Beyond the volume, the va-
riety and the degree of veracity of data, the task is difficult 
because data is guided by different access control, privacy 
level, different legal constraints, and quality. Besides, discov-
ering correlations among such data collections can be chal-
lenging. Works concerning correlations [2] have addressed a 
simplified version of the problem where raw data stem from 
the same context. Leveraging such an assumption is still an 
open issue, that we are willing to address. 

III. DISCOVERING SOCIAL COHESION IN CROWDS 
We apply data analytics techniques (temporal and spatial 

reasoning) for computing trajectories and for identifying 
crowds, that is people grouped in a sufficient close spatial re-
gion that adopt a specific “behaviour” referring to four well 
known naïve crowd patterns: (i) casual crowd which is loosely 
organized and emerges spontaneously (people forming it have 
very little interaction at first and usually are not familiar with 
each other); (ii) conventional crowd resulting from more de-
liberate planning with norms that are defined and acted upon 
according to the situation; (iii) expressive crowd forms around 
an event that has an emotional appeal;  and (iv) acting crowd 
where members are actively and enthusiastically involved in 
doing something that is directly related to their goal. 

The objective of our analytics study is to identify possible 
social connections among people involved in a crowd (cf. 
fig. 1). For example, people sharing similar political and so-
cial ideals, people living geographically close, with the similar 
occupation, leisure interests, job, and with common contacts. 
In our approach and since for the time being we do not use 
images recognition we address crowd profile by measuring 
people social cohesion when they are in specific spatial re-
gions during a time interval. This requires a continuous anal-
ysis of the evolution of the status of the areas of an urban 
space. 

 



 
Figure 1. General approach for discovering social cohesion in crowds 

A. Harvesting data from social networks 
Data harvesting is done using different data collections: (i) 

the continuously harvested observations of the geographical 
position of individuals (that accept sharing their position) 
along time; (ii) the images stemming from cameras observing 
specific “critical” urban areas, like terminals, airports, public 
places and government offices; (iii) data produced by social 
networks and applications like Twitter, Facebook, Waze and 
similar. 

Given the geographical location of the potential crowd, 
that we name target location, we access social networks Twit-
ter, Foursquare, Swarm to “track people” located close to this 
target location. For collecting data, we assume that data pro-
viders are services implemented by a REST architecture or a 
SOAP API. These services are public and they can have spe-
cific SLA constraints, like the number of requests per hour 
(e.g., Twitter) or some authentication ones (e.g., Facebook). 
Other providers like pages or sites do not have explicit con-
straints but we assume that they are governed by privacy and 
authorship rights determined by their country of origin.  
1) On demand data providers must be queried through a spe-

cific interface or crawled to harvest data. The frequency 
in which data is collected is specified in the program in-
teracting with the provider. The consumer invokes the 
batch method through the network with its input data. The 
speed of the network introduces the transfer time cost that 
is determined by the data size and the network's condi-
tions (i.e., latency and throughput). Depending on the 
type of network, it can have a monetary price (e.g., 3G) 
also determined by data size. Once the method invocation 
arrives to the hosting device, the service provider receives 
the request and associates a predefined method invoca-
tion price. Afterwards, the method instance processes the 
request during an execution time (i.e., method response 
time) which is determined by the method throughput 
given by the number of processed requests in an interval 
of time (e.g., each minute) and the state of the device such 
as memory or CPU usage. The request implies the usage 
of the network interface, service provider and method ex-
ecution. Those processes spend the battery of the device 
(i.e., battery consumption) entailing a battery cost. Fi-
nally, the output (i.e., method response) is sent back to 
consumer through the same network and, as input data 
aforesaid, output data contributes to data transfer time 

and to monetary cost. Both, input and output data define 
the data size measure. 

2) Stream providers work under a subscription strategy. A 
continuous data provider exports a method subscribe() 
used by a consumer to start receiving streams at some rate 
and for a given period of time (e.g., by executing an un-
subscribe() method, for a predefined period of time, until 
something happens). The general process implemented to 
interact with this type of providers is done as follows: the 
consumer invokes the continuous method through the 
network with its input data. Then, the method instance 
starts processing results and it sends the results every time 
interval (the so-called production rate). The production 
rate can be determined by consumer needs. For instance, 
“give my current position every five minutes” where 'five 
minutes' is the expected production rate. Produced data is 
then sent to the consumer who processes it immediately 
or after a threshold defined by the number of tuples re-
ceived, or the elapsed time, or a buffer capacity. This 
threshold is named processing rate. Both production rate 
and processing rate impact the execution time cost, exe-
cution price cost, and battery consumption cost. 

We assumed that providers are autonomous in the sense 
that they can modify their interfaces, authentication protocols 
and privacy and authorship rules whenever they want and our 
data collection services must deal with these changes. We do 
not have information about the production rate of the streams 
and changes in Web pages and sites. In a first approach, we 
tuned the collection manually but we also collected infor-
mation about services behaviour to automatize the tuning pro-
cess and ensure the collection of fresh unique data. We used 
JSON as data model and we then implemented document pro-
cessing tasks to characterize the content of collected data. 

B. Measuring crowd density 
The occupation density of specific urban regions is meas-

ured separately according to the political organization of the 
space (quarters, areas) in every database. We use sliding win-
dows to partition continuous data flows with respect to time 
intervals and we use the political division of the urban space 
for filtering, grouping the data and computing density per ur-
ban region. This is a straightforward yet somehow costly com-
putation not because of the amount of data but because it 
should be continuously computed, and both data and density 
results are stored for performing other analytics processes. 

Having different visions of the density of urban spaces 
given different data collections enables to perform other types 
of data analytics on the n-tuples region-density and to cluster 
regions both taking into consideration their density and their 
geographic position. Accordingly, we generate a “crowd so-
cial cohesion model” showing a view of the dynamic distribu-
tion of communities within the crowds that occupy the urban 
space and how they evolve along time.  

C. Measuring social density  
Not all crowds need to be managed within urban spaces, 

there are some that happen every day in public transport and 
others need attention and must be better profiled. The first 
challenge is to be able to discriminate. Using data collections 
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harvested from social networks, some correlations are com-
puted to identify connected people that were in the same urban 
place at some time interval, and that might have been part of 
a crowd event. Not all individuals sharing the same spatial re-
gion necessarily participate in a crowd. Thus, the first opera-
tion to solve is given a set of individuals located in the same 
geographic region at the same time interval, whether an indi-
vidual located at the same space-time belongs to the crowd.  

A naïve way of evaluating the predicate belongs-to, is de-
termining whether there is a “social” connection between an 
individual and at least one of the potential crowd members. 
Using this analytics operation, it is possible to draw an urban 
occupation map and propose some connections among indi-
viduals occupying the same urban region at the same time in-
terval. The objective of this classification is to identify possi-
ble outsiders (i.e., individuals that do not really belong in the 
group). Those are the ones in which we are particularly inter-
ested because our guess is that within those outsiders we might 
find human traffic dealers, for example.  

We adopt two complementary strategies for computing 
what we call social density of crowd (see fig. 2). First, we 
compute a digital footprint of individuals retrieving the social 
graphs of individuals from their social networks accounts. 
These individuals are located in a geographical location where 
a possible crowd has been observed by exploring videos from 
surveillance cameras. The analysis of videos can be done 
manually or automatically applying tracking methods [7]. 
This process is out of the scope of this paper. We assume that 
when we start the process for computing social density, the 
potential crowd has been already identified and located. 

As shown in fig. 2, we compute each individual digital 
footprint graph by correlating and integrating data from the 
social graphs from their different social networks. Filtering 
strong related contacts, we verify whether they are themselves 
present in the crowd. Given a set of digital footprints graphs 
we discover possible relations with other individuals using 
two relations discovery techniques.  
1) The one proposed by [5] for computing social density. It 

starts from a portion of the digital footprints graphs con-
sisting of all individuals present in the target location. 
This process “completes” the graph with new discovered 
relations tagged with precision probabilities.  

2) We use the technique described in [9] for identifying 
communities within the digital footprints graphs tagged 
with new relations. This results in a social density graph 
where nodes represent groups of individuals evolving a 
in the same geographical situation for a given time inter-
val, which are related among each and that can be 
grouped according to different criteria (e.g., those with 
similar job, interests, sharing contacts, living in the same 
region, working for the same company, married, single). 

The process is computationally expensive because we are 
looking for graphs intersections of possibly thousands of indi-
viduals Indexing and graph processing heuristics are used to 
reduce the size of graphs and graph collections that must be 
explored. 

 
Figure 2. Data & graph processing workflow 

D. Profiling and predicting the crowd behaviour 
Once the crowd has been modelled in terms of its partici-

pants, it is possible to observe its behaviour as if it was an 
individual: (i) characterize its elements (find the leaders, the 
followers and eventually the outsiders); and (ii) predict the 
evolution of its behaviour for example, probability of conflict, 
space utilisation and risk maps.  

Once we have created a first connection graph describing 
how people possibly participating in the crowd are connected 
among each other, we apply methods to determine which is 
the degree of influence of each participant of the crowd. This 
is done by computing the influence of the elements of the 
crowd towards other elements ac-cording to their contacts net-
work and that can eventually be participants in the crowd. The 
analysis ends up with groups of outsiders that must be in-
spected to understand their presence in the crowd, and their 
possible role in the event. Again, since the inclusion of partic-
ipants in the crowds evolves along time, the contacts’ network 
represented by graphs and the influence of participants varies 
too. The computational cost is important considering semi-
post-mortem computations. Of course, the ultimate objective 
is to be able to observe this evolution in real time which intro-
duces scalability problems that must be addressed with GPU 
architectures.  

The final task is to predict the behaviour of the crowd. 
Therefore, we use the notions of space occupation and proba-
bility of conflict, by searching behaviour patterns in the evo-
lution of the crowd status: it emerges with some individuals, 
increases its size, in achieves the maximum of participants and 
then it fades. This “life cycle” happens within a space occupa-
tion process that can be controlled by its inherent behaviour 
but that can also be determined by external factors e.g., police, 
troublemakers.  We define the status of the crowds with a set 
of attributes including, the approximate number of partici-
pants, the main trajectories of the group, the spatio-temporal 
region occupied by the group, the possible outgoing directions 
in which participants can move within the urban space, trig-
gering and termination event. 

Instead of delivering textual or graphical results of these 
analytics operations we provide 2D and 3D visualizations that 
can reproduce the observations and simulate the behaviour of 
the crowd according to real data. See our current work in [6] 
for details about visualization issues. The following section 
focusses on the tasks related to data processing and link dis-
covery. 
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IV. EXPERIMENTATION 
We exploit data collections about the way people move in 

public places for learning about transit and crowd behaviour. 
In a first experiment, the characteristics of the characters are 
either inferred from the movement, or explicitly provided by 
people. We use the GeoLife GPS trajectory dataset [12] with 
data of 182 users, 17,621 trajectories of ca. 1.2 million Km. 
and 48,000+ hours. These data are used to compute spatio-
temporal people flows in real crowds.  

A. Computing trajectories 
Geolife GPS trajectory dataset is used for computing the 

trajectories of the people observations it contains. We used 
Big Data cleaning and processing tools particularly the lan-
guage PigLatin for computing such trajectories. The process 
is done by defining four declarative expressions as shown in 
fig. 3:  

• Q1: Load the observations clean and prepare the data 
collection with respect to the initial meta-data of the 
observations. For computing trajectories three attrib-
utes were necessary, the initial and termination times 
and the transportation modes. The idea is that a trajec-
tory is defined as a set of locations observed at a given 
moment identified by a time stamp. The PigLatin pro-
gram presented in the figure implements this process. 

• Q2: Load the GPS logs filtering the latitude, longitude 
and time stamp according to a predefined schema de-
fined for this purpose (see fig. 3). 

• Q3: Finally, the third query estimates the trajectories 
as sequences of locations where the sequence is deter-
mined by the time stamps. With these computed tra-
jectories, it is possible to perform other analytics op-
erations, and reconstitute the movement of people in 
the corresponding urban space, in this case Beijing. 

Even if they seem simple due to the expression power of 
PigLatin, the execution of these queries can be computation-
ally costly given the volume of data we processed. The 
PigLatin execution environment was installed in a cluster of 8 
machines and executed in parallel. We thus obtained results in 
reasonable execution time. The computed trajectories were 

stored in an integrated data collection on top of which we per-
formed other operations as described in the following lines.  

B. 2D individuals tracking 
Since our objective is to track individuals and crowds in 

urban spaces. We computed heat maps to aggregate the trajec-
tories of users during specific time intervals and we used a 
map service to visualize them. The result, as illustrated in 
fig. Erreur ! Nous n’avons pas trouvé la source du renvoi., 
shows those itineraries that are popular in red or thick lines. 
These heat maps concern the Beijing trajectories computed 
using the Geolife GPS trajectory dataset. 

Heat maps enable tracking individuals within a specific ur-
ban space and see how they move during a specific time inter-
val. The figure shows the simple code for computing heat 
maps that again serve as new data on which it is possible to 
perform more analytics. These analytics concern for example 
identifying the most visited regions, observe rush hours in cer-
tain regions, and eventually identify crowds. For the time be-
ing our experimentation is done post-mortem.  

C. Computing social cohesion and comunities in crowds 
Fig. 5 shows an intuitive view of the data structures that 

we process to compute social cohesion and discover commu-
nities in crowds. Conceptually it consists of a complex two 
level graph called digital footprint graph.  

In the first level a node represents an individual’s profile 
integrating personal data integrated from all her social net-
work accounts. Each data entry is qualified with information 
about its provenance and privacy degree obtained from the 
privacy contract associated to the associated account. The at-
tributes associated to the node is given by the union of the at-
tributes of the ones describing the personal data of a person in 
each social network that is integrated. For every attribute the 
node uses the following structure: 
 

<attribute, type,  
provenance: string, %social network  
privacy level: {public, friends, friends-
of-friends}> 

 
A node maintains a set of special connections with the 

identity nodes of the social graph of the user stemming from 
every social network. Finally, a node is connected to other 
nodes with a relationship tagged with a value depending 

Figure 3. Computing trajectories Figure 4. Heat maps aggregating the tra-
jectories of the same user during an time 
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whether both nodes are connected in one or several social net-
works. In our experiments the integration is a process with few 
technical challenge. We start from an initial set of social 
graphs from 182 accounts that accepted to participate in the 
experiment. We used the API’s provided by three social net-
works: Facebook, Twitter, Foursquare, and we accessed to the 
Whatsapp agenda of the users for building the first level of the 
footprint graph. 

With the footprint graph we apply two algorithms, one for 
discovering possible connections. Some of these connections 
can be computed directly by querying the footprint graph. Par-
ticularly, retrieving the mutual connections which is already 
computed by some social networks API. Using this list of mu-
tual connections, it is possible to compute mutual multi-social 
network connections. Other links are more difficult to infer 
and require applying specific strategies. In our current exper-
iments, we do not apply them.  

The second type of analytics that we apply is that of iden-
tifying communities within the digital footprint graph (see 
leftmost side of fig. 5). To simplify but still have a complete 
version of the approach we applied a k-means strategy that 
enabled us to identify communities with similar (i) social be-
haviour (e.g., visit and like the same type of places on Four-
square, visit similar places using geographically tagged posts 
on Twitter and Facebook); (ii) similar online behaviour (e.g., 
the average time spent connected to a given social network per 
day, the number of posts published in a week). 

Figure 5. Crowd social density based on individuals digital footprint 

V. CONCLUSIONS AND FUTURE WORK 
This paper introduced our approach and first experiment 

results concerning the correlation of digital footprints to dis-
cover social connections of individuals potentially participat-
ing in crowds. The approach applies existing data mining and 
computational science techniques for processing data, but 
contributes on the management of series of graphs that are 
produced and exploited because of the different data pro-
cessing tasks.  

Given the volume of data to be processed and the com-
plexity of the computed graphs, it is not judicious to proceed 
using the brutal force for processing them, so in every step 
indexes are associated to computed graphs and the input col-
lections of graphs are pruned to reduce the execution time de-
spite the fact the we rely on parallel settings for executing 

them. For the time being the graphs we process only contain 
textual information, yet in our context information about the 
crowds can come in videos and images. We want to include 
this type of data in our analytics processes and correlated 
video and textual information to build our digital footprint 
graphs. 
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