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Chapter 1

Current Research in 
Microbiology

Abstract

The intestinal microbiota composition has a great impact on physiology and health, since 
commensal bacteria are crucial to maintain homeostasis and immune regulation of the gut. 
Consequently, disturbances of this microbiota, a process known as dysbiosis, have severe im-
plications for the host health such as the rise of many gastrointestinal (GI) problems; including 
inflammatory disorders like the Inflammatory Bowel Diseases (IBD), mucositis, as well as 
colorectal cancer (CRC). The consumption of probiotics with beneficial effects is a promis-
ing tool to help treating such disorders. Indeed, they modulate diverse biological mechanisms 
involved in GI homeostasis and have been commonly used to reduce such disorders. In this 
chapter, we present the molecular mechanisms triggered by probiotic bacteria to modulate 
the gut physiology during gastrointestinal disorder and the importance of the gastrointestinal 
stresses tolerance as a limiting factors for probiotic application. Moreover, we focus on the 
emergence of functional probiotic foods, which can act as excellent vehicles, by enhancing 
stress tolerance and providing a protective matrix towards digestive stresses.

1. Introduction

	 Bacteria-host cross talk within the gut is a growing field of interest. While significant-
knowledge has been achieved by studies of interactions between pathogenic bacteria and the 
host, much research is required for understanding the impact of commensal bacteria that reside 
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within the human gastrointestinal tract (GIT) [1]. An increasing number of studies indicate 
that the intestinal microbiota is essential for host functions, especially immune responses that 
contributes to gut homeostasis [2-5]. More recently, several studies show correlations between 
disturbed microbiota composition (dysbiosis) and diseases which involve gastrointestinal in-
flammation [6-9]. Individuals presenting these inflammatory conditions are colonized by an 
abnormal microbiota and it has been revealed that the lack of  bacteria involved in regulation 
of the gut immune system might be a key factor in the chronicity of mucosal inflammation 
[10,11]. Therefore, a novel rationale aiming at the restoration of a healthy microbiota has been 
glimpsed by researchers to prevent and/or help in treating gastrointestinal diseases. In this 
context, there has been much encouragement for the use of probiotics and functional foods 
as therapies for such disorders. In this chapter, we describe the most recent advances of dairy 
foods and probiotic strains protective effects in animal models of intestinal inflammation and 
in human clinical trials. Furthermore, the challenges and limitations in regard of stability and 
safety of these approaches are discussed.

2. Gastrointestinal Tract 

2.1. Microbiota 

	 The GIT of mammals is a complex biological system whose main function is the diges-
tion of food. As the GIT is an environment that is very rich in nutrients, particularly the ileum 
and colon parts, there is a dynamic community of microorganisms, known as intestinal micro-
biota, which plays a role in the intestinal physiology and immune regulation [12-14].

	 The community of bacteria found in the GIT contains both indigenous and transient 
members. The first ones are well adapted to the intestinal environment and thus colonize the 
lumen. In turn, the transient microorganisms are not able to survive more than a few days. 
Some transient species are frequently ingested in substantial amounts as they are present in 
fermented dairy foods such as yogurts, cheeses and fermented milk. However, transiting bac-
teria also include several of the enteric food-borne pathogens [15,16]. The survival of alloch-
thonous bacteria in the GIT depends on several factors including the ability to tolerate gastric 
acid, bile salts and pancreatic juice [17].

	 Many academic and industrial consortiums, such as the MetaHIT (Metagenomics of 
the Human Intestinal Tract), have attempted to characterize the microbiota associated with 
the human GIT through genomic sequencing, thus giving a more detailed description of the 
human intestinal microbiota composition and of its function [18,19]. It is estimated that the 
intestinal microbiota comprises 500 to 1,000 species of bacteria, exceeding 10 times or more 
the total number of host cells [7,20,21]. Nowadays, it is known that most species found in 
mammalian GIT can be classified into four phyla: Bacteroidetes, Firmicutes, Actinobacteria 
and Proteobacteria [21-23]. These phyla keep symbiotic relationships with the host, making 
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fundamental contributions to the host metabolism while occupying a protected environment 
rich in nutrients [24,25]. In this context, the intestinal microbiota plays major roles such as nu-
tritional functions, prevention of pathogen colonization, trophic functions on the proliferation 
and differentiation of the intestinal epithelium, and development and modulation of the host 
immune system [21,26-9]. 

	 Although the microbiome composition varies greatly among individuals, its composi-
tion is relatively simple during the first years of life. It has been reported that Escherichia coli 
and streptococci are the most common organisms isolated from the upper GIT shortly after 
birth [21,30]. These species are responsible for creating a favorable environment, promoting in 
turn the colonization by anaerobic bacteria, among which Bifidobacterium and Bacteroidetes 
are most prevalent. The Bifidobacterium genus plays an important role in the intestines, as 
these bacteria can down-regulate the expression of key proinflammatory mediators in the gut 
and inhibit pathogens. Bacteroidetes species have great capability to digest complex sugars, 
and thus maintain stable symbiotic relationship with the host and central position in the gut 
microbiome [31-34]. Afterwards, in the course of life, there can be an increase of Firmicutes, 
especially of the Lactobacillales and Clostridiales Orders. Among these, several members, 
including remarkably Faecalibacterium prausnitzii, are Short Chain Fatty Acid-producers, 
SCFAs playing an important role on the maturation of regulatory T cells [35]. Although micro-
biota is stable in older persons, it can be altered in short term duration by dietary intervention 
[36]. Dietary intake shifts, mainly of dairy foods containing Lactoccocus sp or Propionibacte-
rium sp and non digestible carbohydrates, may change the composition of the gut microbiota 
by increasing the number of Bifidobacterium sp and F. prausnitzii, although these bacteria do 
not respond in the same way in all human subjects [27,37,38].

	 In adulthood, the diversity and abundance of bacterial populations vary along the differ-
ent parts of GIT [13,21,39,40]. In the stomach and duodenum, a small number of microorgan-
isms can be found, while up to 103 bacterial cells are present per gram of duodenal content. 
These bacteria are adhered to the mucosal surface or in transit through the GIT [26,41,42]. 
Streptococci and lactobacilli are among the most common groups of bacteria found in this part 
of the intestine [39,43-45]. The bacterial population increases gradually along the jejunum and 
the ileum, reaching numbers around 104-107 per gram of small intestinal content. However, 
it is in the lower GIT (colon) that the highest density of bacteria population is encountered, 
reaching a number of 1011-1012 per gram, making this area one of the most complex microbial 
ecosystems known to date on Earth [13,45].

2.2. Immune system regulation

	 Commensal species from the intestinal microbiota are not ignored by the immune sys-
tem but on the contrary need to be recognized by mammalian cells to deliver tolerogenic sig-
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nals and promote intestinal immune homeostasis with an impact on the immune system of the 
body. Actually, commensal bacteria and their host have co-evolved diverse biological mecha-
nisms making this cross talk possible [46]. For example, pattern recognition receptors (PRRs), 
especially Toll-like receptors (TLRs), expressed by Intestinal Epithelial Cells (IECs), are able 
to recognize microbe-associated molecular patterns (MAMP) of the commensal microbiota. In 
fact, the expression of PRR and their interaction with the microbiota is very important for the 
healthy development of the host immune system [47-49].

	 These MAMP are microbial components, such as lipoproteins, nucleic acids (RNA and 
unmethylated CpG dinucleotides), lipopotheic acids, lipopolysaccharide (LPS), surface pro-
teins such as flagellin and peptidoglycan [7,50-52]. The recognition of a MAMP transduces 
signals that subsequently activates innate immune responses [50,52].

	 Species from Lactobacillales order and the Actinobacteria phylum (Bifidobacterium sp. 
and Propionibacterium sp.) [30,53] are capable of stimulating luminal secretion of antimicro-
bial peptides by Paneth cells, mucins by goblet cells and fortifying tight junctions of IECs [54, 
55]. Furthermore, commensals are reported to induce signals of immunological tolerance, such 
as secretion of the TGF-β cytokine that inhibits the NF-κB signaling pathway inside epithelial 
cells. It has been shown that activation of TLRs by commensal bacteria also promotes the de-
velopment of CD103 dendritic cells, which are responsible for driving the activation of Treg 
cells [56-58]. It is known that Treg cells suppress effector T cell responses mainly through the 
production of IL-10 and TGF-β. The stimulation of these cytokines prevents the recruitment 
of granulocytes, suppressing the activation of macrophages, neutrophils and endothelial cells. 
In addition, Treg cells expressing TGF-β and IL-10 drive B cells to undergo antibody class 
switching to produce IgA antibody, the major humoral defense of mucosal surfaces. Secretory 
IgA (sIgA) contributes to mucosal homeostasis through a process known as immune exclu-
sion. sIgA is able to bind to opportunistic pathogens avoiding its dissemination throughout the 
body [59-61].

	 Although commensal microorganisms show beneficial effects on the host, some mi-
crobes of the GIT might present potential risk if case of outgrowth. In this context, potentially 
pathogenic species, known as pathobionts, composed mainly of Proteobacteria members, such 
as Escherichia coli, and species from the phylum Firmicutes, as Clostridium difficile and En-
terococcus faecalis can elicit a pro-inflammatory immune response after binding to TLR [47, 
53,62].

	 When pathobionts translocate to intestinal epithelium, the host immunity is activated 
and is usually enough to eliminate the intruder. Nonetheless, the overproduction of pro-inflam-
matory cytokines, which may occur during dysbiosis, represents a risk once inflammation may 
also be problematic causing cell disruption and infection to the host. Therefore, to reach intes-
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tinal homeostasis, the gut immune system must be able to recognize and eliminate specifically 
these pathobionts from the GIT [54,63]. Intestinal barrier dysfunction generates an imbalance 
between immune responses observed for protective and harmful intestinal bacteria and thus 
contributes to the onset of several inflammatory conditions of the GIT [7,64].

2.3. Inflammatory disorders

	 The GIT is permanently challenged by antigens from the intestinal microbiota. Under 
normal conditions, the intestinal mucosa maintains tolerance to commensals, mainly through 
the action of Treg cells. When the dynamic balance between Treg and activated effector cells 
is broken, the homeostasis is compromised and this may lead to the development of mucosal 
inflammation [2]. Besides dysbiosis, multiple factors can influence the proper functioning of 
the GIT immune system, including individual genetic background, diet, use of drugs and envi-
ronmental stress. The intersection of these factors generates an exaggerated pro-inflammatory 
reaction against commensal antigens leading to Inflammatory Bowel Diseases (IBD), a group 
of chronic inflammatory conditions of the GIT, which primarily includes ulcerative colitis 
(UC), and Crohn’s disease (CD) [21,30]. Clinical symptoms of both diseases are similarly 
found in patients, such as abdominal pain, diarrhea, rectal bleeding and weight loss [65,66]. 
Relapse symptoms can last days, weeks, or even months [67]. CD is characteristically dis-
continuous, with inflamed areas that can be found in all the layers of the intestinal wall, while 
UC is characterized as a continuous and superficial inflammation limited to the colon [68,69]. 
The incidence of these diseases varies widely across countries, however, in recent years, it 
has increased considerably worldwide, being considered a global public health problem. This 
increase has been associated with the modern lifestyle that includes the ingestion of processed 
foods usually high in fats and sugar and low in fiber [70-72].

	 Caesarean delivery and the inappropriate use of antibiotics, especially during childhood, 
when the microbiota has not yet been established, are factors that can contribute to the devel-
opment of intestinal inflammation [30,72–74]. Both CD and UC have different immunological 
aspects when it comes to innate and adaptive immunity [75,76]. Pro-inflammatory cytokines 
are over expressed in IBD patients; however, the predominant set of cytokines observed in CD 
patients is the one secreted by Th1 and Th17 cells (IL-12, IL-23, IL-27, IFN-γ) whereas in UC 
patients a Th2 immune response, characterized by the production of IL-4 and IL-13, appears 
to be predominant [3,4,74].

	 Chronic inflammation also plays a role in the pathogenesis in several cancers and it has 
been shown that there is a direct link between IBD and colorectal cancer (CRC) [77]. Indi-
viduals suffering from long-term ulcerative colitis or Crohn’s disease have increased risk of 
developing CRC [78].

	 Reactive Oxygen Species (ROS), stimulated by proinflammatory response in the intes-
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tinal mucosa, play an important role in the development of CRC, as their excessive levels can 
result in oxidative stress and significant damage to cell structures and macromolecular constit-
uents, such as DNA, RNA, proteins and lipids [79,80]. Large amounts of hydrogen peroxide 
(H2O2) are produced and excreted by human tumor cells, and might participate in tumor inva-
sion and proliferationas well [78,81]. Furthermore, current studies are investigating the role 
of effector immune responses against intestinal microbiota in modulating the gut microbiota 
into a carcinogenic profile composition. In fact, a correlation between diet-driven sulfidogenic 
bacteria and CRC in African Americans has been demonstrated [82,83].

	 Other factors such as the use of some medicines can also contribute to the breakdown of 
this immunological tolerance against commensals commonly observed under normal condi-
tions. It has been described that chemotherapeutic agents, as 5-Fluoracil (5-FU), doxorubicin 
and irinotecan (CPT-11), widely used in the treatment of advanced solid tumors, may also lead 
to the development of another inflammatory condition of the GIT, known as mucositis. This 
painful inflammation of the mucosa can affect all portions of the human GIT and has great 
medical importance as it arises as an adverse effect of chemotherapy [84,85]. These medicines 
are effective in cancer treatment because they inhibit cell proliferation. 5-FU, for example, 
causes cytotoxic effect by inhibiting DNA replication in cells with a high mitotic index such 
as malignant cells. Moreover, this drug can also be incorporated into RNA molecules interfer-
ing with their processing and function. However, as an adverse consequence, the drug also 
shows an effect in normal cells that presents a higher turnover rate, such as GIT enterocytes 
[86]. Gastrointestinal mucositis is being regarded as a major risk, occurring in 80% of patients 
receiving 5-FU [87,88].

	 Patients with mucositis develop symptoms like odynophagia (pain in swallowing), 
vomiting, abdominal pain and diarrhea, which make eating difficult. Therefore, weight loss 
and malnutrition are also reported and quality of patient`s life is Gastrointestinal mucositis 
is characterized by morphological alterations in the mucosal architecture, as villous atrophy, 
increased cryptsapoptosis, that expose the mucosa to intestinal pathogens, which are able to 
translocate across intestinal epithelial cells leading to inflammatory responses [89].

	 The pathophysiology process of mucositis is very complex and involves the release 
of endogenous damage-associated molecular pattern (DAMP) molecules and activation ofthe 
NF-kB pathway, which induces in turn the expression of several genes, including pro-apop-
totic enzymes such as caspases, tumor necrosis factor-alpha (TNF-α), IL1-β and IL-6 cytok-
ines, and chemokines involved in the recruitment of neutrophils and eosinophils. Commensal 
bacteria might have a very important role in promoting many clinical aspects involved in the 
pathogenesis of mucositis [90-94], as it was demonstrated that germ-free mice are more resis-
tant to mucositis induction [85,95]. Moreover, opportunistic species belonging to the gut mi-
crobiota, such as Entercocccus faecalis, Escherichia sp and Clostridium sp can alter intestinal 
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permeability during anticancer treatments and promote disruption of the epithelial layer. The 
translocation of commensals across IEC exacerbates inflammatory responses and amplifies the 
damage to the intestinal mucosa [92,95].

	 As alterations of the intestinal microbiota have been implicated in all of these patholo-
gies, the scientific community has been investigating the use of probiotics in order to restore 
the original gut microbiota, which is responsible for regulating the mucosal immune system.

3. Probiotics

	 The administration of probiotics for treating gastrointestinal inflammatory disorders 
have been proposed by many research groups, as they are able to occupy niches that compete 
with pathogens in the GIT [96-101]. Probiotics are defined as “live microorganisms, which, 
when administered in adequate amounts, confer a health benefit on the host” [102]. These mi-
croorganisms must be safe and present beneficial effects during their transit through the gut. 
Hence, their ability to resist the stomach and intestine environments are crucial alongwith the 
capacity of adhesion to intestinal cells, inhibition of pathogens and immunomodulatory effects 
[103]. Currently, several species of probiotic bacteria are used to prevent or treat a diversity 
of diseases, including gastrointestinal inflammatory disorders (Table 1). Lactobacilli and bi-
fidobacteria, for a long time, were at the front of the stage in the field of this probiotic action. 
However, outsider bacterial species such as Lactococcus lactis, Streptococcus thermophilus, 
Escherichia coli and Propionibacterium freudenreichii recently revealed promising potential 
for the treatment of intestinal inflammation as well [104-107]. This is summarized in section 
4.

Table 1: Immunomodulatory effects of probiotics in experimental animal model

Probiotic species Model system
Probiotic 
effect(s)

Mechanisms involved Reference(s)

Escherichia coli 
M17 

DSS Attenuates colitis
Inhibits NF-κB, decreases 

colonic IL- 12, IL-6, IL1-β and 
IFN-γ

(FITZPATRICK et 
al., 2008) (108)

Lactobacillus casei
TLR4 KO and 

DSS 
Attenuates colitis 

Reduces proinflammatory cy-
tokines secretion and neutrophil 

recruitment 

(CHUNG et al., 
2008) (109)

Faecalibacterium-
prausnitzii

TNBS Attenuates colitis

Increases colonic IL10 and 
decreases colonic IL12. Tends to 
correct the dysbiosis associated 

with TNBS colitis 

(SOKOL et al., 
2008) (110)

Mix of four lactoba-
cillus or four Bifido-
bacterium species 

DSS Attenuates colitis 
Reduces colonic proinflamma-

tory cytokines 

(NANDA KU-
MAR et al., 2008) 

(111)

VSL#3 TNBS Attenuates colitis 
Increases production of IL-10 

and Tregs
(DI GIACINTO et 

al., 2005) (112)
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Lactobacillussali-
varius Ls33 

TNBS Attenuates colitis
Increases IL-10 production and 

Tregs

(MACHO FER-
NANDEZ et al., 

2011) (113)

Lactobacillus 
plantarum DSM 

15313, Lactobacillus 
fermentum 35D 

DSS Attenuates colitis Reduces bacterial translocation
(OSMAN et al., 

2008) (114)

Bacteroides fragilis TNBS Attenuates colitis 
Increases production of IL-10 

and Tregs

(ROUND and 
MAZMANIAN, 

2010) (115)

Lactobacillus 
salivarius 433118, 
Bifidobacterium 

infantis

IL-10 KO Attenuates colitis Reduces inflammatory cytokines
(MCCARTHY et 
al., 2003) (116)

Lactobacillus casei 
Shirota

DSS Attenuates colitis
Reduces IL-6 production by 
lamina propria mononuclear 

cells 

(MATSUMOTO et 
al., 2005)(117)

Enterococcus fae-
cium CRL 183

1,2 dimethylhy-
drazine (DMH)

Reduces ACF and 
adenocarcinomas 

incidence

Improved the immune response 
by increasing IL-4, IFN-γ, and 

TNF-α production

(SIVIEIRI et al., 
2008)(118)

Saccharomyces 
boulardii

C57BL/6J 
Min/+ (Apc-
Min) mice (7 

wk old).

Reduces number 
and diameter of 
the tumors, the 
score for low-

grade dysplasia, 
numbers of 

polyps, and cell 
proliferation

Inactivation of the EGFR-Mek-
Erk pathway signaling. Increase 

apoptosis

(CHEN et al., 
2009)(119)

Lactobacillus acido-
philus NCFM

CT-26 cells

Reduces tumor 
size and the 

extraintestinal 
metastatic tissue

Increase apoptosis through in-
crease caspase-9 and caspase-3 
and reduces Bcl-2 expression

(CHEN et al., 
2012) (88)

Lactobacillus 
plantarum AdF10 
and Lactobacillus 

rhamnosus GG

1,2 dimethylhy-
drazine (DMH)

Reduces tumor 
incidence, multi-
plicity, and size

Reduces COX-2 protein expres-
sion

(WALIA et al., 
2015) 
(120)

Lactobacillus sali-
varius Ren

1,2 dimethylhy-
drazine (DMH)

Reduces tumor 
incidence

Reduces Intestinal population of 
Ruminococcussp and Clostridi-
ales bacteria ↑ Intestinal popula-

tion of Prevotellasp

(ZHANG et al., 
2015) (121)

Dead nanosized Lac-
tobacillus plantarum

Azoxymethane/
Dextran Sulfate 

Sodium-In-
duced

Reduces tumor 
incidence; areas 

of dysplasia, 
adenocarcinoma, 

and structural 
disruption

Reduces Over expression of 
proinflammatory cytokines and 

inflammatory genes Increase 
Apoptosis and cell cycle arrest

(LEE et al., 2015)
(122)

Lactobacillus rham-
nosus and Lactoba-
cillus acidophilus

1,2 dimethylhy-
drazine (DMH)

Reduces tumor 
incidence, burden 
and multiplicity; 
lipid peroxidation

Reduces GSH, SOD, and GPx 
activity

(VERMA and 
SHUKLA 2014) 

(123)
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Lactobacillus casei 
BL23

1,2 dimethylhy-
drazine (DMH)

Reduces colorec-
tal cancer

Regulates Treg and Th17 T-cell 
populations

(LENOIR et al., 
2016) (124)

Pediococcus pen-
tosaceus GS4

Azoxymethane
Attenuates colon 

cancer
Triggered apoptosis in colono-

cytes
(DUBEY et al., 

2016) (125)

3.1. Bacteria for the treatment of gastrointestinal disorders

	 Many strains of bacteria are known to exert anti-inflammatory effects through the mod-
ulation of factors that are involved in maintaining intestinal homeostasis in humans and other 
animals [97,101]. In this context, bacterial effectors of distinct nature have been implicated 
in probiotic effects. These include metabolites, peptidoglycan, surface proteins, lipoproteins 
and lipoteichoic acids, lipopolysaccharides, flagelin and CpG motifs in DNA. Some of these 
molecules, such as anti-microbial peptides and prebiotic metabolites may interact directly with 
other species of bacteria that colonize the gut, modulating their growth. Others bacterial fac-
tors, called MAMP, bind to PRRs of eukaryotic cells and stimulate different patterns of gene 
expression in the host involved in innate immunity activation and differentiation of antigen-
specific immunity [53,126]. The mechanism of action of these bacteria can be classified in 
three main categories: alteration of gut microbiome composition, stimulation of epithelial bar-
rier function; and induction of the immune responses [127].

	 Recent advances in genomic sequencing technologies have provided the scientific com-
munity with tools to explore the human microbiome and how different treatments affect its 
global composition and function. Several studies have shown that probiotics can increase or 
decrease the abundance and diversity in gut microbial species composition. The secretion of 
antimicrobial compounds acts by directly inhibiting the growth of pathogens. In addition, pro-
biotic strains may also reduce the impact of pathogens through a mechanism known as com-
petitive exclusion, in which they occupy binding sites at the mucosal surface [97,128,129].

	 Epithelial barrier function enhancement is a well-established mechanism of probiotic 
bacteria in the protection of the host against invasive harmful bacteria. Numerous studies 
have shown that probiotics have the potential to modulate many of the processes involved 
in mucosal barrier formation and are able to upregulate expression of defensins, mucins or 
proteins associated with tight junctions such as claudins and occludins [130-132]. This effect 
is therefore considered as one of most important for the prevention and treatment of IBD and 
mucositis, as it might avoid translocation of opportunistic pathogens to systemic circulation 
[84,101].

	 Probiotics can affect the host heath by modulating inflammatory signaling pathways. 
Several probiotics are reported to inhibit the NF-kB activation and thus to influence down-
stream cytokine secretion [133]. Recent studies demonstrated that the anti-inflammatory effects 
of some bacteria involve inhibition of IkB degradation by targeting the different steps involved 
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in this process which are phosphorylation, ubiquitination or proteasome degradation[134]. 
Some Lactobacilli have shown inhibitory activity of TNF-alpha induced secretion of IL-8 
[135]. Other well established immunological mechanism of probiotics is the stimulation of 
immunological tolerance to GIT microbiota through the increase in IL-10 secretion. For in-
stance, Santos and collaborators (2014) showed that the probiotic effect of L. delbrueckii strain 
CNRZ327 was related to an expansion of Treg cells and an increase of total IgA in Dextran 
sulfate sodium (DSS)-induced colitis in mice. Recently, it was reported that a Lactococcus-
lactiss sp. lactis NCDO2118 strain prevented DSS-induced colitis in mice and the protective 
effect was related to increased IL-10 levels in the colon and to the induction of Treg cells in 
the mesenteric lymph nodes [99].

	 Most studies focused on the beneficial effects autochthonous Lactobacilli (Table 1). 
However, recent studies have demonstrated that some allochthonous strains have anti-inflam-
matory properties. Ballal and colleagues (2015) found that L. lactis I-1631 prevents colitis in 
T-bet−/− Rag2−/− mice. Two additional studies have shown that, among the L. lactis species, 
NCDO2118 subsp. lactis or FC subsp. cremoris are anti-inflammatory when inoculated in in-
flamed mice receiving the chemical agent DSS [99,136]. Moreover, L. lactis NZ9000 by itself 
was able to prevent histological damage and reduce neutrophil and eosinophil infiltration in 
mice injected with 5-FU. Another allochthonous species with anti-inflammatory effects in IBD 
models is Propionibacterium freudenreichii, used extensively as a ripening starter of Emmen-
tal cheese [104,137,138].

3.2. Challenges and limitations to select probiotic bacteria 

	 For probiotic bacteria selection, the robustness of a bacterium against different abiotic 
and biotic stresses is crucial, and may constitute a limiting factor for its application as probi-
otic. Firstly, to prepare probiotic ingredients, a plethora of stresses are applied, thus the bacte-
rial tolerance is a prerequisite for reaching a high survival rate in the product. In the traditional 
cheese products, the manipulation of bacterial population could be limited by other factors. 
However, for the probiotic powders, great efforts were made to maintain a high viable bacte-
rial population during freeze-drying or spray drying, such as usage of encapsulation methods. 
Gastrointestinal stresses also constitute the main bottleneck of probiotic efficacy. 

	 A probiotic microorganism must be able to tolerate digestive stresses and to adhere to 
intestinal epithelium, for a long persistence in the host and for an enhanced beneficial effect. 
Gastric acid and bile salts are defense mechanisms encountered during intestinal transit where-
as pancreatic secretions can also exert some antimicrobial activity via the digestive enzymes. 
The existing microbiota may also interfere with the probiotic effect by competition for adhe-
sion or nutrients. The investigation of molecular basis of the adaptive response to stresses and 
identification of the pivotal genes involved provided pertinent tools for probiotic screening.
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3.2.1. Acid stress

	 The probiotic resistance to acid stress is a desired characteristic of selected strains, as 
low pH is widely encountered both during technological processing and during gastric diges-
tion. The bacterial adaptive responses to acid challenge have been investigated and some of the 
molecular mechanisms involved were elucidated, such as induction of proton ATP-dependent 
pumps F1F0-ATPase. The function of this transmembrane protein complexis the extrusion of 
protons from the cell cytoplasm, resulting in a Proton Motive Force (PMF), and avoiding acid-
stress induced drop in intracellular pH [139]. Mutations leading to a reduction of membrane-
bound ATPase activity were observed in some strains of Lactococcus lactis subsp. lactis and 
Lactobacillus helveticus, where they cause growth inhibition under acid conditions [140,141]. 
Gram-positive bacteria, such as Lactococcus lactis [142] and Lactobacillus brevis [143], pos-
sess a second mechanism for an adaptive response to acid stress, involving the enzyme glu-
tamate decarboxylase (GAD). The GAD system imports glutamate into the cell prior to its 
decarboxylation, which consumes protons, participating in intracellular pH homeostasis, fol-
lowed by the efflux of the resulting γ-aminobutyrate (GABA), thanks to a GAD/GABA anti-
porter. Another mechanism involved in pH homeostasis is the proton-consuming malolactic 
fermentation (MLF). This metabolic pathway leads to the conversion of the dicarboxylic malic 
acid to the monocarboxylic lactic acid. The latter is excreted via a lactate-malate antiporter, 
resulting in intracellular alkanization. Such mechanism was observed within several bacteria 
like Lactobacillus sakei [144], Lactobacillus plantarum [145], and Lactococcus lactis [146]. 
Finally, other acid-adaptive mechanisms induced in lactic acid bacteria includethe citrate-lac-
tate antiporter (CitP), the arginine deiminase (ADI) system and some heat shock [147-149].

3.2.2. Bile salts

	 Conjugated bile salts are synthesized by the liver with the amino acids glycine or tau-
rine, those amphipathic molecules act like biological detergents with strong antimicrobial ac-
tivity cause can emulsify biological membrane lipids [150,151]. These compounds may enter 
into the bacterial cytoplasm by flip-flop mechanism and cause oxidative stress which leads to 
DNA damage [152-154]. In fact, there are different remarkable mechanisms leading to bile 
salts tolerance; those molecular actors can also provide bacteria a cross protection towards 
other stress types. Some probiotic bacteria hold the ability to hydrolyze bile salts by bile 
salt hydrolases (BSHs) which enhances their survival in the digestive tract [155]. Alternative 
mechanisms exist such as bile-efflux systems, which are multidrug transporters that mediate 
the active extrusion of bile salts from the bacterial cytoplasm [156]. Regarding Lactobacillus 
acidophilus particularly, an eight-gene operon encoding for, a two-component regulatory sys-
tem, a transporter belonging to the major facilitator super family, an oxido reductase, and four 
hypothetical proteins, has been implicated in bile salts removal [157]. 
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3.2.3. Heat stress 

	 Heat stress is another type of ordeal that is commonly suffered during technological 
processes, either during food fermentation (cheese cooking-step) or during drying, which may 
impose high temperatures (>60°C) or low temperatures, depending on the chosen technology. 
The response to heat stress involves a set of proteins called Heat Shock Proteins (HSP), which 
include chaperones and proteases. They are essential for overcoming protein denaturation, 
maintaining cell homeostasis in response to variations of temperature, which can affect mem-
brane fluidity and compromise cellular integrity and basic cell processes [158,159]. Among 
those crucial proteins, DnaK and GroEL, are two HPSs that have a critical role in cellular 
processes by maintaining DNA replication process, preventing mutagenesis and preventing 
protein denaturation [158,160]. Otherwise, low temperatures are frequently used to prevent 
spoilage during frozen and freeze-dried storing process. Such a cold stress leads to induction 
of specific proteins called cold shock proteins (CSPs). Their role consists in maintaining tran-
scription and translation processes under cold stress adaptation [159]. 

3.3. Protective matrix and vectorization

	 Although the adaptive response to various stresses is a quite important feature to screen 
tolerant or sensitive probiotic strains, vehicle matrix can confer a protection for an efficient 
delivery of probiotic bacteria to the GIT. Probiotics are commonly consumed under the form 
of dried powder, in capsules or tablets. Recently, various studies focused on “2-in-1”starter 
bacteria: microorganisms widely used in food fermentation and which exert beneficial effects. 
There is a huge variety of fermentative microorganisms known for their probiotic properties 
like S. thermophilus, L. delbrueckii ssp. bulgaricus, L. lactis, and other strains used for specific 
fermented foods [161]. The growth in such stressful medium as dairy fermented foods selects 
bacteria with a high robustness to GIT stresses there by promoting long-term survival during 
storage in industrial process. 

3.3.1. Encapsulation by biopolymers

	 Encapsulation is a standard process used to produce protected dried probiotic ingre-
dients. Encapsulation may confer a protection against industrial stresses during the drying 
process, and allow a controlled release in the GIT [162,163]. Depending on the type of drying 
technology (capsule spray-drying, emulsification, extrusion, co-extrusion, or spray-coating), 
different particles sizes may be obtained and interfere in the encapsulation yield. Moreover, 
semi-permeable and biocompatible matrices including food-grade biopolymers like alginate, 
pectin and cellulose acetate phthalate are used for preventing oxidative reaction, masking fla-
vor and odor changes. The encapsulation essentially provides a protection for bacteria and a 
specific addressing of active probiotic compounds to specifics sites [164,165]. Among poly-
mers used for encapsulation; alginate, a polysaccharide composed of β-D-mannuronic and 



Current Research in Microbiology

13

αL-guluronic acids, is widely used, because of its simplicity, biocompatibility, low cost, and 
non-toxicity. Recently, the encapsulation by alginate was shown to confer enhanced viability 
upon storage and simulated gastrointestinal digestion for Lactococcus lactis subsp. cremoris 
LM0230, Lactobacillus casei NCDC 298, Bifidobacterium longum and other probiotics [166-
168]. 

3.3.2. Encapsulation by milk proteins

	 The utilization of milk proteins for probiotic encapsulation is a high quality choice due 
to their biocompatibility, structural and physico-chemical properties [169]. Milk proteins are 
categorized in two types: caseins and whey proteins. Caseins are a complex aggregate of phos-
phoproteins and are extremely heat-stable proteins, present in colloidal form known as caseins 
micelles in fresh milk [170]. Whey proteins are a group of globular proteins, α-lactalbumin, 
ß-lactooglobulin, immunoglobulins, and serum albumin and also various other minor proteins 
[171]. Milk proteins clotting followed by spray-drying appears as new innovative method-
ology to encapsulate probiotic bacteria to enhance survival in GIT [172]. Heidebach et al. 
in 2009 demonstrated new methodologies based on a transglutaminase-catalyzed gelation of 
casein suspensions and spray drying to encapsulate Lactobacillus paracei ssp. paracasei F19 
and Bifidobacterium lactis Bb12. It was shown to enhance robustness instressing conditions 
[173,174]. 

3.3.3. Dairy Fermented foods

	 The emergence of functional foods concept such as fermented products is a promising 
research area. Indeed, the dairy fermented foods constitute an important part of our daily diet 
[175], as well as our main microbial daily intake. The dairy product matrix may increase toler-
ance of bacteria towards digestive stresses and adhesion to cells, depending on its biochemical 
composition, its physical microstructure and the existing microbial ecosystem, which affects 
directly the viable bacterial amount reaching the gut. Beyond the protection effect of the ve-
hicle matrix, fermentation allows improvement of food nutritional value through the microbial 
release of a high amount of essential nutrient for consumers [176], including vitamins. 

	 Probiotic bacteria convert different molecules, producing valuable nutrients like con-
jugated fatty acid, B-galactosidase enzyme, beneficial dairy peptide, which can enhance their 
probiotic functionality [24,25]. Indeed, L. casei BL23 incubated in milk reduced significantly 
the symptoms of a dextran sulfate sodium (DSS) - induced colitis in a murine model, com-
pared to the same strain provided in phosphate buffered saline [178,179]. Yogurt enhances the 
therapeutic value of some probiotic bacteria, however the low pH of yogurt decreases viable 
population [177,180,181]. To contend this problem, a combination of encapsulated probiotic 
bacteria was used to increase survival in yogurt. For example, L. paracasei subsp. paracasei 
E6 were encapsulated using whey proteins and gum arabic, before being added to the yogurt 
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matrix after fermentation. This bacterium exhibited greater viability, compared to cells with-
out encapsulation, upon exposure of the probiotic yogurt to simulated gastric juice [182,183]. 

	 Cheese matrix favors probiotic beneficial effects by providing a favorable environment 
with relatively high fat content, enhancing probiotic survival in transit through the GIT, espe-
cially towards lethal conditions of the stomach [184]. Özer and colleagues showed increased 
viability of Bifidobacterium bifidum BB-12 and of  Lactobacillus acidophilus LA-5, when these 
bacteria were microencapsulated in white-brined cheese, compared to same strains without 
encapsulation protection [185]. Other strains have been used to produce experimental probi-
otic cheese, including Lactobacillus casei and Lactobacillus acidophilus in Crescenza cheese. 
They exhibited improved viability, during the refrigerated storage, after a cheese manufacture 
using High-pressure homogenization (HPH) as an alternative to traditional thermal treatment 
[186]. The potential probiotic P. freudenreichii, alone or in combination with Lactobacillus 
delbrueckii, was investigated with respect to the prevention of  UC. The experimental ferment-
ed cheeses exhibited promising anti-inflammatory properties in mice with colitis [187,188]. 
Moreover, inclusion within a cheese enhanced P. freudenreichii tolerance towards digestive 
stresses and thus its probiotic properties [105]. 

4. Propionibacterium Freudenreichii for Treating Gastrointestinal Disorders

	 During the last two decades, an outsider, that had until then been ignored, was consid-
ered for probiotic applications. The propionibacterium P. freudenreichii, until then used almost 
exclusively to confer aroma to pressed cheeses, joined the main probiotic actors on the stage 
of probiotic research and development. P. freudenreichii indeed recently revealed unexpected 
immunomodulatory effects. This evidenced for the first time a “two-in-one” property of an ill-
known ripening starter, with both technological and probiotic abilities.

4.1. General aspects of P. freudenreichii

4.1.1. Taxonomy 

	 P. freudenreichii is a dairy propionibacterium, which belongs to Actinobacteria, charac-
terized as gram-positivewith a high G+C content, non- sporing, anaerobic to aerotolerant, non-
motile pleomorphic rods [189,190]. Actinobacteria comprise bacterial species with a myceli-
um-like aspect, found in various environments, including animal hosts and soil [189,190]. The 
genus Propionibacterium comprises both cutaneous species, which may act as opportunistic 
pathogens, and dairy species, which have no reported adverse effects up to date [191]. The 
typical dairy species isolated from milk are: P. freudenreichii, P. acidipropionici, P. jensenii 
and P. thoenii; they are clearly distinct from cutaneous species. Dairy propionibacteria were 
firstly described by E. von Freudenreich and S. Orla-Jensen at the end of 19th century, since 
their presence in Emmental cheese was associated with propionic fermentation [192]. Dairy 
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propionibacteria, specifically P. freudenreichii, possess a long history of safe use in food, par-
ticularly by Swiss-type cheese. P. freudenreichii received the “Generally Recognized As Safe” 
(GRAS) status [193]. The European food safety authority has granted “Qualified presumption 
of safety” (QPS) status to two species: P. freudenreichii and P. acidipropionici [194]. The se-
quencing of P. freudenreichii genome revealed the genetic basis of the great adaptation ability 
to various environments [195]. They moreover display a peculiar fermentative metabolism, 
which relies on propionic fermentation, may use various carbon and energy sources, and re-
lease in the extracellular medium various beneficial metabolites [190,195].

4.2. P. freudenreichii technological applications 

4.2.1. Swiss-type cheese manufacturing 

	 The major use of P. freudenreichii strains is as ripening culture in Swiss-type cheeses 
manufacturing. They play an important role in characteristic flavor of cheeses such as Emmen-
tal cheese [189]. P. freudenreichii produces several flavor compounds via different substrates 
catabolism. lactate and aspartate fermentations generate short fatty acids accumulation, mainly 
propionic and acetic acids, and to a lesser extent valeric and isovaleric acids. These short fatty 
acids are considered as principal flavor compounds in Emmental. P. freudenreichii also pos-
sesses a strain-dependent lipolysis activity, which produces free fatty acids that are important 
molecules for cheese flavor. The amino acids catabolism by P. freudenreichii produces two 
branched-chain flavor compounds: 2-methylbutanoic acid and isovaleric acid [190]. In Em-
mental cheeses, P. freudenreichii reaches a high population density, with counts depending in 
ripening period. The P. freudenreichii robustness permit a high tolerance to different stresses 
during cheese manufacturing process, such as high and low temperature, acidification, os-
motic stress induced by NaCl [190,196]. In addition, P. freudenreichii can also be found in low 
amount in various cheeses, in addition to Emmental cheese [189]. 

4.2.2. Anti-microbial & Nutraceutical molecules production 

	 P. freudenreichii is a well-known vitamin B12 producer, actually, the only B12 produc-
ingbacteria with the GRAS status [190,197]. Vitamin B12 is an essential vitamin, required for 
maintaining healthy nerve cells, DNA synthesis and energy, and for other important func-
tions. Vitamin B12 is synthesized industrially by chemical synthesis, which is too difficult and 
expensive. Many efforts were made to enhance the productivity of vitamin B12, by using ge-
netic engineering and by optimizing fermentation conditions. In addition, Propionibacterium 
spp strains, have preservatives properties and are widely employed to extend foods shelf-life 
by inhibiting undesirable microorganisms growth. A commercial product is available under 
MicrogardTM name, which is composed of skim milk fermented by P. freudenreichii subsp 
shermanii [190,192,197]. The short chain fatty acids propionate and acetate, as well as other 
organic acids such as succinate, are the main anti-microbial molecules produced by dairy pro-
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pionibacteria. However, P. acidipropionici species were shown to be the best producer of pro-
pionic acid, through glycerol fermentation without acetic acid production [197]. Different bac-
teriocins that are produced by both dairy and cutaneous propionibacteria, have been reported 
and characterized [190,192,197]. However, further studies are required to assess their possible 
use as food biopreservatives or bacteriocin producer probiotics to inhibit intestinal pathogens, 
as dairy propionibacteria bacteriocins are not still recognized as GRAS by the FDA.

4.3. Probiotic application

	 Recent data suggest the probiotic potential application of dairy propionibacteria, mainly 
P. freudenreichii, for human and animal, as this species presents all characteristics for probiotic 
application [192]. Indeed, it shows a high tolerance to digestive stresses, which is one of the 
main factors limiting the use of microorganisms as live probiotic agent [192]. Propionibacteria 
species have a slow growth rate, so their adherence to intestinal epithelium is crucial for their 
persistence in the gut and for exerting their beneficial effects [190,192]. Some studies demon-
strated the dairy propionibacteria ability to adhere to intestinal cells, however all those studies 
are in vitro experiments, and the adhesion presented a lot of variations according to adhesion 
model used, species types, and vehicle or growing medium [192]. In vivo studies, in humans 
and mammalians, suggest that this adhesion ability allows only a transient colonization, since 
fecal propionibacteria population in human volunteer’s decreases after ceasing the ingestion of 
propionibacteria [198,199]. P. freudenreichii produces several beneficial metabolites, allows 
specific changes, as microbiota and intestinal immunity modulations [192]. Some strains of 
dairy propionibacteria are already used in probiotic preparations, alone or in combination with 
lactic acid bacteria and/or bifidobacteria [192]. Recently, the spray-drying was shown as a bet-
ter alternative method to dry probiotic bacteria, since energy costs are lower and the process is 
sustainable [200,201]. P. freudenreichii was shown to tolerate stresses undergone during dif-
ferent technological stresses, which will lead to the development of several fermented ingre-
dients to exert probiotic potential of dairy propionibacteria for improving animal and human 
health. 

4.3.1. Molecular mechanisms of P. freudenreichii beneficial effects 

	 Regarding P. freudenreichii, animal studies and clinical trials indicate its ability to mod-
ulate gut immunity and microbiota, specifically in the context of UC. P. freudenreichii was 
shown to prevent trinitrobenzene sulfonic acid (TNBS) induced colitis in conventional mice, 
alone or associated with other probiotic bacteria [202,203]. Immunomodulation by P. freuden-
reichii was further evidenced in pigs, by decreasing plasma haptoglobulin and proinflamma-
tory cytokines (IL-8 and TNF-α) in gut mucosa, after lipopolysaccharides (LPS) stimulation 
ex vivo [198]. Recently, a probiotic mixture containing both Lactobacillus rhamnosus and P. 
freudenreichii was tested in humanized mice (colonized with human microbiota) consuming 
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a high-fat diet [204]. It tended to down-regulate both intestinal and systemic pro-inflamma-
tory changes induced by the diet. A commercial preparation of bifidogenic growth stimulator 
(BGS), which is produced by P. freudenreichii ET-3, led to an improvement in the clinical 
activity scores of UC patients [205,206]. In the same study, patients also showed a decrease in 
the endoscopic index and an improvement in serum hemoglobin and albumin concentrations. 
Although, no clinical evidences on propionibacteria consumption within CRC patients exist, 
when tested in healthy men, this probiotic mixture reduced fecal α-glucosidase, which is as-
sociated with carcinogenesis [207,208]. Studies strongly suggest that those anti-inflammatory 
and potential anti-cancerous effects are related with the molecular factors of P. freudenreichii 
such as metabolites, S-layer proteins, short fatty acids, and 1, 4-dihydroxy-2-naphtoic acid 
[209–211].

4.3.1.1. S-layers proteins 

	 S-layer proteins (Slps) constitute a surface-exposed proteinaceous lattice, non-cova-
lently anchored to the cell wall via Surface Layer Homology (SLH) domains. This structure is 
present in many Gram-positive bacteria other than propionibacteria [212,213]. P. freudenre-
ichii strains have seven genes encoding Slps proteins, exhibiting a wide variety of sequences 
between species but also within the same species [195]. S-layer proteins play various func-
tions: adhesion, virulence factors, transport of molecules, masking of receptors to phages, 
and protection against environmental stresses [212,213]. The stimulation of Peripheral Blood 
Mononuclear Cells (PBMC) with P. freudenreichii Slps proteins mixture leads to the release 
of regulatory IL-10, in a dose-dependent manner. When applied in conjunction with a proin-
flammatory stimulus such as Lactococcus lactis MG1363 or Escherichia coli EPS, P. freuden-
reichii Slps considerably reduce the induction of the proinflammatory cytokines IL-12, IFN-γ 
and TNF-α [214]. The presence of a capsule of exopolysaccharides in several strains of P. 
freudenreichii blocks the immunostimulation of PBMCs, but the deletion of this EPS capsule 
by genetic mutation restores the immunomodulatory properties inthe mutant [215,216]. This 
indicates a key role of surface proteins as PAMPs in this probiotic/host cross-talk. A further 
molecular study specified that the immunomodulatory properties do not result from the pres-
ence of one single Slp protein but rather from a combination of several surface layer protein 
species [217].

4.3.1.2. Short-chain fatty acids 

	 P. freudenreichii, among other dairy propionibacteria species, produces mainly acetate 
and propionate as SCFAs in ratio 2:1 by anaerobic fermentation of carbohydrates or organic 
acids [190]. Propionate and acetate were identified as responsible for the anti-cancerous effect 
of dairy propionibacteria in colorectal and gastric cancerous cells. The pro-apoptotic effect, 
confirmed in an animal model of carcinogenesis, was studied and the molecular mechanism 
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was determined [218–221]. SCFAs activate firstly the apoptotic intrinsic pathway, by acting 
on the mitochondria adenine nucleotide translator (ANT) pore. The ANT activation leads to 
mitochondria depolarization and permeabilisation; and then leakage of cytochrome C and cas-
pase activation. Furthermore, as demonstrated by Cousin et al. (2016), SCFAs could act on 
the extrinsic apoptotic pathway by enhancing the cytotoxicity of the TNF-Related Apoptosis-
Inducing Ligand (TRAIL) cytokine treatment in HT-29 cells [222] and by inducing expression 
of the corresponding R2/DR5 receptor, a TNF receptor super family member that mediates 
apoptosis by activating the extrinsic apoptotic death pathway. A combination lead to a modula-
tion of genes expression involved in apoptosis, decreasing FLIPL and XIAP expression, which 
are two apoptosis inhibitors, regulating extrinsic and intrinsic cell death pathways respectively. 
SCFAs was demonstrated to have a Histone Deacetylase (HDACs) inhibitory activity in HT29 
cells, which cause cell cycle arrest and p21 expression [222]. HDACs inhibition seems to be 
induced in part by SCFAs activated G-protein-coupled receptors, which are known to modu-
late gut immune system [223]. Finally, SCFAs treatments increased of NOD-like receptors 
and cytokine-cytokine receptors interaction gene expression, known to play a role in immune 
response [222]. Finally, P. freudenreichii consumption by humans increase SCFAs in feces, 
suggesting the possibility to modulate gut SCFAs concentrations for preventing CRC occur-
rence.

4.3.1.3. DHNA

	 Dairy probionibacteria, including P. freudenereichii, produce a vitamin K2 (or menaqui-
none) biosynthesis intermediate, called 1,4-dihydroxy-2-naphtoic acid (DHNA) [224-226]. 
It is considered as bifidogenic component and modulates animal and human microbiota, in 
healthy and disease context. DHNA was shown to be able to stimulate in vitro and in vivo 
bifidobacteria growth. Indeed, the consumption of dried cultures of the P. freudenreichii ET-3 
strain leads to an increased population of bifidobacteria within the human gut microbiota in 
healthy human volunteers [227,228]. Similar results were observed using a cell-free culture 
supernatant of P. freudenreichii, which was called bifidogenic growth stimulator (BGS) [229]. 
In addition, DHNA treatment was shown to restore Lactobacillus and Enterobacteriacea flora 
in dextran sulfate sodium (DSS)-induced-colitis in mice [230]. It induces also the expression 
of anti-microbial C-type lectin Reg III protein family, which certainly affects the microbiota 
[231]. DHNA is an anti-inflammatory metabolite which prevents inflammation in different 
murine colitis models [230–232]. It decreased the lymphocytes infiltration in tissues by reduc-
ing cell adhesion molecules expression (MAdCAM-1 or VCAM-1), in a mice colitis model 
[230,232]. Those adhesion molecules are highly expressed In IBD patients, which exacerbate 
the inflammation by increasing immune cells infiltration in tissues. DHNA acts via the aryl hy-
drocarbon receptor (AhR) activation, a transcriptional factor involved in inflammation [231]. 
AhR activation was shown to be involved in the inhibition of secretion of proinflammatory 
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cytokines. Indeed, the inhibition of proinflammatory cytokine IL6 in LPS-stimulated mac-
rophages was related to AhR activation by DHNA [231].

5. Discussion

	 The Scientific community along with some enterprises have been through a technologi-
cal race to sequence and characterize the genome of GIT commensal bacteria, the so-called gut 
microbiota. This approach is crucial to understand the interactions and associations within this 
high complexity biological system and with the host. The human intestinal microbiota com-
position is not only considered in the healthy state, but also in the context of disease, in order 
to understand the dysregulation of the cross talk mechanisms that are involved. Such dys-
regulation, especially when immune system is affected, lead to IBD, cancer or other inflam-
matory disorders, such as mucositis [7,18,19,46,64]. It is clear that the use of probiotics with 
anti-inflammatory or immunomodulatory properties, may change the microbiota composition, 
enhance epithelial barrier function and dampen immune responses by modulating inflamma-
tory signaling pathways. Based on this rationale, several research groups aimed at treating 
gastrointestinal inflammatory disorders [103,127]. Due to adverse conditions of the GIT envi-
ronment, it is important that probiotics be screened, in order to select tolerant strains to avoid 
massive bacterial death and loss of probiotic efficacy, while favoring robustness against diges-
tive stresses, adherence to intestinal epithelium and long persistence in the host.

	 In this context, protection of probiotics could optimize fitness of sensitive strains or even 
improve tolerant strains, and consequently increase their beneficial effects in the GIT. Techno-
logical processes like microencapsulation, using biocompatible materials, or a combination of 
several processes that are used to make functional foods, have indeed been shown to enhance 
probiotic bacteria activity [182,233-235]. Currently, wide varieties of probiotics are available 
within commercial dairy products including fresh milk, yogurt and cheese. Interestingly, these 
commercial products may improve probiotics by converting biomolecules into dairy metabo-
lites which can help in probiotic effect such as conjugated fatty acid, β-galactosidase enzyme, 
etc. [161,236,237]. For instance, fermented milk with L. casei BL23 showed a significant 
reduction of the clinical state of colitis in mice, suggesting that it is safe and efficient to use 
dairy fermented foods with probiotic strains in animal models [178]. In addition, this might be 
the initial step for their clinical use. Therefore, the search for new studies in different models 
of diseases should be encouraged [178,179]. 

	 Recent studies have pointed out the emergence of the potential probiotic application 
for P.freudenreichii, and other dairy propionibacteria, used extensively for Emmental cheese 
ripening, in the treatment of different gastrointestinal inflammatory diseases such as mu-
cositis, colitis and in CRC using a rat model. In addition, ongoing studies investigate the 
benefit of designer fermented dairy products in the context of clinical trials (NCT02488954) 
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[104,105,187,188,238–240]. Finally, exploration of probiotic aptitudes in robust, traditional 
and easy-to-implement fermentation starter bacteria is a promising area of research.

6. Conclusion

	 The potential of different probiotic bacteria strains in treating GIT disorders, in animal 
models and in clinical trials, strongly suggests that they open avenues for the development of 
novel clinical biotherapies. We believe that the use of functional dairy foods is a useful way for 
enhancing immunological effects, as they provide additional beneficial properties and serve 
as excellent protection matrices for probiotic bacteria. In this context, exploring the potential 
of the variety of lactic acid and propionic acid bacteria selected by centuries of traditional fer-
mentation worldwide, will allow identification of yet unknown superbugs.
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