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Abstract The emergence of new hardware architectures,

and the continuous production of data open new challenges

for data management. It is no longer pertinent to reason

with respect to a predefined set of resources (i.e., com-

puting, storage and main memory). Instead, it is necessary

to design data processing algorithms and processes con-

sidering unlimited resources via the ‘‘pay-as-you-go’’

model. According to this model, resources provision must

consider the economic cost of the processes versus the use

and parallel exploitation of available computing resources.

In consequence, new methodologies, algorithms and tools

for querying, deploying and programming data manage-

ment functions have to be provided in scalable and elastic

architectures that can cope with the characteristics of Big

Data aware systems (intelligent systems, decision making,

virtual environments, smart cities, drug personalization).

These functions, must respect QoS properties (e.g., secu-

rity, reliability, fault tolerance, dynamic evolution and

adaptability) and behavior properties (e.g., transactional

execution) according to application requirements. Mature

and novel system architectures propose models and

mechanisms for adding these properties to new efficient

data management and processing functions delivered as

services. This paper gives an overview of the different

architectures in which efficient data management functions

can be delivered for addressing Big Data processing

challenges.

Keywords Big data � Service-based data management

systems � NoSQL � Data analytics stack

1 Introduction

Database management systems (DBMS) emerged as a

flexible and cost-effective solution to information organi-

zation, maintenance and access problems found in orga-

nizations (e.g., business, academia and government).

DBMS addressed these problems under the following

conditions: (i) with models and long-term reliable data

storage capabilities; (ii) providing retrieval and manipula-

tion facilities for stored data for multiple concurrent users

or transactions [40]. The concept of data model (most

notably the relational models like the one proposed by

Codd [29]; and the object-oriented data models [8]; Cattell

and Barry [25]), the Structured Query Language (SQL,

Melton and Simon [81]), and the concept of transaction

(Gray and Reuter [57]) are crucial ingredients of successful

data management in current enterprises.
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Today, the data management market is dominated by

major object-relational database management systems

(OR-DBMS) like Oracle,1 DB2,2 or SQLServer.3 These

systems arose from decades of corporate and academic

research pioneered by the creators of System R [6] and

Ingres [97].

Since their emergence, innovations and extensions have

been proposed to enhance DBMS in power, usability, and

spectrum of applications (see Fig. 1).

The introduction of the relational model [29], prevalent

today, addressed the shortcomings of earlier data models.

Subsequent data models, in turn, were relegated or became

complementary to the relational model. Further develop-

ments focused on transaction processing and on extending

DBMS to support new types of data (e.g., spatial, multi-

media, etc.), data analysis techniques and systems (e.g.,

data warehouses, OLAP systems, data mining). The evo-

lution of data models and the consolidation of distributed

systems made it possible to develop mediation infrastruc-

tures [109] that enable transparent access to multiple data

sources through querying, navigation and management

facilities. Examples of such systems are multi-databases,

data warehouses, Web portals deployed on Internet/In-

tranets, polyglot persistence solutions [78]. Common issues

tackled by such systems are (i) how to handle diversity of

data representations and semantics? (ii) how to provide a

global view of the structure of the information system

while respecting access and management constraints? (iii)

how to ensure data quality (i.e., freshness, consistency,

completeness, correctness)?

Besides, the Web of data has led to Web-based DBMS

and XML data management systems serving as pivot

models for integrating data and documents (e.g., active

XML). The emergence of the Web marked a turning point,

since the attention turned to vast amounts of new data

outside of the control of a single DBMS. This resulted in an

increased use of data integration techniques and exchange

data formats such as XML. However, despite its recent

development, the Web itself has experienced significant

evolution, resulting in a feedback loop between database

and Web technologies, whereby both depart from their

traditional dwellings into new application domains.

Figure 2 depicts the major shifts in the use of the Web.

A first phase saw the Web as a mean to facilitate com-

munication between people, in the spirit of traditional

media and mainly through email. Afterward, the WWW

made available vast amounts of information in the form of

HTML documents, which can be regarded as people-to-

machines communication. Advances in mobile communi-

cation technologies extended this notion to mobile devices

and a much larger number of users, the emergence of IoT

environments increases the number of data producers to

thousands of devices. A more recent trend exemplified by

Web Services, and later Semantic Web Services, as well as

Cloud computing,4 consists of machine-to-machine com-

munication. Thus, the Web has also become a platform for

applications and a plethora of devices to interoperate, share

data and resources.

Most recent milestones in data management (cf. Fig. 1)

have addressed data streams leading to data stream man-

agement systems (DSMS). Besides, mobile data providers

and consumers have also led to data management systems

dealing with mobile queries and mobile objects. Finally,

the last 7 years concern challenges introduced by the XXL

phenomenon including the volume of data to be managed

(i.e., Big Data volume) that makes research turn back the

eyes toward DBMS architectures (cloud, in-memory, GPU

DBMSs), data collection construction5 and parallel data
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1 http://www.oracle.com.
2 http://www-01.ibm.com/software/data/db2/.
3 http://www.microsoft.com/sqlserver/2008/en/us/.

4 Cloud computing enables on-demand network access to computing

resources managed by external parties.
5 See http://www.datascienceinstitute.org.
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processing. In this context, it seems that Big Data pro-

cessing must profit from available computing resources by

applying parallel execution models, thereby achieving

results in ‘‘acceptable’’ times.

Relational queries are ideally suited to parallel execu-

tion because they consist of uniform operations applied to

uniform streams of data. Each operator produces a new

relation, so the operators can be composed into highly

parallel dataflow graphs. By streaming the output of one

operator into the input of another operator, the two oper-

ators can work in series giving pipelined parallelism [39].

By partitioning the input data among multiple processors

and memories, an operator can often be split into many

independent operators, each working on a part of the data.

This partitioned data and execution leads to partitioned

parallelism that can exploit available computing resources.

In this context, we can identify three major aspects that

involve database and Web technologies, and that are crucial

for satisfying the new information access requirements of

users: (i) a large number of heterogeneous data sources

accessible via standardized interfaces, which we refer to as

data services (e.g., Facebook, Twitter); (ii) computational

resources supported by various platforms that are also pub-

licly available through standardized interfaces, which we

call computation services (e.g., hash Amazon E3C service);

(iii) mobile devices that can both generate data and be used to

process and display data on behalf of the user.

The new DBMS aims at fulfilling ambient applications

requirements, data curation and warehousing, scientific

applications, on-line games, among others [67]. Therefore,

future DBMS must address the following data management

issues:

– Data persistence for managing distributed storage

spaces delivered by different providers (e.g., dropbox,

onedrive, and googledrive); efficiently and continu-

ously ensuring data availability using data sharing and

duplication; ensuring data usability and their migration

into new hardware storage supports.

– Efficient and continuous querying, and mining of data

flows. These are complex processes requiring huge

amounts of computing resources. They must be

designed,6 implemented and deployed on well adapted

architectures such as the grid, the cloud but also sensor

networks, mobile devices with different physic capac-

ities (i.e., computing and storage capacity).

– Querying services that can implement evaluation

strategies able to:

– (i) process continuous and one-shot queries that

include spatiotemporal elements and nomad

sources;

– (ii) deal with exhaustive, partial and approximate

answers;

– (iii) use execution models that consider accessing

services as data providers and that include as a

source the wisdom of the crowd;

– (iv) integrate ‘‘cross-layer’’ optimization that

includes the network and the enabling infrastructure

as part of the evaluation process, and that can use

dynamic cost models based on execution, eco-

nomic, and energy costs.

The DBMS of the future must also enable the execution of

algorithms and of complex processes (scientific experi-

ments) that use huge data collections (e.g., multimedia

documents, complex graphs with thousands of nodes). This

calls for a thorough revision of the hypotheses underlying

the algorithms, protocols and architectures developed for

classic data management approaches [31]. In the following

sections we discuss some of these issues focusing mainly

on the way data management services of different granu-

larities are delivered by different DBMS architectures.

Section 2 analyses DBMS architectures evolution, from

monolithic to customizable systems. Section 3 discusses

how scalability and extensibility properties can have

associated implications on systems performance. Section 4

presents important issues and challenges concerning man-

agement systems through the description of Big Data

stacks, Big Data management systems, environments and

data cloud services. Section 5 discusses open issues on

DBMS architectures and how they deliver their functions

for fulfilling application requirements. Section 6 describes

some perspectives.

2 From Monolithic to Customizable DBMS
Architectures

Different kinds of architectures serve different purposes.

The ANSI/SPARC [1] architecture (Fig. 3) that character-

izes classic database management systems (relational,

object oriented, XML) deployed on client-server architec-

tures has evolved in parallel to the advances resulting from

new application requirements, data volumes, and data

models. The 3-level-schema architecture reflects the dif-

ferent levels of abstraction of data in a database system

distinguishing: (i) the external schemata that users work

with, (ii) the internal integrated schema of the entire

database; (iii) the physical schema determining the storage

and the organization of databases on secondary storage.

The structure of a monolithic DBMS shown in Fig. 4

shows three key components of the system: the storage

manager, the transaction manager, and the schema

manager.6 See MapReduce models for implementing relational operators [2].
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The evolution of devices with different physical

capacities (i.e., storage, computing, memory), and systems

requiring data management functions started to show that

adding more and more functions to monolithic DBMS does

not work. Instead, it seems attractive to consider the

alternative of extending DBMS allowing functionality to

be added or replaced in a modular manner, as needed.

While such a closely woven implementation provides

good performance/efficiency, customization is an expen-

sive and difficult task because of the dependencies among

the different components. For example, changing the

indexing or clustering technique employed by the storage

manager, changing the instance adaptation approach

employed by the schema manager or the transaction model

can have a large ripple effect on the whole system [40].

During the last twenty years, in order to better match the

evolution of user and application needs, many extensions

have been proposed to enhance the DBMS functions. In

order to meet all new requirements, DBMS were extended

to include new functionalities. Extensible and personaliz-

able database systems [22] were an attempt to ease the

construction of DBMS by exploiting software reusability

[51], and proposing a general core that can be customized

or extended, or even used to generate some DBMS parts.

Trade-offs between modularity and efficiency, granularity

of services, and the number of inter-service relationships

result in DBMS designs which lack customizability.7 A

study of the standard task-oriented architecture of DBMS

can be useful to determine their viability in new environ-

ments and for new applications. The following paragraphs

give an overview of the main elements for showing how

DBMS have and should evolve in order to address the

scalability and performance requirements for data

management.

2.1 Classic Functional Architecture

The classic DBMS architecture consists of a number of

layers [36, 63, 64] each supporting a set of data types and

operations at its interface. It consists of several components

(modules or managers of concrete or abstract resources).

The data types and operations defined for the modules of

one layer are implemented using the concepts (data types

and operations) of the next-lower level. Therefore, the

layered architecture can also be considered as a stack of

abstract machines. The layered architecture model as

introduced by Härder and Reuter (1983) is composed of

five layers described in [40]:

1. The uppermost layer supports logical data structures

such as relations, tuples, and views. Typical tasks of

this layer include query processing and optimization,

access control, and integrity enforcement.

2. The next layer implements a record-oriented interface.

Typical entities are records and sets8 as well as logical

access paths. Typical components are the data dic-

tionary, transaction management, and cursor

management.

3. The middle layer manages storage structures (internal

records), physical access paths, locking, logging, and

recovery. Therefore, relevant modules include the

record manager, physical access path managers (e.g.,

a hash table manager), and modules for lock manage-

ment, logging, and recovery.

4. The next layer implements (page) buffer management

and implements the page replacement strategy. Typical

entities are pages and segments.

5. The lowest layer implements the management of

secondary storage (i.e., maps segments, and pages to

blocks and files).

Due to performance considerations, no concrete DBMS has

fully obeyed the layered architecture [40]. Note that

Fig. 3 ANSI-SPARC DBMS architecture

Fig. 4 Classic DBMS functions [40]

7 ‘‘Although a task-oriented architecture is much more suitable for

reasoning about extensibility and DBMS construction, reference

architectures rarely exist (with the straw-man architecture developed

by the Computer Corporation of America, CCA 1982, as a

notable exception)’’ [40].
8 As found in the Committee on Data Systems Languages,

CODASYL data model.
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different layered architectures and different numbers of

layers are proposed, depending on the desired interfaces at

the top layer. If, for instance, only a set-oriented interface

is needed, it is useful to merge the upper two layers. In

practice, most DBMS architectures have been influenced

by System R [6], which consists of two layers:

– The relational data system (RDS), providing the

relational data interface (RDI). It implements SQL

(including query optimization, access control, triggers,

etc.);

– The relational storage system (RSS), supporting the

relational storage interface (RSI). It provides access to

single tuples of base relations at its interface.

Layered architectures [64] were designed to address

customizability, but they provide partial solutions at a

coarse granularity. In the layered architecture proposed by

[64], for example, the concurrency control components

are spread across two different layers. Customization of

the lock management or recovery mechanisms (residing in

the lower layer) have a knock-on effect on the transaction

management component (residing in the higher layer)

[40].

As we will discuss in the next sections, layered archi-

tectures are used by existing DBMS, and they remain used

despite the different generations of these systems. In each

generation, layers and modules were implemented

according to different paradigms (e.g., object, component,

and service oriented) changing their granularity and the

transparency degree adopted for encapsulating the func-

tions implemented by each layer.

2.2 OODBMS: Relaxing Data Management

and Program Independence

The first evolution of DBMS is when the object-oriented

(OO) paradigm emerged, and the logic and physical levels

started to approach for providing efficient ways of dealing

with persistent objects. Together with the OO paradigm

emergence, it was possible to develop applications

requiring databases that could handle very complex data,

that could evolve gracefully, and that could provide the

high-performance dictated by interactive systems. Data-

base applications could be programmed with an OO lan-

guage, and then object persistence was managed by an

Object-Oriented DBMS (OODBMS). The OODBMS

manifesto [8] stated that persistence should be orthogonal,

i.e., each object, independent of its type, is allowed to

become persistent as such (i.e., without explicit transla-

tion). Persistence should also be implicit: the user should

not have to explicitly move or copy data to make it per-

sistent. This implied also that transparency was enforced

regarding secondary storage management (index

management, data clustering, data buffering, access path

selection and query optimization).

Extensible database systems [22] allowed new parts

such as abstract data types or index structures to be added

to the system. Enhancing DBMS with new Abstract Data

Type (ADT) or index structures was pioneered in the

Ingres/Postgres systems [77, 99, 100]. Ingres supports the

definition of new ADTs, including operators. References to

other tuples can be expressed through queries (i.e., the data

type postquel), but otherwise ADTs, and their associated

relations, still had to be in first normal form. This restric-

tion was relaxed in systems that have a more powerful type

system (e.g., an OO data model) [10, 35, 41, 74, 93].

Another area in which extensions have been extensively

considered are index structures. In Ingres/Postgres, existing

indexes (such as B-trees) can be extended to also support

new types (or support existing types in a better way). To

extend an index mechanism, new implementations of type-

specific operators of indexes have to be provided by the

user. In this way, existing index structures were tailored to

fit new purposes, and thus have been called extended sec-

ondary indexes (see DB2 UDB object-relational DBMS).9

This evolution responded to the need of providing

flexibility to the logic level adapting the physical level in

consequence. The idea was to approach the three levels by

offering ad hoc query facilities, and let applications define

the way they could navigate the objects collections, for

instance, a graphical browser could be sufficient to fulfill

this functionality [8]. This facility could be supported by

the data manipulation language or a subset of it.

As the architecture of the DBMS evolved according to

the emergence of new programming paradigms like com-

ponents and services, and to ‘‘new’’ data models like

documents (XML), the frontiers among the three levels

started to be thiner, and transparency concerning persis-

tence and transaction management was less important.

Component-oriented middleware started to provide per-

sistence services and transaction monitors as services that

required programmers to configure and integrate these

properties within the applications. Data and program

independence was broken but the ad hoc configuration of

data management components or services seemed to be

easier to configure since it was more efficient to person-

alize functions according to application needs.

2.3 Component-Oriented DBMS: Personalizing

Data Management

Component aware [43, 47, 72, 84, 85, 88, 102] was a

paradigm to address reusability, separation of concerns

(i.e., separation of functional from non-functional

9 http://www-01.ibm.com/software/data/db2/.
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concerns) and ease of construction.10 Component-based

systems are built by putting components together to form

new software systems. Systems constructed by composition

can be modified or extended by replacing or adding new

components (Fig. 5).

Approaches to extend and customize DBMS adopted the

component-oriented paradigm for designing at least the

customizable modules of the architecture, as components.

Plug-in components are added to functionally complete

DBMS and fulfill specialized needs. The components of

component database management systems (CDBMS) are

families of base and abstract data types or implementations

of some DBMS function, such as new index structures. To

date, all systems in this category are based on the relational

data model and existing relational DBMS, and all of them

offer some OO extensions. Example systems include IBM,

DB2 UDB (IBM 1995), Informix Universal Server (In-

formix 1998), Oracle8 (Oracle 1999), and Predator [94].

Descriptions of sample component developments can be

found in [18, 38].

Furthermore, the customization approach employed by

most commercial DBMS are still largely monolithic (to

improve performance). Special points similar to hot spots

in OO frameworks [44] allow to custom components to be

incorporated into the DBMS. Examples of such compo-

nents include Informix DataBlades,11 Oracle Data Car-

tridges [11] and DB2 Relational Extenders [37]. However,

customization in these systems is limited to the introduc-

tion of user-defined types, functions, triggers, constraints,

indexing mechanisms, and predicates, etc.

2.3.1 Database Middleware

Another way of addressing DBMS ‘‘componentization’’

was to provide database middlewares. Such middlewares

leave data items under the control of their original (exter-

nal) management systems while integrating them into a

common DBMS-style framework. External systems exhi-

bit, in many cases, different capabilities, such as query

languages with varying power or no querying facilities at

all. The different data stores might also have different data

models (i.e., different data definition and structuring

means), or no explicit data model at all. The goal of

graceful integration is achieved through componentization.

The architecture introduces a common (intermediate)

format into which the local data formats can be translated.

Specific components perform this kind of translation.

Besides, common interfaces and protocols define how the

database middleware system and the components should

interact (e.g., in order to retrieve data from a data store).

These components (called wrappers) are also able to

transform requests issued via these interfaces (e.g., queries)

into requests understandable by the external system. In

other words, these components implement the functionality

needed to access data managed by the external data store.

Examples of this approach include Disco [104], Garlic

[92], OLE DB [15–17], Tsimmis [49], Harmony [91]

(which implemented the CORBA query service), and

Sybase Adaptive Server Enterprise [86]. Sybase allows

access to external data stores, in Sybase called specialty

data stores, and other types of database systems. ADEMS

[21, 32] proposes mediation cooperative components or

services that can broker and integrate data coming from

heterogeneous sources. The cooperative brokers allow to

build an extensible data mediation system.

2.3.2 Configuring and Unbundling Data Management

Configurable DBMS rely on unbundled DBMS tasks that

can be mixed and matched to obtain database support (see

Fig. 6). The difference lies in the possibility of adapting

functions (called services) implementations to new

requirements or in defining new services whenever needed.

Configurable DBMS also consider services as unbundled

representations of DBMS tasks. However, the models

underlying the various services, and defining the semantics

of the corresponding DBMS parts can now, in addition, be

customized. Components for the same DBMS task can vary

not only in their implementations for the same standardized

interface, but also in their interfaces for the same task.

DBMS implementors select (or construct new) components

implementing the desired functionality, and obtain a

DBMS by assembling the selected components. There are

different approaches for configuring and composing

Fig. 5 Component DBMS [40]

10 A (software) component is a software artifact modeling and

implementing a coherent and well-defined set of functions. It consists

of a component interface and a component implementation. Compo-

nents are black boxes, which means that clients can use them properly

without knowing their implementation. Component interface and

implementation should be separated such that multiple implementa-

tions can exist for one interface and implementations can be

exchanged.
11 http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?to

pic=/com.ibm.dbdk.doc/dbdk26.htm.
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unbundled DBMS services: kernel systems, customizable

systems, transformational systems, toolkits, generators and

frameworks [40].

In principle, (internal) DBMS components are pro-

grammed and exchanged to achieve specific functionality

in a different way than in the original system. A crucial

element is the underlying architecture of the kernel, and the

proper definition of points where exchanges can be per-

formed. An example of this kind of DBMS is Starburst

[60, 73]: its query language can be extended by new

operators on relations [61] and various phases of the query

processing are also customizable (e.g., functions are

implemented using the interfaces of a lower layer (kernel)

sometimes using a dedicated language). GENESIS [12, 13]

is a transformational approach that supports the imple-

mentation of data models as a sequence of layers. The

interface of each layer defines its notions of files, records,

and links between files. Transformations themselves are

collected in libraries, so that they can be reused for future

layer implementations. Another transformational approach

that uses specification constructs similar to those of Acta

[28] has been described by [50]. EXODUS [23] applies the

idea of a toolkit for specific parts of the DBMS. A library is

provided for access methods. While the library initially

contains type-independent access methods such as B-trees,

grid files, and linear hashing, it can also be extended with

new methods. Other examples are the Open OODB (Open

Object-Oriented Database) approach [14, 108], Trent [70]

for the construction of transaction managers (mainly,

transaction structures and concurrency control) and ‘‘ à la

carte’’ [42] for the construction of heterogeneous DBMS.

One problem in any toolkit approach is the consistency

(or compatibility) of reused components. Generation

approaches instead support the specification of (parts of) a

DBMS functionality and the generation of DBMS com-

ponents based on those specifications. A programmer

defines a model (e.g., an optimizer, a data model, or a

transaction model), which is given as input to a generator.

The generator then automatically creates a software

component that implements the specified model based on

some implementation base (e.g., a storage manager or

kernel in the case of data model software generation). An

example of a generator system is the EXODUS query-op-

timizer generator [55]. Volcano [56], the successor of the

EXODUS optimizer generator, also falls into the group of

generator systems. Volcano has been used to build the

optimizer for Open OODB [14].

Systems like KIDS [52], Navajo, and Objectivity [59]

provide a modular, component-based implementation. For

example, the transaction manager (or any other component)

can be exchanged with the ripple effect mainly limited to

the glue code. However, to strike the right balance between

modularity and efficiency the design of the individual

components is not highly modular. In fact, the modularity

of the individual components is compromised to preserve

both modularity and efficiency of the DBMS. Approaches

like NODS [30] proposed service-oriented networked sys-

tems at various granularities that cooperated at the mid-

dleware level. The NODS services could be customized on

a per-application basis at a fine grained level. For example,

persistence could be configured at different levels [48]

memory, cache or disk and it could cooperate with fault

tolerance protocols for providing, for example, different

levels of atomic persistent data management. Other

frameworks for building query optimizers are the ones

described in [89], Cascades [54], and EROC (Extensible

Reusable Optimization Components) [80] and [34, 107].

Framboise [46] and ODAS [33, 105] are frameworks for

layering active database functionality on top of passive

DBMS.

However, customization at a finer granularity (i.e., the

components forming the DBMS) is expensive. Such cus-

tomization is cost-effective if changes were localized

without compromising the system performance. Such per-

formance can be ensured through closely woven compo-

nents, i.e., both modularity and efficiency need to be

preserved.

2.3.3 Summarizing Componentization of DBMS

CDBMS were successful because of the adoption of the

notion of cartridge or blade by commercial DBMS. Other

academic solutions were applied in some concrete valida-

tions. It is true that they enabled the configuration of the

DBMS, but they still provided monolithic, complex,

resources consuming systems (‘‘kernels’’) that need to be

tuned and carefully managed for fulfilling the management

of huge data volumes. These systems continued to

encourage classic conception of information systems, with

clear and complete knowledge of the data they manage,

with global constraints, and homogeneous management

with well identified needs. Yet, the evolution of

Fig. 6 Extensible DBMS [40]
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technology, and the production of data stemming from

different devices and services, the access to non-curated

continuous data collections, the democratized access to

continuous information (for example in social networks)

calls for light weight data management services delivered

in ad hoc personalized manners and not only in full-fledged

one fits all systems like the (C)DBMS. Together with this

evolution, emerged the notion of service aiming to ease the

construction of loosely coupled systems. DBMS then

started to move toward this new paradigm and were rede-

fined as data management service providers.

2.4 Service-Oriented DBMS

Today the DBMS architecture has evolved to the notion of

service-based infrastructure where services12 are adapted

and coordinated for implementing ad hoc data management

functions (storage, fragmentation, replication, analysis,

decision making, data mining). These functions are adapted

and tuned for managing huge distributed multiform mul-

timedia data collections. Applications can extend the

functionality of DBMS through specific tasks that have to

be provided by the data management systems, these tasks

are called services, and allow interoperability between

DBMS and other applications [52].

Subasu et al. [101] proposes a database architecture on

the principles of service-oriented architecture (SOA) as a

system capable of handling different data types, being able

to provide methods for adding new database features (see

Fig. 7). The service-based data management system

(SBDMS) architecture borrows the architectural levels

from Härder [62], and includes new features and advan-

tages introduced by SOA into the field of database archi-

tecture. It is organized into functional layers that each with

specialized services for specific tasks.

Storage services work on the byte level, in very close

collaboration with file management functions of the oper-

ating system. These services have to handle the physical

specifications of each non-volatile device. In addition, they

provide services for updating existing data and finding

stored data, propagating information from the Access

Services Layer to the physical level. Since different data

types require different storage optimizations, special ser-

vices are created to supply their particular functional needs.

This layer is equivalent to the first and second layer of the

five layer architecture presented by Härder and Reuter

[62, 65].

Access services is in charge of the physical data rep-

resentations of data records and provides access path

structures like B-trees. It provides more complex access

paths, mappings, particular extensions for special data

models, that are represented in the Storage Services

Layer. Moreover, it is responsible for sorting record sets,

navigating through logical record structures, making joins,

and similar higher-level operations. This layer represents

a key factor to database performance. The Access Ser-

vices Layer has functions that are comparable to those in

the third and fourth layer as presented by Härder and

Reuter [62, 65].

Data services provide data represented in logical

structures like tables or views. These are data structures

without any procedural interface to the underlying data-

base. The Data Service Layer can be mapped to the Non-

Procedural and Algebraic Access level in the architecture

by Härder and Reuter [62, 65].

Extension services users can design tailored extensions

for example, creating new services or reusing existing ones

from any available service from the other layers. These

extensions help to manage different data types like XML

files or streaming data. In this layer, users can integrate

application-specific services in order to provide specific

data types or specific functionalities needed by their

applications (e.g., for optimization purposes).

A service-based DBMS externalizes the functions of the

different systems layers, and enables the programming of

personalized data management as a service systems. They

make it possible to couple the data model characteristics

with well adapted management functions that can them-

selves be programmed in an ad hoc manner. The DBMS

remains a general purpose system that can be personalized,

thanks to service composition, to provide ad hoc data

management. It is then possible to have services deployed

in architectures that make them available to applications in

a simple way (e.g., cluster, cloud).

Fig. 7 Service-oriented DBMS [101]

12 Services in the SOA approach are software elements accessible

through a well defined interface without requiring any knowledge on

their implementation. SOAs can be implemented through a wide

range of technologies like RPC, RMI, CORBA, COM, and Web

services, not making any restrictions on the implementation protocols.

In general, services can communicate using an arbitrary protocol, for

example, they can use a file system to send data between their

interfaces.
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As discussed before the evolution of the DBMS archi-

tecture responds to the evolution of applications require-

ments in regard to efficient management. With the

emergence of the notion of service, the DBMS architecture

has been ‘‘fragmented’’ into components and services that

are deployed in distributed platforms such as the Web 2.0.

Applications use different kinds of data that must be

managed according to different purposes: some data col-

lections are read oriented with few writes; other data is

modified continuously, and it is exploited by non-concur-

rent read operations. Some collections are shared, and they

can support low consistency levels as long as they are

available. Furthermore, such data is multiform, and more

and more multimedia, they are modeled or at least

exchanged as documents, particularly if they stem from the

Web.

Requirements concerning data management perfor-

mance vs. volume, and the effort of constructing data

collections themselves has determined the evolution of

DBMS toward efficiency. The three level architecture that

encouraged program-data independence based on series of

transformations among layers seems inappropriate to fulfill

performance requirements. The architectures are making

levels separations thin. The principle being that the less

transformations among data are required the more efficient

are data management functions, particularly querying,

accessing, and processing. It seems that the very principle

of independence between programs and data management

is a very expensive quality that is not worth paying in

certain situations.

3 Intensive Big Data Management: Bringing
Scalability to Data Management

According to [19] a consistent challenge is that real Big

Data clusters involve multi-user, multi-class (i.e., mixed

job size) workloads not just one analysis job at a time or a

few analysis jobs at a time, but a mix of jobs and queries of

widely varying importance and sizes. The next generation

of Big Data management services will have to propose

approaches for dealing with such workloads effectively: a

long-standing open problem in the parallel database world

and in the Hadoop world as stated in [19]. We believe that

three aspects are key for dealing with intensive Big Data

management: (i) dealing with efficient simple storage

systems that focus efficient read and write operations; (ii)

multiple storage spaces given the volume and variety

properties of data collections; (iii) data analytics workflows

supported by efficient underlying data management

infrastructures; (iv) parallel programming models to deal

with the execution of greedy data analytic tasks that might

require important computing and memory resources;

(v) cloud providers that can provide storage, computing

and memory resources in an elastic and ‘‘transparent’’ way,

and that can enable the execution of greedy processes

running on top of data collections hosted on their storage

services.

3.1 NoSQL Data Store Managers

New kinds of data with specific structures (e.g., documents,

graphs) produced by sensors, Global Positioning Systems

(GPS), automated trackers and monitoring systems has to

be manipulated, analyzed, and archived [103]. These large

volumes of data sets impose new challenges and opportu-

nities around storage, analysis, and archival. NoSQL stores

seem to be appropriate systems that claim to be simpler,

faster, and more reliable. This means that traditional data

management techniques around upfront schema definition

and relational references are being questioned.

Even if there is no standard definition of what NoSQL

means,13 there are common characteristics of these sys-

tems: (i) they do not rely on the relational model and do not

use the SQL language; (ii) they tend to run on cluster

architectures; (iii) they do not have a fixed schema,

allowing to store data in any record. The systems that fall

under the NoSQL umbrella are quite varied, each with their

unique sets of features and value propositions. Examples

include MongoDB, CouchDB, Cassandra, Hbase, and also

BigTable and SimpleDB, which fit in general operating

characteristics.

Despite the profound differences among the different

NoSQL systems, the common characteristic with respect to

the architecture is that the external and logic levels of

RDBMS disappear. This means that the applications are

close to the physical level with very few independence

program and data. Data processing functions like querying,

aggregating, analyzing are conceived for ensuring effi-

ciency. For example, Google’s Bigtable adopts a column-

oriented data model avoiding consuming space when

storing nulls by simply not storing a column when a value

does not exist for that column. Columns are capable of

storing any data types as far as the data can be persisted in

the form of an array of bytes. The sorted ordered structure

makes data seek by row-key extremely efficient. Data

access is less random and ad hoc, and lookup is as simple

as finding the node in the sequence that holds the data. Data

are inserted at the end of the list.

Another evidence of the proximity to the physical model

exploited by NoSQL systems are key-value stores that

exploit hash-map (associative array) for holding key-value

pairs. The structure is popular because thereby stores

13 The notion was introduced in a workshop in 2009 according to

[78].
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provide a very efficient O(1) average algorithm running

time for accessing data. The key of a key-value pair is a

unique value in the set and can be easily looked up to

access the data. Key-value pairs are of varied types: some

keep the data in memory and some provide the capability

to persist the data to disk. The underlying data storage

architecture is in general a cluster, and the execution model

of data processing functions is Map-Reduce. Thus data are,

in general, managed in cache using for example the

memcached protocol14 particularly popular in key-value

stores. A cache provides an in-memory snapshot of the

most-used data in an application. The purpose of cache is

to reduce disk I/O.

In some situations, availability cannot be compromised,

and the system is so distributed that partition tolerance is

required. In such cases, it may be possible to compromise

strong consistency. The counterpart of strong consistency

is weak consistency. Inconsistent data are probably not a

choice for any serious system that allows any form of data

updates but eventual consistency could be an option.

Eventual consistency alludes to the fact that after an update

all nodes in the cluster see the same state eventually. If the

eventuality can be defined within certain limits, then the

eventual consistency model could work. The term BASE

(Basically Available Soft-state Eventually) [106] denotes

the case of eventual consistency.15

NoSQL systems promote performance, scalable, clus-

tered oriented data management and schema-less data

design focusing on data distribution, duplication and on

demand persistence. The logic and external levels of the

classic DBMS architecture are erased exposing the physi-

cal level to applications with certain transparency. The

application describes its data structures that can be per-

sistent, and that can be retrieved using indexing mecha-

nisms well adapted to these structures. Assuming good

amounts of available memory resources, they promote

parallel data querying including data processing tasks. Data

availability is ensured through replication techniques and

persistence on second memory is done on demand. For the

time being, given that data management is done at the

physical level, and that there is few data - program

independence, there is a lot of programming burden to be

undertaken by application programmers. Most NoSQL

systems do not support high-level query languages with

built-in query optimization. Instead, they expect the

application programmer to worry about optimizing the

execution of their data access calls with joins or similar

operations having to be implemented in the application

[82]. Another drawback mainly associated to the historical

moment is that application programming interfaces (APIs)

are not yet standardized, thus standardized bindings are

missing, and they have to be programmed and maintained.

NoSQL systems overcome some of the shortcomings of

the relational systems but leave aside good principles of the

RDBMS, which go beyond the relational model and the

SQL language. The schema-less approach seems to

respond to a schema evolution requirement stemming from

applications dealing with data in a very simple way (read/

write operations). As discussed in [82], Web data like logs

of activities in an e-commerce site or data managed by

social media applications like Facebook are examples of

cases needing schema evolutions because data are not very

structured and, even when it is structured, the structure

changes a lot over time.

3.2 Dealing with Multiple Storage Spaces

The use of heterogeneous data stores within a single system

is gradually becoming a common practice in application

development. Modern applications tend to rely on a poly-

glot approach to persistence, where traditional databases,

non-relational data stores, and scalable systems associated

with the emerging NewSQL movement, are used

simultaneously.

As part of the emerging polyglot persistence movement

[78], the simultaneous use of multiple scalable SQL,

NoSQL, and NewSQL data stores within a single system is

gradually becoming a common practice in modern appli-

cation development [26, 66, 83]. Nonetheless, the combi-

nation of these heterogeneous databases, flexible schemata,

and non-standard APIs represents an added complexity for

application developers. For example, considering that the

schemata used by these applications are spread across

multiple data stores, each of which possibly relies on dis-

tinct data models (such as key-value, document, graph,

etc.), developers must be familiar with a high number of

implementation details, in order to effectively work with,

and maintain the overall database model.

Due to the nature of schema-less data stores, developers

also need to provide an adequate maintenance of the

implicit schemata that these applications rely upon. This is

due to the fact that the source code generally contains

assumptions about the data structures used by the appli-

cation (such as field names, types, etc.), even if the data

14 According to Wikipedia, memcached is a general purpose

distributed memory caching approach that was originally developed

by Danga Interactive http://www.memcached.org. It is often used to

speed up dynamic database-driven Websites by caching data and

objects in RAM to reduce the number of times an external data source

(such as a database or API) must be read.
15 Eventual consistency is a consistency model used in distributed

computing that informally guarantees that, if no new updates are

made to a given data item, eventually all accesses to that item will

return the last updated value. Eventual consistency is purely a

liveness guarantee (reads eventually return the same value) and does

not make safety guarantees: an eventually consistent system can

return any value before it converges (Wikipedia).
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stores themselves do not enforce any particular schema

[78]. Essentially, we consider that the schemata are shifted

from the database to the application source code. This is

because many Web applications need to deal with persis-

tent objects that maintain data about their execution state.

However, having the data schemata as part of the appli-

cation code can lead to maintenance and performance

issues. For instance, developers have to manually analyze

the full source code in order to effectively understand the

data structures used by these applications. This can be an

error-prone activity, due to the combination of different

programming styles, APIs, and development environments.

Together with other approaches in the domain and in

industry, we propose an approach and tool named

ExSchema16 that enables the automatic discovery of

schemata from polyglot persistence applications. The dis-

covery mechanism is based on source code analysis tech-

niques, particularly on API usage and on the analysis of

standard data layer patterns. The tool receives application

source code as input, containing invocations to the APIs of

one or more data stores (graph, key-value, relational, and

column). The ExSchema analyzers examine this applica-

tion source code and share their analysis results between

each other. For example, in order to identify schema update

methods, we first identify the declaration of variables. The

schema fragments recovered by the code analyzers are

grouped together, according to the data models supported

by our tool, and by extending the translation mechanisms

detailed in [9], with the identification of relationships

between graph entities. The discovered schemata are rep-

resented using a set of meta-layer constructs, and finally,

this meta-layer representation is transformed into a PDF

image, and a set of Spring Roo scripts [75]. This means that

if, for example, the analyzed application relies on graph

and document data stores, our tool generates two schemata,

one for each data model. Both schemata are depicted in a

unique PDF image and two Spring Roo scripts are gener-

ated, one for each schema. Another example of data col-

lection schema inference is present in current SPARK SQL

functions. In this platform schemata of DataFrames and

Data Sets17 can be inferred, extracted or explicitly defined

using built-in operations.

3.3 Data Analytics

Methods for querying and mining Big Data are funda-

mentally different from traditional statistical analysis on

small samples. Big Data are often noisy, dynamic,

heterogeneous, interrelated and untrustworthy. Neverthe-

less, even noisy Big Data could be more valuable than tiny

samples. Indeed, general statistics obtained from frequent

patterns and correlation analysis usually overpower indi-

vidual fluctuations and often disclose more reliable hidden

patterns and knowledge.

Big Data forces to view data mathematically (e.g.,

measures, values distribution) first and establish a context

for it later. For instance, how can researchers use statistical

tools and computer technologies to identify meaningful

patterns of information? How shall significant data corre-

lations be interpreted? What is the role of traditional forms

of scientific theorizing and analytic models in assessing

data? What you really want to be doing is looking at the

whole data set in ways that tell you things and answer

questions that you are not asking. All these questions call

for well-adapted infrastructures that can efficiently orga-

nize data, evaluate and optimize queries, and execute

algorithms that require important computing and memory

resources.

Big Data are enabling the next generation of interactive

data analysis with real-time answers. In the future, queries

toward Big Data will be automatically generated for con-

tent creation on Web sites, to populate hot-lists or recom-

mendations, and to provide an ad hoc analysis of data sets

to decide whether to keep or to discard them [68]. Scaling

complex query processing techniques to terabytes while

enabling interactive response times is a major open

research problem today.

Analytical pipelines can often involve multiple steps,

with built-in assumptions. By studying how best to capture,

store, and query provenance, it is possible to create an

infrastructure to interpret analytical results and to repeat

the analysis with different assumptions, parameters, or data

sets. Frequently, it is data exploration and visualization that

allow Big Data to unleash its true impact. Visualization can

help to produce and comprehend insights from Big Data.

Visually, Tableau, Vizify, D3.js, R, are simple and pow-

erful tools for quickly discovering new things in increas-

ingly large datasets.

3.4 Parallel Model for Implementing Data

Processing Functions

A consensus on parallel and distributed database system

architecture emerged in the 1990’s. This architecture was

based on a shared-nothing hardware design [98] in which

processors communicate with one another only by sending

messages via a network. In such systems, tuples of each

relation in the database were partitioned (declustered)

across disk storage units attached directly to each proces-

sor. Partitioning allowed multiple processors to scan large

relations in parallel without the need for any exotic I/O

devices. Such architectures were pioneered by Teradata in

the late seventies, and by several research projects. This

16 http://code.google.com/p/exschema/.
17 http://spark.apache.org/docs/latest/sql-programming-guide.html.
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design is used by Teradata, Tandem, NCR, Oracle-nCUBE,

and several other products. The research community

adopted this shared-nothing dataflow architecture in sys-

tems like Arbre, Bubba, and Gamma.

The share-nothing design moves only questions and

answers through the network. Raw memory accesses and

raw disk accesses are performed locally in a processor, and

only the filtered (reduced) data are passed to the client

program. This allows a more scalable design by minimiz-

ing traffic on the network. The main advantage of shared-

nothing multi-processors is that they can be scaled up to

hundreds and probably thousands of processors that do not

interfere with one another [39]. Twenty years later, Goo-

gle’s technical response to the challenges of Web-scale

data management and analysis was the Google File System

(GFS) [19]. To handle the challenge of processing the data

in such large files, Google pioneered its Map-Reduce

programming model and platform [53]. This model enabled

Google’s developers to process large collections of data by

writing two user-defined functions, map and reduce, that

the Map-Reduce framework applies to the instances (map)

and sorted groups of instances that share a common key

(reduce) similar to the sort of partitioned parallelism uti-

lized in shared-nothing parallel query processing [19].

Yahoo!, Facebook, and other large Web companies

followed. Taking Google’s GFS and Map-Reduce papers as

rough technical specifications, open-source equivalents

were developed, and the Apache Hadoop Map-Reduce

platform, and its underlying file system HDFS emerged.18

Microsoft’s technologies include a parallel runtime system

called Dryad [69], and two higher-level programming

models, DryadLINQ [110] and the SQL-like SCOPE lan-

guage [27]. The Hadoop community developed a set of

higher-level declarative languages for writing queries and

data analysis pipelines that are compiled into Map-Reduce

jobs, and then executed on the Hadoop MapReduce plat-

form. Popular languages include Pig from Yahoo! [87],

Jaql from IBM,19 and Hive from Facebook.20 Pig is rela-

tional-algebra-like in nature, and is reportedly used for over

60% of Yahoo!’s Map-Reduce use cases; Hive is SQL-

inspired and reported to be used for over 90% of the

Facebook Map-Reduce use cases [19].

Recent works agree on the need to study the Map-Re-

duce model for identifying its limitations and pertinence

for implementing data processing algorithms like relational

operators (i.e., join). Other platforms oriented to dataflows

like Spark propose alternatives to data processing requiring

computing resources and also Storm and Flink for dealing

with streams (i.e., Big data velocity). New research

opportunities are open in the database domain for studying

different Map-Reduce models and proposing parallel pro-

gramming strategies for accessing data that will consider

the characteristics of different architectures like the cloud

and its economic model and the QoS requirements of

applications, and other architectures like clusters, HPC,

grid and GPU.

4 Big Data Analytics Systems

The emergence of Big Data some years ago denoted the

challenge of dealing with huge collections of heteroge-

neous data continuously produced and to be exploited

through data analytics processes. First approaches have

addressed data volume and processing scalability chal-

lenges. Solutions can be described as balancing delivery of

physical services such as: (i) hardware (computing, storage

and memory); (ii) communication (bandwidth and relia-

bility) and scheduling; (iii) greedy analytics and mining

processes with high in-memory and computing cycles

requirements. The next sections describe different systems

approaches that provide solutions for dealing with Big

Data: analytics stacks, distributed data persistence solu-

tions, cloud data management services and parallel runtime

environments.

4.1 Big Data Analytics Stacks

Due to their democratization, Big Data management and

processing are no longer only associated to scientific

applications with prediction, analytics requirements. Arti-

ficial intelligence algorithms requirements also call for Big

Data aware management related to the understanding and

automatic control of complex systems, to decision making

in critical and non-critical situations. Therefore, new data

analytics stacks have emerged as environments that pro-

vide the necessary underlying infrastructure for giving

access to data collections and implementing data process-

ing workflows to transform them and execute data analytics

operations (statistics, data mining, knowledge discovery,

computational science processes) on top of them.

One of the most prominent ones are Berkeley Data

Analytics Stack (BDAS) from the AMPLAb project in

Berkeley. BDAS is a multi-layered architecture that pro-

vides tools for virtualizing resources, addressing storage,

data processing and querying as underlying tools for Big

Data aware applications. Another important Big Data stack

system is AsterixDB21 from the Asterix project. AsterixDB

is a scalable, open source Big Data Management System

(BDMS).18 http://hadoop.apache.org.
19 http://code.google.com/p/jaql/,
20 http://hive.apache.org. 21 https://asterixdb.apache.org.
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Data lake environments also deal with Big Data man-

agement and analytics through integrated environments

designed as toolkits. A data lake is a shared data envi-

ronment consisting of multiple repositories. It provides

data to an organization for a variety of analytics processing

including discovery and exploration of data, simple ad hoc

analytics, complex analysis for business decisions, report-

ing, real-time analytics. Industrial solutions are in the

market today, such as Microsoft Azure Data Lake, IBM,

and Teradata.

4.2 Distributed Data Persistence Solutions

Data reads and writes in many data analytics workflows are

guided by the RUM conjecture (Read, Update, Memory (or

storage) overhead) [7] that characterizes the challenge of

reducing overhead data being read, updated and stored (in

memory, cache or disk). Several platforms address some

aspect of the problem like Big Data stacks [3, 45]; data

processing environments (e.g., Hadoop, Spark, CaffeonS-

park); data stores dealing with the CAP (consistency,

atomicity and partition tolerance) theorem (e.g., NoSQL’s);

and distributed file systems (e.g., HDFS). The principle is

to define API’s (application programming interface) to be

used by programs to interact with distributed data storage

layers that can cope with distributed and parallel

architectures.

In the distributed systems domain objects persistence

has been an important issue addressed already by consol-

idated middleware such as JBOSS and PiJAMA. The new

exascale requirements introduced by greedy processes

often related to Big Data processing has introduced objects

persistence again. In order for exascale and/or Big Data

systems to deliver the needed I/O performance, new stor-

age devices such as NVRAM or Storage Class Memories

(SCM) need to be included into the storage/memory hier-

archy. Given that the nature of these new devices will be

closer to memory than to storage (low latencies, high

bandwidth, and byte-addressable interface) using them as

block devices for a file system does not seem to be the best

option. DataClay,22 proposes object storage to enable both

the programmer, and DataClay, to take full advantage of

the coming high-performance and byte-addressable storage

devices. Today, given the lack of such devices, DataClay

performs a mapping of such abstractions to key-value

stores such as Kinetic drives from Seagate.23

Data structures and associated functions are sometimes

more important for some requirements rather than non-

functional properties like RUM or CAP. Non-relational

databases have emerged as solutions when dealing with

huge data sets and massive query work load. These systems

have been redesigned to achieve scalability and availability

at the cost of providing only a reduced set of low-level data

management functions, thus forcing the client application

to take care of complex logic. Existing approaches like

Hecuba [4], Model2Roo [24] provide tools and interfaces,

to ensure an efficient and global interaction with non-re-

lational technologies.

The large spectrum of data persistence and management

solutions are adapted for addressing workloads associated

with Big Data volumes; and either simple read write

operations or with more complex data processing tasks.

The challenge today is choosing the right data management

combination of tools for variable application requirements

and architecture characteristics. Plasticity of solutions is

from our point of view the most important property of such

tools combination.

4.3 Cloud Data Management Services

Cloud computing is emerging as a relatively new approach

for dealing with and facilitating unlimited access to com-

puting and storage resources for building applications. The

underlying infrastructure manages such resources trans-

parently without including code in the application for

managing and reserving more resources than those really

required. The difference with classic approaches is that the

application can have an ad hoc execution context, and that

the resources it consumes are not necessarily located in one

machine. Thanks to the cloud properties, applications can

have ad hoc execution contexts. Following the same

approach, database management systems functions can be

delivered as services that must be tuned and composed for

efficiently and inexpensively managing, querying and

exploiting huge data sets.

Cloud architectures provide services at different scales

and add constraints for accessing data for instance, access

control, resources reservation, and assignment using pri-

orities (e.g., in grid architectures) and economic cost (e.g.,

in the cloud). Applications deployed in these architectures

specify QoS preferences (SLA contracts) that include

execution and processing time, data pertinence and

provenance, economic cost, and data processing energy

consumption cost.

Thus data management must be revisited for designing

strategies that couple the characteristics of novel archi-

tectures with users’ preferences. In this context we identify

three key scientific challenges: (i) data (flows) access and

processing guided by SLA contracts, where data are pro-

duced by services and devices connected on heterogeneous

networks; (ii) estimation and reduction in temporal,

22 Toni Cortes, Anna Queralt, Jonathan Martı́, and Jesus Labarta,

DataClay: toward usable and shareable storage, http://www.exascale.

org/bdec/sites/www.exascale.org.bdec/files/whitepapers/.
23 http://www.seagate.com.
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economic and energy consumption cost for accessing and

processing data; (iii) optimization of data processing gui-

ded by SLA contracts expressed using cost models as

reference.

4.4 ParAllel Runtime Environments

Today maybe because of the emergence of Big Data and

greedy algorithms and applications requiring computing

resources, parallel architectures have come back in the

arena. There are different kinds of computing, memory and

storage resources providers that adopt their own method for

delivering such resources for executing programs.

According to [76] there are three categories of resources

provision: (i) Platform-as-a-Service (PaaS) frameworks,

(ii) programming models for computing intensive work-

loads and (iii) programming models for Big Data.

PaaS offer APIs to write applications. For example, in

the Microsoft Azure Cloud programming model applica-

tions are structured according to roles, which use APIs to

communicate (queues) and to access persistent storage

(blobs and tables). Microsoft Generic Worker proposes a

mechanism to develop a Worker Role that eases the porting

of legacy code in the Azure platform [95]. Google App

Engine provides libraries to invoke external services and

queue units of work (tasks) for execution; furthermore, it

allows to run applications programmed in the Map-Reduce

model. Data transfer and synchronization are handled

automatically by the runtime. Environments for computing

workload intensive applications use in general the bag of

tasks execution model conceiving an application as com-

posed of independent parallel tasks. For example, the

Cloud BigJob, Amazon EC2, Eucalyptus and Nimbus

Clouds and ProActive that offers a resource manager

developed to mix Cloud and Grid resources [5, 90]. Map-

Reduce programming is maybe the most prominent pro-

gramming model for data intensive applications. Map-Re-

duce-based runtime environments provide good

performance on cloud architectures above all on data

analytics tasks working on large data collections. Microsoft

Daytona24 proposes an iterative Map-Reduce runtime for

Windows Azure to support data analytics and machine

learning algorithms. Twister [58] is an enhanced Map-

Reduce runtime with an extended programming model for

iterative Map-Reduce computations. Hadoop [20] is the

most popular open source implementation of Map-Reduce

on top of HDFS, as said in the previous section. The use of

Hadoop avoids the lock into a specific platform allowing to

execute the same Map-Reduce application on any Hadoop

compliant service, as the Amazon Elastic Map-Reduce.25

5 Discussion

In order to face challenges introduced by novel applica-

tions requirements, the database community came up with

new ways of delivering the system’s internal and external

functions to applications: as components (by the end of

the 90’s), as peer-to-peer networks (in the beginning of

the 2000’s), and as service-based database management

systems the last 10 or 15 years. These new ways of

delivering data management functions have been done

under different architectures: centralized, distributed,

parallel and on-cloud. Data management services are

deployed on different system/hardware architectures: cli-

ent-server (on classic and embedded systems), distributed

on the grid, on P2P networks, on the W2.0, and recently

on the clouds.

From our high-level view of the architecture of DBMS,

we can conclude that although they make efficient use of

the resources of their underlying environment, once con-

figured they are fixed to that environment as well. Of

course, there are settings with DBMS deployed on top of

different target architectures but then it is up to the data-

base manager and the application to give an integrated

view of such multi-database solution. Designing and

maintaining multi-databases requires important effort and

know how. Such solutions tend to require also effort when

they evolve due to new/changing data storage, data pro-

cessing and application requirements. In a service-oriented

environment where various hardware and software plat-

forms are hidden behind service interfaces, deciding where

to store data, is up to the data provider and the data con-

sumer has few or no control on these issues, given services

autonomy. Furthermore, for several applications in

dynamic environments ACID transactions may not be

feasible or required. In addition, DBMS are not easily

portable and often impose a large footprint. A related

problem is that they are difficult to evolve and maintain.

Indeed, adding new functions, supporting evolutions of the

data model, extending the query language and then sup-

porting well adapted optimization strategies, can require

important coding effort. For example, extending DBMS for

dealing with streams, multimedia, geographical data

implied important effort some years ago. Having new

transactional models has required big implementation

effort to materialize theory into efficient transaction man-

agers. Changes should not penalize previous applications

and they must efficiently support new uses. For these rea-

sons, several researchers have concluded that they in fact

exhibit under performance [96] or are even inappropriate

[71] for a variety of new applications.

24 http://research.microsoft.com/en-us/projects/daytona/ Last time

visited 29.03.2016.

25 Amazon elastic map reduce. http://aws.amazon.com/documenta

tion/elasticmapreduce/. Last visited on 30.04.2016.
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Consequently, the core functionality of the DBMS

must be adapted for new settings and applications, par-

ticularly for dynamic and service-oriented environments.

Services allow dynamic binding to accomplish complex

tasks for a given client. Moreover, services are reusable,

and have high autonomy because they are accessed

through well defined interfaces. Organizing services on

layers is a solution to compose a large numbers of ser-

vices, and will help in making decisions about their

granularity (e.g., micro-services). This allows to reuse

optimized functionality that is shared by several applica-

tions instead of having to invest effort on the imple-

mentation of the same functionality again. Another way

of extending the system is by invoking internal services

through calls from external Web services or Web servers.

Users can thereby have their own tailored services on

their personal computers to replace or extend existing

SBDBM services according to their needs.

Developers of new applications can benefit from ser-

vice reuse by integrating one or more services that run

on the SBDBMS, from any available layer, in an

application. This can provide optimized access to their

application-specific data. For example, assume that an

application needs access to the storage level of the

DBMS in order to obtain statistical information, such as

available storage space or data fragmentation. In this

case, the developer can add the necessary information

services to the storage level. Thus, she provides the

information source required for her application. Then, the

application has to just invoke these services to retrieve

the data. Furthermore, other services from other layers

can be used together with this kind of extension services

if required. Services can be distributed, and be made

redundant by using several computers connected through

a network. Therefore, a SBDBMS can be customized to

use services from other specific locations to optimize

particular tasks. This approach introduces a high degree

of adaptability into the database system. Priorities can be

assigned to services that demand a considerable amount

of resources, thereby enabling Quality of Service agree-

ments (QoS) for special data types like multimedia and

streaming data.

These challenges imply the construction of service-

based middleware with two open problems:

1. Exploit available resources making a compromise

between QoS properties and Service Level Agree-

ments (SLA) considering all the levels of the stack

(i.e., from the network (infrastructure) to the appli-

cation level).

2. Optimally coordinate services considering applica-

tions’ and users’ characteristics for fulfilling their

requirements.

6 Perspectives

An important observation to make is that in today’s per-

spectives introduced by architectures like the cloud, and by

movements like Big Data, there is an underlying economic

model that guides directly the way they are addressed. This

has not been a common practice in previous eras, but today

the ‘‘pay-as-you-go’’ economic models have become an

important variable of (big) data production, consumption,

and processing.

Which is the value to obtain from Big Data? Big Data is

a dynamic/activity that crosses many IT borders. Big Data

is not only about the original content stored or being

consumed but also about the information around its con-

sumption. Big Data technologies describe a new generation

of technologies and architectures, designed to economi-

cally extract value from very large volumes of a wide

variety of data, by enabling high-velocity capture, discov-

ery, and/or analysis.26 Even if technology has helped by

driving the cost of creating, capturing, managing, and

storing information the prime interest is economic: the trick

is to generate value by extracting the right information

from the digital universe.
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89. Tamer Özsu M, Muñoz A, Szafron D (1995) An extensible

query optimizer for an objectbase management system. In:
CIKM, pp 188–196

90. Peng J, Zhang X, Lei Z, Zhang B, Zhang W, Li Q (2009)

Comparison of several cloud computing platforms. In: IEEE of

second international symposium on information science and

engineering (ISISE), 2009, pp 23–27

91. Rohm U, Bohm K (1999) Working together in harmony-an

implementation of the corba object query service and its eval-

uation. In: Proceedings of the IEEE 15th international confer-

ence on data engineering, pp 238–247

92. Roth MT, Schwarz PM (1997) Don’t scrap it, wrap it! a wrapper

architecture for legacy data sources. In: VLDB, vol 97. DTIC

Document, pp 25–29

93. Schek H-J, Paul H-B, Scholl MH, Weikum G (1990) The

DASDBS project: objectives, experiences, and future prospects.

IEEE Trans Knowl Data Eng 2(1):25–43

94. Seshadri P (1998) Predator: a resource for database research.

ACM SIGMOD Rec 27(1):16–20

95. Simmhan Y, Van Ingen C, Subramanian G, Li J (2010) Bridging

the gap between desktop and the cloud for escience applications.

In: 2010 IEEE 3rd international conference on cloud computing

(CLOUD), pp 474–481

Big Data Management: What to Keep from the Past to Face Future Challenges?

123



96. Stonebraker M, Cetintemel U (2005) One size fits all: an idea

whose time has come and gone. In: Proceedings of the 21st

international conference on data engineering, ICDE ’05. IEEE

Computer Society, Washington, pp 2–11

97. Stonebraker M, Held G, Wong E, Kreps P (1976) The design

and implementation of INGRES. ACM Trans Database Syst

1:189–222

98. Stonebraker M, Katz RH, Patterson DA, Ousterhout JK (1988)

The design of XPRS. In: VLDB, pp 318–330

99. Stonebraker M, Rowe LA (1986) The design of postgres. In:

SIGMOD conference, pp 340–355

100. Stonebraker M, Rubenstein WB, Guttman A (1983) Application

of abstract data types and abstract indices to CAD data bases. In:

Engineering design applications, pp 107–113

101. Subasu I, Ziegler P, Dittrich KR (2007) Towards service-based

data management systems. In: Workshop proceedings of

datenbanksysteme in business, technologie und Web (BTW

2007), pp 3–86130

102. Szyperski CA (2002) Component software: beyond OO pro-

gramming, 2nd edn. Addison-Wesley (ISBN 0201745720)

103. Tiwari S (2011) Professional NoSQL. Wiley, Hoboken

104. Tomasic A, Raschid L, Valduriez P (1998) Scaling access to

heterogeneous data sources with disco. IEEE Trans Knowl Data

Eng 10(5):808–823

105. Vargas-Solar G, Collet C, Grazziotin-Ribeiro H (2000) Active

services for federated databases. SAC 1:356–360

106. Vogels W (2009) Eventually consistent. Commun ACM

52(1):40–44

107. Vu TT, Collet C (2004) Adaptable query evaluation using qbf.

In: IDEAS, pp 265–270

108. Wells DL, Blakeley JA, Thompson CW (1992) Architecture of

an open object-oriented database management system. IEEE

Comput 25(10):74–82

109. Wiederhold G (1992) Mediators in the architecture of future

information systems. Computer 25(3):38–49

110. Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson Ú, Gunda PK,
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